
The University of Manchester Research

Calibration of a Finite Element Forward Model in Eddy
Current Inspection.
DOI:
10.1109/JSEN.2022.3167253

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Hampton, J., Tesfalem, H., Dorn, O., Fletcher, A., Peyton, A., & Brown, M. (2022). Calibration of a Finite Element
Forward Model in Eddy Current Inspection. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2022.3167253

Published in:
IEEE Sensors Journal

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:08. Jun. 2022

https://doi.org/10.1109/JSEN.2022.3167253
https://www.research.manchester.ac.uk/portal/en/publications/calibration-of-a-finite-element-forward-model-in-eddy-current-inspection(76f8ac52-1040-4ac9-9fd6-38dcbdefbf2d).html
https://doi.org/10.1109/JSEN.2022.3167253


Calibration of a Finite Element Forward
Model in Eddy Current Inspection. 1

Joel Hampton 2, Henok Tesfalem 2, Oliver Dorn 3, Adam Fletcher 2,
Anthony Peyton 2, and Matthew Brown 4

April 22, 2022

1This document is the result of the research project funded by the UK En-
gineering and Physical Science Research Council (grant number EP/L022125/1)
and EDF Energy.

2J. Hampton, H. Tesfalem, A. Fletcher and A. Peyton are with the
Department of Electrical and Electronic Engineering, University of Manch-
ester, Manchester, M13 9PL, United Kingdom. Corresponding author email:
joel.hampton@manchester.ac.uk

3O. Dorn is with the Department of Mathematics, University of Manch-
ester, Manchester, M13 9PL, United Kingdom. Corresponding author email:
oliver.dorn@manchester.ac.uk

4M. Brown is with EDF energy, Barnwood, Gloucester, GL4 3RS, United King-
dom.



Abstract

We report on the use of a novel constrained optimisation algorithm for cal-
ibrating the finite element model in an eddy current inspection application.
An accurate finite element forward model is often important in such eddy
current applications for training neural networks or as part of an iterative
solver. However, the subject of calibration of the model has not received
much attention in the literature to date. We consider a multi-frequency, eddy
current depth profiling application, which is important for non-destructive
testing in the nuclear industry. In the optimisation algorithm, we use a
Levenberg-Marquardt algorithm and a bisection search to ensure constraints
are satisfied, coupled with a truncated Gradient and Hessian method. We
calibrate two types of finite element models, one using a filament represen-
tation for the coils and the other using a full 3D approach. The results show
the feasibility of using the constrained non-linear optimisation algorithm for
tuning the finite element model parameters. The mean signal-noise ratio
after tuning on a truncated spectrum was 29.47 dB for the 3D model and
28.96 dB for the filament; in contrast the mean SNR using the measured
coil parameters was 1.48 dB and 4.98 dB for the two uncalibrated models,
respectively. The results show that a filament model is competitive with a
3D model of the coils (within the nuclear graphite application); therefore, a
computationally faster filament model can be used with minimal effect on
accuracy.



1 Introduction

Calibration of a measurement system is important when some material prop-
erty or value is to be evaluated and quantified. Calibration typically involves
applying known inputs and adjusting system parameters to minimize the
measurement error. In the case of eddy current inspection, the system may
be dependent on a forward model, typically a finite element model (FEM). An
accurate forward model is often important in such eddy current applications
for training neural networks or as part of an iterative solver. However, the
subject of calibration of the forward model has not received much attention
in the literature to date.

We consider the application of multi-frequency, eddy current depth profil-
ing of electrical conductivity on nuclear graphite. The electrical conductivity
can be mapped to volumetric density and is important for further understand-
ing of degradation processes and potentially controlling reactivity. Imaging
the core using eddy current data has been previously demonstrated in work
such as [1] and [2]. Calibration of the forward model is important in other
tomographic imaging modalities and applications; for example, in medical
imaging of the lungs [3].

In eddy current or electromagnetic inspection, optimisation techniques
can be used to minimise the error between a FEM simulation and the physi-
cal measurements [1][4][5][6][7]. Prior to employing a FEM in an optimisation
algorithm, the parameters within the FEM need to be calibrated, such that
the FEM accurately encapsulates the physical system. Further, machine
learning methods are becoming increasingly popular for image reconstruc-
tion, wherein large amounts of training data are required. This training data
can be acquired experimentally, numerically or analytically. If a numeric or
analytic model is to be used to produce synthetic training data, then good
agreement between model and simulated data is essential [8][9][10].

Calibration procedures vary in eddy current inspection, a common ap-
proach is to obtain a series of reference measurements for materials of known
characteristics. Properties of the measurements can then be inferred from the
reference samples; for example, in determining the presence of a notch [11].
In methods which require forward models, the calibration stage must min-
imise modelling inaccuracies. In electromagnetic inspection of the graphite
core, calibration procedures for tuning forward models have included various
techniques: varying coil diameter and finding the diameter corresponding
to the best model agreement[12] or mapping the FEM and physical system
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using a transfer function approach [13] or a mixture of both. In [14], the
forward model was calibrated by first accounting for losses and stray capaci-
tance between coil windings and then minimising the difference between the
measured and simulated responses by solving a least squares problem via the
update of model lift off; in this paper we similarly calibrate by solving a least
squares problem but on a larger scale as there are 11 coil parameters which
are to be optimised.

The aim of this paper is to present a rigorous methodology for FEM
calibration and to show how this information can be used in model selection
and in refining the measurement (such as the frequency range). We present
a novel algorithm for solving a constrained optimisation problem, using a
trust region strategy. Although the framework in this paper is in a particular
eddy current non-destructive testing application of importance to the nuclear
industry, the approach could be more generally applied. Therefore, it is
hoped it will be useful to those of a wider audience who wish to calibrate a
numeric or analytic forward model in order to reconstruct material properties
or behaviour.

2 Theory

In inductance spectroscopy the complex inductance variable, M(f, η⃗; ρ⃗), is
sampled at a number of different frequencies, f ; where ρ⃗ is any electromag-
netic material variable, such as permeability (µ), permittivity (ϵ) or conduc-
tivity (σ), and η⃗ contains the coil parameters.

In this paper we are concerned only with imaging electrical conductivity;
therefore, in the calibration procedure, a material with an a priori known
electrical conductivity is used. To simplify the modelling, we use a known
block of material with a homogeneous conductivity. The aim is to determine
η⃗ from a set of inductance measurements, M⃗, such that Mi ∈ M(fi, σ; η⃗)
— in this calibration framework, the conductivity variable is a scalar and is
fixed, and the inductance measurement is a function of the coil parameters.

To determine the coil parameters we find the minimum of an objective
function, f(η⃗), subject to some constraints — this is given in eq. 1, where
l is the lower limit, u is the upper limit, j is the index and I is the set of
indices corresponding to the constrained variables. The variables in violation

are referred to as belonging to the set V , where
{
lj > ηj ∨ ηj > uj, j ∈ V.
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minf(η⃗) , s.t.
{
lj ≤ ηj ≤ uj, j ∈ I. (1)

Writing η⃗ as some step p⃗ from a point η⃗k, we can define η⃗ = η⃗k + p⃗. This
can be used to define the recursive relation η⃗k+1 = η⃗k + p⃗; updates to η⃗ are
chosen such that the next iterate is closer to a minimum. There are numerous
methods for choosing p⃗, most of which are derived from the second order
Taylor series approximation of f(η⃗) given by eq. 2, where at some point
η⃗k ∇η⃗f(η⃗k) is the gradient, Hf (η⃗k) is the Hessian matrix and q(p⃗) is the
quadratic model approximation.

f(η⃗k + p⃗) ≈ q(p⃗) = f(η⃗k) +∇η⃗f(η⃗k)
T p⃗+

1

2
p⃗THf (η⃗k)p⃗ (2)

The function to be minimised is the least squares formulation, given by
eq. 3, where r⃗(η⃗) is the difference between the measured and simulated data.

f(η⃗) =
1

2

∥∥r⃗(η⃗)∥∥2

2
(3)

In this work, the measurand is a complex inductance measurement. This
measurement could be the differential inductance of a gradiometer coil or it
could be the mutual inductance spectrum of a single transmit-receive pair.
In either case, the real and imaginary parts of the complex measurement are
concatenated. For example, using a single transmit-receive pair inductance
spectrum as the measurement, the variable r⃗(η⃗) would be the difference be-

tween the real and imaginary parts of the actual, M⃗t(η⃗t), and simulated,

M⃗s(η⃗), inductance measurements, given by eq. 4, where η⃗t is the desired
true solution.

r⃗(η⃗) =

[
R{M⃗s(η⃗)− M⃗t(η⃗t)}
I{M⃗s(η⃗)− M⃗t(η⃗t) }

]
(4)

The gradient of eq. 3 is given by eq. 5 and the Hessian approximated as eq.
6, where J is the Jacobian matrix.

∇η⃗f(η⃗k) = JT
k r⃗(η⃗k) (5)

Hf (η⃗k) ≈ JT
k Jk (6)

To solve eq. 3 we used the Levenberg-Marquardt (LM) direction with scaling.
Alternatives include the Broyden–Fletcher–Goldfarb–Shanno, NL2SOL and
conjugate gradient algorithms; we opt for a trust region strategy because it
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has been previously shown to yield good results in this modality for depth
profiling electrical conductivity [15]. The LM algorithm is a trust region
method where a constraint region is applied around the current iterate. This
constraint region is chosen such that a quadratic approximation accurately
represents the actual function to be minimised. The LM search direction
is given by eq. 7. The damping matrix, D, re-scales the problem [16];
an alternative problem can be solved by defining Dp⃗ = ω⃗, or equivalently
p⃗ = Sω⃗, where typically the choice of the matrixD is to scale the components
of p⃗ in order to create approximately equal sensitivities across the component
parts of ω⃗. A heuristic choice for the matrix D is to use the diagonal values
of the Hessian, such that DTD = diag{Hf (σ⃗k)} [17][18]. The damping
parameter γ implicitly determines the size of the constraint region. For
further details see [18][19].

p⃗ = −(JT
k Jk + γDTD)−1(JT

k r⃗(η⃗k)) (7)

This search direction can be considered the solution to the regularised linear
problem in eq. 8.

p⃗ = argminp⃗(
1

2

∥∥Jkp⃗+ r⃗(η⃗k)
∥∥2

2
+
γ

2
∥Dp⃗∥22) (8)

The size of the constraint region is modified depending on the quadratic
model agreement with the objective function. This agreement is quantified
by the gain ratio, given in eq. 9. If the quadratic model is accurate then
ρ ≈ 1 and the step towards the solution of argminp⃗(q(p⃗)) in the constrained
region is trusted to be the step towards a minimum of f(η⃗); otherwise the
constraint region can altered until there is a satisfactory ρ.

ρ :=
f(η⃗k + p⃗)− f(η⃗k)

q(p⃗)− q(0)
(9)

The coil parameters must satisfy a number of constraints, the most obvious
is the lift off — a negative lift off is not defined. Further examples include:
the number of turns, the coil dimensions and the sequence of the coils. To
enforce the constraints we could use regularisation techniques and apply a
penalty function; however, this is not sufficient for constraints such as lift
off, where no there is no tolerance for a constraint violation.

There are many constrained non-linear optimisation algorithms available,
such as the gradient projection, barrier, penalty and augmented Lagrangian
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methods [20][21]. Common approaches linearise the constraints and use linear
or quadratic programming algorithms to solve the problem (using Lagrange
multipliers) [22]. In depth analysis constrained optimisation can be found
in[20][23].

Here, we use the trust region algorithm to naturally constrain the step, by
finding the γ that results in all the coil parameters being within the feasible
set described by the constraints. However, if a variable is on or outside of
some feasible boundary and the current step direction wishes to move it to
the unfeasible set, then potentially γ → ∞ — this would be catastrophic
because no other variable can move. Instead, the variables in violation of
some constraint are fixed and a reduced gradient and Hessian computed —
a sub-problem is solved. This method uses Lagrange multipliers naturally
present in trust region algorithms to select the best direction within the
feasible set, corresponding to the free variables — a test for ρ is performed
to check the quadratic model is sufficient. In this formulation the damping
term in eq. 8 is not necessarily a scalar quantity, but a matrix, such that
the penalty becomes 1

2
∥ΓDp⃗∥22, where Γ is a diagonal matrix containing

the individual damping terms of the search direction. Any point with a
constraint violation can then be considered to have γj = ∞. Therefore, this
approach is similar to the interior-point trust region algorithm in [26], where
modifications are made to the constraint region defined by D.

3 Methodology

3.1 Application

In the actual, reactor application, the eddy current inspection tool contains
the sensor coil and is moved up and down a channel by a hoist — this
can be seen in fig. 1. The sensor coil is connected to the measurement
device via an, approximately, 60 m long umbilical cable. Prior to deployment,
the inspection tool is placed within a calibration block of known electrical
properties. Unfortunately, this calibration data was not available for this
experimental study and hence the use of flat graphite blocks, which were
available with three different electrical conductivities.

It is prudent to use a variety of calibration blocks with different conductiv-
ities, such that the calibration error would be, ideally, conductivity invariant.
We use three blocks that have low conductivity (LC), medium conductivity
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(MC) and high conductivity (HC), where high and low are respective to
the nuclear graphite application. The conductivity of the calibration bricks
was physically measured using a four point probe [27], where we took 100
measurements of each brick (from all faces) and computed the truncated
mean to eliminate outliers — we eliminated the top and bottom 10%. The
conductivities determined were 11.0 kS/m, 39.6 kS/m and 85.3 kS/m.

Figure 1: The application considered in this paper: the eddy current inspec-
tion of the nuclear moderator channels within advanced gas-cooled reactors.

3.2 Complex Coil Geometry and parameters

The sensor coil considered is shown in fig. 2. We calibrate and compare two
FEMs of the coil array to be used for reconstructing the electrical conduc-
tivity distribution of a material. The first type of coil model is a filament
model and the second a full 3D coil model.
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Figure 2: The sensor coil inside a graphite channel of the type used in the
nuclear industry, with a ruler for perspective.

In the filament model, we approximate each receive and transmit coil
with a wire filament, which has no cross section. This is an abstraction of
the true coil in which the coil is modelled as resistively lossless. Within the
filament model, the total voltage across a coil can be found by integrating
the flux penetrating the filament and multiplying by the number of turns,
assuming the flux through each coil is the same. However, the field is spa-
tially varying and the amount of flux penetrating each turn of the physical
coil is not necessarily uniform. This could be improved through the use of
more filaments, capturing the spatial variation of penetration. The use of a
filament model is simplistic but results in faster computation times because
the number of finite elements in modelling the coil is reduced. In contrast,
the 3D model captures the variation in flux between turns. Therefore, this
model is generally more accurate but has longer computation times.

The elliptical coils are defined using the parameters in fig. 3. The geome-
try of the gradiometer coil evolved from studies into asymmetric gradiometer
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Figure 3: Engineering drawings of the sensor coil, characterised by the inset
parameters. The top view shows how the curvature of the coil was defined,
using an ellipse defined from an arbitrary origin.

designs in the nuclear application [24][25]; the geometry was chosen such that
there was increased sensitivity at further distances from the sensor. The se-
quence of the coils is as follows: Rx2—Tx—Rx1, from smallest to largest.
The large receive, Rx1, and transmit coil, Tx, lie on the same plane — the
curvature of the surface is described by the major and minor radii of a 2D
ellipse. In contrast, the small receive coil, Rx2, lies in a flat plane. All coils
are elliptical in shape, as seen in the front view. In order to simplify the
problem, the depth, d, and thickness, t, of Rx2, Rx1 and Tx are fixed in this
work; we set the wire cross section so that the turns fit exactly according to
the fixed depth and thickness. The fixed values are d1 = 14 mm, d2 = 9 mm,
t1 = 6.35 mm and t2 = 6.5 mm. The coil dimensions are defined using the
inner diameters and fixed thicknesses and depths. In this work, we do not
update the diameters of Rx1 and Tx individually but instead define them
off the inner diameters of the curved plane, Vc and Hc — the advantage of
which is a reduced set of variables. For example, the horizontal inner diam-
eter of Rx1 is HRx1 = Hc + t1 + 3.3 × 10−3 and HTx = Hc — we add 3.3
mm because this is the measured separation between the Rx1 and Tx coil.
Similarly, we define a single lift off parameter, Lc, for the Tx—Rx1 pair. The
smaller backing off coil has its own lift off parameter, LRx2. The number of
turns, T , on each coil is treated individually.
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3.3 Geometry Independence and the FEM

In calibrating the FEM to the actual measured data, we could tune the coil
parameters such that geometry inaccuracies are implicitly reduced; ideally,
the geometry would be well defined and the inaccuracies of the FEM due
solely to the coil parameters and this is the assumption made in this work.
We use a homogeneous cuboid block of graphite (see fig. 4) and this affords
us with a basic geometry which can easily and accurately be defined, lowering
the possibility of introducing geometrical errors. A template was used to fix
the position of the coil for measurement consistency.

Figure 4: The setup used for calibration; a cuboid block of graphite with a
template to fix the sensor position.

We use the symmetry of the problem to reduce computation times of the
FEM, where the model can be split into one fourth and the relevant boundary
conditions applied. The number of mesh elements for the 3D model was
≈ 130, 000 and for the filament ≈ 90, 000. The number of meshing elements
and tessellation pattern changes with the sensor coil parameters, such as lift
off, and this results in meshing noise which will be present in the sensitivity
analysis — this is assumed to have minimal affect.

3.4 The Measurement

In the measurement used, we consider the mutual inductance of two receive
coils, denoted by MRx1 and MRx2 . The measurement made was the differen-
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tial gradiometer response of the receiver coils in the presence of the conduc-
tive block and in air — given by eq. 10. We refer to this measurement as
the differential mutual inductance (DMI). A perfectly balanced gradiometer
would produce a response entirely due to material under inspection; when
the gradiometer is balanced, the measurement in air is (ideally) equal to zero.
However, gradiometer coils are generally not perfectly balanced, and there-
fore, the gradiometer response is differenced with air to eliminate common
mode signals of the first order. Therefore, in the calibration procedure, we re-
quire two models: one of the gradiometer in air and the other the gradiometer
with the graphite target.

m = (Mc
Rx1

−Mc
Rx2

)− (Mair
Rx1

−Mair
Rx2

) (10)

This measurement was made at 10 different frequencies from from 10 Hz
to 10 kHz. The agreement of the FEM with the physical measurements is
quantified using the signal-noise ratio (SNR), given by eq. 11, where ms is
the simulated measurement and mp the actual. After calibrating the mea-
surement to this frequency range, we truncate the spectrum corresponding
to the range of frequencies with the largest SNR. The measurements of the
experimental data were made using a Solartron 1260 impedance analyser.

ψ(fi) = 20× log10(

∣∣mp(fi)
∣∣∣∣mp(fi)−ms(fi)

∣∣) (11)

3.5 Calibration Algorithm

If a predicted value ηjk + pj had a constraint violation and the previous value
ηjk was within the permissible boundary, then a bisection search was used
to place ηjk + pj on the boundary. If ηjk is already on some boundary and
ηjk+ p

j is in an impermissible set of values we cannot compute ρ. To proceed
we omit the jth parameter from the step for the remainder of the iteration,
by eliminating the variable from the gradient and Hessian; we then alter the
damping parameter until the conditions on ρ are satisfied, as normal. During
the next iteration, any previously omitted parameters are re-introduced into
the inversion and the full process above repeated. This freezing step ensures
that other parameters can take on new values towards a minimum and, thus,
the inversion can progress. In practice we have seen values that have been
frozen later move from the boundary into the permissible space, as the algo-
rithm navigates around some boundaries in the parameter space towards a
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minimum. We refer to the set of variables that are within the feasible region
as F1, those that are to be used in a bisection as F2 and F3 for those that
are to be frozen — these three sets are disjoint and are formally written in
eq. 12.

(lj < ηjk < uj) ∧ (lj ≤ ηjk + pj ≤ uj), j ∈ F1

(lj < ηjk < uj) ∧ (ηjk + pj < lj ∨ ηjk + pj > uj), j ∈ F2

(ηjk ≤ lj ∨ ηjk ≥ uj) ∧ (ηjk + pj ≤ lj ∨ ηjk + pj ≥ uj), j ∈ F3

(12)

The algorithm used for the bisection search is shown in algorithm 1; in this
algorithm we complete a bisection search for the exponent because the sen-
sitivity of the step to the damping parameter is in orders of magnitude, in
this work. Within the bisection search, the objective is to find the γ which
results on parameters in violation being close to the boundary — it is nu-
merically difficult to find a step landing exactly on the boundary. Due to
this, we always select γ = 10low, corresponding to a violation slightly be-
yond the boundary and into the impermissible region — this ensures that
the j ∈ F2 will correctly be considered in the variables to be frozen in the
next iteration. Alternative search algorithms could be used, such as the
golden-section search which has a faster rate of convergence; however, the
relative speedup in this work is negligible and so we opt for a bisection for its
simplicity. The algorithm used in this work is shown in algorithm 2. In this
algorithm, we first check to see which parameters are in F2. The first stage is
to perform a bisection search to find the damping parameter corresponding
to all the variables in violation moving close to or on the boundary — this
stage is completed first because the indices in F3 may change with γ. We
then freeze the variables in F3 by truncating the gradient and Hessian. We
do not permit two bisection searches in a single iteration. The next stage is
to compute ρ and determine whether the quadratic model constraint region
requires altering; an important stage is to check if a bisection search has
been performed in the check for the over-constrained ρ — this is required
because we cannot lower the damping parameter as it will potentially place
the variable further into the impermissible region. However, we are free to
increase the damping parameter. For the damping parameter selection if
0.9 < ρ < 0.99 or 1.01 < ρ < 1.1 then the step was accepted, otherwise
the region was contracted by increasing the damping parameter. The value
of ρ = 1 was avoided as it is possible the constraint region is contracted
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Algorithm 1: Bisection Search for the damping parameter expo-
nent.
1 low = log10(γ);
2 upper = log10(γ) + 10;
3 i = 1;
4 for i < bisection iterations do
5 mid = (low + upper)/2 ;
6 compute p⃗(γ = 10mid);
7 determine F2 with p⃗(γ = 10mid);
8 if F2 is not empty then
9 low = mid;

10 else
11 upper = mid;
12 end
13 γ = 10low;
14 i+ = 1;

15 end
16 return γ;

to the point that the numerator and denominator tend to zero (producing
numerical instability) and also affords us the ability to lower γ.

The objective function which was used is given by eq. 13. The quantity
r⃗k(η⃗) is the residual between the measured and simulated response of the kth

calibration block and n is the number of calibration blocks.

f =
1

2

n∑
k=1

∥∥∥r⃗k(η⃗)∥∥∥2

2
(13)

The constraints used in this work are given in table 1. The constant s is the
minimum separation between Rx2 and Tx and in this work is defined as the
Rx2 coil thickness plus some offset, where the offset used was 3 mm to ensure
the coils can be suitably meshed. Additionally, the upper limit of Rx2 is tied
to the lower of Tx — if one is in violation then so is the other, enforcing the
sequence of the coils. The lift off for each coil has no upper bound, but has a
lower constraint of 3 mm, again to ensure the coils can be suitably meshed.
The rest of the variables are constrained using the measured values with a
25% tolerance.
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Algorithm 2: Computing the step direction

1 ρ = Nan;
2 count = 1;
3 already bisected this iteration = False ;
4 while ρ does not satisfy constraints or count < count limit do
5 compute p⃗(γ);
6 find F2 corresponding to p⃗(γ);
7 if F2 is not empty and not already bisected this iteration then
8 γ = compute bisection();
9 already bisected this iteration = True;

10 compute p⃗(γ);

11 find F3 corresponding to p⃗(γ);
12 if F3 is not empty then
13 Truncate gradient and Hessian;
14 Compute reduced step, p⃗r, corresponding to indices in

F1 ∪ F2;

15 Assemble full step p⃗ using p⃗r, where p
j =

{
0, j ∈ F3.

16 compute ρ using step, gradient and Hessian corresponding to
F1 ∪ F2;

17 if over constrained then
18 if already bisected this iteration then
19 η⃗k+1 = η⃗k + p⃗;
20 break;

21 γ = γ/2;

22 else if Under-constrained then
23 γ = γ × 3;
24 else if Not under-constrained or over constrained then
25 η⃗k+1 = η⃗k + p⃗;
26 break ;

27 count += 1;

28 end
29 return;
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Table 1: Constraints used in both models

Parameter lj uj

HRx2 0.001 Hc+HRx2−s
2

Hc
Hc+HRx2+s

2
∞

VRx2 0.001 Vc+VRx2−s
2

Vc
Vc+VRx2+s

2
∞

TRx2 562.5 937.5

TTx 75 125

TRx1 112.5 187.5

LRx2 0.003 ∞

Lc 0.003 ∞

rmin 0.1 0.12

rmaj 0.1 0.12

To compute the Jacobian required for the gradient and Hessian, we use
the perturbation method. In this approach the sensitivities are found using
the forward difference method, given by eq. 14, where f is defined from eq.
13. We report that for large values of γ (decreasing constraint region radius),
the gain ratio can become numerically erratic; this is because the scale of the
constraint region radius approaches that of the perturbation. Because of this,
we limited the value of the damping parameter to γ < 10.

∂f(η⃗)

∂ηjk
≈ f(ηjk +∆ηjk)− f(ηjk)

∆ηjk
(14)

4 Results

The results presented correspond to five executions of the inversion algorithm
described in the previous section. The measurements and SNR of the three
calibration bricks, prior to optimisation, are shown in fig. 5 and table 2,
respectively. Similarly, the measurements and SNR of the three calibration
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bricks post optimisation are shown in fig. 6 and table 3, respectively. Com-
paring the FEMs prior to and post optimisation, we can see the validity of
using a constrained optimisation algorithm for coil tuning.

Table 2: SNR of the 3D Model using the full spectrum — prior to optimisa-
tion

frequency (Hz) HC (dB) MC (dB) LC (dB)

10 -2.92 -6.72 -6.38

21.54 0.89 -0.02 2.13

46.42 0.69 -0.63 -1.07

100 0.71 -0.51 -0.28

215.44 0.71 -0.48 -0.3

464.16 0.82 -0.43 -0.29

1000 1.25 -0.29 -0.23

2154.43 2.42 0.28 -0.09

4641.59 3.86 1.71 0.43

10000 5.89 4.32 2.49

From fig. 6 we can see that the actual and simulated responses begin to
clearly deviate at 215 Hz in the real part of the measurement of the low con-
ductivity block; the low frequency error is expected because the measurement
signal decreases in accordance with Faraday’s law. Therefore, we truncate
the spectrum’s to 464 Hz - 10 kHz and repeat the optimisation procedure.

The results for the truncated spectrum are shown in table 4 for the 3D
model. From table 3 and 4 we can see that there is not much improvement
in the SNR’s, thus, the lower frequency measurements were not necessarily
limiting the convergence of the model parameters. Further, there may be
coil modelling or measurement inaccuracies which are limiting convergence.
The results for the truncated spectrum are shown in table 5 for the filament
model. The mean SNR across the truncated spectrum and across the three
calibration bricks is 29.43 dB for the 3D model and 28.27 dB for the filament.
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Table 3: SNR of the 3D Model using the full spectrum — post optimisation

frequency (Hz) HC (dB) MC (dB) LC (dB)

10 11.78 -0.66 -3.74

21.54 30.94 18.49 21.86

46.42 38.05 21.89 17.28

100 40.01 23.55 23.61

215.44 40.34 23.99 24.89

464.16 37.02 24.2 25.73

1000 33.89 24.13 26.45

2154.43 31.52 24.22 27.42

4641.59 31.78 25.6 31.23

10000 30.41 41.77 27.31

Finally, the initial measured and tuned coil model parameters are given
in tables 6 and 7, where these are in descending order of relative change
with respect to the measured parameters. The parameter which changed
the most for both models is the lift off of the Tx and Rx1 coils, where this
commonality between two different models indicates possible measurement
error in the lift-off; there are no other obvious trends between the two models.

From the data, it is clear that there is little difference between the two
coil models, and therefore, the affects of the field geometry and coil losses
were not the deciding factor between the two models. This could indicate
that there is a common modelling error in both cases, or that there is sys-
tematic error in the measurement data. In this work a four point probe
was used to measure the electrical conductivity of the blocks; therefore, the
accuracy is potentially limited by the four point probe measurement. This
would also go some way in explaining the asymptotic nature of the accuracy
in both coil models. The assumptions made in this work are that the electri-
cal conductivity distribution throughout the bricks is homogeneous — this
is not necessarily a very good assumption, since there can be some spatial
variations. To gain accuracy, it may be better to obtain bricks which have
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Table 4: SNR of the 3D Model using the truncated spectrum — post opti-
misation

frequency (Hz) HC (dB) MC (dB) LC (dB)

464.16 36.96 24.13 25.65

1000 33.68 24.05 26.35

2154.43 31.28 24.11 27.31

4641.59 31.54 25.45 31.04

10000 30.61 41.93 27.4

Table 5: SNR of the filament Model using the truncated spectrum — post
optimisation

frequency (Hz) HC (dB) MC (dB) LC (dB)

464.16 32.54 26.71 22.44

1000 30.28 26.08 22.84

2154.43 29.82 25.49 23.46

4641.59 31.59 27.64 26.01

10000 30.99 35.03 33.09

greater homogeneity or an electrical conductivity measurement more indica-
tive of the brick average; the latter can be obtained by using a different four
point geometry (greater distance between probes) and a larger number of
measurements at different locations. Furthermore, accuracy may be limited
by the finite element mesh. We repeated the optimisation with a finer mesh
within the calibration block, using 111810 elements instead of the 40811 pre-
viously used; we report that optimisation on the truncated spectrum with
the filament model achieved a mean SNR of 29.09 dB, where previously this
was 28.27 dB. This indicates that the mesh size was not significantly limiting
the accuracy, in this case.

Finally, the 3D model takes ≈ 89 s to compute and the filament ≈ 54 s —
this is for the truncated spectrum where the computations were performed
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Table 6: 3D Model Parameters

Parameter Measured Tuned Change (%)

Lc 0.0089 0.00449 -49.5

rmaj 0.105 0.0834 -20.6

rmin 0.105 0.12 14.7

TTx 100 103 3.09

Hc 0.0518 0.0504 -2.88

LRx2 0.0186 0.019 2.09

TRx1 150 153 1.95

HRx2 0.028 0.0276 -1.56

VRx2 0.033 0.0326 -1.35

TRx2 750 742 -1.06

Vc 0.0668 0.0662 -0.903

on a Lenovo ThinkStation P520, with 128GB RAM. This is subject to change
with coil parameters and model geometry studied, but provides a useful gauge
for the relative speed up of a filament model.
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Table 7: Filament Model Parameters

Parameter Measured Tuned Change (%)

Lc 0.0089 0.00507 -43

TTx 100 75 -25

LRx2 0.0186 0.0203 8.93

Hc 0.0518 0.0485 -6.49

TRx1 150 142 -5.29

rmaj 0.105 0.11 5.23

Vc 0.0668 0.0698 4.42

rmin 0.105 0.103 -1.56

VRx2 0.033 0.0328 -0.613

HRx2 0.028 0.0281 0.377

TRx2 750 753 0.339
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Figure 5: The simulated and actual measurement of the three calibration
bricks, using the initial measured coil parameters in a 3D coil model. The
prefixes A and S stand for actual and simulated, respectively
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Figure 6: The simulated and actual measurement of the three calibration
bricks, using a 3D coil model — post optimisation.
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5 Conclusion

In this paper we have presented a method for tuning multiple coil parameters
in order to calibrate a finite element model for use in an eddy current in-
spection application. The algorithm used is practical and requires no further
theory beyond trust region algorithms; this algorithm can be used in both
constrained and unconstrained optimisation. We have shown how the choice
of finite element model can be determined through this calibration procedure.
In this work we have shown that, in this particular nuclear graphite appli-
cation and for the measurement device used, a filament model is as accurate
as a 3D model for the sensor coils. Further, the calibration procedure used
in this paper shows how to methodically reduce the error between finite ele-
ment models and physical systems and is useful for applications such as the
generation of synthetic training data for use in machine learning algorithms.
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