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Abstract
We apply two complementary techniques for the characterization of mobile dis-
locations in samples of hcp 4He with the concentration of 3He ∼ 3 × 10

−7 , grown 
by the blocked capillary method at molar volume 19.5 cm3

mol
−1 , before and after 

annealing at temperatures 1.8–2.0 K, and also after work hardening by high-ampli-
tude twisting at 0.03 K and successive recovery at 0.5–1.0 K. The first technique 
relies on the elastic response of solid helium to oscillatory twisting at frequencies 
161 Hz and 931 Hz at temperatures below 1 K, where this response is affected by 
the presence of mobile dislocations with variable amounts of trapped 3He impuri-
ties. Monitoring the non-equilibrium amplitude dependence after moderate forcing 
allows to compute the length distribution n(L) of mobile dislocations (Iwasa in J 
Low Temp Phys 171:30, 2013; Fefferman et al. in Phys Rev B 89:014105, 2014). 
We also test methods of determining n(L) from the equilibrium temperature depend-
ence of either real or imaginary part of the shear modulus at small strain amplitudes, 
based on the values of the damping force measured by Fefferman et al. [2]. The sec-
ond technique utilizes measurements of thermal conductivity at temperatures below 
0.4  K, i.e., of the dislocation-limited mean free path of thermal transverse phon-
ons (Greenberg and Armstrong in Phys Rev B 20:1049, 1979; Armstrong et al. in 
Phys Rev B 20:1061, 1979). During a prolonged AC-twisting at a high amplitude of 
strain exceeding the yield stress, long dislocations disappear being replaced by many 
short ones which remain mobile. However, upon stopping this twisting, the majority 
of dislocations become immobilized until the sample is warmed up above 0.5 K to 
speed-up the recovery of dislocations to their mobile state (Day et al. in Phys Rev 
B 79:214524, 2009; Beamish and Franck in Phys Rev B 26:6104, 1982). This is dif-
ferent from the immobilization of dislocations by trapped 3He impurities, routinely 
observed at smaller strain amplitudes, which is characterized by much shorter relax-
ation times to effectively un-trap 3He  atoms and make dislocations mobile again. 
We investigated the dynamics of the recovery of cold-worked samples, during which 
short segments quickly disappear, while the longest one appear after longer anneal-
ing times; the activation energy was estimated to be 22  K—pointing at the ther-
mal vacancy-assisted process. A complementary characterization by the scattering 
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rate of thermal transverse phonons off crystalline defects rules out non-interacting 
mobile dislocations as the dominant scatterer. The main conclusion is that while 
many properties of the sample are consistent with the theory of Granato and Lücke 
of isolated gliding dislocations (Granato and Lücke in J Appl Phys 27:583, 1956), 
several observations at low temperatures ( 3He-independent immobilization of dislo-
cations after stopping high-amplitude twisting, sporadic avalanche-like relaxation of 
strain, flat temperature dependence of the phonon scattering rate) point at the pres-
ence of interacting dislocations, probably arranged into dislocation walls.

Keywords  Solid helium · Gliding dislocations · Quantum solid · Work hardening · 
Dislocation annealing · Impurity pinning · hcp 4He · Dislocation network structure

1  Introduction

We would like to dedicate this paper to the 90th birthdays of David M. Lee and John 
D. Reppy for their influence on physics and life in physics, and in particular—on 
studies of solid helium.

Mechanical properties of crystalline solids are governed by a network of linear 
defects—dislocations [8, 9]. The length, orientation and mobility of segments of 
the network determine the response of a material to an applied shear stress. These 
parameters can be greatly modified by impurities, cold working and thermal anneal-
ing. Hence, noninvasive techniques of characterization of the distribution of lengths 
and mobility of dislocations are in great demand.

Solid helium provides a special opportunity to gain further insight into the struc-
ture and dynamics of dislocation networks [10, 11]. On the one hand, it is just 
another solid that can be made extremely perfect and pure because only isotopic 
impurities remain dissolved below its solidification temperature of order 2 K, and 
their concentration can be controlled in a wide range. On the other, because the 
dynamics of helium’s weakly attractive and light atoms is essentially quantum [12], 
dislocations are extremely mobile at low temperatures when phonon-assisted damp-
ing vanishes. Since dislocations can glide at a vanishingly low stress [13–15], sam-
ple’s deformation follows a reversible elastic strain–stress relation with a renormal-
ized shear modulus [16]—unlike dislocations in conventional solids, whose motion 
causes an irreversible plastic deformation.

Mobile segments of dislocations can behave as elastic strings (“fluttering disloca-
tion”) [7, 17]. The high mobility of dislocations in solid helium makes it a material 
of choice to investigate this phenomenon. For instance, the strong variations of the 
mobility of dislocations as function of temperature, impurity concentration, ampli-
tude of shear and protocol of measurements allow for the unconventional technique 
of characterizing the distribution of dislocation lengths through the nonlinear non-
equilibrium strain–stress response at high amplitudes of deformation to be utilized 
[1].

Other spectacular quantum effects are expected in solid helium; for instance, the 
possibility that dislocation cores might be superfluid [18]. The recently observed 
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mass transport through polycrystalline samples of solid 4He  is believed to be car-
ried through a percolating networks of dislocations [19–24], the effect being sup-
pressed by 3He  impurities at low temperatures. In this connection, it is important 
to know more about the distribution of dislocation lengths and their connectivity in 
solid 4He .

In fact, the topology and dynamics of networks and tangles of linear defects in 
other ordered media attract considerable interest [25, 26]. While the systems in 
question could be as diverse as quantized vortices in superfluids and cosmic strings 
in the fabric of space-time, they often share similar general properties—hence, new 
methods of characterizing dislocation networks in solids help to further our under-
standing of general physics.

As an example, the linear topological defects in superfluid helium—quantized 
vortices—share many similarities with dislocations in solid helium [27]. Tangles of 
vortex lines in superfluid helium, known as quantum turbulence, have been studied 
since their prediction [28] and discovery in the 1950s [29]. Fairly recently the focus 
of research has shifted from simple random tangles to polarized structures, which 
are believed to dominate the dynamics of superfluid turbulence generated by veloc-
ity gradients on largest length scales [30]. This is similar to the case of plastically 
deformed solids, in which not individual dislocations but their correlated ensembles 
and long-range stress are believed to be responsible for the observed properties [31, 
32]. At high temperatures, when thermally activated climb of dislocations is pos-
sible, plastic deformation creates a homogeneous random network of dislocations 
which can be annealed, and stresses relax via smooth visco-plastic creep. However, 
during a low-temperature deformation, collective interaction and multiplication of 
gliding dislocations was shown to result in fractal dislocation cells on all length 
scales and discrete slips via dislocation avalanches [32–36]. We share the attitude 
of Cottrell [37] that work hardening is even harder to understand than turbulence, 
which is a paradigm of complexity of driven systems [38].

The response of hcp 4He , with various 3He concentrations, to an AC shear stress 
has been investigated previously by a range of techniques at different frequen-
cies: shear in a torsional oscillator (TO) (200  Hz–2  kHz) [39], transverse sound 
(1 Hz–100 kHz) [2, 16, 40–46] and ultrasound (8–50 MHz) [47–50] , scattering of 
thermal phonons (8–24 GHz) [4, 51–56]. Most can be explained in terms of interac-
tion with vibrating dislocations [39, 49]. In 2004, the interest was rekindled because 
of the hopes [57, 58] of observing superfluidity of a bulk helium crystal (so-called 
supersolid). However, most experimental results of temperature and amplitude 
dependence of the resonant frequency and damping of a torsional oscillator con-
taining solid helium [59–62] can currently be interpreted in terms of restraining the 
dislocation motion by 3He  impurities, whose equilibrium density near the disloca-
tion core varies with temperature [63]: a cross-over from an underdamped to over-
damped regime results in a switch, in a moderately narrow range of temperatures or 
amplitudes, between the “soft” and “stiff” states of solid helium [13, 64]. Experi-
ments with oriented single crystals [13, 64] in 2010–2014 revealed a clear evidence 
of stiff and soft states of the same sample as a result of 3He  impurities interacting 
with dislocations and allowed to measure several properties of these interactions and 
to extract the distribution of node–node dislocation lengths [2].
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In this paper, we report on measurements of the dynamics of dislocations in poly-
crystalline hcp 4He and thus infer information on the density and structure of their net-
works at different length scales—before and after cold working and thermal anneal-
ing. This is done through the observations of dislocations’ interaction with AC shear 
deformation of various frequencies and amplitudes, and with 3He  impurities. Small-
amplitude oscillations at frequencies of 161 Hz and 931 Hz allowed us to measure the 
temperature dependence of the shear modulus and internal friction, while medium and 
high amplitudes allowed to change either the number of dislocation-trapped 3He atoms 
or the distribution of dislocation lengths, respectively. Methods of characterizing broad 
distributions of dislocation lengths by the equilibrium temperature dependence of the 
shear modulus and internal friction are introduced and suggested. We complement 
these by measuring the mean free path of thermal phonons (i.e., AC shear deforma-
tion at high frequencies) scattering off grain boundaries and dislocation walls through 
measurements of thermal conductivity in the same samples.

The paper is organized as follows. In Sect. 2, we outline the theoretical description 
of the dynamics of vibrating dislocations. Section 3 describes details of experimental 
techniques. Section 4 contains experimental results. The paper concludes with a discus-
sion in Sect. 5 and summary.

2 � Response of a Gliding Dislocation to AC Shear Stress

2.1 � Dislocation Networks

Networks of gliding dislocations are made of segments terminated at either network 
crossings or immobile jogs. These nodes are hard to move or to get rid of due to their 
topological stability; cold working can increase their number while annealing at suf-
ficiently high temperatures might remove some. Edge dislocations [15] confined to the 
basal plane of hcp 4He along with their Burgers vector can glide virtually unimpeded 
at temperature T < 1 K [13, 44]. Isotopic impurities—3He substitutions—are extremely 
mobile and are attracted to the rarefied regions near dislocation cores: this results in 
damping of dislocation motion, which is strongly temperature- and history dependent. 
In the high-temperature limit (when all 3He impurities are free), gliding segments can 
be treated as strings whose motion under external forcing is damped by their inter-
action with the gas of phonons and 3He  impurities. And at low temperatures (when 
the trapping time of 3He impurities is long), the dynamics of dislocations are affected 
near every trapped 3He atom. However, when forced hard, a dislocation can break off 
a 3He  impurity, so at low temperature a non-equilibrium state can be maintained in 
which few 3He impurities are trapped, thus allowing dislocations to vibrate effectively 
freely like in the high-temperature limit). The network of gliding dislocations has the 
total length per unit volume

(1)Λ = ∫
∞

0

n(L)LdL,
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where n(L) = dN∕dL is the distribution function of dislocation lengths L and 
N(L) = ∫ L

0
n(L�)dL� being the number of dislocations of length smaller than L.

The distribution n(L) is often parametrized by a single length scale, e.g., the 
average L = Λ∕N(∞) . Then, the dimensionless scale-independent parameter ΛL

2 
characterizes the structure and anisotropy of the network (c.  f., ΛL

2
= 3 for a vol-

ume-filling simple cubic lattice, but can be much greater for a bundle of aligned 
dislocations [31]). Assuming the distribution of type

different experimental values of ΛL
2 have been reported [31]: from just above 

0.1–0.25 measured by the ultrasound velocity [47, 49] to above 1.0–2.5 with low-
frequency torsional oscillations [39] and even above 20 in the softest ultrapure sin-
gle crystals measured by ∼ 10 kHz shear oscillations [65].

In principle, fractal self-similar dislocation networks are possible in certain cases; 
these could not be described by the single-scale distribution Eq. 2, and instead of a 
single non-dimensional structural parameter ΛL̄2 one would need to use its gener-
alization L4n(L) as a function of length scale L. As we will show below, our experi-
mental technique of measuring L4n(L) is only limited to, at best, two orders of dis-
location lengths L. Hence, we would be unable to unambiguously distinguish such 
a multiscale distribution and will limit our analysis to the use of the model distribu-
tion Eq. 2.

2.2 � Mobile Dislocations as Elastic Strings

Granato and Lücke [7] treated each gliding dislocation segment as a continuous 
string, hard-anchored at two points separated by a distance L along axis x. The 
small-amplitude transverse in-plane displacement �(x, t) obeys the equation

where the RHS stands for the applied uniform shear stress in the basal plane �4 
resolved in the direction of the Burgers vector � ( b = |�| , and � is the angle between 
� and the projection of stress on basal plane). The string is characterized [17, 66], 
per unit length, by its mass

energy

(2)n(L) =
Λ

L
2
exp

(
−
L

L

)
,

(3)A𝜉 + B𝜉̇ − C
𝜕2𝜉

𝜕x2
= b𝜎4 cos 𝛽 exp(i𝜔t),

(4)A ≈
g�b2

4�
≈ 3 × 10−17 kgm−1,

(5)C ≈

gCel

44
b2

4�(1 − �)
≈ 3 × 10−12 N
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(where, for Vm = 19.5 cm3 mol−1 , the density � = 205 kg m−3 , interatomic distance 
b = 3.58 Å, purely elastic constant Cel

44
= 18.6 MPa, Poisson’s ratio � = 0.3 , and fac-

tor g ≈ ln(1∕bΛ1∕2
) = 9 ± 2 ), and damping parameter B(x3, T) due to 3He impurities 

[67], phonons [68], as well as, perhaps, kinks [69, 70] and other dislocations. The 
fundamental frequency of the segment is then

(where ut =
(

Cel

44

�

)1∕2

≈ 300 m s−1 is the velocity of transverse sound), which corre-
sponds to f0 = �0∕2� ∼ 2 MHz for L = 100 μm and f0 ∼ 200 MHz for L = 1 μm.

In the low-frequency limit 𝜔 ≪ 𝜔0 , an approximate solution (neglecting term A𝜉 
in Eq. 3 and retaining only the first term in the Fourier series of �(x) ), results in the 
mean amplitude [7, 72] 𝜉 = L−1 ∫ L

0
𝜉(x)dx:

where the damping time �(B,L) is

Per unit volume, such a segment contributes 𝜉bL cos 𝛽 to the strain �4 . Then sum-
ming the contributions of all of them, with n(L)dL segments with lengths between 
L and L + dL in unit volume, and using < cos

2 𝛽 >= 1∕2 , we obtain the dislocation 
contribution �dis

4
 as compared to the purely elastic contribution �el

4
 to strain,

with � =
4b2�4

�4�el
4
C
=

16(1−�)

�3g
≈ 0.04 ± 0.01 . Here �4 = �el

4
+ �dis

4
 , �4 = Cel

44
�el
4
= C44�4 , 

and hence

is the resulting elastic constant.

2.3 � Response at Small Amplitudes of Strain

In equilibrium, the fraction of trapping sites near the core of a rigid dislocation, 
occupied by 3He impurities, is x3 exp(Eb

∕k
B
T) , where x3 is the bulk concentration of 

3He and E
b
 is the binding energy. This makes the average distance between trapped 

3He atoms

(6)�0(L) =
�

L

(
C

A

)1∕2

=
�

L

(
Cel

44

�(1 − �)

)1∕2

= �(1 − �)−1∕2utL
−1

(7)𝜉 ≈
8bL2

𝜋4C

1 − i𝜔𝜏

1 + (𝜔𝜏)2
𝜎4 cos 𝛽,

(8)� =
L2B

�2C
.

(9)
�dis
4

�el
4

= � ∫
∞

0

L3
1 − i��

1 + (��)2
n(L)dL,

(10)C44 =

Cel

44

1 + �dis
4
∕�el

4
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Haziot et  al. [71] found that when the dislocation velocity does not exceed 
vc ∼ 45 μm s−1 , trapped 3He atoms are dragged by the dislocation thus contributing 
B3 ∝ L−1

i
 to the damping parameter B, namely [2, 67],

where B0 = 0.15 Pa s and E
b
= 0.7 ± 0.1 K for the concentration x3 ≈ 3 × 10−7 and 

pressure P = 25.3  bar. The phonon contribution to damping is [66, 68, 73] 
B
ph

=
�b2

8
� +

14.4k3
B
T3

�2ℏ2u3
D

 , where k
B
 is the Boltzmann constant, ℏ is the Planck’s con-

stant, uD is the Debye velocity. At temperature T < 1  K and sufficiently low fre-
quency � , B3 ≫ B

ph
 , we hence assume B ≈ B3 . We expect only a weak dependence 

of B3 on pressure [74], and, in what follows, use B0 = 0.15 Pa s and E
b
= 0.7 K.

For a given dislocation length L, the cross-over from the stiff to soft state 
occurs around the temperature (condition �� = 1 in Eq. 9):

The increase of T
×
 with increasing f and x3 was observed in experiments [2, 16].

The frequency dependence vanishes at larger strain amplitudes � at which dis-
location velocities v > vc , so trapped 3He atoms become effective anchors eventu-
ally breaking network segments of length L > Li(T) into smaller oscillating seg-
ments of average length Li(T) [1]. In this regime, the damping term B𝜉̇ in Eq. 3 
should become nonlinear. The upper limit on the dislocation velocity is 
vmax =

𝜋

2

̇̄𝜉 ≃
32(1−𝜈)fL2

𝜋gb
𝜖4 (from Eq. 7 with �� = 0 , cos � = 1 and |y| ≪ 1 ). The con-

dition for the linear response it then 𝜖4 < 𝜖c1 with

which is plotted versus L by blue line in Fig. 1 for f = 161 Hz and vc = 45 μm s−1.
By plugging the distribution of dislocation lengths n(L), computed with the 

amplitude method (see next section, Eq. 27), and the damping term Eq. 12 , Fef-
ferman et  al.  [2] confirmed that it reproduces their experimental temperature 
dependences of the small-amplitude complex shear modulus in a single crystal of 
solid 4He for a range of frequencies f. We would like to suggest a method of com-
puting the length distribution n(L) from �(T) at small amplitudes. After express-
ing the damping time Eq. 8 through the damping length

Eq. 9 becomes:

(11)Li = bx−1
3

exp(−E
b
∕k

B
T).

(12)B3 = B0x3 exp(Eb
∕k

B
T),

(13)T
×
(L, f , x3) =

E
b
∕k

B

ln
(

�C

2B0L
3fx3

) .

(14)�c1 =
�gbvc

32(1 − �)f
L−2,

(15)�(T) = (��)−1∕2L = b

(
gCel

44

8(1 − �)B0x3f

)1∕2

exp

(
−

E
b

2k
B
T

)
,
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Around L = �(T) , the fraction in RHS of Eq. 16 rapidly switches from 1 to 0, and 
the fraction in RHS of Eq. 17 experiences a narrow peak while being nearly zero 
away from it. If L4n(L) is a slow function of ln(L) , these fractions can be approxi-
mated by the Heaviside’s step-function H(1 −

L

�(T)
) and Dirac’s delta-function 

Γ�(
L

�(T)
− 1) (where Γ = ∫ ∞

0

xdx

1+x4
=

�

4
≈ 0.785 ), respectively. Thus, for the case of a 

wide distribution n(L)

and

One can hence determine the distribution n(L) experimentally from either y1(T) or 
y2(T) , using T as a dummy parameter through L = �(T) from Eq. (15):

(16)y1 ≡ Re

(
�dis
4

�el
4

)
= � �

∞

0

1

1 + (
L

�(T)
)4
L4n(L)d lnL,

(17)y2 ≡ Im

(
�dis
4

�el
4

)
= −� �

∞

0

(
L

�(T)
)
2

1 + (
L

�(T)
)4
L4n(L)d ln L.

(18)
dy1(T)

d ln(�(T))
≈ ��4n(�),

(19)y2(T) ≈ −�Γ�4n(�).

Fig. 1   Critical values of strain as function of dislocation length: �c1 (blue line, Eq.  14), below which 
the equilibrium linear response holds; �c2 (red line, Eq.  24), above which a slow 3He atom does not 
pin a 3He-free dislocation even at T = 0 ; �c3 (green line, Eq.  28), above which dislocations stretch. 
Horizontal dashed lines of corresponding colors indicate ranges of L accessed by our experiments (see 
Sects. 4.1, 4.2 and 4.4) (Color figure online)
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and

The switching function (1 + (L∕�(T))4)−1 has 10–90% width of �0.9∕�0.1 = 3 . Hence, 
broad features of n(L), which involve at least an order of magnitude in L, will be 
resolved.

The continuous description of Li(T) in Eq.  11 is only justified for 
b ≪ Li(T) ≪ 𝜆(T) . The LHS condition means that dislocation cores are not satu-
rated by 3He atoms at T > Tl . And the RHS implies that there are at least several 
3He atoms on segments of length Li(Th) ∼ �(Th) when T < Th . Hence, the lengths L, 
accessible by this technique, are limited by 𝜆(Tl) < L < 𝜆(Th) , where

here Tl = 0.05 K (for x3 = 3 × 10−7 ), and �(Tl) = 0.4 μm (for f = 161 Hz), and

here Th = 0.7 K (for f = 161 Hz), and �(Th) = 1.2 mm (for x3 = 3 × 10−7 ). Widen-
ing the range of frequencies f and 3He concentration x3 thus allows to broaden the 
range of detectable lengths L.

2.4 � Hysteretic Amplitude Dependence at Moderate Strain

At higher dislocation velocities v > vc (such that bound 3He  atoms become effec-
tive anchors) and at stresses �4 sufficiently high (so the force exerted by a disloca-
tion segment on a single slow 3He impurity [1], ∼ 1

2
b�4L , exceeds the critical bind-

ing force [2] Fc ∼ 4E
b
∕b ∼ 7 × 10−15  N), the dislocation liberates itself from this 

anchor. In this regime, corresponding to the amplitude of shear stress exceeding 
�c2 ∼ 8E

b
∕(b2L) and strain 𝜖4 > 𝜖c2 where

(plotted vs. L by red line in Fig.  1), the number of trapped 3He  impurities is no 
longer the equilibrium one but depends on the history.

If a sample is cooled from temperature T ≳ E
b
∕k

B
 to T ≪ E

b
∕k

B
 while at an oscil-

latory strain of a moderate amplitude 𝜖
4
> 𝜖c2 , a non-equilibrium configuration with 

no trapped 3He atoms can be sustained. Then, by gradually reducing the amplitude 

(20)�4n(�) ≈
2k

B
T

�E
b

dy1

d ln T
,

(21)�4n(�) ≈ −

y2(T)

�Γ
.

(22)Tl = −

E
b
∕k

B

− ln x3
, �(Tl) =

(
gCel

44

8(1 − �)B0f

)1∕2

b,

(23)Th =
E
b
∕k

B

− ln(
x3gC

el

44

8(1−�)B0f
)

, �(Th) = x−1
3
b,

(24)�c2 ∼
�c2

Cel

44

∼

8E
b

b2Cel

44

L−1
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at low temperature, one can observe a gradual stiffening of the crystal as dislocation 
segments of progressively longer lengths L become immobilized by avalanche-like 
swamping of their cores by 3He atoms. Following Granato and Lücke [1, 7], one can 
formally split all segments into those with L < Lc(𝜎4) which are sessile (strongly 
pinned by multiple 3He  impurities), and those with L > Lc(𝜎4) which are glissile 
with B3 ≈ 0 (free from any 3He impurities), where

Then, Eq. 9 becomes

There is no dissipation from 3He  impurities in this simple model, hence, 
y2 ≡ Im

(
�dis
4

�el
4

)
≈ 0.

Thus, from the changes in the dislocation contribution �dis
4

 to total strain �4 while 
reducing �4 , n(L) can be determined (using L = Lc(�4) from Eq. 25):

where we assumed �4 ∝ �4 neglecting the dependence of �4∕�4 on y1 . This nonin-
vasive method allows to characterize the distribution of dislocation lengths as was 
done for polycrystals [1, 50, 82] and single crystals [2]. As far as we are aware, it 
was so far only possible to apply it to solid helium—thanks to the short relaxation 
time of 3He impurities [48] and high mobility of dislocations.

In a polycrystal, at the same applied macroscopic strain � , differently oriented 
grains are subject to different resolved stress in the basal plane �4 . Hence, the res-
olution of the method in terms of Lc becomes broadened. Furthermore, with our 
method of twisting a rod of solid helium, only the outer part of the rod contributes 
to the torque effectively. However, as was discussed in the preceding section, suffi-
ciently broad features of the distribution n(L) can still be observed.

2.5 � Work hardening at large strain

Finally, at large stress when the force on a dislocation ∼ bL�4 becomes compa-
rable with its tension C, the linear Eq.  3 no longer holds and, above the yield 
stress �c3 and strain �c3 , an irreversible plastic deformation takes place: disloca-
tions stretch, cross and multiply, thus creating new nodes and jogs which result 
in a stiffer crystal. Subsequent annealing at higher temperature would normally 
remove some of the consequences of cold working. The microscopic processes of 
work hardening are complex and are yet poorly understood, so we will resort to 
the following naive model. When the force exerted on a dislocation of the initial 

(25)Lc ≈
2Fc

b�4
∼

8E
b

b2Cel

44

�−1
4
.

(26)y1 ≡ Re

(
�dis
4

�el
4

)
≈ � �

∞

Lc(�)

L4n(L)d ln L.

(27)L4
c
n(Lc) ≈ −�−1

dy1

d lnLc
= −�−1

dy1

d ln �4
,
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length L, F ∼ b�4L , exceeds the tension from both ends, 2C, the dislocation will 
keep stretching until it either multiplies by the Frank–Read mechanism or crosses 
with another one and forms a new node. All dislocations longer than Lmax , for 
which the yield stress

(plotted vs. L by green line in Fig. 1) is smaller than tEpsilonc3he applied �4 , will be 
modified by this mechanism. Accordingly, if annealed samples had dislocations of 
length up to Lmax ∼ 0.1 mm, straining with amplitude 𝜖4 ≳ 10−5 will change the dis-
tribution n(L) by reducing the long-length cut-off Lmax and populating shorter length 
scales. Repetitive straining up to amplitude � should thus eliminate all dislocations 
of lengths L > Lmax ∼

2C

bCel

44

𝜖−1
4

 , and the sample will be held on the verge of yielding 
in a critical state with small additional dissipation (due to either nonlinearity of 
stretching dislocations or fast elimination of some of the freshly made crossings).

In reality, the dynamic response of a dislocation network could be even more 
complicated: for instance, continuous AC-straining might generate not a homogene-
ous network of gliding dislocations but fractal dislocation cells (where dislocations 
are concentrated within fuzzy walls) each rotating as a whole in response to shear 
deformation. One might expect that a subsequent reduction of the strain amplitude, 
at low temperature, would not affect the structure of the achieved dislocation net-
work; however, we found evidences that this is not quite true (see Sect. 4.4).

Equations 24 and 28 give the limit on the range of dislocation lengths L that can 
be explored using the amplitude technique Eq.  27 described in the previous sec-
tion. Namely, in order to avoid the stretching of the longest dislocations of length 
Lmax , strain should not exceed Eq. 28. Hence, through Eq. 24 the shortest accessible 
lengths L

min
 are such that

The actual value of this range depends on the numerical prefactors in Eqs.  24 
and  28, which are unknown; we can only conclude that the accessible range of dis-
location lengths covers 1–2 orders of magnitude.

2.6 � Effective Shear Modulus of a Polycrystal

There exist two simplified methods of calculating the effective shear modulus � of 
an isotropic polycrystal at length scales larger than grain sizes: either while assum-
ing a uniform stress (Voigt [75]),

where

(28)�c3 =
�c3

Cel

44

∼
2C

bCel

44

L−1
max

(29)
Lmax

Lmin

∼
bC

4E
b

≈ 30.

(30)�V = CV +
2

5
C44,
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or while assuming uniform strain (Reuss [76]),

where

As was shown by Hill [77], neither can be realistic; hence a compromise, often in 
the form of their arithmetic mean, was found to be close to reality [78]. We assume 
that dislocation motion only softens one elastic constant (making it complex), 
C44(�

dis

4
∕�el

4
) . We hence used Hill’s formula

along with the experimental values of � to solve for complex C44 Eq. 10, and hence 
for �dis

4
∕�el

4
.

Greywall [79] found that the elastic constants Cij for hcp 4He at molar volume 
Vm scale as Cij = P(Vm)cij , where P = (V0∕Vm)

5.73 , and cij at V0 = 20.97 cm3 mol−1 
and T ∼ 1 K were measured by David Lee and coworkers [80]: c11 = 40.5 MPa, 
c12 = 21.3  MPa, c13 = 10.5  MPa, c33 = 55.4  MPa, cel

44
= 12.4  MPa, and 

c66 =
1

2
(c11 − c12) = 9.6  MPa. For our hcp 4He  at Vm = 19.5 cm3 mol−1 

( � = 205  kg m−3 , pm = 53  bar, Tm = 2.4  K [81], ΘD = 31.6 ± 0.2  K), P = 1.50 , 
CV = 12.32MPa , CR = 29.55MPa , and we did not adjust the values of Cij to 
account for temperatures of our experiment T ∼ 0.1 K.

In principle, C44(�
dis

4
∕�el

4
) can take any values between 

C44 = Cel

44
= Pcel

44
= 18.6  MPa when dislocations are immobilized (then 

�(0) ≡ �0 = 18.9 MPa, as in a stiff crystal at T = 0 ) and C44 = 0 when there are 
many parallel mobile dislocations, so the low limit for a soft crystal becomes 
� = 6.2MPa = 0.33�

0
 . However, for realistic networks the low limit on C44 (and 

hence on � ) for the soft state is set by the value of L4n(L) through Eq. 16. For 
instance, with the distribution of type Eq. 2,

which for an isotropic distribution with ΛL
2
= 3 gives y1 ≈ 0.7 (and hence from 

Eq. 32, �∕�0 ≈ 0.8 ), independent of L . In our experiments, quite similar values of 
the lowest �∕�0 at T ≳ 0.3 K were found: ∼ 0.65 for as-grown samples and ∼ 0.73 
for annealed ones.

CV =
1

30
(7C11 − 5C12 − 4C13 + 2C33),

(31)�R =

(
C−1
R

+
2

5
C−1
44

)−1

,

CR = 15

(
4(C11 + C12) + 8C13 + 2C33

C33(C11 + C12) − 2C2
13

+
6

C66

)
−1

.

(32)� =
1

2

[
�V (C44) + �R(C44)

]

(33)y1 = 6�ΛL
2
,
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2.7 � Interaction of Thermal Phonons with Dislocations

The thermal conductivity of solid helium is dominated by the contribution 
from transverse phonons of frequency [83] �

ph
(T) ∼ 3.8k

B
T∕ℏ . For tempera-

ture T = 0.1 K (0.3 K), these correspond to f
ph
(T) = 3.8

k
B
T

h
=   8 GHz (24 GHz). 

The interaction of phonons with defects is characterized by the mean free path 
� = ut�ph (where �

ph
 is the relaxation time). Usually, the resonant scattering 

(absorption and re-emission) of phonons by fluttering dislocations [17] is the 
dominant process. If the typical size of dislocations L ∼ Λ

−1∕2 is so small that 
their �0(L) ∼ �

ph
 , i.e., L = 20 nm (7 nm) for T = 0.1 K (0.3 K), then [17]

while for longer segments it rapidly increases with L,

The scattering off the static strain field of randomly oriented dislocations [84, 85] is 
always weaker (and has an opposite temperature dependence):

where � = 2.7 is the Grünisen parameter [79].
And with the static strain field of grain boundaries [84, 85] with a large tilting 

angle �GB ∼ 1 , one can expect a nearly temperature-independent rate of scatter-
ing, giving the phonon m.f.p. of order the size of grains �:

The case of scattering off the static strain of dislocation walls is probably intermedi-
ate between the last two.

The thermal conductivity of polycrystalline samples of hcp 4He was 
measured down to T = 30  mK by Armstrong et  al. [4]. For molar volumes 
20.2–21.0 cm3 mol−1 up to T = 0.5  K, the inferred phonon mean free path �(T) 
was found to be either temperature independent or weakly decreasing with 
increasing T, which was interpreted as the scattering off grain boundaries and 
strain field of edge dislocations.

(34)� ∼

�0

Λut
∼

1

ΛL
∼ L,

(35)� ∼

�
ph

Λut
∼

L2

b

T

ΘD

.

(36)� ∼

3 × 10−2ut

�2b2Λ�
ph
(T)

∼
L2

b

ΘD

T
,

(37)� ∼ 30�−2�−2
GB
� ≈ 4�−2

GB
�.
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3 � Experimental Techniques

3.1 � Experimental Cell

The design of the experimental cell, shown in Fig. 2, was similar to that of cou-
pled TO (with the torsional head and bob, and two torsion rods), developed by 
John Reppy and coworkers [86] to study liquid and solid helium, but with one 
important difference: there was no helium inside the torsional head. All solid 
helium under study was located inside two cylindrical axial channels [87], both 
of length z = 10.1  mm and inner diameter d = 1.1  mm, made through the tor-
sion rods of outer diameter D = 1.9 mm. In other words, two different samples of 
solid helium inside this channel could be investigated: one (‘head rod’) between 
the head and bob, and the other (‘bob rod’) between the bob and heavy platform 
(shown at the top in Fig. 2) which was rigidly attached to the dilution refrigerator. 
Using the capacitive coupling between flat electrodes on the bob and platform, 
one could drive and detect AC rotation of the bob. Two high-Q oscillatory modes 
thus allowed to twist the rods and to monitor small changes of the corresponding 
resonant frequencies fr and bandwidths fb = Q−1fr (which reflect the change in 
the shear modulus and internal friction of twisted solid helium) of the TOs. The 
thermal conductivity of both rods of solid helium could be measured with four 
calibrated RuO2 thick-film resistor thermometers glued with varnish at each end 
of both rods and a resistive heater in the torsion head.

Samples of solid helium were grown by the blocked-capillary technique out 
of commercial 4He  with the 3He  concentration x3 ∼ 3 × 10−7 . The cell was ini-
tially filled with liquid helium at pressure 84  bar, after which the temperature of 
the platform was gradually lowered through the corresponding melting tempera-
ture Tm(84 bar) = 3.1 K—thus freezing a plug in the filling capillary. After that, the 
fixed trapped amount of helium of mean molar volume Vm = 19.5 cm3 mol−1 and 

Fig. 2   Experimental cell. Solid helium is shown by green color; the studied regions (‘head rod’ and ‘bob 
rod’) are between two pairs of thermometers near either end (Color figure online)
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density � = 205  kg m−3 (final melting temperature and pressure Tm = 2.4  K and 
Pm = 53 bar) solidified in the given volume from the cold end at the platform toward 
the dead end in the head. During the growth of the sample and associated relaxation 
of pressure gradients as the density of growing solid decreased by 6%, solid helium 
experiences viscous-like flow along the rod, which should have resulted in multiple 
grains and dislocations in addition to those created during solidification.

3.2 � Torsional Oscillator

Our aim was to determine the relative contribution of gliding dislocations to strain 
(i.e., the complex �dis

4
∕�el

4
 in Eq. 9) when subject to an AC shear at a low frequency 

f ≪ f
0
 , Eq. 6. This was done via measurements of the rigidity and losses of a rod of 

solid 4He when subject to torsional oscillations. Due to the relatively small diameter 
of the channel and low density of helium, the effect of helium’s inertia on the TO 
frequency was negligible.

The cell comprises two torsional oscillators in series, each having a metal head of 
a constant moment of inertia Ii and a hollow metal stem containing a sample of solid 
4He —whose complex rigidity is Ki = KBC,i + KHe,i ( i = 1 for bob, 2 for head rod). 
Here Re(KBC,i) =

�d4

32z
(D4

∕d4 − 1)�BC (with �BC ≈ 52  GPa being the low-tempera-
ture shear modulus of BeCu) is the rigidity of the metal stem, and Im(KBC,i) repre-
sents losses in the stem including the electronic feedback (Q-spoiler) which was 
sometimes added in order to reduce the ringing time of the TO. In conventional 
notations, Im(Ki) = �i�i , where the dissipative torques are −𝛾i𝜃̇i while �i are the 
twisting angles of rods. KHe,i =

�d4

32z
�i , where the complex �i(C44(�

dis

4
∕�el

4
)) repre-

sents both the shear modulus and internal friction of polycrystalline solid helium. 
The system, described by equations

has two normal modes of (thanks to I1∕I2 = 8.0 ≫ 1 and Re(K1) ≈ Re(K2) = K ) 
well-separated frequencies fr,i ≈

1

2�

(
K

Ii

)1∕2

 and bandwidths fb,i ≈
1

2�

�i

Ii
 (namely, the 

symmetric mode with frequency fr1 = 161 Hz and quality factor Q1 = 4 × 105 , and 
the antisymmetric one with fr2 = 931 Hz and Q2 = 4 × 106).

The oscillators were driven by the torque applied to the bob T(t) ∝ Vin , with AC 
voltage Vin ∝ exp(i�t) of frequency � ≈ 2�fr,i , while the angle of twist of the bob 
rod �1(t) = Θ1 exp(i�t) was detected. The complex response Θ1(�) was of the Lor-
entzian shape; hence, the following quantities could be monitored [88]: fr , fb , Θ1 . 
The values of fr and fb (unless necessary, we will omit the index i in fr,i , fb,i and �i ) 
are related to the effective complex shear modulus as

(38)
{

I1𝜃1 = −K1𝜃1 + K2𝜃2 + T

I2(𝜃1 + 𝜃2) = −K2𝜃2,

(39)� = �0

(
fr − fr,empty

fr,0 − fr,empty

+ i
fb − fb,empty

2(fr,0 − fr,empty
)

)
,
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where �0 and fr,0 correspond to the stiff limit with immobile dislocations (say, 
at T = 0 when �dis

4
= 0 ), and fr,empty

 and fb,empty
 are the resonant frequency and 

bandwidth of an empty oscillator. From this (see next Section), one can extract 
the complex ratio of the dislocation-induced strain to the purely elastic strain, 
�dis
4
∕�el

4
≡ y1 + iy2 as a measure of the dislocation-induced softening [89].

The amplitude of strain at the rim of the bob rod is then � = d

2z
Θ1 when in the 

symmetric mode at fr1 = 161  Hz, and at the rim of the head rod 
� =

d

2z
Θ2 =

d

2z

(
fr2

fr1

)2

Θ1 when in the antisymmetric mode at fr2 = 931 Hz (because 

the twisting angle of the head rod is Θ2 =
I1

I2
Θ1 =

f 2
r2

f 2
r1

Θ1 ). The amplitude Θ1 is related 
to the current I, detected by the current–voltage converter, through

(here the gap is d
gap

= 0.3 ± 0.1 mm, arm r
arm

≈ 6 ± 1 mm, capacitance c = �0A

d
gap

 with 
the electrode area A ≈ 1 cm2 , dc bias voltage U0 = 290 V).

3.3 � Thermal Conductivity

To detect dislocations, one can measure the thermal conductivity � at temperatures 
below ∼ 0.5  K, at which phonon–phonon interactions are infrequent so the mean 
free path (m.f.p.) � of thermal phonons is controlled by scatterings off either sample 
boundaries or crystal defects. The power Q̇ (typically within 10 nW–1 � W range) 
was applied in the head heater; this resulted in the temperature difference ΔT  (typi-
cally between 0.1 and 1 mK), proportional to Q̇ , between two thermometers at both 
ends of rods, distance z apart. The value of

was thus calculated. While thermal conductivity of hcp 4He is known to be strongly 
anisotropic, we assume that our polycrystal samples had grain size of order ≲ d—
hence, within the distance between the thermometers, z = 10.1  mm, the heat flux 
passes through several randomly oriented grains, and the anisotropy is mainly aver-
aged out. The thermal conductivity of the empty cell, �

cell
 , did not exceed 20% of the 

total thermal conductivity kappa
total

 at the lowest temperatures; it agreed with our 
estimates for the BeCu walls and was subtracted: �(T) = �

total
(T) − �

cell
(T).

The kinetic theory formula for thermal conductivity [90] of solid helium,

where (for ΘD = 31.6  K at Vm = 19.5 cm3m−1 ) 
C
v
=

12�4NAkB

5

(
T

ΘD

)3

= 3.18 × 103T3  J   K−4 m−3 is the phonon specific heat and 
ū =

<u−2>

<u−3>
 is the phonon velocity averaged for all branches and crystal orientations 

(40)Θ1 =

d
gap

r
arm

I

�cU0

=

d2
gap

I

2��0rarmAfU0

(41)𝜅
total

=
4z

𝜋d2

Q̇

ΔT

(42)𝜅 =
1

3
C
v
ū2𝜏

ph
=

1

3
C
v
ū�,
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(which we approximate by the Debye velocity, uD =
k
B
ΘD

2�ℏ

(
4�Vm

3NA

)1∕3

= 337 m s−1 ), 
allows to determine the relaxation time �

ph
 and m.f.p. � = ū𝜏

ph
 . As the contribution 

from longitudinal phonons is small ( ∼ 13% ), the obtained m.f.p. is mainly due to 
transverse phonons.

In the presence of additional defects characterized by their own �
def

 , the reduced 
value of �

ph
—from �0 in an annealed sample—can be expressed through the 

increased rate of scattering, �−1
ph

= �−1
0

+ �−1
def

 . One can thus calculate �
def

 due to this 
additional scattering mechanism using

4 � Experimental Results

We investigated the following types of samples:
(i) As-grown They are expected to be quite inhomogeneous with dislocations and 

grain boundaries left after crystallization as well as due to the plastic flow caused by 
the pressure gradients during solidification at continuously decreasing temperature 
from 3.1 K to 2.4 K and pressure from 84 bar to 53 bar, and subsequent cooling.

(ii) Annealed at T = 1.8 K. This was usually done overnight and resulted in the 
removal of the effect of many initial defects as seen by our measurements. Further 
annealing at 2.0 K did not change any of the observed properties.

(iii) Cold-worked by large-amplitude ( � ∼ 10−4 , 𝜖̇ ∼ 1 s−1 ) AC twisting at 
T = 0.3 K for about 15 hours. Only the head rod at the high-frequency antisymmet-
ric mode could be driven at the required amplitude of twist 𝜖 ≳ 10−4.

(iv) Hardened by stopping the large-amplitude twisting at low temperature 
T = 0.03  K. This caused an effective arrest of the majority of mobile dislocation 
segments, which could only be lifted by annealing above 0.5 K.

(v) Recovered after cold-working. It was found that 1 hour of annealing at 
T = 1.0 K almost completely removes the hardening effects of cold working (i.e., 
restores the state (ii)). However, an overnight annealing at 0.55–0.7 K resulted in 
only a partial recovery—this allowed to look into the dynamics of recovery from the 
hardened state.

4.1 � Torsional Oscillator: Equilibrium Temperature Dependence at Small Strain

In Fig.  3, we show examples of the equilibrium temperature dependences of 
the relative changes of the real and imaginary parts of the shear modulus �∕�0 . 
They are computed, using Eq. 39, from fr(T) and fb(T) measured at small drive 
amplitude in a sample inside the head rod (at frequency fr ≈ 931 Hz and strain 
𝜖 < 5 × 10−7 ) before and after annealing, as well as in a sample inside the bob 
rod (at fr ≈ 161  Hz and strain 𝜖 < 2 × 10−8 ) before annealing. And in Fig.  4, 
Re(�∕�0) and Im(�∕�0) are converted into Re(�

dis
∕�

el
) and Im(�

dis
∕�

el
) using 

Eq. 32. The effect of softening at high temperatures due to 3He un-trapping, in 

(43)�
−1
def

= �
−1

− �
−1
0
.
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both fr(T) and fb(T) , is evident in all samples. The cross-over temperature T
×
 

of as-grown samples is larger for larger driving frequency, in agreement with 
Eq. 13. One can see that annealing results in the reduction of both the magnitude 
of high-temperature softening and of the associated dissipation peak.

Fig. 3   Temperature dependence of the normalized shifts of the resonance fre-
quency (fr(T) − fr,0)∕(fr,0 − fr,empty) = Re(�∕�0) (solid lines, left axis) and bandwidth 
(fb(T) − fb,empty)∕2(fr,0 − fr,empty) = Im(�∕�0) (dashed lines, right axis—note a tenfold difference in verti-
cal scales)  (Color figure online)

Fig. 4   Temperature dependence of the ratio of the dislocation-assisted strain �
dis

 to that due to the elastic 
deformation �

el
 (real part shown by solid lines, left axis; imaginary part shown by dashed lines, right 

axis), obtained from the data in Fig. 3. Legend as in Fig. 3 (Color figure online)
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4.2 � Torsional Oscillator: Amplitude Dependence at Moderate Strain

Most samples were initially cooled from T ∼ 0.3  K to 0.02–0.03  K while being 
driven at a moderate strain amplitude of � ∼ 2 × 10−6 for the bob-rod samples studied 
at fr = 161 Hz and � = 1.5 × 10−5 for the head-rod samples studied at fr = 931 Hz. 
Then changes in fr(�) were monitored while slowly decreasing � in small steps. To 
speed up the relaxation of TO to the evolving resonance frequency, additional elec-
tronic damping was introduced in order to reduce the quality factor Q. In Fig. 5, we 
show examples of the real and imaginary parts of the shear modulus measured at 
temperature T ∼ 0.03  K while reducing the strain amplitude � . With decreasing � 
from ∼ 10−5 to 10−7 , the increase of Re(�) toward its low-temperature stiff limit �0 
is interpreted as an arrest of progressively longer segments by 3He  atoms. This is 
always accompanied by an increased Im(�) ; this dissipation is likely due the interac-
tion between 3He atoms and dislocation segments slightly shorter than the critical 
length, Eq.  25. And in samples, cold-worked by higher strains � ∼ 10−4 , the sub-
stantial enhancement in Im(�) at � between ∼ 10−4 to 10−6 is most likely due to the 
losses during the plastic response with its nonlinear and hysteretic stress–strain loop.

One can see close agreement of Re(�) versus � for as-grown samples in the 
head and bob roads, which are measured at very different frequencies, 931 Hz and 
161 Hz—similar to reported in [2]. With a reservation that these are two different 

Fig. 5   Amplitude dependence of the shear modulus �(�) (Eq. 39) measured at T = 0.03 K while decreas-
ing the strain � . Solid lines are for the head rod (antisymmetric mode near fr = 931 Hz), the black dashed 
line corresponds to an as-grown sample in the bob road driven at the symmetric mode near fr = 161 Hz. 
Bottom panel: Im(�)∕�0 versus � . In order to speed-up the relaxation of the TO to the changing fr(�) and 
fb(�) , some electronic feedback in the detect-drive circuit (effective damping) was added, which caused 
the upward shift of the base line by ∼ 0.006 (Color figure online)
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samples, we take this as an argument in favor of the consistency of the technique 
of characterizing dislocations by the amplitude dependence of shear modulus 
measured at different frequencies. The amplitude dependences of Re(�

dis
∕�

el
) , cal-

culated from Re(�)∕�0(�) using Eq. 32. are shown in Fig. 6. For the sample, cold-
worked at high strain of � ∼ 10−4 , we only show data in the same range of moder-
ate 𝜖 < 1.5 × 10−5 beyond which the nonlinear response of stretching dislocations 
would deem further analysis misleading.

Fig. 6   The ratio of the dislocation-assisted strain �
dis

 to that due to the elastic deformation �
el
 measured at 

T = 0.03 K while decreasing the strain � . Legend as in Fig. 5  (Color figure online)

Fig. 7   L4n(L) , obtained from the data in Fig. 6 using Eq. 27, versus the network length L calculated with 
Eq. 25. Legend as in Fig. 5 (Color figure online)
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4.3 � Analyses in Terms of Dislocation Length Distribution

In Fig. 7, L4n(L) , obtained from the curves in Fig. 6 using Eq. 27, are plotted versus 
the network length L(�) calculated with Eq. 25. As the high-frequency mode allowed 
a wider range of strain amplitude as well as a better signal-to-noise ratio, only this 
mode was used for further systematic investigations. All curves demonstrate a bell-
shaped peak, which is usually accompanied, at shorter lengths L, by a “plateau”. The 
model distribution (Eq. 2) does predict an asymmetric peak of form

of height 
(

4

e

)4

ΛL
2
= 4.7ΛL

2
 at L

peak
= 4L and ratio L2∕L1 = 3.3 (where L1 and L2 

are the effective cut-offs at the 50% level of �(L) such that 
L4
1
n(L1) = L4

2
n(L2) =

1

2

(
4

e

)4

ΛL
2
 ). However, experimental peaks L4n(L) versus lnL 

turned out to be more symmetric than the skewed (Eq. 44), and the ratio L2∕L1 ≈ 10 
for all samples (subject to some limitations on the definition of L1 due to the pres-
ence of the short-scale plateau, see below)—always greater than the model’s 
L2∕L1 = 3.3 . This hints at inhomogeneous broadening, and there might be several 
genuine reasons for this. Firstly, the realistic distribution might differ from the sim-
ple form (Eq. 2). Secondly, the method [1, 7] (Eqs. 25–26), in which all dislocations 
are divided into either completely immobilized or completely free, is overly simpli-
fied as it does not account for any cross-over between these extreme cases. Thirdly, 
some inevitable broadening should arise from the radial inhomogeneity of strain 
[89]. Finally, the samples most probably contained many grains of different 
orientation.

The appearance of plateaus at shortest lengths is likely an artifact of ensuing 
yield at high amplitudes of strain. Indeed, in Sect. 2.5, from Eq. 29 we found that the 
technique could only represent the range of dislocation lengths within about factor 
of 30 (or perhaps two orders of magnitude at best). It is interesting to see that pla-
teaus in Fig. 7 do appear at lengths of order 1/30 of the large-scale effective cut-off 
L2 , specific for each sample. As the plateaus appear at short lengths L correspond-
ing to the strain � = �c2(L) ∼ 10−6–10−5 , they are likely due to the nonlinear plastic 
response of stretching and multiplying the longest dislocations of length L such that 
� = �c3(L) . This is supported by the fact that such a plateau is the most prominent 
for the sample which was cold-worked beginning from much larger values of strain 
� ∼ 10−4 . The plateaus do appear at the same range of strain 𝜖 ≳ 3 × 10−6 , at which 
an additional dissipation kicks in (Fig. 5, bottom panel)—which we attribute to the 
nonlinear plastic response of dislocations. With hindsight, in order not to modify the 
dislocation network by excessive strain while measuring L4n(L) by the amplitude 
method, we should have better used a narrower range (like 𝜖 < 2 × 10−6 as we did 
for f = 161 Hz scans, and not 𝜖 < 1.5 × 10−5 )—as it seems amplitudes 𝜖 ≳ 3 × 10−6 
already cause some stretching of the longest dislocations (although, fortunately, not 
their removal—as the long-length sides of L4n(L) , measured at both frequencies, are 
identical for as-grown samples, shown in Fig. 7).

(44)L4n(L) = ΛL
2
(
L

L

)4

exp

(
−
L

L

)
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An alternative explanation for the appearance of plateaus in L4n(L) could be the 
existence of multi-scale distributions of dislocation lengths due to self-similar dis-
location structures down to much shorter lengths—as observed in certain circum-
stances [32]. However, because of the limitations of our technique, we cannot test 
this hypothesis.

The magnitude and position of peaks, L4n(L)
peak

 and L
peak

 , for the five sam-
ples from Fig.  7, investigated at fr = 931  Hz are shown in Table  1 along with 
the inferred parameters, characterizing the network of gliding dislocations: 
ΛL̄2 = 3 × L4n(L)

peak
∕4.7 = 0.64 × L4n(L)

peak
 (the factor 3 comes thanks to the 

approximately threefold broadening of the peaks of L4n(L) versus lnL ), L̄ = L
peak

∕4 
and Λ = ΛL̄2∕L̄2.

The as-grown sample has the highest of all value of ΛL̄2 ≈ 16 , which might hint 
at highly aligned dislocations comprising the low-angle grain boundaries left by the 
extensive shear caused by the plastic flow during the solidification. The annealed 
sample possesses the longest dislocations of the average length of L̄ = 35 μm and 
a moderate value of ΛL̄2 ≈ 8 , consistent with the expectations that this sample has 
large grains of size comparable with the sample’s diameter d = 1.1 mm, in which 
dislocations can be aligned to a certain extent. In contrast, the cold-worked sample 
has shorter dislocations with L̄ = 11.5 μm and ΛL̄2 = 4 , typical for isotropic vol-
ume-filling networks; one might expect that high-amplitude twisting (non-uniform 
shear deformation in the plane different from that of the shear during growth) causes 
crossing and multiplication of dislocations—thus producing shorter segments. The 
hardened (by stopping the large-amplitude twisting at T = 0.03  K) sample is the 
most puzzling: it has the shortest L̄ = 3 μm (which would not be surprising) but also 
greatly reduced contribution to the dislocation strain from the gliding dislocations, 
ΛL̄2 = 1.3 (here it is unclear whether the apparent peak in L4n(L) versus L reflects 
the actual values of L4n(L) or it is just an artifact of the onset of the superficial “pla-
teau” due to dislocation yield); in any case, the observable contribution of gliding 
dislocations is either strongly suppressed or they have become very much shorter 
than ∼ 2 μm , i.e., are outside the range detectable by our apparatus. And the par-
tially recovered sample after annealing at 0.60 K is an example of an intermediate 
state during the restoration of the initially cold-worked and hardened sample eventu-
ally all the way back to the annealed state.

Finally, we would like to compute the distributions L4n(L) using Eqs.  20–21 
applied to the temperature dependence of �

dis
∕�

el
 measured at small strain (Fig. 4), 

and to compare them with the analysis of an amplitude dependence using Eq. 27, 

Table 1   Parametrization of the 
dislocation network in terms 
of the peak value L4n(L)

peak
 

and position L
peak

 for the 
five samples from Fig. 7, 
investigated at fr = 931 Hz

Sample L4n(L)
peak

L
peak

 ( μm) ΛL̄2 L̄(μm) Λ(cm−2)

As-grown 24.6 34 15.7 8.5 2.2 × 107

Annealed 12.6 140 8.1 35 6.6 × 105

Cold-worked 6.3 46 4.0 11.5 3.0 × 106

Hardened 2.0 12 1.3 3.0 1.4 × 107

Part.-recovered 7.8 54 5.0 13.5 2.7 × 106
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presented above. The strain amplitude 𝜖 < 2 × 10−8 , at which the temperature 
dependence for the bob rod was taken at f = 161 Hz, meets the condition Eq. 14 
(provided vc at our pressure of 51 bar is comparable with vc ∼ 45 μm s−1 measured 
for P = 25.3 bar). Also, the fact that the cross-over temperature for as-grown sam-
ples is larger for f = 931 Hz than for f = 161 Hz (as is expected for T

×
(f ) in this 

regime, Eq. 13) implies that at least the f = 161 Hz dataset complies with the condi-
tion v < vc . In Fig. 8, we hence plot by blue lines the values of the parameter L4n(L) 
for as-grown samples computed using Eq. 18 (solid line) and Eq. 19 (dashed line) 
versus the network length L(T) calculated through Eq. 15. According to Eqs. 22–23, 
this method should be valid for L between 0.4 μm and 1.2 mm. And by red lines, 
L4n(L) using Eq. 27, versus the network length L calculated with Eq. 25 (same as in 
Fig. 7). We can comment that all curves in Fig. 8 demonstrate one broad maximum 
of comparable (within factor of 2–3) magnitudes at comparable (within factor of 
5–10) values of L : the temperature method (blue lines) gives a broad peak of mag-
nitude ∼ 8 at L ∼ (6 ± 2) μm , while the amplitude method gives a peak of magnitude 
∼ 24 at L ∼ 40 μm.

The differences in the positions of peaks most probably arise from the fact that, 
for both methods, the absolute length scale L is not determined accurately. With the 
temperature method it enters Eq. 15 through the assumed dependence of the damp-
ing parameter B3(T) , measured [2] for P = 25.3 bar but not for P = 53 bar. And for 
the amplitude method it relies on the approximate character of Eq. 25. In fact, the 
length scales in Fig. 7 look a bit overestimated: we would not expect the TO to be 
sensitive to dislocations longer than some 20% of the sample’s radius ( ∼ 0.1 mm)—
which contradicts the apparent long-length cut-off for the annealed sample of 
Lmax ∼ 0.8  mm. This implies that lengths L, computed by the amplitude method, 

Fig. 8   L4n(L) for ‘as grown’ samples. Blue lines (bob road, f = 161  Hz) obtained from tempera-
ture sweeps at small amplitudes of strain 𝜖 < 2 × 10−8 as in Fig. 4 using Eq. 18 (solid line) and Eq. 19 
(dashed ) plotted versus the network length L(T ,�) calculated through Eq. 15. Red lines (solid for the 
head rod at f = 931 Hz, dashed for the bob road at f = 161 Hz) are obtained from the amplitude sweeps 
while decreasing � using Eq.  27, versus the network length L(�) calculated with Eq.  25 (Color figure 
online)



	 Journal of Low Temperature Physics

1 3

might be overestimated; this is likely to be caused by the approximate character of 
Eq.  25, as well as by an uncertainty of the absolute value of strain inferred from 
the twisting angle Θ1 , Eq.  40. With these reservations, we would take the semi-
quantitative agreement between the temperature and amplitude methods in Fig. 8 as 
satisfactory.

4.4 � Strain‑Hardening and Recovery

Strain amplitudes up to � ∼ 10−7 did not affect equilibrium fr(T) and fb(T) . Increas-
ing � to ∼ 3 × 10−5 at T = 0.3 K and then cooling to T ∼ 0.02 K did result in hys-
teretic amplitude dependences upon reducing and then increasing � ; yet this did not 
lead to any lasting change of sample’s rigidity after the temperature was risen back 
to 0.3  K where the sample would quickly soften again. We associate this regime 
with binding or unbinding of 3He atoms to the dislocation cores [1, 2]—while dis-
locations vibrate in the AC strain field in a harmonic way (described by Eq. 3), and 
their network is kept unchanged. Small additional dissipation was also observed in 
this regime.

However, straining at amplitudes � ≥ 8 × 10−5 at T = 0.3 K resulted in a differ-
ent behavior. With increasing � the effective shear modulus decreased even further 
and a substantial additional dissipation appeared—as expected for a now nonlin-
ear response of stretching dislocations. Then, after a prolonged AC-straining with 
amplitude � ∼ 10−4 at 0.3 K (during which the effective shear modulus actually kept 
increasing slightly and the additional dissipation kept decreasing slightly—perhaps, 
reflecting gradual hardening of the sample), samples were slowly cooled to 0.03 K 
(maintaining the soft state with � ≈ 0.75�0 ), at which the amplitude of twisting was 
gradually decreased to zero, thus returning to the stiff state with � = �0 (see Fig. 5). 
One would then expect that subsequent warming to temperatures T ≳ 0.3 K while 
driving at small-amplitude � ∼ 10−8 will result in a rapid removal of the trapped 3He 
and hence restoration of the soft state with � ∼ 0.7�0 (as was routinely observed 
with other, not strained, samples). In contrast, the stiff state with �∕�0 in the range 
0.93–0.98 persisted up to ∼ 0.5 K, and only a gradual recovery of the soft state could 
be observed at higher temperatures as shown in Fig.  9 (recovery time of order 1 
hour at T = 1 K). This phenomenon was originally observed in experiments by John 
Beamish and colleagues [5, 6]. Furthermore, if such cold-worked samples were only 
warmed up to 0.3 K and then cooled down to 0.03 K while at a medium-amplitude 
strain � ∼ 10−5 , and then the amplitude dependence �(�) while reducing � was meas-
ured again, the inferred L4n(L) (the “hardened” sample in Fig. 7) was markedly dif-
ferent from the one measured for the first time (the “cold-worked” sample in Fig. 7); 
the peak in the distribution L4n(L) has decreased in magnitude and became shifted 
to shorter lengths L. Also, the low-amplitude anomalies in fr(T) and fb(T) (which 
we relate to the equilibrium 3He -trapping) were now greatly suppressed.

The rate of the recovery from the hardened toward the soft state, fr(0) − fr(t) , 
was found to have a universal time-dependence [91] as a function of ln(1 + t∕�) , 
where �(T) ∝ exp(Ev∕kBT) with the activation energy of Ev ≈ 22  K. In Fig.  9, 
three different observations of the recovery �(t)∕�0 at temperatures Ta = 0.55 K 
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(blue), 0.60 K (green), 0.70 K (red) collapse on a single linear dependence when 
plotted versus ln[1 + �(t)]1∕2 in the assumption that a single parameter 
� = ∫ t

t1

dt�

�(T(t�))
 reflects the extent of the recovery of the shear modulus �(t)∕�0 

starting from �∕�0 = 1 while at a sufficiently low temperature T < 0.5K at time t1 
(for details, see caption for Fig.  9). During the recovery, short dislocations 
become depleted first, while the largest-scale contribution builds up slower in 

Fig. 9   Time dependence of the softening of the shear modulus during the annealing at constant tem-
peratures Ta = 0.55 K (blue), 0.60 K (green), 0.70 K (red), which began at time t = 0 . It is plotted ver-
sus ln[1 + �0 + t∕�(Ta)] , where �(T) = �D × exp(22K∕T) with �D = ℏ∕(k

B
ΘD) = 2.4 × 10−13  s. The 

parameter �0 = ∫ 0

t1

dt

�(T(t))
 reflects the initial annealing, while the sample was warming up from a low 

temperature (where �∕�0 = 1 ) at t = t1 < 0 to Ta ; its values are �0(0.55K) = 0.05 , �0(0.60K) = 0.7 and 
�0(0.70K) = 60 . The additional bandwidth fb − fb(0) ≈ 5 × 10−4 Hz was independent of time and tem-
perature (and is relatively insignificant as Im(�)∕�0 = 1.2–1.3%) (Color figure online)

Fig. 10   The history of preparing a sample in the bob rod, kept at a moderate amplitude of twisting with 
� ∼ 10−5 , slowly cooled from 0.3 to 0.04 K (typically done at rate 1.5–4 mK/min). The blue and red lines 
show the temperature and bandwidth fb , respectively. Occasional spikes in fb(t) are probably associated 
with avalanche-like relaxation of the shear stress in the sample (Color figure online)
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time (see the evolution from hardened through part-recovered to annealed in 
Fig. 7).

Occasionally, spikes in the bandwidth fb (and to a lesser extent in the frequency 
fr ) of the TO have been observed while at a moderate amplitude of AC-twisting 
(either at constant temperature or during cooling below 0.3 K), see Fig. 10. These 
spikes have never been observed at small amplitudes of TO. We hence relate them to 
a sudden restructuring of the sample, triggered by the AC-strain. These might take 
form of an avalanche-like motion of many interacting dislocations, similar to those 
observed at low temperatures [35, 36]—in contrast to the continuous creep at high 
temperatures. It is believed [32] that a fractal scale-invariant distribution of disloca-
tion cells and dislocation avalanches are consequences of the interaction between 
dislocations in systems where only glide but no climb is allowed (as in our samples 
at T ≪ 1 K).

4.5 � Thermal Conductivity

In Fig. 11, by solid symbols we show the thermal conductivity of several samples, 
converted into the phonon mean free path � with Eq. 42. Black symbols (squares 
and diamonds for the head and bob road, respectively) are for as-grown samples; 
blue symbols (up triangles and down triangles for the head and bob road, respec-
tively) are for the samples annealed at T = 2.0 K; red stars are for the head sam-
ple after it was cold-worked by a high-amplitude AC-twisting. One can see that the 
phonon m.f.p. was always smaller than that expected for the scattering off rough 
container walls (Casimir limit), �

Casimir
= d = 1.1 mm. It also varied from sample to 

sample, decreased after cold working and increased after annealing (following cold-
working of the head rod, an overnight annealing at 0.7 K was always returning �(T) 
back to that shown by blue triangles in Fig. 11). Hence, the observed m.f.p. reflects 
the presence of crystal defects.

Fig. 11   The effective phonon mean free path of several samples (see text) (Color figure online)



1 3

Journal of Low Temperature Physics	

Differences between �(T) for the head and bob rod, as well as for the as-grown 
and cold-worked samples in the head rod might be attributed to different densities 
and morphologies of dislocation walls in those samples due to the differences in the 
types of plastic deformation responsible (as the head rod is at the dead end of the 
common channel, unlike the bob rod, plastic flows during their directed solidifica-
tion at constant mass and available volume are different; also, straining by AC-twist-
ing would create different types of dislocation structures than during solidification).

To characterize these removable dislocations, we convert, using Eq. 43, the excess 
in the thermal resistance �−1 into the effective m.f.p. �

def
 corresponding to these 

defects and show it in Fig. 11 by open symbols connected by a dotted line of the 
same color (square and diamond for the as-grown defects in the head and bob road, 
respectively) and by red stars for the defects introduced by cold working. Similar to 
the case of total �(T) , the temperature dependence of �

def
(T) is either rather weak 

or basically absent. Such �
def

∼ 1 mm cannot be due to a homogeneous network of 
non-interacting fluttering dislocations: while these dislocations of length L ≲ 20 nm 
would indeed result in a flat �

def
(T)—but with �

def
∼ L ∼ 20 nm (Eq. 34), not 1 mm; 

and dislocations of larger length L ∼ 10 μm would be able to make �(T) ∼ 1 mm but 
with a different temperature dependence � ∝ T  (Eq. 35). Isolated static dislocations 
should also be discarded as they would produce a different temperature dependence 
� ∝ T−1 (Eq. 36), and would have to be of a very short length L ∼ 30 nm—at which 
flutter would become dominant anyway. However, the static strain field due to large-
angle grain boundaries or, more likely, collective strain field of dislocation walls is 
consistent with the observed temperature dependence and values of �

def
(T) if the 

size of such grains or dislocation cells is 𝜉 ≲ 0.3 mm (Eq. 37)—which seems natural 
for a rod-shaped sample of diameter d = 1.1 mm.

5 � Discussion

It seems, the observed dynamics of different samples of polycrystalline 4He , at 
strain amplitudes not exceeding that for plastic yield, could be consistently inter-
preted in terms of the Granato–Lücke theory of vibrating dislocations. However, the 
process of AC-straining at high amplitudes, followed by the apparent disappearance 
of gliding dislocations after stopping this straining at a low temperature, warrants a 
discussion.

At low temperatures, the increase of the shear modulus to its stiff value means 
that either the volume fraction of gliding basal-plane dislocations has been drasti-
cally reduced or that certain interactions stop most of them from gliding. In the case 
of an equilibrium state without straining by high-amplitude shear, this mechanism 
is believed to be the condensation of 3He atoms on the dislocation cores, which can 
be then quickly reversed by warming up to 0.3 K. We would speculate that, in the 
highly metastable hardened state, the dislocations are stopped from gliding by some 
novel mechanism which works even at T = 0.3 K at which 3He atoms should have 
mostly evaporated from dislocation cores.

It is evident from Fig. 7 that cold working by high TO amplitude � ∼ 10−4 cre-
ates many short dislocations at expense of long ones. During 10 hours of straining, 
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the resonant frequency fr kept increasing slowly from the lowest value typical to the 
annealed samples while the bandwidth fb was only slightly greater than that for a 
stiff crystal. The relatively low level of damping suggests that all dislocations longer 
than Lmax(�) have been eliminated, and the stress–strain cycles are quasi-elastic (i.e., 
no longer hysteretic). The relatively low value of � indicates the presence of a vol-
ume-filling network of gliding dislocations. And the slow increase of � is an evi-
dence for some process of immobilization of these gliding dislocations, unrelated to 
the condensation of 3He atoms (as the temperature is too high for this process).

We can speculate that, during a continuous AC straining at high amplitude, this 
system is kept in a dynamical state, in which stretching dislocations are mostly 
aligned [31] (which prevents them from crossings and creating jogs), thus maintain-
ing a soft state with an agile response of gliding dislocations to the rapidly alter-
nating high strain. However, upon stopping the agitation, the dislocation network 
relaxes irreversibly, thus creating crossings and jogs which nearly completely arrest 
the glide of dislocations—with or without 3He atoms in their cores. This is why the 
subsequent un-trapping of 3He atoms after warming up to T = 0.3 K does not help to 
soften the crystal. And only a higher-temperature annealing can remove those jogs 
and restore free glide with its greatly reduced shear modulus.

We conclude that the hardening of strained sample (while the strain amplitude 
was being decreased at T = 0.03 K), should be related to the immobilization of glid-
ing dislocations by hard topological defects like jogs or by reducing their volume 
fraction through the creation of structures like dislocation walls—and the recovery 
from this state at elevated temperatures takes much longer than the quick thermally 
activated un-trapping and ballistic removal of 3He quasiparticles. The time depend-
ence of the recovery with the activation energy of ∼ 22 K hints at the annealing of 
these defects via dislocation climb facilitated by the mass transport of 4He , presum-
ably controlled by thermal vacancies.

There might be alternative explanations of the slow relaxation of hardened sam-
ples at T = 0.3  K. Firstly, it could be that the normally dominant mass transport 
of 4He atoms, required to remove jogs, is maintained via 1-D dislocations; it can 
hence be suppressed by the presence of 3He-contaminated nodes (with larger trap-
ping energy of 1–2 K) [19]. Then, after the dislocation network length was reduced 
by cold-working, the number of these nodes increased: this would greatly lengthen 
the time needed for the diffusive transport of 4He atoms through them. Secondly, in 
a work-hardened sample 3He atoms could become localized in the regions of high 
strain, so their transport is no longer through the quantum diffusion of ballistic qua-
siparticles but through the vacancy-assisted hopping. Then, 3He atoms would not be 
effectively leaving dislocation cores, thus retaining the sample in the stiff state for 
much longer even at T ∼ 0.3 K.

An argument in favor of collective behavior of interacting gliding disloca-
tions can be made from the thermal conductivity of our samples. The temperature 
dependence of �(T) (either absent or weakly decreasing at best—similar to those 
observed in samples of hcp 4He and bcc 3He , grown by the same technique [3, 4]) 
is consistent with the predominant scattering of phonons not off individual vibrating 
dislocations but off either grain boundaries (which in samples grown by a blocked-
capillary method could be expected to be a distance ∼ d apart) or dislocation walls 
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(i.e., regions filled with dense arrays of polarized dislocations surrounding dislo-
cation-free regions—dislocation cells). These dislocation walls are different from 
grain boundaries in several respects [32]: the misalignment of internal regions of 
these cells is much less pronounced than in polycrystalline grains; they are more 
fuzzy than the better defined grain boundaries; in crystals where only easy glide 
but not climb of dislocations is allowed, these cells were found to be organized 
in a self-similar way over a broad range of length scales; finally, it is dislocations 
(even though tangled together) and not grain boundaries—which can be effectively 
annealed at moderate temperatures which unleash dislocation climb. The observed 
recovery of the thermal conductivity upon annealing at the relatively low tempera-
ture of 0.7 K (as compared to the melting temperature of 2.4 K, usually required for 
the efficient annealing of grain boundaries) indicates that it is dislocations but not 
grain boundaries which are being eliminated and restructured. Finally, the observed 
sporadic avalanche-like relaxation of stress at low temperatures is also consistent 
with the collective behavior of dislocations arranged in complex structures.

6 � Summary

1. The distribution L4n(L) was measured, using low-temperature amplitude sweeps 
[1, 2] for different samples of solid helium: as-grown, annealed, cold-worked, hard-
ened and recovered. Thus, changes in the main parameters characterizing the den-
sity ( ̄L and Λ ) and connectivity ( ΛL̄2 ) of the networks of gliding dislocation were 
studied. All samples (except for the hardened one) revealed single peaks in L4n(L) 
of comparable width but varying position and height, implying single-scale distribu-
tions characterized by particular values of L̄ and ΛL̄ . The apparent plateau at shorter 
lengths of order ∼ Lmin is most likely an artifact when required strain amplitude 
�c2(Lmin) exceeded �c3(Lmax) , causing stretching of the longest dislocations.

2. We verified experimentally a method of determining the length distribution 
L4n(L) from the equilibrium temperature dependence of either real or imaginary part 
of the shear modulus � at small amplitudes of shear strain—by accounting for the 
dissipative drag due to the equilibrium density of trapped 3He  impurities [2]. The 
results are qualitatively consistent with those from the accepted method using the 
non-equilibrium amplitude dependence of �(�) while reducing strain amplitude � . 
Further work is required to refine the calibration of lengths and general accuracy of 
this method.

3. The process [6] of eliminating the dislocation glide by decreasing the strain 
amplitude at low temperature and its subsequent slow recovery at temperatures 
above 0.5  K was investigated. Short dislocations, created by high-amplitude cold 
working, and whose motion is then arrested by either topological network anchors 
(like jogs) or interacting dislocation structures (like dislocation walls), can be gradu-
ally freed by annealing at a moderate temperature of ∼ 0.6 K—unlike the disloca-
tions introduced during the sample growth, which (along, perhaps, with some grain 
boundaries) could only be partially annealed at temperature as high as 1.8 K. An 
overnight annealing at 0.7 K (or 1 h at 1.0 K) completely removes these short immo-
bilized dislocations created by cold-working and re-introduces long gliding ones, 
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eventually restoring the soft state of the crystal. This is correlated with the process 
of the recovery of thermal conductivity, sensitive to the presence of dislocation 
walls. The temperature-dependent relaxation time, controlling the universal logarith-
mic time-dependence of the recovery, has the activation energy of 22 K pointing at 
the possible role of thermal vacancies in mass transport.

4. Measurements of thermal conductivity, which characterizes the mean free path 
of transverse phonons [4] as function of temperature and treatment, indicated that 
the model of homogeneous volume-filling network of non-interacting dislocations is 
inadequate. Most likely, there are both grain boundaries and dislocation cells of size, 
comparable with the diameter of the sample; the latter being introduced by cold-
working and are effectively removed at moderate temperatures ∼ 0.6 K.

5. Occasional dislocation avalanches [35] were observed at temperatures below 
0.3  K in samples subjected to a moderate-amplitude AC strain during cooling. 
This is consistent with theories [32] proposing the creation of fractal disloca-
tion cells after plastic deformation of crystals with easy glide but no climb of edge 
dislocations.

Acknowledgements  We acknowledge help by Dmitry Zmeev, Paul Walmsley and Stan Gillott and dis-
cussions with I. Iwasa, J. Beamish, M. A. Lebyodkin and T. A. Lebedkina. Support was provided by 
the Engineering and Physical Sciences Research Council (United Kingdom) through Grant No. EP/
H014691/1. All data are included within this paper.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 I. Iwasa, J. Low Temp. Phys. 171, 30 (2013)
	 2.	 A.D. Fefferman, F. Souris, A. Haziot, J.R. Beamish, S. Balibar, Phys. Rev. B 89, 014105 (2014)
	 3.	 A.S. Greenberg, G.A. Armstrong, Phys. Rev. B 20, 1049 (1979)
	 4.	 G.A. Armstrong, A.A. Helmy, A.S. Greenberg, Phys. Rev. B 20, 1061 (1979)
	 5.	 J. Day, O. Syshchenko, J. Beamish, Phys. Rev. B 79, 214524 (2009)
	 6.	 J. Beamish, J.P. Franck, Phys. Rev. B 26, 6104 (1982)
	 7.	 A. Granato, K. Lücke, J. Appl. Phys. 27, 583 (1956)
	 8.	 J. Friedel, Dislocations (Pergamon, New York, 1964)
	 9.	 J. Hirth, J. Lothe, Theory of Dislocations (Krieger Publishing Company, Malabar, 1964)
	10.	 J. Beamish, J. Low Temp. Phys. 197, 187 (2019)
	11.	 J. Beamish, S. Balibar, Rev. Mod. Phys. 92, 045002 (2020)
	12.	 A.F. Andreev, I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969)
	13.	 A. Haziot, X. Rojas, A.D. Fefferman, J.R. Beamish, S. Balibar, Phys. Rev. Lett. 110, 035301 (2013)
	14.	 E.J.L. Borda, W. Cai, M. de Koning, Phys. Rev. Lett. 117, 045301 (2016)
	15.	 These dislocations are made of stacking-fault ribbons between two parallel Schottky partial disloca-

tions separated by ∼ 400 Å[14]

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 3

Journal of Low Temperature Physics	

	16.	 J. Day, J. Beamish, Nature 450, 853 (2007)
	17.	 G.A. Kneezel, A.V. Granato, Phys. Rev. B 25, 2851 (1982)
	18.	 S.I. Shevchenko, Fiz. Nizk. Temp. 13, 115 (1987)
	19.	 M.H.W. Chan, J. Low Temp. Phys. 205, 235 (2021)
	20.	 J. Shin, M.H.W. Chan, Phys. Rev. B 101, 014507 (2020)
	21.	 Z.G. Cheng, J. Beamish, Phys. Rev. Lett. 117, 025301 (2016)
	22.	 Z.G. Cheng, J. Beamish, Phys. Rev. Lett. 121, 225304 (2018)
	23.	 M.W. Ray, R.B. Hallock, Phys. Rev. Lett. 100, 235301 (2008)
	24.	 S.G. Soyler, A.B. Kuklov, L. Pollet, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. Lett. 103, 175301 

(2009)
	25.	 A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University 

Press, Cambridge, 1994)
	26.	 C.J.A.P. Martins, Defect Evolution in Cosmology and Condensed Matter: Quantitative Analysis with 

the Velocity-Dependent One-Scale Model (Springer, Berlin, 2016)
	27.	 L.H. Nosanow, W.J. Titus, J. Low Temp. Phys. 1, 73 (1969)
	28.	 R.P. Feynman, Prog. Low Temp. Phys. 1, 17 (1955)
	29.	 W.F. Vinen, Proc. Roy. Soc. A 242, 493 (1957)
	30.	 P.M. Walmsley, A.I. Golov, Phys. Rev. Lett. 118, 134501 (2017)
	31.	 E. Varoquaux, Phys. Rev. B 86, 064524 (2012)
	32.	 J.P. Sethna, Annu. Rev. Mater. Res. 47, 217 (2017)
	33.	 H. Mughrabi, T. Ungár, W. Kienle, M. Wilkens, Philos. Mag. A 53, 793 (1986)
	34.	 B. Bakó, W. Hoffelner, Phys. Rev. B 76, 214108 (2007)
	35.	 Z.G. Cheng, J. Beamish, Phys. Rev. Lett. 121, 055301 (2018)
	36.	 M.A. Lebyodkin, I.V. Shashkov, T.A. Lebedkina, K. Mathis, P. Dobron, F. Chmelik, Phys. Rev. E 

88, 042402 (2013)
	37.	 A.H. Cottrell, in Dislocations in Solids edited by F. R. N. Nabarro and M. S. Duesbery, 11, vii-xvii, 

Elsevier 2002
	38.	 R.P. Feynman, R.B. Leighton, M. Sands, The Feynman lectures on physics, vol. 1 (Addison-Wesley, 

New York, 1964)
	39.	 M.A. Paalanen, D.J. Bishop, H.W. Dail, Phys. Rev. Lett. 46, 664 (1981)
	40.	 V.L. Tsymbalenko, Z. Eksp, Teor. Fiz. 74, 1507 (1978)
	41.	 V.L. Tsymbalenko, Sov. Phys. JETP 47, 787 (1978)
	42.	 V.L. Tsymbalenko, Z. Eksp, Teor. Fiz. 76, 1690 (1979)
	43.	 V.L. Tsymbalenko, Sov. Phys. JETP 49, 859 (1979)
	44.	 F. Tsuruoka, Y. Hiki, Phys. Rev. B 20, 2702 (1979)
	45.	 Yu. Mukharsky, A. Penzev, E. Varoquaux, Phys. Rev. B 80, 140504(R) (2009)
	46.	 Y. Mukharsky, A. Penzev, J. Low Temp. Phys. 169, 197 (2012)
	47.	 R. Wanner, I. Iwasa, S. Wales, Solid State Commun. 18, 853–856 (1976)
	48.	 I. Iwasa, H. Kojima, Phys. Rev. B 102, 214101 (2020)
	49.	 I. Iwasa, K. Araki, H. Suzuki, J. Phys. Soc. Jpn. 46, 1119 (1979)
	50.	 Y. Aoki, I. Iwasa, T. Miura, A. Yamaguchi, Y. Okuda, J. Low Temp. Phys. 183, 113–119 (2016)
	51.	 A.A. Levchenko, L.P. Mezhov-Deglin, Zh. Eksp. Teor. Fiz. 86, 2123–2133 (1984)
	52.	 A.A. Levchenko, L.P. Mezhov-Deglin, Sov. Phys. JETP 59, 1234–1240 (1984)
	53.	 D.E. Zmeev, A.I. Golov, Phys. Rev. Lett. 107, 065302 (2011)
	54.	 D.E. Zmeev, M.Y. Brazhnikov, R. Schanen, A.I. Golov, J. Low Temp. Phys. 169, 169–179 (2012)
	55.	 M.Y. Brazhnikov, D.E. Zmeev, A.I. Golov, Fizika Nizkikh Temperature (Sov. Low Temp. Phys) 38, 

1329–1335 (2012)
	56.	 M.Y. Brazhnikov, D.E. Zmeev, A.I. Golov, Low Temp. Phys. 38, 1049–1054 (2012). https://​doi.​org/​

10.​1063/1.​47650​93
	57.	 E. Kim, M.H.W. Chan, Science 305, 1941 (2004)
	58.	 E. Kim, M.H.W. Chan, Nature 427, 225 (2004)
	59.	 Y. Aoki, J.C. Graces, H. Kojima, Phys. Rev. Lett. 99, 015301 (2007)
	60.	 J.D. Reppy, Phys. Rev. Lett. 104, 255301 (2010)
	61.	 J.D. Reppy, X. Mi, A. Justin, E.J. Mueller, J. Low Temp. Phys. 168, 175–193 (2012)
	62.	 V. Gadagkar, E.J. Pratt, B. Hunt, M. Yamashita, M.J. Graf, A.V. Balatsky, J.C. Davis, J. Low Temp. 

Phys. 169, 180–196 (2012)

https://doi.org/10.1063/1.4765093
https://doi.org/10.1063/1.4765093


	 Journal of Low Temperature Physics

1 3

	63.	 I. Iwasa, Phys. Rev. B 81, 104527 (2010)
	64.	 S. Balibar, J. Beamish, A. Fefferman, A. Haziot, X. Rojas, F. Souris, C. R. Physique 17, 264–275 

(2016)
	65.	 X. Rojas, A. Haziot, V. Bapst, S. Balibar, H.J. Maris, Phys. Rev. Lett. 105, 145302 (2010)
	66.	 J.D. Eshelby, Proc. R. Soc. Lond. A 266, 222 (1962)
	67.	 F. Souris, A.D. Fefferman, H.J. Maris, V. Dauvois, P. Jean-Baptiste, J.R. Beamish, S. Balibar, Phys. 

Rev. B 90, 180103(R) (2014)
	68.	 T. Ninomiya, J. Phys. Soc. Jpn. 36, 399 (1974)
	69.	 A.V. Markelov, Z. Eksp, Teor. Fiz. 88, 205 (1985)
	70.	 A.V. Markelov, Sov. Phys. JETP 61, 118 (1985)
	71.	 A. Haziot, A.D. Fefferman, F. Souris, J.R. Beamish, H.J. Maris, S. Balibar, Phys. Rev. B 88, 014106 

(2013)
	72.	 Note that the prefactor in Eq. 7 agrees with that in the original paper [7] but is a factor of �∕2 = 1.57 

greater than that quoted in papers [2, 11]. This affects the value of � in Eq. 9 and hence calibration 
of L4n(L) ∝ �−1 , calculated from experimental data using Eqs. 20, 21 and 27

	73.	 J.A. Garber, A.V. Granato, J. Phys. Chem. Solids 31, 1863 (1970)
	74.	 One may assume that Eb scales with pressure as Eb ∝ �(Pm)ΔV34

 , where � is the shear modulus and 
ΔV

34
 is the difference in molar volumes of hcp 3 He and 4 He at pressure corresponding to distance 

∼ b from the dislocation core [9], Pm −
�

3�

1+�

1−�
≈ Pm − 0.20�(Pm) . With increasing Pm from 25.3 bar 

to our pressure of 53 bar: � increases by factor of 1.50 while ΔV
34

 drops by factor of ∼ 1.3

	75.	 W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928)
	76.	 A. Reuss, Angew. Math. Mech. 9, 55 (1929)
	77.	 R. Hill, Proc. Phys. Soc. A 65, 349 (1952)
	78.	 H.J. Maris, S. Balibar, J. Low Temp. Phys. 160, 5 (2010)
	79.	 D.S. Greywall, Phys. Rev. B 16, 5127 (1977)
	80.	 R.H. Crepeau, O. Heybey, D.M. Lee, S.A. Strauss, Phys. Rev. A 3, 1162 (1971)
	81.	 E.R. Grilly, R.L. Mills, Ann. Phys. (N.Y.) 18, 250 (1962)
	82.	 I. Iwasa, H. Kojima, J. Low Temp. Phys. 187, 459 (2017)
	83.	 A.C. Anderson, M.E. Malinowski, Phys. Rev. B 5, 3199 (1972)
	84.	 P.G. Klemens, Proc. Phys. Soc. Lond. A 68, 1113 (1955)
	85.	 P.G. Klemens, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 

1958), 7, 1
	86.	 D.J. Bishop, J.D. Reppy, Phys. Rev. B 22, 5171 (1980)
	87.	 A single-frequency TO of this type was used by Paalanen et al. [39] in their pioneering studies of 

low-frequency internal friction due to moving dislocations in solid helium
	88.	 J.R. Hook, E. Faraj, S.G. Gould, H.E. Hall, J. Low Temp. Phys. 74, 45 (1989)
	89.	 Thanks to the ∝ r4 contribution to the rigidity of a rod of solid helium at radius r , the dominant 

contribution to the measured � comes from the thin sheath of effective thickness ∼ 0.1–0.2 mm (for 
either 50% or 90% of total � , respectively) near the rim

	90.	 J.M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, 2001)
	91.	 This type of relaxation was documented for creep in igneous rocks [92] but was then commonly 

observed in various polycrystals including solid helium [51, 52]
	92.	 C. Lomnitz, J. Geol. 64, 473 (1956)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.



1 3

Journal of Low Temperature Physics	

Authors and Affiliations

M. Yu. Brazhnikov1,2 · Y. M. Mukharsky3 · A. I. Golov1 

 *	 A. I. Golov 
	 andrei.golov@manchester.ac.uk

1	 Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, 
UK

2	 Institute of Solid State Physics, Chernogolovka, Russia 142432
3	 Department of Condensed Matter Physics, CEA-Saclay/IRAMIS, 91191 Gif sur Yvette, Cedex, 

France

http://orcid.org/0000-0002-7244-5899

	Characterization of Dislocations in hcp  by Torsional Oscillator and Thermal Conductivity Measurements
	Abstract
	1 Introduction
	2 Response of a Gliding Dislocation to AC Shear Stress
	2.1 Dislocation Networks
	2.2 Mobile Dislocations as Elastic Strings
	2.3 Response at Small Amplitudes of Strain
	2.4 Hysteretic Amplitude Dependence at Moderate Strain
	2.5 Work hardening at large strain
	2.6 Effective Shear Modulus of a Polycrystal
	2.7 Interaction of Thermal Phonons with Dislocations

	3 Experimental Techniques
	3.1 Experimental Cell
	3.2 Torsional Oscillator
	3.3 Thermal Conductivity

	4 Experimental Results
	4.1 Torsional Oscillator: Equilibrium Temperature Dependence at Small Strain
	4.2 Torsional Oscillator: Amplitude Dependence at Moderate Strain
	4.3 Analyses in Terms of Dislocation Length Distribution
	4.4 Strain-Hardening and Recovery
	4.5 Thermal Conductivity

	5 Discussion
	6 Summary
	Acknowledgements 
	References




