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Task Learning for Intention Detection using Deep 
Neural Networks and Robotic Arm Data in Glovebox

Abdullah Alharthi ¹, Ozan Tokatli ², Erwin Lopez ³, and Guido Herrmann ⁴

[1] https://research.csiro.au/robotics/manipulation-benchmark/dataset/

Tele-manipulation systems are becoming more reliant
on complex local (master) devices with sophisticated
control methods; hence, the cognitive load on the
operator during labour intensive tasks is increasing.
The operator intention detection based on task
learning can lead to better robot task performance
with less human effort in teleoperation for a glovebox
environment (see Fig. 1). Deep Convolutional Neural
Networks are proposed to learn and predict the
operator intention using robotic arm and its controller
spatiotemporal data. Our preliminary experimental
study on glovebox tasks for nuclear applications,
particularly radiation survey and object grasping,
provided promising results and encouraged us for a
deeper research.

Data 1) Autonomous Manipulation of
Objects with Robotic Arm

Data 2) Object Manipulation and 
Radiation Survey with Bilateral 

Teleoperation

Fig.1. (a): Haption device to control robotic arm. (b): 
Glovebox environment with two Kinova robotic arms. 

Data 3) Radiation Survey on a Grid 
Using a Bilateral Teleoperator

Autonomous manipulation of objects with one robotic
Arm open-source benchmark [1] comprise of 210
samples, 20 samples for each task, recorded from
kinova mico arm for 10 seconds:

1) Torque & force from a force Robotiq sensor 
mounted at the wrist joint

2) Finger positions. 
3) 6DOF pose and joint torques 

Introduction

Object posting in and out of glovebox and Radiation
Survey using one Kinova arm. The data are recorded
for 6 tasks (see Fig. 2), 20 samples for each task.
1) Post object in to the glovebox
2) Place object on the glovebox floor
3) Grasp the radiation sensor
4) Radiation survey
5) Return the radiation sensors
6) Grasp the object and post it out of the glovebox

Fig. 2. Object posting in glovebox and radiation
surveying for 6 tasks

Grid radiation survey in Glovebox environment. The
data are recorded for 6 operators from one Kinova
Arm and a Haption.

4 samples recorded for each operator while
performing radiation survey see Fig. 3, with a data
comprise of 32 samples.

Conclusion
The findings present valuable insight for operator
intention detection for Glovebox environment
manipulation. The result presents a promising starting
point for understanding, designing, and evaluating
robotic systems for use by or with humans. The next step
is to detect the operator intentions during online
teleoperation manipulation.

(a)

(b)

Task Description
1 Kinematic motion of the arm, Simple
2 Kinematic motion of the arm, Complex
3 Plastic & Wooden cube pushing
4 Plastic & Wooden cylinder rolling
5 Plastic & Wooden cone rolling
6 Plastic & Wooden  cuboid pushing

Fig. 3. Grid radiation Survey

Deep Convolutional Neural Networks 
for Task Learning for Intention 

Detection 

Fig. 4. DCNN network architecture for intention 
detection.The diagram is generated using Neutron 

repository based on the models’ weights and biases.

Classification Results
Data 1) The DCNN successfully classified the tasks in
table 1 by 100% ± 0.2% F1-score, depending on data split
for training and testing. The confusion matrix in Fig. 5
shows the true positive predictions of the 6 classes.

Table 1. open-source data classes

Fig. 5. Data 1 confusion 
matrix classification 

Data 2&3) The DCNN is trained and tested to classify
object manipulation in the Glovebox environment.
Experiments (E) detailed in table 2 are conducted to
investigate the ability of the DCNN to identify the
operator intention for a number of experiment using F1
scores. In Fig. 6 the model predicted the operator
intention by 100% ± 6% F1 when object grasping
compared to radiation survey and Grid radiation survey.

Fig. 6. Classification results 
in F1 scores for experiments 

from E1 to E8 

Intention detection is handled as a supervised
learning process. The data are manually labelled to
train a Deep Convolutional Neural Networks (DCNN)
to detect the operator intentions from task learning.

The DCNN model (see Fig. 4) is implemented to map
the robotic arm’s spatiotemporal data ෞ𝑥𝑛,𝑠 to an output
label 𝑦 by learning an approximation function y = f
ෞ𝑥𝑛,𝑠 , n denotes time and s denotes data point

recorded from the robot. The network consists of an
input layer, 4 convolution layers, 4 pooling layers, 2
fully connected layers, 1 batch normalization, and an
output layer with a softmax classifier. The set of 12
stacked layers in Fig. 4 utilizes Conv1D kernels (filter
size × number of feature maps × number of filters),
MaxPooling strides of 2 and pool size of 2. The models’
classification performance is evaluated using
confusion matrices and F1 scores for 20% of the data .

    

     

    

     

    

    

    

     

  
  

  
  

  
  

  
  

E Description
E1 Post object in glovebox & Radiation survey (data 2)
E2 Place object in glovebox floor & Radiation survey (data 2)
E3 Grasp radiation sensor & Radiation survey (data 2)

E4 Grasp object and post out the glovebox & Radiation survey 
(data 2)

E5 6 tasks classes classification (data 2)

E6 Place object in glovebox floor & Radiation survey & Grid 
radiation survey  (data 2&3)

E7 All tasks in data 2 as one class except radiation survey & 
Grid radiation survey in data 3 as second class

E8 All tasks in data 2 as one class & Grid Radiation survey in 
data 3 as second class

Table 2. Experiments in Fig. 6 description
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