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Abstract 
 

Background 

In observational studies, researchers must select a method to control for confounding. Options include 

propensity score methods and regression. It remains unclear how dataset characteristics (size, overlap 

in propensity scores, exposure prevalence) influence the relative performance of the methods, making 

it difficult to select the best method for a particular dataset. Given the increasing availability of large 

electronic health resources, performance for the analysis of big data is of particular interest. 

 

Methods 

A simulation study to evaluate the role of dataset characteristics on the performance of several 

propensity score methods (followed by logistic regression), compared to multiple logistic regression, 

for estimating a marginal odds ratio in the presence of confounding. Outcomes were simulated from 

logistic and complementary log-log models, and size, overlap in propensity scores, and prevalence of 

the exposure were varied.  

 

Results 

Multiple regression showed poor coverage for small sample sizes (100), but with large sample sizes 

(10,000 or above) it was more robust to imbalance in propensity scores and low exposure prevalence 

than were propensity score methods. Propensity score methods frequently displayed suboptimal 

coverage, particularly as overlap in propensity scores decreased. Problems associated with lack of 

overlap were exacerbated at larger sample sizes. Power of matching methods was particularly affected 

by lack of overlap, low prevalence of exposure, and small sample size. Performance of inverse 

probability of treatment weighting depended heavily on dataset characteristics, with poor coverage 

and bias with reduced overlap. The advantage of regression for large data size became less clear in 

the sensitivity analysis with a complementary log-log outcome generation mechanism and with 

unmeasured confounding, with superior bias and error but lower coverage than nearest neighbour 

and 1-to1 propensity score matching. 

 

Conclusions 

Matching on the propensity score performed better in very small samples, but the performance of 

multiple regression was comparable in sample sizes of 1,000 and became increasingly superior as 

sample sizes increased. In contemporary large observation studies, of national registries or primary 

care electronic health records, multiple regression estimation is predominantly the optimal choice, 

both in terms of simplicity and performance. 

 

 

Keywords: confounding, propensity scores, odds ratio, marginal odds ratio, regression 

standardisation, logistic regression, simulation 
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Introduction 
Observational studies employing large, routinely collected datasets are now commonplace in the 

health sciences, exploiting new opportunities to study the effects of treatments or exposures in 

representative cohorts. A key concern in observational studies is how to address confounding, in order 

to permit the estimation of the effect of the exposure on an outcome. [1, 2] Researchers frequently 

use regression or propensity scores (PS) for this purpose, with the latter increasing in popularity in the 

past few decades [3]. 

 

The popularity of PS methods for observational health data can be attributed to several attractive 

features. For example, they offer intuitive checks for balance between groups which are not possible 

using regression methods [2, 4]. Additionally, they can be formulated without reference to the 

outcome. This might reduce bias arising from “p-hacking” (when analyses are selected on the basis of 

the results they produce) [5], because the impact on the estimated treatment effect is not known 

during development of the PS model [2]. Another advantage is the fact that regression methods 

implicitly but heavily rely on extrapolation when exposed and unexposed individuals have very 

different confounder distributions [6, 7]. This is more explicit for PS methods, because it manifests in 

the form of highly variable inverse probability weights or a lack of good matches. It is also 

appropriately reflected by reduced certainty in the estimated exposure effect [6, 7]. A final reason 

may lie in the fact that PS methods, particularly when PS are used for matching, are frequently 

described as “emulating” a randomised controlled trial. However, it might not be clear to those using 

this phrase that the success of this emulation depends on all confounders being included in the 

estimation of the PS. 

 

The variety of available methods for handling confounding in observational studies creates a challenge 

for the applied health researcher, who must select the best analytic approach for the particular study 

at hand. For example, PS matching excludes some data from the analysis, and so its performance might 

depend on factors such as the study size and the proportion of individuals who are exposed. In 

addition, PS methods were developed in an era preceding the widespread availability of large health 

datasets, and evaluations of their performance have generally not considered large sample sizes.  

Evidence is therefore lacking on the relative performance of these methods for the analysis of big 

data. Previous studies have compared the results obtained by applying different methods [8], or have 

used simulation without investigating the impact of dataset characteristics on performance [9, 10]. 

We therefore conducted a comprehensive simulation study to evaluate commonly used approaches 

for confounding control, and to investigate the factors affecting their performance, with the aim of 

providing guidance for health researchers. We considered the roles of data size, imbalance in 

confounding variables, and the relative number of exposed to unexposed individuals.  

 

 

Methods 
Methodological details are provided in the supplementary file. 

 

Propensity score 

In a comparison of an exposed with a control group, PS can be estimated using multiple logistic 

regression where the binary outcome denotes membership of an exposed or a comparator group. 
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Covariates hypothesised to be associated with the outcome should be included in the multiple logistic 

regression model. The PS is the predicted probability 𝑝 of exposure. In practice, the regression 

coefficients must be estimated and hence there is uncertainty in 𝑝 that is not usually accounted for in 

the process (although it is possible to do so, e.g. [7, 11]). Following estimation, the next concern is to 

verify that these are balanced across the two groups [2]. Finally, PS are incorporated into the analysis 

using one of several approaches. 

 

Stratification using the PS has been found to perform poorly, and so we decided not to consider it in 

our simulation study [12, 13]. Regressing the outcome on exposure and PS has been found to be the 

most commonly used approach in reviews of practice [14, 15]. Inverse probability of treatment 

weighting (IPTW) is an alternative, often used approach [16]. However, PS matching has gained a 

reputation as the best PS method for removing baseline imbalance and is widely used[17-19]. The 

most common version is one-to-one matching without replacement [2], where each “case” in group 

A is matched to one “control” in group B, if the difference in their PS is below a predefined arbitrary 

threshold or “caliper” [20]. This approach entails sample size reductions, which can become extreme 

if there is great imbalance in baseline characteristics (resulting in largely non-overlapping PS 

distributions in the study groups), or if there is a large imbalance in group sizes. An alternative is one-

to-one nearest neighbour matching with replacement, which will generally result in fewer 

observations being discarded compared to matching on a caliper, at the expense of greater 

discrepancies in PS distributions between groups.  

 

Simulation study 

We conducted a simulation study to evaluate PS methods and covariate adjustment for confounding 

control in observational studies, and the dataset characteristics affecting their performance. 

 

Data generating model 

To investigate the influence of data size, we considered sample sizes of 100, 1000, 10,000, and 

100,000, to capture scenarios in which large databases are available for analysis.  We also investigated 

various scenarios for the distribution of the exposed and comparator groups: equal group sizes, 

imbalanced group sizes, and substantially imbalanced group sizes. A third varying parameter was 

baseline imbalance for the covariates, which took on five different patterns, ranging from well-

overlapping propensity scores to almost completely non-overlapping propensity scores for the two 

comparison groups. Figure 1 shows the PS distributions when for equal exposed and comparator 

group sizes. 

 

The simulation was implemented in Stata v15.1 [21]. We used the drawnorm command to draw 

observations from multivariate normal distributions, which were dichotomised for some variables. 

The generated variables included: binary exposure 𝐸, binary covariate 𝑋1, and continuous covariates 

𝑋2, 𝑋3,𝑋4 and 𝑋5. Correlations were set to be low between all variables except for two of the 

covariates and the exposure. Following that, the outcome 𝑌 was generated using a logit model. 

However, as a sensitivity analysis, we generated 𝑌 using a complementary log-log model, to ensure 

that performance of PS methods and regression was evaluated under more neutral conditions. In 

additional sensitivity analyses, we included an unmeasured confounder in the outcome generation 

mechanism (a continuous covariate 𝑋6 which did not feature in the analytical models), for either the 

logit or complementary log-log model. 
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Analyses 

A total of 5 analytical approaches were evaluated. First, PS were calculated using the PSMATCH2 

module.[22] During this step we performed nearest neighbour one-to-one matching on the PS with 

replacement. Next, the PS were used in four logistic regression models: 1) exposure and the PS as 

independent variables (PS covariate); 2) exposure as the only independent variable, with the number 

of times each observation appeared in the aforementioned nearest-neighbour-matched dataset as a 

frequency weight (nearest neighbour matching); 3) exposure as the only independent variable, 

following one-to-one matching without replacement, when absolute difference on the PS was below 

10-2 (Caliper matching); 4) exposure as the only independent variable and the PS used as an inverse 

probability treatment weight (IPTW). Note that in this study, we use standard logistic regression 

following matching, rather than a version intended for matched data; we return to this point in the 

discussion. We also performed logistic regression with the exposure and all five covariates included as 

independent variables (not using the PS), followed by regression standardisation, as a fifth approach 

[23].  Standardisation is necessary so that regression targets the same quantity as PS approaches (see 

Target of inference). We used the margins command with the post option following logistic regression 

to achieve this and used the delta method to compute confidence intervals on the log odds scale.  

 

Target of inference 

We evaluated the methods against the marginal odds ratio, which is a measure of the exposure effect 

at the population level. We calculated the marginal odds ratio for each simulated dataset, using the 

method described by Austin [9]. When there is no heterogeneity in treatment effect, caliper and 

nearest neighbour matching, IPTW, and multiple logistic regression with standardisation all estimate 

the marginal odds ratio [9, 23]. PS covariate actually targets a different quantity; the odds ratio 

conditional on the PS [7, 24, 25]. We include it here due to its popularity, and to compare to other 

methods.  

 

Performance measures 

1,000 datasets were simulated for each scenario. We considered four performance measures: mean 

error, bias, coverage and power. Mean error is the mean of the absolute difference between the 

estimate and the true parameter. Bias is the mean difference between the estimate and the true 

parameter. Coverage is the proportion of 95% confidence intervals for the estimate, based on a 

normal approximation, that contain the true parameter. Finally, we calculated power by the 

proportion of iterations where the null was rejected when it was actually false. Although power as a 

metric can be problematic in the presence of bias, it is essential for a complete comparison. However, 

in order to obtain a more meaningful metric, power-related statistical significance was calculated one-

sided (i.e. statistically greater than zero, rather than statistically different). We also evaluated model 

convergence. The other metrics were only computed when convergence for a particular method in a 

simulation setting was 25% or above, otherwise they were set to missing. 

 

 

Results 
Figures 2 to 7 show the results of the main simulation study. Supplementary tables S 1-3 give the 

numerical results, including standard errors for the performance metrics. Results for the sensitivity 
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analyses (neutral comparisons, and introduction of an unmeasured confounder) are shown in the 

Supplementary File. We describe the results for the main analysis below, noting where sensitivity 

analyses resulted in departures from the main study results. 

 

Convergence 

As expected, convergence of all methods was adversely affected by reduced exposure prevalence, 

decreasing overlap in PS, and reduced sample size (Figure 2). All approaches converged infrequently 

at smaller sample sizes when there was little overlap in PS; IPTW and multiple logistic regression were 

most robust. With n=100,000, these two methods generally converged even when the PS distributions 

were not overlapping (scenario 5) and exposure prevalence was very low (5%), although use of a 

complementary log-log link for outcome generation adversely affected this behaviour (Supplementary 

File). Convergence for PS covariate was particularly affected by confounding (lack of PS overlap); 

convergence was actually reduced when there was little overlap for larger (n = 100,000) compared to 

smaller (n = 1,000, 10,000) sample sizes. This was also observed when comparing datasets of 

n=100,000 to n= 10,000 for caliper matching, and nearest neighbour matching when exposure 

prevalence was low (10%) or very low (5%).  

 

Bias and absolute error 

Bias and absolute error were consistently low for multiple logistic regression compared to other 

methods (Figure 3, 4), although IPTW was less biased for n = 100, when exposure prevalence was very 

low (5%) and there was overlap in PS distributions. Both measures were affected by sample size, with 

bias and/or error in the presence of non-overlapping PS distributions actually becoming more 

pronounced with increasing data size for some methods. IPTW in particular had high bias and error 

when overlap was low and sample sizes were large. Caliper matching was consistently better than 

nearest neighbour matching. Despite targeting a different estimand, PS covariate fared relatively well, 

although performance broke down under challenging circumstances (combinations of low exposure 

prevalence, small sample size, and little overlap in PS). 

  

Power and coverage 

In the main scenario, power was generally as high or higher than other methods for multiple logistic 

regression, although IPTW had higher power in several scenarios where PS distributions were non-

overlapping (Figure 5). Coverage of IPTW was generally poor in these scenarios however (Figure 6), 

and performance was consistently inferior when both power and coverage were considered (Figure 

7). Power of matching methods was greatly affected by lack of overlap in PS distributions. For caliper 

matching without replacement, when there is substantial imbalance there will tend to be few 

matches. Consequently, power when there was reduced overlap was sometimes superior for nearest 

neighbour matching. Additionally, sample size following matching is smaller when exposure 

prevalence is low, and this also affected power for matching compared to other methods, particularly 

when sample sizes were small to start off with.  Coverage was decreased at n = 100,000 for the 

matching methods compared to sample sizes of 1,000 and 10,000 when there was imbalance in PS. 

Power of PS covariate compared to other PS methods was only favourable when there was 

considerable overlap in PS distributions or 50% exposure prevalence; coverage was frequently but not 

consistently superior. However, when a complementary log-log link was used, coverage was 

sometimes inferior for logistic regression compared to 1-to-1 and nearest neighbour propensity score 

matching, specifically with larger data size and modest or high imbalance in PS. This was exacerbated 
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when an unmeasured confounder was added to the complementary log-log link scenario. Power 

tended to be poor for matching methods in these scenarios (both with and without unmeasured 

confounding). Overall, when considering power and coverage as a composite, 1-to-1 and nearest 

neighbour matching appeared superior to regression for large data size with a complementary log-log 

outcome in the presence of unmeasured confounding. However, logistic regression remained superior 

in both absolute error and mean bias across all these scenarios.  

 

 

Discussion 
We conducted a simulation study to compare several approaches to estimate a marginal odds ratio in 

the presence of confounding and to investigate how dataset characteristics influenced performance. 

In the main study, multiple logistic regression followed by standardisation was consistently superior 

to PS approaches, although coverage still fell short of the advertised level for very small sample sizes 

(n=100) or for sample sizes of 1,000 when there was limited overlap in PS distributions. It was observed 

to be quite robust to imbalance in PS for large sample sizes, even when exposure prevalence was very 

low. 

 

We explored whether simulating from a logistic model conferred an advantage to multiple logistic 

regression, using an alternative outcome generation approach (complementary log-log link).  We also 

introduced an unmeasured confounder in additional sensitivity analyses. The combination of a 

complementary log-log outcome generating model and introduction of an unmeasured confounder 

resulted in somewhat different results for large data sizes. While bias and absolute error remained 

lower for logistic regression, coverage became very poor at times, even when imbalance in PS was not 

severe. While matching methods had poor power for the combination of large data size, high 

imbalance in PS, and presence of unmeasured confounding, 1-to-1 and nearest neighbour matching 

appeared superior to regression when considering a composite of coverage and power. This was due 

to regression having a much smaller model standard error compared to matching in the large data 

scenario, since these two matching approaches discard data. This resulted in the regression 

confidence interval frequently failing to cover the true value, while the much wider matching 

confidence intervals would frequently span both the true value (hence, higher, but still suboptimal 

coverage) and the null (hence, lower power). 

 

However, logistic regression remained the best performer in terms of absolute error and mean bias, 

across all these scenarios. In addition, the size of the true effect is relevant here, and the effect we 

modelled was relatively large for samples of 10,000 or 100,000, thus not allowing for discrimination 

in power in these scenarios (power was 100%). We a-priori decided on the modelled effect to allow 

for at least some discrimination in the results of the smaller samples, and we did not vary it across 

scenarios to allow for meaningful comparisons. However, a smaller modelled effect would greatly 

reduce power for the matching approaches (due to standard errors two to three times those of logistic 

regression), leading to logistic regression being the best performer in the cumulative of power and 

coverage, in line with what we observed for samples of 1,000.  

 

Coverage of PS methods was frequently suboptimal, as has been previously observed for a non-null 

marginal odds ratio [9]. As anticipated, relative performance of PS methods depended on dataset 
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characteristics. Ahead of the study, it was anticipated that matching using PS might be particularly 

affected by small sample size, imbalance in the PS distributions, and low exposure prevalence. While 

power was affected by these factors, overall performance of matching methods withstood these 

challenges better than IPTW. Matching methods also converged more frequently than did adjusting 

for the PS as a covariate in the presence of imbalance in PS distributions and large data sizes. Caliper 

matching was slightly preferred to nearest neighbour matching overall, although nearest neighbour 

did achieve superior power and coverage in some scenarios.  

 

IPTW displayed poor performance as overlap in PS decreased. This suggests that IPTW is only suitable 

when there is substantial overlap in PS, highlighting the importance of examining distributions of the 

estimated PS [2, 26]. Vandersteedt  and Daniels similarly found poor performance of IPTW when there 

was limited overlap in PS, up to a sample size of 1000; our results show that sample sizes considerably 

larger than this do not alleviate the problems [7]. However, we did not consider the use of stabilised 

or truncated weights [27], and it is unclear whether these would have led to improved performance. 

PS covariate does not estimate the marginal odds ratio but instead targets a different, and arguably 

unusual quantity – the odds ratio conditional on the PS. Performance against the marginal odds ratio 

was generally unacceptable, frequently falling short of the advertised coverage level when there was 

not high overlap in PS distributions and when there were small numbers of exposed participants, and 

for large data sizes balance did not guarantee appropriate coverage. PS covariate did not usually 

converge for larger data sizes when there was less overlap in PS distribution.  

 

While we have considered the role of dataset characteristics in selecting a method for controlling 

confounding, there are several outstanding questions. One question is whether a paired or unpaired 

version of regression should be used after PS matching. There is uncertainty around this point, 

because people matched on their PS may nonetheless differ in terms of their covariate values. This 

question has been addressed in relation to continuous outcomes [28], but it remains to settle the issue 

in relation to binary outcomes. Suboptimal coverage against a non-null marginal odds ratio has been 

previously observed for several methods for analysing paired data following PS matching [9], and in 

the present study we also found this to hold when using an unpaired regression method. A direct 

comparison would be useful for future work.  

 

By design, we did not include covariates in the regression models incorporating the PS (as a covariate, 

with IPTW, or following matching). Including covariates in the PS covariate approach results in a 

doubly-robust estimator, which offers valid inference in relation to some summary measures of the 

exposure effect (other than odds ratios) provided that one of the PS model and outcome model are 

correctly specified [29, 30]. Aside from this protection against misspecification, Vansteelandt and 

Davies found some power advantages when additionally adjusting for covariates in the outcome 

regression model compared to adjusting for the PS alone [7]. Consistent benefits of adjusting for 

covariates when using IPTW were not observed.  

 

We have not considered the case where there is heterogeneity in the exposure effect across strata 

defined by the PS. When there is heterogeneity, different PS methods target different quantities, and 

might produce substantially different answers as a result [31], [32]. For example, matching estimates 

the exposure effect in the population corresponding to those who were exposed in the study, because 

the matching process produces a sample with similar PS distributions to the exposed group [32] (or 
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rather, for caliper matching, similar to the exposed participants for whom unexposed matches could 

be found [31]). These considerations motivate the suggestion that the possibility of an interaction 

between the PS and exposure should be routinely examined [33]. 

 

 

Conclusion 
Researchers analysing observational data often face difficult analytical choices, while propensity score 

approaches are not easy to implement in large databases of electronic health records. Our results 

show how key features of a dataset (size, exposure prevalence, imbalance in propensity scores) affect 

the performance of several approaches aiming to address confounding. This study suggests that 

multiple logistic regression is relatively robust to low exposure prevalence and imbalance in PS, 

outside of very small sample sizes. For large sample sizes, multiple logistic regression was clearly the 

preferred method, especially in the main scenario, while PS methods performed poorly as imbalance 

in PS distributions increased, and this was not mitigated by large sample size or balanced group sizes. 

This highlights the importance of examining overlap in PS if these methods are to be used, but also 

suggests that their performance is worst when the problem they are intended to solve is most severe. 

Coverage of logistic regression was inferior to 1-to-1 and nearest neighbour propensity score matching 

methods in some large-data scenarios, however, particularly when a complementary log-log outcome 

generating model was used and either a) imbalance in PS was moderate or high, or b) an unmeasured 

confounder was introduced. However, this was driven by much larger standard errors in these two 

matching approaches, while logistic regression remained the best performer in absolute error and 

mean bias.  In contemporary large observation studies, of national registries or primary care electronic 

health records, multiple regression estimation appears to be the optimal choice, both in terms of 

simplicity and performance. 
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Figures 

Figure 1: Simulated propensity score scenarios, when Pr(E=1)=0.5 

Figure 2: Convergence (%) 

Figure 3: Bias 

Figure 4: Absolute error 

Figure 5: Power (%) 

Figure 6: Coverage (%) 

Figure 7: Mean of coverage and power (%) 

 

Figure 1: Simulated propensity score scenarios, when Pr(E=1)=0.5 
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Figure 2: Convergence (%) 
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Figure 3: Bias 
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Figure 4: Absolute error 
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Figure 5: Power (%) 
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Figure 6: Coverage (%) 
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Figure 7: Mean of coverage and power (%) 
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Supplementary file for “How do dataset characteristics affect the 

performance of propensity score methods and regression for 

controlling confounding in observational studies? A simulation study.” 
 

Methods 
Propensity score 

In a comparison of an exposed with a control group, PS can be estimated using multiple logistic 

regression where the binary response variable E denotes membership of an exposed (E = 1) or a 

comparator (E = 0) group. We suppress a subscript j corresponding to the j = 1, …, n participants 

included in the study. Covariates 𝑥1, 𝑥2, … , 𝑥𝑘 hypothesised to be associated with the outcome should 

be included in the multiple logistic regression model. The PS is the predicted probability 𝑝 of exposure 

(E= 1):  

𝐿𝑜𝑔 (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘 (1) 

 

In practice, coefficients 𝛽𝑖, i =1,…,k must be estimated and hence there is uncertainty in 𝑝 that is not 

usually accounted for in the process (although it is possible to do so, e.g. [1, 2]). Following estimation, 

the next concern is to verify that these are balanced across the two groups [3]. Finally, PS are 

incorporated into the analysis using one of several approaches. 

 

Stratification using the PS has been found to perform poorly, and so we decided not to consider it in 

our simulation study [4, 5]. Regressing the outcome on exposure and PS has been found to be the 

most commonly used approach in reviews of practice [6, 7].  

 

   Inverse probability of treatment weighting (IPTW) is an alternative approach [8]. Weights 

corresponding to the inverse of the probability that the participant is included in their group are 

defined: 

𝑤 = {
1 𝑃𝑆⁄ 𝑖𝑓 𝐸 = 1

1 (1 − 𝑃𝑆)⁄ 𝑖𝑓 𝐸 = 0
 (2) 

 

Observations are then weighted accordingly in the analysis. PS matching has gained a reputation as 

the best PS method for removing baseline imbalance and is widely used[9-11]. The most common 

version is one-to-one matching without replacement [3], where each “case” in group A is matched to 

one “control” in group B, if the difference in their PS is below a predefined arbitrary threshold or 

“caliper” 𝛿, i.e. |𝑃𝑆𝐴 − 𝑃𝑆𝐵| ≤ 𝛿 [12]. This approach entails sample size reductions, which can become 

extreme if there is great imbalance in baseline characteristics (resulting in largely non-overlapping PS 

distributions in the study groups), or if there is a large imbalance in group sizes. An alternative is one-

to-one nearest neighbour matching with replacement, which will generally result in fewer 

observations being discarded compared to matching on a caliper, at the expense of greater 

discrepancies in PS distributions between groups.  
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Simulation study 
We conducted a simulation study to evaluate PS methods and covariate adjustment for confounding 

control in observational studies, and the dataset characteristics affecting their performance. 

Data generating model 

To investigate the influence of data size, we considered sample sizes of 100, 1000, 10000, and 100000, 

to capture scenarios in which large databases are available for analysis.  We also investigated the 

impact of the distribution of 𝐸: we considered equal group sizes 𝑃𝑟(𝐸 = 1) = 0.5 , imbalanced group 

sizes 𝑃𝑟(𝐸 = 1) = 0.1, and substantially imbalanced group sizes 𝑃𝑟(𝐸 = 1) = 0.05. A third varying 

parameter was baseline imbalance for the covariates, which took on five different patterns, ranging 

from well-overlapping propensity scores to almost completely non-overlapping propensity scores for 

the two comparison groups. S Figure 1 shows the PS distributions when Pr(E=1)=0.5. 

 

 

 
S Figure 1: Simulated propensity score scenarios, when Pr(E=1)=0.5 

 

Generation of covariates 

The simulation was implemented in Stata v15.1 [13]. We used the drawnorm command to draw 

observations from multivariate normal distributions, which were dichotomised for some variables. 

The generated variables included: binary exposure 𝐸, binary covariate 𝑋1 (with 𝑃𝑟(𝑋1 = 1) = 0.5), 

and continuous covariates 𝑋2, 𝑋3,𝑋4 and 𝑋5 (with 𝑋𝑖~𝑁(0,1) for 𝑖 = 2,3,4,5). Correlations were set 

to be low between all variables (≈0.1 Pearson’s correlation) except for two of the covariates and the 

exposure (𝑐𝑜𝑟𝑟𝑇𝑒𝑡𝑟𝑎𝑐ℎ𝑜𝑟𝑖𝑐(𝑋1, 𝐸) ≈ 0.3 and 𝑐𝑜𝑟𝑟𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑋2, 𝐸) ≈ 0.5). These associations were 

necessarily affected to a small extent when baseline differences were incorporated by shifting the 
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distributions of the covariates for the 𝐸 = 1 group. When PS distributions were simulated to be 

overlapping (S Figure 1, Scenario 1), all continuous covariates were edited for 𝐸 = 1 so that the mean 

difference 𝐸(𝑋𝑖|𝐸 = 1) − 𝐸(𝑋𝑖|𝐸 = 0) = 0.5 for 𝑖 = 2,3,4,5, while 𝑃𝑟(𝑋1 = 1|𝐸 = 1) was set to 

0.45. For scenarios 2 to 5 (S Figure 1), the mean difference was 1.0, 1.5, 2.0 and 3.0, respectively; and 

𝑃𝑟(𝑋1 = 1|𝐸 = 1) was 0.40, 0.35, 0.30 and 0.20, respectively. Note that providing exact distributions 

for continuous covariates when 𝐸 = 1 is not straightforward due to the modelled correlations (e.g. 

the distribution for 𝑋2 differs across 𝐸 regardless of the other simulation parameters).  

 

Outcome generation 

In the last step, the outcome 𝑌 was generated: 

 

𝑙𝑜𝑔𝑖𝑡(𝜋) = −2.3 + 𝑙𝑛(2) 𝐸 + 𝑙𝑛(1.3) 𝑋1 + 𝑙𝑛(1.5) 𝑋2 + 𝑙𝑛(6) 𝑋3 + 𝑙𝑛(3) 𝑋4 +

𝑙𝑛(1) 𝑋5, 

Y ~ Bernoulli(𝜋). 

(3) 

𝑋5 is an instrumental variable; it is associated with exposure, but not with outcome. 

 

Alternative outcome generation approaches 

To examine the robustness of results to varying the outcome generation mechanism, we also used a 

complementary log-log link to generate the outcome 𝑌: 

 

𝑙𝑜𝑔 {−𝑙𝑜𝑔(1 − 𝜋)} = −2.3 + 𝑙𝑛(2) 𝐸 + 𝑙𝑛(1.3) 𝑋1 + 𝑙𝑛(1.5) 𝑋2 + 𝑙𝑛(6) 𝑋3 +

𝑙𝑛(3) 𝑋4 + 𝑙𝑛(1) 𝑋5, 

Y ~ Bernoulli(𝜋). 

(4) 

In additional sensitivity analyses we introduced an unmeasured confounder 𝑋6, in each of the two link 

approaches, which was not included in any of the analytical models: 

𝑙𝑜𝑔𝑖𝑡(𝜋) = −2.3 + 𝑙𝑛(2) 𝐸 + 𝑙𝑛(1.3) 𝑋1 + 𝑙𝑛(1.5) 𝑋2 + 𝑙𝑛(6) 𝑋3 + 𝑙𝑛(3) 𝑋4 +

𝑙𝑛(1) 𝑋5 + 𝑙𝑛(2) 𝑋6, 

Y ~ Bernoulli(𝜋). 

(5) 

And 

𝑙𝑜𝑔 {−𝑙𝑜𝑔(1 − 𝜋)} = −2.3 + 𝑙𝑛(2) 𝐸 + 𝑙𝑛(1.3) 𝑋1 + 𝑙𝑛(1.5) 𝑋2 + 𝑙𝑛(6) 𝑋3 +

𝑙𝑛(3) 𝑋4 + 𝑙𝑛(1) 𝑋5 + 𝑙𝑛(2) 𝑋6, 

Y ~ Bernoulli(𝜋). 

(6) 

 

Analyses 

A total of 5 analytical approaches were evaluated. First, PS were calculated using the PSMATCH2 

module.[14] During this step we performed nearest neighbour one-to-one matching on the PS with 
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replacement. Next, the PS were used in four logistic regression models: 1) exposure and the PS as 

independent variables (PS covariate); 2) exposure as the only independent variable, with the number 

of times each observation appeared in the aforementioned nearest-neighbour-matched dataset as a 

frequency weight (nearest neighbour matching); 3) exposure as the only independent variable, 

following one-to-one matching without replacement, when absolute difference on the PS was below 

10-2 (Caliper matching); 4) exposure as the only independent variable and the PS used as an inverse 

probability treatment weight (IPTW). Note that in this study, we use standard logistic regression 

following matching, rather than a version intended for matched data; we return to this point in the 

discussion. We also performed logistic regression with the exposure and all five covariates included as 

independent variables (not using the PS), followed by regression standardisation, as a fifth approach 

[15].  Standardisation is necessary so that regression targets the same quantity as PS approaches (see 

Target of inference). We used the margins command with the post option following logistic regression 

to achieve this, and used the delta method to compute confidence intervals on the log odds scale.  

 

Target of inference 

We evaluated the methods against the marginal odds ratio, which is a measure of the exposure effect 

at the population level. We calculated the marginal odds ratio for each simulated dataset, using the 

method described by Austin [16]. When there is no heterogeneity in treatment effect, caliper and 

nearest neighbour matching, IPTW, and logistic regression with standardisation all estimate the 

marginal odds ratio [15, 16]. PS covariate actually targets a different quantity; the odds ratio 

conditional on the PS [1, 17, 18]. We include it here due to its popularity, and to compare to other 

methods.  

 

Performance measures 

1000 datasets were simulated for each scenario. We considered four performance measures: mean 

error, bias, coverage and power. Mean error is the mean of the absolute difference between the 

estimate and the true parameter: 
1

1000
∑ |𝑧 − 𝑧

^

𝑖|1000
𝑖=1  where 𝑧 is the true association and 𝑧

^
I is the 

estimate of the association. Bias is the mean difference between the estimate and the true parameter, 

or 
1

1000
∑ (𝑧 − 𝑧

^

𝑖)1000
𝑖=1 . Coverage is the proportion of 95% confidence intervals for the estimate, based 

on a Normal approximation, that contain the true parameter. Finally, we calculated power by the 

proportion of iterations where the null was rejected when it was actually false. Although power as a 

metric can be problematic in the presence of bias, it is essential for a complete comparison. However, 

in order to obtain a more meaningful metric, power-related statistical significance was calculated one-

sided (i.e. statistically greater than zero, rather than statistically different). We also evaluated model 

convergence. We used default settings for convergence evaluation in Stata 15.1 MP [13]. The other 

metrics were only computed when convergence for a particular method in a simulation setting was 

25% or above, otherwise they were set to missing. 
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Sensitivity 1: complementary log-log link outcome generation 
 

S Figure 1: Convergence (%)  
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S Figure 2: Bias 
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S Figure 3: Absolute error 
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S Figure 4: Power (%) 
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S Figure 5: Coverage (%) 
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S Figure 6: Mean of coverage and power (%) 
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Sensitivity 2: logit link outcome generation & unmeasured confounder 

 
 

S Figure 7: Convergence (%) 
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S Figure 8: Bias 
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S Figure 9: Absolute error 
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S Figure 10: Power (%) 
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S Figure 11: Coverage (%) 
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S Figure 12: Mean of coverage and power (%) 
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Sensitivity 3: complementary log-log link outcome generation & unmeasured confounder 

 
S Figure 13: Convergence (%) 
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S Figure 14: Bias 
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S Figure 15: Absolute error 
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S Figure 16: Power (%) 
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S Figure 17: Coverage (%) 
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S Figure 19: Mean of coverage and power (%) 
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n 
Exposure 
probability 

PS 
overlap 
scenario Method 

Convergence 
(%) Bias SE bias 

Absolute 
error 

SE 
absolute 
error 

Power 
(%) SE Power 

Coverage 
(%) 

SE 
coverage 

1.00E+05 0.05 1 PS covariate 100 -0.006 2.98E-05 0.024288 1.82E-05 100 0 97.8 0 

1.00E+05 0.05 2 PS covariate 13.6 NA NA NA NA NA NA NA NA 

1.00E+05 0.05 3 PS covariate 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.05 4 PS covariate 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.05 5 PS covariate 0 NA NA NA NA NA NA NA NA 

10000 0.05 1 PS covariate 100 -0.00561 9.74E-05 0.07874 5.75E-05 100 0 98.2 0 

10000 0.05 2 PS covariate 86.2 -0.11707 0.000201 0.170456 0.00014 86.2 1.09067 78.7 1.09067 

10000 0.05 3 PS covariate 5.3 NA NA NA NA NA NA NA NA 

10000 0.05 4 PS covariate 0.4 NA NA NA NA NA NA NA NA 

10000 0.05 5 PS covariate 2.4 NA NA NA NA NA NA NA NA 

1000 0.05 1 PS covariate 100 0.013638 0.000323 0.258058 0.000195 71.8 1.422941 98.8 1.422941 

1000 0.05 2 PS covariate 98 -0.06677 0.000586 0.44939 0.000372 8.3 0.872416 94.3 0.872416 

1000 0.05 3 PS covariate 65.2 -0.50877 0.001441 0.799317 0.001086 0.4 0.1996 60.9 0.1996 

1000 0.05 4 PS covariate 27.6 -2.71731 0.017789 2.792996 0.017634 2.3 0.474036 23.2 0.474036 

1000 0.05 5 PS covariate 1.3 NA NA NA NA NA NA NA NA 

100 0.05 1 PS covariate 68.4 -0.48205 0.002096 0.900096 0.001777 0 0 71.94474 0 

100 0.05 2 PS covariate 37.1 -3.72365 0.076944 3.856661 0.076896 0.111607 0.111545 40.625 0.111545 

100 0.05 3 PS covariate 12.3 NA NA NA NA NA NA NA NA 

100 0.05 4 PS covariate 1.4 NA NA NA NA NA NA NA NA 

100 0.05 5 PS covariate 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.05 1 Nearest neighbour match 100 0.005783 4.87E-05 0.039887 2.85E-05 100 0 96.7 0 

1.00E+05 0.05 2 Nearest neighbour match 100 -0.03161 6.89E-05 0.060404 4.57E-05 100 0 95.6 0 

1.00E+05 0.05 3 Nearest neighbour match 100 -0.11476 0.000128 0.140501 9.96E-05 100 0 88.1 0 

1.00E+05 0.05 4 Nearest neighbour match 100 -0.2207 0.0003 0.301781 0.000218 87 1.063485 87.7 1.063485 

1.00E+05 0.05 5 Nearest neighbour match 34 0.15977 0.002549 0.649535 0.001749 0.4 0.1996 32.7 0.1996 

Supp Table 1a: Simulation results for exposure probability of 0.05 (continues in 1b) 
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n 
Exposure 
probability 

PS 
overlap 
scenario Method 

Convergence 
(%) Bias SE bias 

Absolute 
error 

SE 
absolute 
error 

Power 
(%) SE Power 

Coverage 
(%) 

SE 
coverage 

10000 0.05 1 Nearest neighbour match 100 -0.00038 0.000157 0.125769 9.33E-05 100 0 96 0 

10000 0.05 2 Nearest neighbour match 100 -0.03023 0.000229 0.182409 0.000142 98.9 0.329833 95.8 0.329833 

10000 0.05 3 Nearest neighbour match 100 -0.14593 0.000464 0.365964 0.000321 47.2 1.578658 95.2 1.578658 

10000 0.05 4 Nearest neighbour match 85 -0.10145 0.000936 0.657924 0.00054 0.1 0.09995 83.9 0.09995 

10000 0.05 5 Nearest neighbour match 0.9 NA NA NA NA NA NA NA NA 

1000 0.05 1 Nearest neighbour match 100 -0.02621 0.000517 0.401647 0.000326 17.6 1.204259 96.9 1.204259 

1000 0.05 2 Nearest neighbour match 94.3 -0.09181 0.000758 0.573102 0.000463 0.3 0.172945 93.7 0.172945 

1000 0.05 3 Nearest neighbour match 47.7 0.2392 0.001499 0.621684 0.000893 0 0 47.6 0 

1000 0.05 4 Nearest neighbour match 8.8 NA NA NA NA NA NA NA NA 

1000 0.05 5 Nearest neighbour match 0 NA NA NA NA NA NA NA NA 

100 0.05 1 Nearest neighbour match 42.4 0.26166 0.002187 0.771822 0.001358 0 0 44.5271 0 

100 0.05 2 Nearest neighbour match 14.7 NA NA NA NA NA NA NA NA 

100 0.05 3 Nearest neighbour match 1.9 NA NA NA NA NA NA NA NA 

100 0.05 4 Nearest neighbour match 0.3 NA NA NA NA NA NA NA NA 

100 0.05 5 Nearest neighbour match 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.05 1 Caliper match 100 0.005765 4.77E-05 0.038881 2.82E-05 100 0 96.4 0 

1.00E+05 0.05 2 Caliper match 100 -0.03257 6.64E-05 0.058612 4.51E-05 100 0 96.1 0 

1.00E+05 0.05 3 Caliper match 100 -0.11779 0.000123 0.13966 9.69E-05 100 0 89.1 0 

1.00E+05 0.05 4 Caliper match 100 -0.20387 0.000282 0.277968 0.000209 87.2 1.056485 91 1.056485 

1.00E+05 0.05 5 Caliper match 25.2 0.245413 0.0021 0.501002 0.001181 0 0 25.2 0 

10000 0.05 1 Caliper match 100 0.000123 0.00015 0.119543 9.04E-05 100 0 96.8 0 

10000 0.05 2 Caliper match 100 -0.03578 0.000224 0.178132 0.00014 99 0.314643 96.3 0.314643 

10000 0.05 3 Caliper match 100 -0.14247 0.000448 0.358378 0.000304 43.9 1.569328 96.5 1.569328 

10000 0.05 4 Caliper match 84.7 -0.04771 0.000925 0.650842 0.000518 0 0 84.4 0 

10000 0.05 5 Caliper match 0.4 NA NA NA NA NA NA NA NA 

Supp Table 1b: Simulation results for exposure probability of 0.05 (continued from 1a, continues in 1c) 
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n 
Exposure 
probability 

PS 
overlap 
scenario Method 

Convergence 
(%) Bias SE bias 

Absolute 
error 

SE 
absolute 
error 

Power 
(%) SE Power 

Coverage 
(%) 

SE 
coverage 

1000 0.05 1 Caliper match 100 -0.02414 0.000503 0.394209 0.000314 16.5 1.173776 97.6 1.173776 

1000 0.05 2 Caliper match 94.4 -0.07907 0.000751 0.56141 0.000465 0.2 0.14128 93.9 0.14128 

1000 0.05 3 Caliper match 46.4 0.221823 0.001501 0.602537 0.00089 0 0 46.3 0 

1000 0.05 4 Caliper match 7.1 NA NA NA NA NA NA NA NA 

1000 0.05 5 Caliper match 0 NA NA NA NA NA NA NA NA 

100 0.05 1 Caliper match 32 0.181802 0.002686 0.710504 0.00161 0 0 34.00637 0 

100 0.05 2 Caliper match 10 NA NA NA NA NA NA NA NA 

100 0.05 3 Caliper match 1 NA NA NA NA NA NA NA NA 

100 0.05 4 Caliper match 0.1 NA NA NA NA NA NA NA NA 

100 0.05 5 Caliper match 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.05 1 IPTW 100 -0.05477 4.15E-05 0.05839 3.62E-05 100 0 81.3 0 

1.00E+05 0.05 2 IPTW 100 0.009911 9.22E-05 0.074407 5.54E-05 100 0 93.8 0 

1.00E+05 0.05 3 IPTW 100 0.082119 0.000305 0.249743 0.000193 93 0.806846 85.7 0.806846 

1.00E+05 0.05 4 IPTW 100 0.529221 0.000869 0.834237 0.000582 9.4 0.922843 65.3 0.922843 

1.00E+05 0.05 5 IPTW 82.9 5.602679 0.003796 5.815961 0.003296 66.8 1.489215 9.8 1.489215 

10000 0.05 1 IPTW 100 -0.04564 0.000137 0.114606 8.82E-05 100 0 95.4 0 

10000 0.05 2 IPTW 100 0.043459 0.000287 0.229254 0.000177 92.1 0.852989 91.6 0.852989 

10000 0.05 3 IPTW 100 0.342119 0.000798 0.684793 0.000534 11.7 1.01642 77.7 1.01642 

10000 0.05 4 IPTW 98.2 1.779791 0.001975 2.121554 0.001586 29 1.434922 44 1.434922 

10000 0.05 5 IPTW 17.2 NA NA NA NA NA NA NA NA 

1000 0.05 1 IPTW 100 0.009664 0.000488 0.382063 0.000303 35.8 1.516034 94.3 1.516034 

1000 0.05 2 IPTW 99 0.326597 0.000953 0.740059 0.000676 4 0.619677 85.5 0.619677 

1000 0.05 3 IPTW 76.6 0.944739 0.002334 1.606316 0.001603 9.1 0.9095 52.1 0.9095 

1000 0.05 4 IPTW 32.5 1.239097 0.007387 2.17999 0.0049 8.3 0.872416 17.8 0.872416 

1000 0.05 5 IPTW 1.5 NA NA NA NA NA NA NA NA 

Supp Table 1c: Simulation results for exposure probability of 0.05 (continued from 1b, continues in 1d) 



45 
 

n 
Exposure 
probability 

PS 
overlap 
scenario Method 

Convergence 
(%) Bias SE bias 

Absolute 
error 

SE 
absolute 
error 

Power 
(%) SE Power 

Coverage 
(%) 

SE 
coverage 

100 0.05 1 IPTW 68.5 -0.09842 0.002126 1.16657 0.001279 0.850159 0.299296 64.93092 0.299296 

100 0.05 2 IPTW 37.1 -0.23603 0.00454 1.347151 0.002792 1.004464 0.333136 34.15179 0.333136 

100 0.05 3 IPTW 12.7 NA NA NA NA NA NA NA NA 

100 0.05 4 IPTW 1.5 NA NA NA NA NA NA NA NA 

100 0.05 5 IPTW 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.05 1 Logistic regression 100 0.000259 2.58E-05 0.02022 1.61E-05 100 0 95.6 0 

1.00E+05 0.05 2 Logistic regression 100 0.000473 3.35E-05 0.02669 2.03E-05 100 0 95.7 0 

1.00E+05 0.05 3 Logistic regression 100 0.000378 5.11E-05 0.040484 3.11E-05 100 0 96.5 0 

1.00E+05 0.05 4 Logistic regression 100 0.007157 0.0001 0.07995 6.08E-05 100 0 94.3 0 

1.00E+05 0.05 5 Logistic regression 82.9 -0.01003 0.000372 0.26434 0.000192 50.6 1.581025 78.6 1.581025 

10000 0.05 1 Logistic regression 100 0.002097 8.49E-05 0.068273 5.04E-05 100 0 94.7 0 

10000 0.05 2 Logistic regression 100 0.003162 0.000108 0.084887 6.65E-05 100 0 95 0 

10000 0.05 3 Logistic regression 100 0.018052 0.000179 0.136215 0.000117 99.2 0.281709 94.8 0.281709 

10000 0.05 4 Logistic regression 98.2 0.071266 0.000343 0.26686 0.000222 77 1.330789 94.9 1.330789 

10000 0.05 5 Logistic regression 17.2 NA NA NA NA NA NA NA NA 

1000 0.05 1 Logistic regression 100 0.012748 0.000271 0.215192 0.000166 94.8 0.702111 95.5 0.702111 

1000 0.05 2 Logistic regression 99 0.038222 0.00037 0.282818 0.000239 74.9 1.371127 95.2 1.371127 

1000 0.05 3 Logistic regression 76.6 -0.08687 0.000537 0.337659 0.000326 14.4 1.110243 72.7 1.110243 

1000 0.05 4 Logistic regression 32.5 -0.59497 0.001088 0.608218 0.001016 0 0 27.9 0 

1000 0.05 5 Logistic regression 1.7 NA NA NA NA NA NA NA NA 

100 0.05 1 Logistic regression 69.2 -0.22644 0.00103 0.596547 0.00065 1.6 0.396787 65.2 0.396787 

100 0.05 2 Logistic regression 38.1 -0.602 0.001945 0.747228 0.001559 0.1 0.09995 33.7 0.09995 

100 0.05 3 Logistic regression 14.1 NA NA NA NA NA NA NA NA 

100 0.05 4 Logistic regression 3 NA NA NA NA NA NA NA NA 

100 0.05 5 Logistic regression 0 NA NA NA NA NA NA NA NA 

Supp Table 1d: Simulation results for exposure probability of 0.05 (continued from 1c) 
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n 
Exposure 
probability 

PS overlap 
scenario Method 

Convergence 
(%) Bias SE bias 

Absolute 
error 

SE 
absolute 
error Power (%) SE Power 

Coverage 
(%) 

SE 
coverage 

1.00E+05 0.1 1 PS covariate 100 -0.01704 2.39E-05 0.023464 1.76E-05 100 0 92.7 0 

1.00E+05 0.1 2 PS covariate 69.2 -0.12569 6.13E-05 0.125731 6.11E-05 69.2 1.459918 11 1.459918 

1.00E+05 0.1 3 PS covariate 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.1 4 PS covariate 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.1 5 PS covariate 0 NA NA NA NA NA NA NA NA 

10000 0.1 1 PS covariate 100 -0.02084 7.10E-05 0.059675 4.37E-05 100 0 98.1 0 

10000 0.1 2 PS covariate 96.4 -0.12237 0.000136 0.147492 0.000106 96.4 0.589101 81.5 0.589101 

10000 0.1 3 PS covariate 5 NA NA NA NA NA NA NA NA 

10000 0.1 4 PS covariate 0.1 NA NA NA NA NA NA NA NA 

10000 0.1 5 PS covariate 3.4 NA NA NA NA NA NA NA NA 

1000 0.1 1 PS covariate 100 0.002621 0.000247 0.19397 0.000153 96.2 0.604616 97.6 0.604616 

1000 0.1 2 PS covariate 99.8 -0.11358 0.000436 0.359156 0.000271 39 1.542401 94.5 1.542401 

1000 0.1 3 PS covariate 83.3 -0.21604 0.000931 0.63722 0.00059 0.6 0.244213 78.5 0.244213 

1000 0.1 4 PS covariate 45.4 -1.31846 0.004582 1.489077 0.004321 2.3 0.474036 39.9 0.474036 

1000 0.1 5 PS covariate 2.2 NA NA NA NA NA NA NA NA 

100 0.1 1 PS covariate 89.4 -0.11205 0.000941 0.648192 0.000612 0 0 88.4 0 

100 0.1 2 PS covariate 57.8 -1.15622 0.004382 1.362167 0.004201 0.501505 0.223717 55.4664 0.223717 

100 0.1 3 PS covariate 21.9 NA NA NA NA NA NA NA NA 

100 0.1 4 PS covariate 4.8 NA NA NA NA NA NA NA NA 

100 0.1 5 PS covariate 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.1 1 Nearest neighbour match 100 0.002547 3.70E-05 0.029486 2.25E-05 100 0 95.1 0 

1.00E+05 0.1 2 Nearest neighbour match 100 -0.04933 5.48E-05 0.06059 4.20E-05 100 0 86.7 0 

1.00E+05 0.1 3 Nearest neighbour match 100 -0.13985 0.000105 0.149107 9.17E-05 100 0 70.5 0 

1.00E+05 0.1 4 Nearest neighbour match 100 -0.2244 0.000258 0.281358 0.000194 95.3 0.669261 75.8 0.669261 

1.00E+05 0.1 5 Nearest neighbour match 53.4 -0.18803 0.001595 0.707596 0.000954 0.3 0.172945 51.6 0.172945 

Supp table 2a: Simulation results for exposure probability of 0.1 (continues in 2b) 
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n 
Exposure 
probability 

PS overlap 
scenario Method 

Convergence 
(%) Bias SE bias 

Absolute 
error 

SE 
absolute 
error Power (%) SE Power 

Coverage 
(%) 

SE 
coverage 

10000 0.1 1 Nearest neighbour match 100 -0.001 0.000106 0.085809 6.30E-05 100 0 96.8 0 

10000 0.1 2 Nearest neighbour match 100 -0.04348 0.000175 0.142922 0.000109 99.9 0.09995 95.5 0.09995 

10000 0.1 3 Nearest neighbour match 100 -0.15187 0.000339 0.292323 0.000229 77.8 1.314215 93.9 1.314215 

10000 0.1 4 Nearest neighbour match 95.4 -0.32307 0.000758 0.625226 0.000509 2.2 0.463853 92.9 0.463853 

10000 0.1 5 Nearest neighbour match 2.3 NA NA NA NA NA NA NA NA 

1000 0.1 1 Nearest neighbour match 100 -0.00278 0.000374 0.295212 0.00023 68.4 1.470184 95.5 1.470184 

1000 0.1 2 Nearest neighbour match 99.4 -0.11419 0.000613 0.472871 0.000403 8.2 0.867617 97.1 0.867617 

1000 0.1 3 Nearest neighbour match 72.6 0.091478 0.001102 0.659531 0.000635 0 0 71.8 0 

1000 0.1 4 Nearest neighbour match 16.2 NA NA NA NA NA NA NA NA 

1000 0.1 5 Nearest neighbour match 0.1 NA NA NA NA NA NA NA NA 

100 0.1 1 Nearest neighbour match 67.4 0.213431 0.001355 0.754876 0.000825 0 0 66.1 0 

100 0.1 2 Nearest neighbour match 29.2 0.286568 0.002642 0.635487 0.001787 0.100301 0.100251 28.78636 0.100251 

100 0.1 3 Nearest neighbour match 6.2 NA NA NA NA NA NA NA NA 

100 0.1 4 Nearest neighbour match 0.9 NA NA NA NA NA NA NA NA 

100 0.1 5 Nearest neighbour match 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.1 1 Caliper match 100 0.002304 3.40E-05 0.026963 2.08E-05 100 0 96 0 

1.00E+05 0.1 2 Caliper match 100 -0.05242 5.18E-05 0.06083 4.16E-05 100 0 87.4 0 

1.00E+05 0.1 3 Caliper match 100 -0.13858 0.000101 0.145884 8.98E-05 100 0 72.7 0 

1.00E+05 0.1 4 Caliper match 100 -0.20208 0.000212 0.237302 0.000171 97.3 0.512552 87.3 0.512552 

1.00E+05 0.1 5 Caliper match 42.5 0.107365 0.001568 0.569903 0.000848 0 0 42.5 0 

10000 0.1 1 Caliper match 100 -0.00212 0.0001 0.079867 6.06E-05 100 0 97.7 0 

10000 0.1 2 Caliper match 100 -0.05135 0.000165 0.138374 0.000103 100 0 96.5 0 

10000 0.1 3 Caliper match 100 -0.15288 0.000322 0.278344 0.000223 77.6 1.318423 95.3 1.318423 

10000 0.1 4 Caliper match 96.2 -0.22753 0.000716 0.572583 0.000462 0.7 0.263647 95.7 0.263647 

10000 0.1 5 Caliper match 0.9 NA NA NA NA NA NA NA NA 

Supp table 2b: Simulation results for exposure probability of 0.1 (continued from 2a, continues in 2c) 
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n 
Exposure 
probability 

PS overlap 
scenario Method 

Convergence 
(%) Bias SE bias 

Absolute 
error 

SE 
absolute 
error Power (%) SE Power 

Coverage 
(%) 

SE 
coverage 

1000 0.1 1 Caliper match 100 -0.00785 0.000358 0.281603 0.00022 70.1 1.447753 96.9 1.447753 

1000 0.1 2 Caliper match 99.7 -0.10773 0.000586 0.458602 0.000378 5.8 0.739162 98.5 0.739162 

1000 0.1 3 Caliper match 72.2 0.08761 0.001073 0.640345 0.000615 0 0 71.9 0 

1000 0.1 4 Caliper match 13.4 NA NA NA NA NA NA NA NA 

1000 0.1 5 Caliper match 0 NA NA NA NA NA NA NA NA 

100 0.1 1 Caliper match 59.8 0.211592 0.001479 0.752363 0.000853 0 0 59.7 0 

100 0.1 2 Caliper match 23.7 NA NA NA NA NA NA NA NA 

100 0.1 3 Caliper match 3.7 NA NA NA NA NA NA NA NA 

100 0.1 4 Caliper match 0.5 NA NA NA NA NA NA NA NA 

100 0.1 5 Caliper match 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.1 1 IPTW 100 -0.02878 2.95E-05 0.033615 2.39E-05 100 0 87.8 0 

1.00E+05 0.1 2 IPTW 100 0.012763 6.81E-05 0.05423 4.31E-05 100 0 93.7 0 

1.00E+05 0.1 3 IPTW 100 0.076698 0.000244 0.205244 0.000152 96.4 0.589101 85.2 0.589101 

1.00E+05 0.1 4 IPTW 100 0.437139 0.000734 0.698854 0.000491 15.8 1.153412 65.3 1.153412 

1.00E+05 0.1 5 IPTW 96.4 5.247144 0.003104 5.452763 0.002695 76.4 1.342773 11.7 1.342773 

10000 0.1 1 IPTW 100 -0.0302 9.44E-05 0.079833 5.86E-05 100 0 95.8 0 

10000 0.1 2 IPTW 100 0.026554 0.000204 0.161412 0.000128 99.2 0.281709 93.1 0.281709 

10000 0.1 3 IPTW 100 0.263692 0.000652 0.553033 0.000434 26.8 1.400628 76.9 1.400628 

10000 0.1 4 IPTW 99.8 1.242227 0.001565 1.603137 0.00119 19.6 1.255325 54.3 1.255325 

10000 0.1 5 IPTW 27.4 4.640378 0.010549 5.066658 0.007481 21.9 1.307819 3.5 1.307819 

1000 0.1 1 IPTW 100 0.00733 0.000331 0.261345 0.000202 81.8 1.220147 95.6 1.220147 

1000 0.1 2 IPTW 100 0.149046 0.00066 0.52233 0.00043 16.8 1.182269 90.3 1.182269 

1000 0.1 3 IPTW 93.7 0.92096 0.001796 1.468067 0.001318 13 1.063485 62.2 1.063485 

1000 0.1 4 IPTW 50.8 1.744638 0.004728 2.473204 0.003229 16.5 1.173776 22.9 1.173776 

1000 0.1 5 IPTW 2.5 NA NA NA NA NA NA NA NA 

Supp table 2c: Simulation results for exposure probability of 0.1 (continued from 2b, continues in 2d) 



49 
 

n 
Exposure 
probability 

PS overlap 
scenario Method 

Convergence 
(%) Bias SE bias 

Absolute 
error 

SE 
absolute 
error Power (%) SE Power 

Coverage 
(%) 

SE 
coverage 

100 0.1 1 IPTW 89.4 0.225603 0.001342 0.963315 0.000838 0.7 0.263647 80.7 0.263647 

100 0.1 2 IPTW 57.8 -0.02142 0.002416 1.117318 0.001448 0.902708 0.299542 50.75226 0.299542 

100 0.1 3 IPTW 22.6 NA NA NA NA NA NA NA NA 

100 0.1 4 IPTW 5.2 NA NA NA NA NA NA NA NA 

100 0.1 5 IPTW 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.1 1 Logistic regression 100 -9.81E-06 2.04E-05 0.016516 1.20E-05 100 0 94.7 0 

1.00E+05 0.1 2 Logistic regression 100 0.000273 2.65E-05 0.021145 1.59E-05 100 0 94.7 0 

1.00E+05 0.1 3 Logistic regression 100 0.000797 4.25E-05 0.033952 2.55E-05 100 0 93.8 0 

1.00E+05 0.1 4 Logistic regression 100 0.004359 7.37E-05 0.058738 4.46E-05 100 0 94.8 0 

1.00E+05 0.1 5 Logistic regression 96.4 0.042781 0.000322 0.246071 0.000202 80.1 1.262533 92.6 1.262533 

10000 0.1 1 Logistic regression 100 -0.00238 5.96E-05 0.04782 3.55E-05 100 0 96.2 0 

10000 0.1 2 Logistic regression 100 0.003365 8.24E-05 0.067052 4.79E-05 100 0 96 0 

10000 0.1 3 Logistic regression 100 0.009326 0.000131 0.104426 7.97E-05 100 0 94.9 0 

10000 0.1 4 Logistic regression 99.8 0.033202 0.000253 0.192134 0.000168 93.9 0.756829 95.4 0.756829 

10000 0.1 5 Logistic regression 27.4 -0.66785 0.000682 0.66799 0.00068 0 0 23.9 0 

1000 0.1 1 Logistic regression 100 0.01625 0.000205 0.161587 0.000127 99.6 0.1996 94.8 0.1996 

1000 0.1 2 Logistic regression 100 0.013902 0.000266 0.208961 0.000166 93.9 0.756829 95.8 0.756829 

1000 0.1 3 Logistic regression 93.7 0.049017 0.000422 0.313274 0.000262 54 1.576071 90.1 1.576071 

1000 0.1 4 Logistic regression 50.8 -0.33885 0.000682 0.395634 0.00055 0.7 0.263647 46.1 0.263647 

1000 0.1 5 Logistic regression 2.7 NA NA NA NA NA NA NA NA 

100 0.1 1 Logistic regression 89.4 -0.02653 0.000728 0.520035 0.000439 4.4 0.648568 85 0.648568 

100 0.1 2 Logistic regression 57.8 -0.36494 0.001063 0.578257 0.000725 1.2 0.344325 52.2 0.344325 

100 0.1 3 Logistic regression 22.9 NA NA NA NA NA NA NA NA 

100 0.1 4 Logistic regression 6.2 NA NA NA NA NA NA NA NA 

100 0.1 5 Logistic regression 0 NA NA NA NA NA NA NA NA 

Supp table 2d: Simulation results for exposure probability of 0.1 (continued from 2c) 
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n 
Exposure 
probability 

PS overlap 
scenario Method 

Convergence 
(%) Bias SE bias 

Absolute 
error 

SE 
absolute 
error Power (%) SE Power 

Coverage 
(%) 

SE 
coverage 

1.00E+05 0.5 1 PS covariate 100 -0.03559 1.71E-05 0.035727 1.68E-05 100 0 50.8 0 

1.00E+05 0.5 2 PS covariate 100 -0.13116 2.53E-05 0.131164 2.53E-05 100 0 0 0 

1.00E+05 0.5 3 PS covariate 100 -0.1075 3.90E-05 0.107533 3.89E-05 100 0 31 0 

1.00E+05 0.5 4 PS covariate 100 -0.01191 6.72E-05 0.0544 4.12E-05 100 0 98.1 0 

1.00E+05 0.5 5 PS covariate 8.8 NA NA NA NA NA NA NA NA 

10000 0.5 1 PS covariate 100 -0.03726 5.29E-05 0.052802 3.74E-05 100 0 93.4 0 

10000 0.5 2 PS covariate 100 -0.13196 8.04E-05 0.135177 7.49E-05 100 0 67.8 0 

10000 0.5 3 PS covariate 100 -0.10398 0.00013 0.136964 9.40E-05 100 0 89.6 0 

10000 0.5 4 PS covariate 98.7 -0.00621 0.000205 0.160355 0.000125 98.1 0.431729 97 0.431729 

10000 0.5 5 PS covariate 31 -0.31753 0.01876 0.992339 0.018513 0.5 0.223047 30.4 0.223047 

1000 0.5 1 PS covariate 100 -0.03414 0.000166 0.135533 0.000101 100 0 97.3 0 

1000 0.5 2 PS covariate 100 -0.11593 0.00025 0.220191 0.000165 95.2 0.675988 95.8 0.675988 

1000 0.5 3 PS covariate 100 -0.10236 0.000417 0.336131 0.000267 41.8 1.559731 96.3 1.559731 

1000 0.5 4 PS covariate 90.1 -0.09989 0.000945 0.634292 0.00064 0.2 0.14128 87.9 0.14128 

1000 0.5 5 PS covariate 9.3 NA NA NA NA NA NA NA NA 

100 0.5 1 PS covariate 100 -0.04522 0.000569 0.440748 0.000362 1.2 0.344325 98.3 0.344325 

100 0.5 2 PS covariate 95.8 -0.24232 0.001052 0.786767 0.000704 0 0 93.9 0 

100 0.5 3 PS covariate 62.3 -1.71912 0.013928 2.1133 0.013787 0.1001 0.10005 61.06106 0.10005 

100 0.5 4 PS covariate 20.9 NA NA NA NA NA NA NA NA 

100 0.5 5 PS covariate 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.5 1 Nearest neighbour match 100 -0.01783 2.41E-05 0.02449 1.73E-05 100 0 75.3 0 

1.00E+05 0.5 2 Nearest neighbour match 100 -0.08936 3.59E-05 0.089558 3.54E-05 100 0 18.4 0 

1.00E+05 0.5 3 Nearest neighbour match 100 -0.18261 8.42E-05 0.184139 8.08E-05 100 0 17.8 0 

1.00E+05 0.5 4 Nearest neighbour match 100 -0.29783 0.000276 0.356013 0.000195 99.3 0.263647 25.6 0.263647 

1.00E+05 0.5 5 Nearest neighbour match 79.9 -0.93885 0.001231 1.173077 0.00086 4.3 0.64149 63.1 0.64149 

Supp table 3a: Simulation results for exposure probability of 0.5 (continues in 3b) 
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n 
Exposure 
probability 

PS overlap 
scenario Method 

Convergence 
(%) Bias SE bias 

Absolute 
error 

SE 
absolute 
error Power (%) SE Power 

Coverage 
(%) 

SE 
coverage 

10000 0.5 1 Nearest neighbour match 100 -0.01903 7.39E-05 0.06022 4.69E-05 100 0 86.5 0 

10000 0.5 2 Nearest neighbour match 100 -0.09097 0.000116 0.120106 8.58E-05 100 0 77.1 0 

10000 0.5 3 Nearest neighbour match 100 -0.20595 0.000263 0.277617 0.000186 97.7 0.474036 66.1 0.474036 

10000 0.5 4 Nearest neighbour match 100 -0.47674 0.000636 0.634051 0.000479 38.4 1.537999 70.2 1.537999 

10000 0.5 5 Nearest neighbour match 11 NA NA NA NA NA NA NA NA 

1000 0.5 1 Nearest neighbour match 100 -0.02525 0.00024 0.186378 0.000153 99.2 0.281709 86.8 0.281709 

1000 0.5 2 Nearest neighbour match 100 -0.13781 0.000376 0.315417 0.000247 79 1.288022 89.1 1.288022 

1000 0.5 3 Nearest neighbour match 98 -0.3375 0.000781 0.651652 0.000535 9.5 0.927227 89.8 0.927227 

1000 0.5 4 Nearest neighbour match 45.6 0.151331 0.002158 0.729368 0.001485 0.6 0.244213 43.7 0.244213 

1000 0.5 5 Nearest neighbour match 0.1 NA NA NA NA NA NA NA NA 

100 0.5 1 Nearest neighbour match 97.4 -0.10068 0.000821 0.637978 0.000505 2.2 0.463853 89.3 0.463853 

100 0.5 2 Nearest neighbour match 72.5 0.076048 0.00123 0.720246 0.000732 0.4 0.1996 70 0.1996 

100 0.5 3 Nearest neighbour match 22.2 NA NA NA NA NA NA NA NA 

100 0.5 4 Nearest neighbour match 2 NA NA NA NA NA NA NA NA 

100 0.5 5 Nearest neighbour match 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.5 1 Caliper match 100 -0.00953 2.07E-05 0.01858 1.32E-05 100 0 95.5 0 

1.00E+05 0.5 2 Caliper match 100 -0.0929 3.10E-05 0.092941 3.09E-05 100 0 19.7 0 

1.00E+05 0.5 3 Caliper match 100 -0.16837 6.14E-05 0.168492 6.10E-05 100 0 26.2 0 

1.00E+05 0.5 4 Caliper match 100 -0.22996 0.000142 0.235591 0.000132 100 0 64.1 0 

1.00E+05 0.5 5 Caliper match 74.4 -0.07988 0.000986 0.60845 0.00056 0 0 74.2 0 

10000 0.5 1 Caliper match 100 -0.01288 6.62E-05 0.054229 4.01E-05 100 0 96.9 0 

10000 0.5 2 Caliper match 100 -0.09723 0.0001 0.113426 8.13E-05 100 0 87.1 0 

10000 0.5 3 Caliper match 100 -0.16976 0.000205 0.218036 0.000153 98.9 0.329833 88.5 0.329833 

10000 0.5 4 Caliper match 99.9 -0.27877 0.000488 0.436021 0.000354 29.1 1.436381 94.9 1.436381 

10000 0.5 5 Caliper match 2.9 NA NA NA NA NA NA NA NA 

Supp table 3b: Simulation results for exposure probability of 0.5 (continued from 3a, continues in 3c) 
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n 
Exposure 
probability 

PS overlap 
scenario Method 

Convergence 
(%) Bias SE bias 

Absolute 
error 

SE 
absolute 
error Power (%) SE Power 

Coverage 
(%) 

SE 
coverage 

1000 0.5 1 Caliper match 100 -0.01122 0.000229 0.179753 0.000142 99 0.314643 96.6 0.314643 

1000 0.5 2 Caliper match 100 -0.09563 0.000347 0.279412 0.000227 71.5 1.427498 96.5 1.427498 

1000 0.5 3 Caliper match 97.8 -0.18793 0.000751 0.591511 0.000484 0.7 0.263647 96.5 0.263647 

1000 0.5 4 Caliper match 30.8 0.151155 0.002122 0.571359 0.001137 0 0 30.8 0 

1000 0.5 5 Caliper match 0 NA NA NA NA NA NA NA NA 

100 0.5 1 Caliper match 81.6 0.101127 0.001072 0.707704 0.000642 0 0 80.9 0 

100 0.5 2 Caliper match 48.4 0.173271 0.001677 0.691049 0.000947 0 0 48.4 0 

100 0.5 3 Caliper match 7.7 NA NA NA NA NA NA NA NA 

100 0.5 4 Caliper match 0.5 NA NA NA NA NA NA NA NA 

100 0.5 5 Caliper match 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.5 1 IPTW 100 6.32E-05 1.59E-05 0.012734 9.50E-06 100 0 97.7 0 

1.00E+05 0.5 2 IPTW 100 -0.00164 2.94E-05 0.023238 1.81E-05 100 0 96.7 0 

1.00E+05 0.5 3 IPTW 100 -0.00382 0.000143 0.112017 8.92E-05 99.6 0.1996 92.4 0.1996 

1.00E+05 0.5 4 IPTW 100 0.19742 0.000576 0.482599 0.00037 46.1 1.576322 72.8 1.576322 

1.00E+05 0.5 5 IPTW 100 4.582742 0.002293 4.727789 0.001977 79.6 1.2743 10.7 1.2743 

10000 0.5 1 IPTW 100 -0.00156 4.92E-05 0.039781 2.89E-05 100 0 98.5 0 

10000 0.5 2 IPTW 100 0.004651 9.24E-05 0.072758 5.71E-05 100 0 96.8 0 

10000 0.5 3 IPTW 100 0.07874 0.000388 0.307416 0.000249 82 1.214907 84.8 1.214907 

10000 0.5 4 IPTW 100 0.801685 0.001135 1.154034 0.000773 13.2 1.070402 53.4 1.070402 

10000 0.5 5 IPTW 64.8 5.905272 0.003264 5.986807 0.002889 58.7 1.55702 4 1.55702 

1000 0.5 1 IPTW 100 0.00359 0.000153 0.123231 9.06E-05 100 0 98.4 0 

1000 0.5 2 IPTW 100 0.04 0.000289 0.225889 0.000184 89.6 0.965319 96.1 0.965319 

1000 0.5 3 IPTW 100 0.429436 0.000914 0.784555 0.000636 7.3 0.822624 74.6 0.822624 

1000 0.5 4 IPTW 90.2 2.281712 0.002063 2.544733 0.001641 40.2 1.550471 33.3 1.550471 

1000 0.5 5 IPTW 9.5 NA NA NA NA NA NA NA NA 

Supp table 3c: Simulation results for exposure probability of 0.5 (continued from 3c, continues in 3d) 
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n 
Exposure 
probability 

PS overlap 
scenario Method 

Convergence 
(%) Bias SE bias 

Absolute 
error 

SE 
absolute 
error Power (%) SE Power 

Coverage 
(%) 

SE 
coverage 

100 0.5 1 IPTW 100 0.014764 0.00055 0.419714 0.000356 3.9 0.612201 97.4 0.612201 

100 0.5 2 IPTW 95.8 0.240202 0.001013 0.783595 0.000647 0 0 89 0 

100 0.5 3 IPTW 62.6 0.774853 0.002299 1.344331 0.001484 1.101101 0.330162 48.84885 0.330162 

100 0.5 4 IPTW 21.4 NA NA NA NA NA NA NA NA 

100 0.5 5 IPTW 0 NA NA NA NA NA NA NA NA 

1.00E+05 0.5 1 Logistic regression 100 0.000654 1.44E-05 0.011603 8.53E-06 100 0 94.5 0 

1.00E+05 0.5 2 Logistic regression 100 6.37E-05 1.72E-05 0.013656 1.05E-05 100 0 94.1 0 

1.00E+05 0.5 3 Logistic regression 100 -0.00012 2.50E-05 0.019946 1.51E-05 100 0 94.6 0 

1.00E+05 0.5 4 Logistic regression 100 0.002124 4.28E-05 0.034085 2.60E-05 100 0 94.9 0 

1.00E+05 0.5 5 Logistic regression 100 0.026317 0.000181 0.140248 0.000118 99.1 0.298647 94.7 0.298647 

10000 0.5 1 Logistic regression 100 0.000144 4.44E-05 0.035327 2.68E-05 100 0 94 0 

10000 0.5 2 Logistic regression 100 0.000263 5.33E-05 0.042899 3.17E-05 100 0 95.1 0 

10000 0.5 3 Logistic regression 100 0.003195 7.94E-05 0.064151 4.68E-05 100 0 95.6 0 

10000 0.5 4 Logistic regression 100 0.012328 0.000134 0.104885 8.36E-05 99.9 0.09995 95.9 0.09995 

10000 0.5 5 Logistic regression 64.8 -0.16349 0.000365 0.220438 0.000285 41.2 1.556458 60.1 1.556458 

1000 0.5 1 Logistic regression 100 0.001655 0.000138 0.109866 8.37E-05 100 0 95.4 0 

1000 0.5 2 Logistic regression 100 0.012929 0.000171 0.137438 0.000102 100 0 95.7 0 

1000 0.5 3 Logistic regression 100 0.024236 0.000258 0.203358 0.000161 94.2 0.739162 96.5 0.739162 

1000 0.5 4 Logistic regression 90.2 0.045674 0.000429 0.31047 0.00026 51.9 1.579997 86.4 1.579997 

1000 0.5 5 Logistic regression 9.9 NA NA NA NA NA NA NA NA 

100 0.5 1 Logistic regression 100 0.001625 0.000474 0.371008 0.000296 42.6 1.563726 93.7 1.563726 

100 0.5 2 Logistic regression 94.6 -0.00433 0.000644 0.485514 0.000389 14.4 1.110243 87.2 1.110243 

100 0.5 3 Logistic regression 59.7 -0.21994 0.001148 0.579225 0.000715 2.5 0.49371 52.9 0.49371 

100 0.5 4 Logistic regression 22.1 NA NA NA NA NA NA NA NA 

100 0.5 5 Logistic regression 1.8 NA NA NA NA NA NA NA NA 

Supp table 3d: Simulation results for exposure probability of 0.5 (continued from 3c) 


