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Abstract—Over the past years, the focus of the research on hybrid 

renewable energy source (HRES) plants has been on the economic 

advantages of their integration into power systems. This paper 

investigates the contribution of the HRES plant to system small 

disturbance stability and proposes dynamic equivalent model 

(DEM) of HRES plant for small disturbance stability studies. The 

analysis takes into consideration typical annual HRES plant 

compositions identified by applying a clustering method to 

historical plant production data. Damping and frequency of the 

least damped electromechanical mode are used for assessing the 

similarity in the impact of HRES plant compositions on system 

stability. A transfer function-based DEM of the whole HRES 

plant is then proposed for each group of plant compositions 

resulting in similar system stability performance. The results 

have shown that a small number of low-order DEMs can 

represent the whole plant in small disturbance stability studies 

during the year. 

Index Terms--data clustering; dynamic equivalent model; hybrid 

renewable energy source plant; small disturbance stability  

I. INTRODUCTION 

Over the past years there has been a considerable growth in 
the installation capacity of renewable energy sources (RESs) in 
power systems all over the world [1]. Unlike conventional 
power plants, RES plants are mostly characterized by 
intermittent production, large number of individual units and 
power electronics-interface [2]. Integration of different 
technologies into a single power plant has been recognized as a 
potential option for improving dispatchability of RESs, and 
thus enabling the control of RES production by system 
operators. Hybrid renewable energy source (HRES) plants rely 
on combining various RES (both dispatchable and non-
dispatchable) and storage technologies to obtain more stable 
power output at the point of common coupling (PCC). So far, 
the research has been focused on designing economically cost 
effective HRES plants capable of following pre-specified 
production profile [3]. However, the alterations in static and 
dynamic system performance due to integration of HRES plants 

have been commonly neglected [3]. Different power flows in 
network due to power being produced at different geographical 
locations, reduced inertia level, different dynamic 
characteristics of generation units in service are some of the 
changes in system structure and operation associated with the 
installation of HRES plants and decommissioning of 
conventional power plants. 

The need for analyzing the influence of large RES plants on 
system dynamics has pointed out at the problem of their 
representation in system stability studies. Namely, detailed 
dynamic modelling of all individual units in RES plants results 
in unnecessary complex network models and consequently high 
computational time required for performing system stability 
simulations [4]. In order to overcome the issue, dynamic 
equivalent models (DEMs) have been recommended for 
representing RES-based plants and networks in system stability 
studies [4]. The two main types of DEMs are modal analysis 
and system identification-based models [4]. The former is 
based on calculating all eigenvalues of the system and 
eliminating those associated with fast system dynamics. System 
identification-based approach utilizes system responses to 
derive DEM parameter values. It can be divided into black-box 
and grey-box modelling technique depending on the needed 
amount of information about the system. Unlike grey-box 
equivalents, black-box models do not require any physical 
insight into the investigated system and measurements at 
system boundary buses are the only prerequisite for the 
application of the method. Most of the DEMs described in the 
literature are suitable for a specific technology mix in a power 
plant/distribution network, adequate for a limited number of 
operating conditions and/or require detailed information about 
network topology, which limit their application in practice [4]. 

In this research, the aggregate contribution of various 
generation and storage technologies to transmission network 
(TN) stability was assessed. The paper investigates the impact 
of a HRES plant on small disturbance stability of a TN and 
provides guidelines for equivalent modelling of the whole 
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HRES plant in small disturbance stability studies. The 
methodology for assessing the influence of HRES plant on 
system stability is based on typical HRES plant operating 
scenarios (i.e., HRES plant compositions) during the year. A set 
of characteristic plant compositions is identified by applying 
the fuzzy c-means clustering algorithm to historical HRES plant 
production data. A probabilistic Monte Carlo (MC) approach is 
used for taking into consideration uncertainties in production 
and location of individual technologies in HRES plant. Small 
disturbance HRES plant behavior is assessed on the basis of 
damping and frequency of the least damped electromechanical 
mode. A black-box DEM in the form of a transfer function (TF) 
is proposed for each group of HRES plant compositions 
resulting in similar small disturbance stability performance. In 
this way, the annual performance of the HRES plant in small 
disturbance stability studies is represented by a small set of low 
order DEMs. In addition, to the best of authors’ knowledge, 
DEM development on the basis of the least damped 
electromechanical modes has not been reported in the literature. 
The test HRES plant consists of six RES and storage 
technologies having the same point of connection to the TN. 

II. METHODOLOGY 

The methodology applied in this study is graphically 
illustrated in Fig. 1. Inputs and outputs of stages within the 
procedure are represented by dashed rectangles. The first stage 
in the study is identifying typical HRES plant compositions 
during the year (block labelled with (2) in Fig. 1). Performing 
the study with characteristic HRES plant compositions solves 
the problem of high computational time associated with 
investigating all possible HRES plant operating points. Typical 
HRES plant compositions are determined by applying a 
clustering method to historical data about the active power 
outputs of the HRES plant’s individual components. A single 
clustering object consists of individual plants’ production at the 
same time instance, while the number of clustering objects 
corresponds to the number of time steps in the analyzed 
historical period.  

The fuzzy c-means clustering method, a partitioning 
clustering algorithm, is chosen to perform data clustering as the 
historical production data set is expected to be large. One of the 
main advantages of the algorithm is its low computational 
complexity, O(N), where N is the number of clustering objects 
[5]. In addition, the fuzzy c-means clustering method has been 
used for similar clustering tasks [6]-[8]. The data set is 
separated into clusters through an iterative process, with the 
number of clusters defined prior to clustering process [5]. At 
each iteration, all clustering objects are allocated to all clusters 
with a certain membership degree, which makes the algorithm 
suitable for clusters not being well separated [5]. Each cluster 
is described by a cluster representative (i.e., fuzzy centroid), 
which corresponds to characteristic HRES plant composition in 
this study. The fuzzy centroid is defined as follows [5]: 

 𝑤𝑗 =
∑ (𝑢𝑖𝑗)

𝑚𝑥𝑖
𝑁
𝑖=1

∑ (𝑢𝑖𝑗)
𝑚𝑁

𝑖=1

, 

 𝑢𝑖𝑗 =
1

∑ (
𝑑(𝑥𝑖,𝑤𝑗)

𝑑(𝑥𝑖,𝑤𝑙)
)1/(𝑚−1)𝑘

𝑙=1

, 

 ∑ 𝑢𝑖𝑗
𝑘
𝑗=1 = 1, ∀𝑖 = 1,… , 𝑁, 

where wj is the centroid of the j-th cluster, xi is the i-th clustering 
object, uij is a membership degree of the i-th clustering object 
in the j-th cluster, d(xi,wj) is the Euclidean distance between the 
i-th clustering object and the j-th fuzzy centroid, k is the number 
of clusters and m is the fuzziness level (m is usually equal to 2). 
Internal clustering evaluation indices have been commonly 
used for addressing the problem of specifying the number of 
clusters in advance [9]. The clustering procedure is repeated for 
a range of the number of clusters and the selected index is 
calculated for each reiteration taking into account inter-cluster 
and intra-cluster similarity. The number of clusters 
corresponding to the optimal value of the clustering index 
represents the optimal number of clusters for the analyzed 
clustering data set. In order to obtain more reliable estimation 
of the number of clusters in the production data set, a 
combination of the three widely applied clustering indicators, 
mean square error (MSE), clustering dispersion index (CDI), 
and mean index adequacy (MIA), is used in this study [9]. The 
optimal number of clusters according to any of these indicators 
is determined by plotting the indicator against the number of 
clusters and identifying the knee of the curve using the two-
tangent method described in [9]. The final number of clusters, 
i.e., the number of typical annual HRES plant compositions, is 
defined as a median value of the numbers recommended by the 
afore-mentioned indices. 

The next stage of the methodology involves probabilistic 
MC procedure (block labelled with (4) in Fig. 1), which takes 
into account uncertainties in active power outputs of individual 
plants and the lengths of connecting lines. Uniform probability 
distribution is adopted for sampling these uncertainties from the 
pre-specified ranges. Uncertainties in plant production are 
varied within the ranges centered around typical annual HRES 
plant compositions. Small signal stability analysis of the TN is 
performed for each MC case study by conducting modal 
analysis in DIgSILENT PowerFactory software environment 
(block labeled with (6) in Fig. 1). Modal analysis requires 
computing all system eigenvalues using the classical QR 
transformation [10]. The influence of different HRES plant 
compositions on small signal stability is distinguished on the 
basis of damping and frequency of the critical (least damped) 
electromechanical oscillation mode (block labeled with (7) in 
Fig. 1). Electromechanical modes are used for identifying the 
patterns in HRES plant stability performance as these modes 
persist longest after a system disturbance and thus determine 
the overall system dynamic behavior [10]. Grouping of MC 
case studies according to the similarity in the impact on small 
disturbance system stability is carried out by applying the fuzzy 
c-means clustering algorithm to the results of small signal 
stability studies (block labelled with (8) in Fig. 1). The optimal 
number of clusters is estimated in the same way as in the case 
of production data clustering. Each cluster of critical 
electromechanical modes is represented by a fuzzy centroid, so-
called representative critical electromechanical mode. 



Furthermore, a representative HRES plant composition is 
defined for each cluster as one of the simulated plant 
compositions characterized by the critical electromechanical 
mode corresponding to cluster medoid (cluster medoid is one 
of the simulated electromechanical modes being the most 
similar to the representative critical mode). The number of 
clusters of electromechanical modes corresponds to the number 
of DEMs required to represent the HRES plant in small signal 
stability studies during the year.  

The final step in the study involves proposing DEM 
structure (block labelled with (10) in Fig. 1). Firstly, a time 
domain electromechanical simulation is carried out for each 
representative HRES plant composition defined in the previous 
step of the methodology. The electromechanical simulations are 
carried out in DIgSILENT PowerFactory software using the 
full-scale dynamic model of the HRES plant. An increase in TN 
load is chosen as a system disturbance. The lengths of all 
connecting lines are set at the average of line lengths simulated 
in the MC procedure. Voltage and power responses at the PCC 
are recorded in the simulations and these responses represent a 
basis for DEM development. 

The DEM is developed in the form of a TF for each of the 
clusters of small signal stability results. The input and output 
signal of the TF is the deviation of voltage and power at the 
PCC from their pre-disturbance values, respectively. The full 
DEM structure is as follows: 

𝑃𝐷𝐸𝑀(𝑡) = {
𝑃𝑠𝑠, 𝑡 < 𝑡𝑠𝑡𝑎𝑟𝑡

𝑃𝑠𝑠 + ʆ−1(𝑇𝐹(𝑠))(𝑢𝑃𝐶𝐶(𝑡) − 𝑢𝑆𝑆), 𝑡 ≥ 𝑡𝑠𝑡𝑎𝑟𝑡
,

where PDEM (t) is the active power output of the DEM, Pss is the 
total HRES plant production in pre-disturbance state, ʆ-1 stands 
for the inverse Laplace transform, TF(s) is the TF in s-domain, 
uPCC (t) is voltage at the PCC, uSS (t) is voltage at the PCC in 
pre-disturbance state and tstart is the moment of occurrence of 
the system disturbance. 

The estimation of TF parameters is carried out through an 
iterative optimization process using System Identification 
Toolbox in MATLAB [11]. In this process, voltage and active 
power responses at the PCC that are obtained in the time 
domain electromechanical simulations are used as TF input and 
output, respectively. TF numerator and denominator order are 
gradually increased starting from TF structure corresponding to 
the representative critical electromechanical mode. For each TF 
order, TF parameters are initialized using the simplified refined 
instrumental variable method first and then updated through the 
optimization process using the Levenberg-Marquardt algorithm 
[4], [11]. The objective of the optimization procedure is to 
minimize the difference between TF output and small signal 
active power response of the detailed HRES plant model: 

 min
𝜃

𝑅𝑀𝑆𝐸 = min
𝜃

√
1

𝑛
∑ (𝑃𝑂𝑅𝐺,𝑖 − 𝑃𝐷𝐸𝑀,𝑖)

2𝑛
𝑖=1 , 

where RMSE is root mean squared error, θ is a set of TF 
parameters, n is the number of samples, PORG,i is the active 
power response obtained in the electromechanical simulation at 

the i-th time step, and PDEM,i is DEM output at the i-th time step. 
The optimization terminates when there is no considerable 
improvement in RMSE value between two consecutive 
iterations. Following parameter estimation, the Best Fit Value 
(BFV) is calculated using (6) [4]: 

 𝐵𝐹𝑉(%) = 100 ∙ (1 − |
∑ (𝑃𝑂𝑅𝐺,𝑖−𝑃𝐷𝐸𝑀,𝑖)
𝑛
𝑖=1

∑ (𝑃𝑂𝑅𝐺,𝑖−𝑃𝑂𝑅𝐺)
𝑛
𝑖=1

|), 

where 𝑃𝑂𝑅𝐺  is the average of small signal active power 
response of the detailed HRES plant model. The optimal TF 
parameters correspond to the lowest TF order with the BFV 
above a pre-defined threshold (80% is adopted in the study [4]). 

 

Figure 1.  The flow chart of the methodology. 

III. TEST SYSTEM 

The test HRES plant, along with the test TN, is shown in 
Fig. 2. The whole test system is developed in DIgSILENT 
PowerFactory software package 2019 [12]. The analyzed 
HRES plant contains 6 individual plants: 3 dispatchable RES 
plants (a pumped hydro storage (PHS), biomass and biogas 
power plant), 2 non dispatchable RES plants (a photovoltaic 
(PV) plant and wind farm (WF)) and a battery energy storage 
system (BESS). The HRES plant design is adopted from [13] 
and corresponds to an optimal techno-economic HRES plant 
configuration for the southern part of Greece. Individual plants 
in the HRES plant are connected to a common 110 kV bus, i.e., 
the PCC (Bus 17 in Fig. 2), which is further connected to a 
230 kV external TN through a transformer and two parallel 
lines. System load (connected to Bus 17 in Fig. 2) is represented 
by static exponential load model without frequency dependent 
components. 

The rated capacities and model order of all individual plants 
in the HRES plant are given in Table I. The model order 
specified in Table I includes the order of the dynamic model of 
generation/storage technology and its control system. Nominal 
power factor of 0.85 is assumed for all SMs in the HRES plant, 
while the PV plant, WF and BESS do not produce or generate 
reactive power. The PV plant and WF consist of a certain 
number of individual, identical, units connected in parallel and 
are represented by aggregate models obtained by scaling up the 
models of individual generators [12]. The number of parallel 
units in service is defined by the plant power production as it is 

 



assumed that units in service produce nominal power output of 
2 MW.  

A generic type 3 model, suitable for large system stability 
studies, is used for representing WF individual units (doubly-
fed induction generators (DFIGs)). The model is developed on 
the basis of the recommendations given by WECC [14] and IEC 
[15] and is available in DIgSILENT PowerFactory [12]. PV 
plant individual units are modelled by a type 4 wind generator 
model, adequate for full-converter connected wind generators. 
Given that PV plants and type 4 wind generators are connected 
to the grid through a full-connected converter and converter can 
be considered to decouple dynamics of the source on the DC 
part from the rest of the power system, both technologies can 
be represented by the same model in system stability studies 
[16]. The structure of the PV dynamic model used in the paper 
is similar to the one presented in [17] and is also available in 
DIgSILENT PowerFactory environment [12]. More details on 
WF and PV plant modelling can be found in [16]. The hydro 
generator is represented by the standard fifth order SM model, 
whereas the sixth order model is used for the biomass and 
biogas power plant [10]. The control systems of all three SM-
based power plants contain the standard IEEE DC1A exciter, 
while IEEEG3, IEEEG1 and GAST governors are used in the 
hydro, biomass and biogas plant control system, respectively 
[10]. The BESS is modelled as a static voltage source with a 
control system containing a frequency controller, active power-
voltage controller, charge controller and relevant protection 
mechanisms [18]. The voltage source model takes into account 
the battery state of charge and battery internal losses. 

 

Figure 2.  The schematic diagram of the test system. 

IV. RESULTS AND DISCUSSION 

The study is based on optimal economic HRES plant 
production profiles during one year [13]. The data set was 
generated through an optimization process with the aim of 
satisfying system operator requirements in terms of total plant 
production while maximizing total annual plant revenues. The 
sampling rate of the data set is one hour. The same system load 
operating point is adopted for all analyzed HRES plant 

operating scenarios - system load corresponds to a quarter of 
the average annual HRES plant production.   

The application of the fuzzy c-means clustering algorithm 
to the historical production data set results in nine clusters of 
HRES plant compositions, which are given in Table II. Nine 
clusters are selected based on the values recommended by the 
MSE, CDI and MIA indices – 9, 5 and 11, respectively. The 
change of the values of the clustering indicators with the 
number of clusters is presented in Fig. 3. Probabilistic MC 
procedure involves generating a thousand MC simulations per 
characteristic annual HRES plant composition. Uncertainty in 
the location of individual technologies in the HRES plant is 
taken into account by varying the lengths of connecting lines 
(lines TL 1 – TL 6 in Fig. 2) uniformly between 0.5 km and 5 
km. As for uncertainties in production forecast, in each set of 
1,000 MC simulations, the power output of each individual 
plant is sampled uniformly in the range of ±5% around the 
corresponding value in the typical HRES plant composition. 

TABLE I.  NOMINAL CAPACITES AND MODEL ORDER OF INDIVIDUAL 

PLANTS IN THE TEST HRES PLANT 

Technology WF 
PV 

plant 
PHS 

Biomass 

plant 

Biogas 

plant 
BESS 

Nominal 

capacity 

(MVA) 

170 265 295 76.5 76.5 125 

Model order 17 14 13 14 11 9 

Overall model 

order 
78 

TABLE II.  CHARACTERISTIC ANNUAL HRES PLANT COMPOSITIONS 

No. 
WF 

(MW) 

PV plant 

(MW) 

PHS 

(MW) 

Biomass 

plant 

(MW) 

Biogas 

plant 

(MW) 

BESS 

(MW) 

1 18 4 0 64 58 0 

2 152 16 0 0 0 2 

3 132 112 0 0 0 -89 

4 34 4 119 0 0 0 

5 56 28 0 58 10 0 

6 20 200 0 0 0 -68 

7 148 176 -139 0 0 0 

8 36 26 0 0 0 92 

9 24 148 0 0 0 0 

 

As mentioned in Section II, the focus of small signal 
stability analysis is on electromechanical modes. Therefore, the 
least damped electromechanical mode is defined for each MC 
simulation and shown in Fig. 4. Given that the external network 
is modelled as a single large SM and only four out of nine 
typical annual HRES plant compositions (i.e., compositions 1, 
4, 5 and 7) have at least one SM-based power plant in service, 
only these four HRES plant compositions can produce 
electromechanical modes. Given that all three clustering 
indicators suggest three as the optimal number of clusters, the 
results of small signal stability analysis of the above-mentioned 
four HRES plant compositions can be divided into three groups. 
Cluster 1 contains the results of the MC case studies based on 
compositions 1 and 5 that are characterized by two SMs (the 
biomass and biogas power plant) in operation. These two 
compositions result in the least damped and fastest 

 



electromechanical mode (on average, -0.7 and 1.34 Hz, 
respectively) among the recorded electromechanical modes. 
The second cluster includes composition 7, i.e., the composition 
with the PHS in pumping mode as a single SM in service. 
Finally, MC cases based on HRES plant composition 4 with the 
PHS in power generation mode are allocated to cluster 3. 
Electromechanical modes produced by clusters 2 and 3 have 
similar frequency (about 1.17 Hz), but slightly different 
damping: -1.01 and -1.18 respectively. 

 

Figure 3.  The change of the MSE (a), CDI (b) and MIA (c) with the number 

of clusters in the historical production data clustering procedure. 

 

Figure 4.  Critical electromechanical modes produced by MC case studies 

(C: characteristic annual HRES plant composition). 

Therefore, all analyzed MC case studies can be divided into 
4 groups (3 groups of cases producing electromechanical modes 
and a group of cases without a SM in service) based on their 
impact on small signal system stability. The data about the 
fuzzy centroid (i.e., representative critical electromechanical 
mode) and the output of the representative HRES plant 
composition are given in Table III for each of the four clusters. 
HRES plant compositions associated with each of the DEMs 
are shown in Fig. 5 in the form of boxplots. Outliers are marked 
by red asterisks, whereas whiskers cover 99.3% of data in the 
case of normal distribution. Four clusters of MC cases indicate 
that four DEMs are required for representing all considered 
HRES plant operating points in small signal stability studies. 
Cluster/DEM 4 and 1 cover 50% and 30% of the historical data 
set, respectively, while the two remaining DEMs represent only 
around 10% of the data each. Furthermore, the selection of the 
DEM is determined by HRES plant composition only as all MC 

cases generated on the basis of a single characteristic HRES 
plant composition belong to the same cluster. 

As described in Section II, in order to derive DEMs time 
domain electromechanical simulations are performed for 
representative HRES plant compositions of the four clusters. 
An increase in system load (represented by load connected to 
Bus 17 in Fig. 2) corresponding to approximately 5% of the 
HRES plant output is chosen as a system disturbance. The 
simulations last 10 seconds and the disturbance occurs at 1 
second. The lengths of all connecting lines are set at 2.75 km as 
it corresponds to the average of the line lengths simulated in the 
MC procedure. Deviation of active power responses from 
HRES plant output in pre-disturbance state is shown in Fig. 6 
(a) for all electromechanical simulations. The parameters of the 
representative critical electromechanical mode given in Table 
III are used for specifying initial TF complex poles prior to the 
optimization process. In the case of DEM 4, that is, HRES plant 
compositions without SMs in service, TF poles cannot be 
initialized in advance (TF can contain only real poles). TF 
parameter estimation process terminates when the 
improvement in RMSE value between two consecutive 
iterations becomes smaller than 1%.  

TABLE III.  REPRESENTATIVES OF CLUSTERS OF SMALL SIGNAL 

STABILITY RESULTS 

Cluster 

number 

Damping 

(1/s) 
Frequency (Hz) 

HRES plant output 

(MW) 

1 -0.72 1.35 149.5 

2 -1.01 1.18 184.8 

3 -1.18 1.16 157.3 

4 - - 161.4 

 

 

Figure 5.  Historical HRES plant compositions corresponding to the DEMs. 

As an example, a final form of the TF determined for DEM 
1 is given by (7): 

 𝑇𝐹(𝑠) = −104
0.38𝑠3+10𝑠2+3.86𝑠+2.02

(𝑠2+1.32𝑠+67.2)(𝑠+37.82)
. 

All four TFs are characterized by one highly damped real 
pole. While TF for DEM 4 has only one pole, TFs for DEM 1-
3 contain a conjugate complex pole as well. Thus, dynamic 
equivalencing provides a significant reduction in HRES plant 
model order: the detailed dynamic model requires 78 
differential equations, whereas the highest DEM order is three. 
All DEMs are characterized by high match with the 
corresponding active power responses obtained in DIgSILENT 
time domain simulations – RMSE index (given by (5)) is below 

 

 

 

 



0.005 MW for all DEMs as well as high match of the 
corresponding eigenvalues. The active power responses 
produced by the detailed HRES plant model and DEM 1 are 
compared in Fig. 6 (b) and the eigenvalues of the critical modes 
for DEM 1-3 and those obtained from the corresponding 
detailed HRES plant model in DIgSILENT for the 
representative HRES plant compositions are shown in Table 
IV. 

 

Figure 6.  Deviation of small signal active power responses at the PCC from 
total HRES plant production in pre-disturbance state for all clusters (a); 

Small signal active power responses at the PCC produced by the detailed 

HRES plant model (blue) and DEM 1(red) (b). 

TABLE IV.  CRITICAL MODES OF DEMS AND DETAILED HRES PLANT 

MODEL 

 DEM Detailed HRES plant model 

Damping 

(1/s) 

Frequency 

(Hz) 

Damping 

(1/s) 

Frequency 

(Hz) 

Cluster 1 -0.66 1.30 -0.70 1.34 

Cluster 2 -0.99 1.19 -1.01 1.18 

Cluster 3 -1.13 1.16 -1.18 1.16 

V. CONCLUSION 

The paper provided a detailed analysis of the impact of the 
HRES plant on small disturbance stability of the network and 
guidelines for developing DEM of the HRES plant for small 
signal system stability studies. The test system contains the 
HRES plant that consists of a range of RES and storage 
technologies and is connected to the TN through a single PCC.  

The presented study is based on analyzing the annual small 
disturbance performance of the HRES plant considering 
variable plant compositions. Unsupervised fuzzy c-means 
clustering method is applied to the historical HRES plant 
production data set to determine the most probable HRES plant 
compositions during the year. In this way, the problem of high 
computational time associated with investigating all possible 
HRES plant operating conditions is avoided. The influence of 
characteristic HRES plant compositions on small signal system 
stability has been established in terms of the damping and 
frequency of their least damped electromechanical mode. A 
DEM of the HRES plant is proposed in the form of a TF to 
model the plant in system wide small disturbance stability 
studies. Voltage and active power at the PCC are used as the TF 
input and output signal, respectively. Results have shown that 
the considered HRES plant compositions can be represented by 
four low-order DEMs. In addition, only the information about 
HRES plant composition is needed when selecting the most 
suitable DEM at any time during the year. Equivalent modelling 

can provide considerable reduction in the order of the 
mathematical model of the HRES plant and consequently time 
required for conducting small disturbance stability studies of 
large systems.  
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