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Abstract. The tuneability and control of quantum nanostructures in two-

dimensional materials offer promising perspectives for their use in future electronics.

It is hence necessary to analyze quantum transport in such nanostructures. Material

properties such as a complex dispersion, topology, and charge carriers with multiple

degrees of freedom, are appealing for novel device functionalities but complicate

their theoretical description. Here, we study quantum tunnelling transport across

a few-electron bilayer graphene quantum dot. We demonstrate how to uniquely

identify single- and two-electron dot states’ orbital, spin, and valley composition

from differential conductance in a finite magnetic field. Furthermore, we show that

the transport features manifest splittings in the dot’s spin and valley multiplets

induced by interactions and magnetic field (the latter splittings being a consequence of

bilayer graphene’s Berry curvature). Our results elucidate spin- and valley-dependent

tunnelling mechanisms and will help to utilize bilayer graphene quantum dots, e.g., as

spin and valley qubits.

1. Introduction

Carbon-based materials are considered promising candidates for spin-based quantum

computation devices due to their low spin-orbit and hyperfine coupling entailing long

spin coherence life times [1, 2, 3]. Any spin-qubit operation using a quantum dot will

necessarily include the steps of controlled loading (transferring a charge carrier onto

the dot) and storage (keeping the charge carrier on the dot). Such an operation hence

requires understanding and control of the dot’s few-electron states and tunnel transport

processes.
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Figure 1: a) Bilayer graphene lead-dot-lead setup. b) Single (N = 1) to two-particle

(N = 2) tunnelling transitions allow characterising the dot’s orbital, spin and valley

states. The ground state transition defines the conductive region between the N = 1

and N = 2 Coulomb blockade regime in the bias (VB) and gate voltage (VG) plane.

Within this conductive region, different transitions (distinguished in b) by colour)

contribute to transport depending on spin and valley selection rules. c) Differential

conductance at fixed but finite bias (horizontal cuts along the dotted line in b)). The

slope of the lines with the magnetic field (dominated by the difference of the two-particle

and single-particle valley g-factors) teaches about the orbital and valley composition of

the two-particle dot state. The splittings between transitions at B = 0 manifest the

interaction-induced two-particle state gaps.

In bilayer graphene, recent experiments achieve confinement of charge carriers

in one- and zero-dimensional structures by electrostatic gating [4, 5, 6, 7, 8, 9, 10].

To electrostatically define a nanostructure in bilayer graphene multiple gates locally

modulate the bilayer graphene band gap and charge carrier density, cf. Fig. 1a). Split

gates can define a channel (pink stripe in Fig. 1a)), while finger gates on top create a dot-

like region within this channel (dark pink region), bounded by gapped regions acting

as barriers (white regions). This confinement method offers immense gate-control of

the nanostructure, e.g., the confinement width, depth, barriers, and bilayer graphene

gap. It is now possible to operate such an electrostatically confined bilayer graphene

dot controllably in the single and few-electron regime [11, 12, 13, 14, 15, 16, 17, 18,
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19, 20]. The rapid experimental progress in device design, quality, and control, calls

for a theoretical investigation of single and few-electron tunnelling processes in such

structures.

The two internal degrees of freedom, valley and spin, enrich the spectra of bilayer

graphene-based devices compared to usual semiconductors [21, 22, 23]. The result

is highly degenerate multiplets split in various ways by a magnetic field and weak

perturbations. The transitions between the single- and two-particle states with different

multiplicities and splittings determine tunnelling through the dot in the single and

two-particle sectors, as sketched in Fig. 1b). In this work, we investigate tunnelling

transport through a bilayer graphene quantum dot in the single and few-electron regime

as a tool to unravel some of the dot’s two-particle states’ unusual characteristics. We

demonstrate how the specifics of the dot’s multiplets manifest in tunnelling current, such

as the differential conductance patterns in Fig. 1c) calculated within a rate equation

approach applied to a microscopic model of the bilayer graphene quantum dot and its

level structure. We show how to link such experimentally observable transport features

with interaction and field-induced gaps between different spin and valley configurations.

We determine the particular tunnelling sequences for spin and valley states of differently

ordered multiplets and relate them to microscopic parameters, such as short-range

interaction coupling constants, g⊥, gzz, g0z, gz0[24, 25, 26, 27], and topological valley

g-factors (the latter induced by Berry-curvature[28, 29, 30, 31]). Besides spin- and

valley selection rules, these tunnelling sequences depend on the dot-lead coupling

characteristics, such as asymmetric coupling to the source and drain and cotunnelling

corrections. By combining the aspects of state multiplicity, electronic interactions,

and dot-lead couplings, our results add to the understanding of tunnelling transport

in complex few-electron systems.

The paper is structured as follows. In Sec. 2, we introduce our theoretical model of

the bilayer graphene quantum dot and the leads, discussing the dot’s state structure in

the single- and two-particle sector. Section 3 describes the rates for tunnelling between

these states and the leads, and the calculation of tunnel current using rate equations

[32, 33]. Section 4 presents our calculations of tunnel transport through a bilayer

graphene quantum dot. We provide maps of the differential conductance, dI/dV , in

the plane spanned by the gate voltage and the magnetic field for representative cases of

interaction parameters. This way, we characterise regimes in which different electronic

interactions dominate, as tabulated in Fig. 2. We have established these regimes in our

previous work in Ref. [27], showing that for weak mutual interactions, two electrons

on the dot occupy a symmetric combination of single-particle orbitals, whereas strong

correlations between the dot electrons induce an antisymmetric orbital state with a

significantly altered wave function, reminiscent of a Wigner molecule [34, 35, 36, 37,

38]. Now, the differential conductance in a proper bias interval reveals the transitions

between the one- and two-particle states in the quantum dot. The levels’ energies are

closely related to the symmetries of the corresponding orbital wave functions. The

multiplicity and ordering of the two-particle levels depends on the orbital symmetry,
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(4.1.2)

(4.1.1)

(4.2)

(4.3)

Figure 2: We consider transport through bilayer graphene quantum dots in regimes

dominated by different types of interactions. Weak or strong long-range Coulomb

interactions favour two-particle states with symmetric or antisymmetric orbital states

and distinct degeneracies of the spin and valley multiplets. Possible short-range

interaction mechanisms include couplings generated by inter- and intra-valley scattering

or ”current-current” interactions, and spin-orbit coupling. In brackets, we indicate the

corresponding section number.

the short-range part of interactions, and the external magnetic field. The latter allows

one to affect the level ordering. The interpretation of such tunnelling data may depend

on device characteristics, e.g., the lead-dot coupling strength or uniformity of source

and drain coupling. Taking these device features into account, we show how to use

the differential conductance maps to identify the dot’s two-particle ground state and

determine the dominant microscopic interaction parameters. Section 5 contains step-

by-step instructions how to use our results to interpret differential conductance data for

identifying the single-and two-particle state structure of a bilayer graphene quantum

dot.

2. Model

We consider a lead-dot-lead setup in which a bilayer graphene quantum dot is tunnel-

coupled to bilayer graphene quantum point contacts as in Fig. 1a).

Single-particle states of the bilayer graphene quantum dot. We focus on
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the experimentally accessible regime of small and moderate displacement fields in the

dot region. For a small gap, the bilayer graphene dispersion in the vicinity of the K-

points is approximately quadratic, and a quantum dot’s single-particle level structure

resembles that of harmonic confinement, featuring an orbitally singly degenerate ground

state[27].

These single-particle dot states are characterized by the orbital quantum number,

n, and the electron’s spin (s =↑, ↓) and valley (t = +,−) degree of freedom. We

denote a one-electron dot state by |n, s, t〉 = d†nst|0〉, where d†nst is the electron creation

operator and |0〉 is the empty dot state. The n-th spin and valley multiplet at zero

magnetic field is characterized by energy, En. In the regime of sufficiently small dots

and gaps, in which dots are currently achieved in experiments [20], the lowest orbital

single-particle state is generally singly degenerate and single-particle splittings can be

of the order of several meV [27]. Zero-point vibrations enhance Kane-Mele spin-orbit

coupling[39], ∆SO, leading to reversed spin splitting in opposite two valleys [18, 20, 10].

Each multiplet splits upon the application of a magnetic field, B, perpendicular to the

bilayer graphene plane as,

En,s=↑,↓,t = En + Ec(1)± t∆SO ±
1

2
gµBB + tgnvµBB, (1)

according to the free electron spin g-factor, g = 2, and valley g-factor, gnv (µB being the

Bohr magneton). The latter is a consequence of gapped bilayer graphene’s nontrivial

Bloch band Berry curvature entailing a topological orbital magnetic moment with

opposite sign in the two different valleys [28, 29, 30, 31]. As the orbital magnetic

moment is a function of wave number in each valley, the topological valley g-factor

depends on the gap and the states’ momentum space distribution (and, consequently,

on the orbital quantum number, n), determining how much orbital magnetic moment is

picked up by the dot states[40, 27, 41, 42]. The second term in Eq. (1) accounts for the

presence of a gate with capacitance CG, which, at gate voltage VG, induces an effective

charge on the dot, changing the dot’s electrostatic potential by

Ec(N ) =
(N e− CG VG)2

2eC
. (2)

Here, N is the dot occupation number and C is the total capacitance of the dot.

Two-particle states of the bilayer graphene quantum dot. The dot’s two-

particle sector is non-trivial, due to the large number of states arising from different

combinations of the orbital, spin, and valley degrees of freedom. Moreover, these three

degrees of freedom combined must form an overall antisymmetric two-particle wave

function. As we showed in Ref. [27], Coulomb interaction between the two dot electrons

further impacts the correlations between the different degrees of freedom.

The long-range Coulomb interaction on the scale of the dot state wave functions is
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given by,

HC =
1

2

∑
n,n′

m,m′

∫∫
drdr′[Ψ†n(r)Ψn′(r)]VC(r− r′) [Ψ†m(r′)Ψm′(r

′)],

Ψn(r) = (ψAn↑+, ψ
B′

n↑+, ψ
B′

n↑−,−ψAn↑−, ψAn↓+, ψB
′

n↓+, ψ
B′

n↓−,−ψAn↓−)T , (3)

between the low-energy electronic fields, Ψn(r), on the non-dimer sites A and B′ of the

bilayer graphene lattice. We employ the 2D screened Coulomb interaction in a weakly

gapped bilayer graphene [43, 27], with Fourier representation, VC(q) = e2

4πε0ε
2π

q(1+qR?)
,

where ε0 is the vacuum permittivity, ε is the encapsulating substrate material’s

dielectric constant, R? =
√

32~κ/
√

∆, taking into account gapped bilayer graphene’s

polarisability[43], κ2 = 2me2/(4πε0ε~
√

∆)2, with m being the effective mass and ∆ the

bilayer graphene gap. The Coulomb repulsion in Eq. (3) determines the spatial extent of

the wave functions and the exchange energy. The competition of single-particle energies,

direct-, and exchange-interaction terms determines the mixing of single-particle orbitals

forming orbitally symmetric or antisymmetric two-particle states[27]. For zero or weak

Coulomb interaction (strong screening by the surrounding medium), two electrons on

the dot form an orbitally symmetric wave function, both occupying the same single-

particle orbital, n. If the Coulomb repulsion dominates (weak screening), the gain in

exchange energy overcomes the cost of occupying higher single-particle orbitals, and

the two-particle ground state forms an antisymmetric orbital wave function involving

different single-particle orbitals, n and m.

In gapped bilayer graphene, where the gating needed to form the quantum dot lifts

the layer symmetry, we take into account the lattice-scale symmetry breaking short-

range interactions[24, 25, 26, 27],

HSR =
1

2

∑
n,n′

∫
dr
∑
(i,j)

gij[Ψ
†
n(r)ςAB

′

i ς+−j Ψn′(r)]2, (4)

with ςAB
′

i (ς+−i ) the Pauli matrices in sub-lattice (valley) space and (i, j) =

(xx, xy, yx, yy, zz, z0, 0z). The interactions in Eq. (4) originate from symmetry breaking

fluctuations and the relevant coupling constants

gxx = gxy = gyx = gyy ≡ g⊥, gzz, gz0, g0z, (5)

favour states with spontaneously broken symmetries[24, 25]. Inter-valley scattering

introduces the coupling g⊥ while intra- valley scattering generates gzz. The

couplings g0z,z0 correspond to ”current-current” interactions[44], favouring states with

spontaneously broken time-reversal invariance[25]. The case i = j = 0 is already

included in Eq. (3). Other possible combination of indices i, j not listed in Eq. (5)

do not affect the states in gapped bilayer graphene since the corresponding fluctuations

are suppressed by the layer polarization.

The short-range interactions in Eq. (4) introduce anisotropies in the sublattice

and valley space for two-particle states with symmetric orbital wave function. For
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orbitally antisymmetric two-particle wave functions, contact interactions as in Eq. (4)

are not relevant due to vanishing electronic density at small inter-particle distances.

Short-range interaction induced splittings hence provide a way to distinguish orbitally

symmetric and antisymmetric dot states.

Any theoretical estimation of the couplings’ numerical values comes with

inherent uncertainty since they depend on the relevant energy scale. The resulting

renormalization and additional phonon-mediated effects can change the couplings gij in

absolute value and sign[25, 26]. By studying tunnelling through two-particle multiplets

for all possible combinations of values in Eq. (5) we demonstrate how to identify

different parameters in transport. Our results will be relevant for unfolding experimental

measurements using tunnelling spectroscopy of the bilayer graphene quantum dot’s two-

particle states as a tool to extract the microscopic short-range interaction parameters

in Eq. (5).

Depending on the symmetry of the two-particle states’ orbital part, any

combination of spin (σ) and valley (τ) states is permissible that combines to an overall

antisymmetric two-particle wave function. We denote an antisymmetric singlet state by

“− x” and the three members of the symmetric triplet state by “ + x” and “± z”.

There are six combinations of spin/valley-singlet (σ−x/τ−x) and -triplet

(σ−z/τ−z, σ+x/τ+x, σ+z/τ+z) states and an orbitally symmetric (s) two-particle state

of orbital n:

|nn, σ−x, τ+x〉 =
1√
2

(d†n↑+d†n↓− − d†n↓+d†n↑−)|0〉,

|nn, σ−x, τ−z〉 = d†n↑−d†n↓−|0〉,
|nn, σ−x, τ+z〉 = d†n↑+d†n↓+|0〉,
|nn, σ−z, τ−x〉 = d†n↓+d†n↓−|0〉,

|nn, σ+x, τ−x〉 =
1√
2

(d†n↑+d†n↓− + d†n↓+d†n↑−)|0〉,

|nn, σ+z, τ−x〉 = d†n↑+d†n↑−|0〉. (6)

The energies of this two-particle multiplet are given by[27],

Enn,σ−x,τ+x = Esnn + (gzz + 4g⊥ − g0z − gz0)J + Ec(2),

Enn,σ−x,τ−z = Esnn + (gzz + g0z + gz0)J + Ec(2)− 2gnvµBB,

Enn,σ−x,τ+z = Esnn + (gzz + g0z + gz0)J + Ec(2) + 2gnvµBB,

Enn,σ−z ,τ−x = Esnn + (gzz − 4g⊥ − g0z − gz0)J + Ec(2)− gµBB,
Enn,σ+x,τ−x = Esnn + (gzz − 4g⊥ − g0z − gz0)J + Ec(2),

Enn,σ+z ,τ−x = Esnn + (gzz − 4g⊥ − g0z − gz0)J + Ec(2) + gµBB. (7)

Here, Esnn, comprises the energy of the n-th single-particle orbital and the

screened electron-electron Coulomb interaction computed from Eq. (3). The factor,
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J =
∫
dr[ψB

′
ns1t1

(r)]∗[ψB
′

ns2t2
(r)][ψB

′
ns3t3

(r)]∗[ψB
′

ns4t4
(r)] > 0 (for all combinations of ti

corresponding to inter- and intra-valley scattering channels induced by Eq. (4)), captures

specific dot state characteristics, i.e., dot shape, gap, and mode number. The short-range

interaction constants, gij, are a priori unknown and we discuss possible level orderings

for different values of these couplings in Sec. 4. In a finite magnetic field, the two-particle

levels split according to the g-factors in Eq. (7). The valley g-factor, 2gnv , of the two-

particle states computes as the sum of the single-particle g-factors in the two valleys.

For valley polarized states, 2gnv exceeds the single-particle valley and spin g-factors.

Conversely, the g-factors from both valleys cancel for any valley coherent two-particle

state.

The ten possible two-particle states with orbitally antisymmetric (a) wave function

are,

|nm, σ−z, τ−z〉 =d†n↓−d†m↓−|0〉,

|nm, σ+x, τ−z〉 =
1√
2

(d†n↑−d†m↓− + d†n↓−d†m↑−)|0〉,

|nm, σ+z, τ−z〉 =d†n↑−d†m↑−|0〉,

|nm, σ−z, τ+x〉 =
1√
2

(d†n↓+d†m↓− + d†n↓−d†m↓+)|0〉,

|nm, σ+x, τ+x〉 =
1

2
(d†n↑+d†m↓− + d†n↑−d†m↓+ + d†n↓+d†m↑− + d†n↓−d†m↑+)|0〉,

|nm, σ+z, τ+x〉 =
1√
2

(d†n↑+d†m↑− + d†n↑−d†m↑+)|0〉,

|nm, σ−z, τ+z〉 =d†n↓+d†m↓+|0〉,

|nm, σ+x, τ+z〉 =
1√
2

(d†n↑+d†m↓+ + d†n↓+d†m↑+)|0〉,

|nm, σ+z, τ+z〉 =d†n↑+d†m↑+|0〉,

|nm, σ−x, τ−x〉 =
1

2
(d†n↑+d†m↓− − d†n↑−d†m↓+ − d†n↓+d†m↑− + d†n↓−d†m↑+)|0〉. (8)

For brevity we consider the simplest case where the two-particle ground state consists

of exactly two single-particle orbitals n and m (substantial admixing of more than two

orbitals is relevant only at higher energies ‡[27]).

‡ Which particular combination of single-particle orbitals n,m is involved in the formation of the

two-particle ground state depends on the orbital wavefunctions’ intricate distribution in real and

momentum space (a consequence of the non-quadratic, warped bilayer graphene dispersion) determining

the exchange integrals, as well as the strength of the interaction (determined by screening) and the

single-particle orbital level splitting (depending on the dot size). The general form of the dot’s two-

electron ground state is consistent with our previous studies of interacting two-electron states in bilayer

graphene quantum dots.
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The energies of the states in Eq. (8) are,

Enm,σ−z ,τ−z = Eanm − (gnv + gmv )µBB + Ec(2) + 2∆SO − gµBB,
Enm,σ+x,τ−z = Eanm + Ec(2)− (gnv + gmv )µBB,

Enm,σ+z ,τ−z = Eanm − (gnv + gmv )µBB + Ec(2)− 2∆SO + gµBB,

Enm,σ−z ,τ+x = Eanm + Ec(2)− gµBB,
Enm,σ+x,τ+x = Eanm + Ec(2),

Enm,σ+z ,τ+x = Eanm + Ec(2) + gµBB,

Enm,σ−z ,τ+z = Eanm + (gnv + gmv )µBB + Ec(2)− 2∆SO − gµBB,
Enm,σ+x,τ+z = Eanm + (gnv + gmv )µBB + Ec(2),

Enm,σ+z ,τ+z = Eanm + (gnv + gmv )µBB + Ec(2) + 2∆SO + gµBB,

Enm,σ−x,τ−x = Eanm + Ec(2). (9)

Here, Eanm is the energy of the orbitally antisymmetric states of two screened interacting

electrons in single-particle orbitals n and m (akin to the orbitally symmetric state

described above), and (gnv + gmv ) is the valley g-factor of the two-particle multiplet.

Coupling to the leads. The point contacts in the bilayer graphene channel to

the left and right of the quantum dot provide discrete lead modes due to the transverse

confinement. These modes can couple to the quantum dot. Close to pinching off the

lowest of their modes, we can treat the quantum point contacts as tunnel junctions with

tunnelling amplitudes tL (tR) for the left (right) quantum point contact. We describe

these single-channel leads with a Hamiltonian,

Hleads =
∑
l=L,R

∑
k,s,t

εlkc
†
lkstclkst, (10)

where c†lkst creates a lead electron with momentum k, energy εlk, spin s, and valley

quantum number t. The lead-dot tunnelling Hamiltonian is given by,

HT =
∑
l=L,R

∑
n,k,s,t

(
tlnstc

†
lkstdnst + h.c.

)
. (11)

In the following sections, we use this tunnelling Hamiltonian in Eq. (11) to compute

the tunnelling current across the bilayer graphene quantum dot. We treat the

tunnel amplitudes as phenomenological input parameters and demonstrate the resulting

transport characteristics of the dot for different values of tL/R.

3. Tunneling rates and rate equations

For our transport calculations, we consider the high-temperature regime

Γnst � kBT < |g⊥,zzJ| < ∆EN ,N±1,

Γnst = π
∑
l=L,R

νl|tlnst|2, (12)
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where in the last term we compare to the energy difference of dot states with different

particle number and Γnst is the tunnel-coupling induced level broadening with lead

density of states νl. For a level broadening Γnst much smaller than the thermal energy

kBT , we can compute transport perturbatively in the tunnel Hamiltonian[23, 45, 46],

HT , in Eq. (11).

The lowest (first) order in the lead-dot tunnel coupling describes the single-electron

processes involved in sequential tunnelling: an electron tunnels either from the leads to

the dot or from the dot to the leads thereby changing the occupation number of the

dot by one. Expanding to first order in HT and applying Fermi’s golden rule, transition

rates for a one-electron tunnelling, which induces a transition of dot from a single-particle

state, |N ′ = 1 : χ′〉, to a two-particle dot state, |N = 2 : χ〉, read,

W2:χ←1:χ′ =
2π

~
∑
f,i

|〈f |〈2 : χ|HT |1 : χ′〉|i〉|2 ρi δ(Ef,2:χ − Ei,1:χ′)

=
∑
l=L,R

2π

~
|tlnst|2f(E2:χ − E1:χ′ − µl) =

∑
l=L,R

W l
2:χ←1:χ′ . (13)

Here, N indicates the dot particle number and χ identifies the state of the corresponding

multiplet. Hence, a prefix N = 1 implies χ = (n, s, t) and for N = 2, χ indexes the

orbital, spin, and valley combinations from the family of states in Eqs. (6) or (8),

respectively. In Eq. (13), (nst) are the indices of the electron tunnelling into the dot,

forming the two-particle state |2 : χ〉 with the single electron previously on the dot

(the latter having quantum numbers χ′). The initial and final states of the leads

are |i〉 = |iL〉|iR〉 and |f〉 = |fL〉|fR〉, the former weighted by a thermal distribution

ρi. Further, f denotes the Fermi function and µl is the chemical potential of lead l,

which depends on the bias voltage, VB. We consider the case where the dot is biased

symmetrically, µL/R = ±eVB, with respect to the equilibrium chemical potential. The

rates for the reverse transitions, |1 : χ′〉 ← |2 : χ〉, follow from Eq. (13) by replacing

f(E) → 1 − f(E). We provide the explicit rates for each transition in Appendix

Appendix A.
Going to second order in HT describes correlated two-electron cotunnelling: an

electron tunnels from one lead to the other (or the same lead) via the quantum dot,
leaving the occupation number of the dot invariant. Within each particle number sector
(N = 1 or N = 2), the dot’s state may change (inelastic cotunnelling) or remain the
same (elastic cotunnelling). The corresponding cotunnelling rates read,

W1:χ←1:χ′ =
∑
l,l′

W l,l′

1:χ←1:χ′

=
2π

~

∑
l,l′,χ̃

|tlχ′ t
l′
χ
∗|2
∫∫

dεl
′
k dε

l
k′

∣∣∣ 1

Ei,1:χ′ − E2:χ̃ + εl
′
k + i0+

∣∣∣2f(εl′k − µl′ )[1− f(εlk′ − µl)]δ(E1:χ + εlk′ − E1:χ′ − εl
′
k ),

W2:χ←2:χ′ =
∑
l,l′

W l,l′

2:χ←2:χ′

=
2π

~

∑
l,l′,χ̃

|tlχ′ t
l′
χ
∗|2
∫∫

dεl
′
k dε

l
k′

∣∣∣ 1

Ei,2:χ′ − E1:χ̃ − εl
′
k + i0+

∣∣∣2f(εl′k − µl′ )[1− f(εlk′ − µl)]δ(E2:χ + εlk′ − E2:χ′ − εl
′
k ).

(14)

These rates involve the intermediate states of higher or lower dot occupation

number, N ± 1, if they are allowed by spin and valley selection rules. In Eq. (14),
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we take into account transitions via the single-particle ground state multiplet and the

two-particle ground state multiplets of Eq. (6) and (8). Projection onto these single-

particle and two-particle state spaces is valid for quantum dots where all other states

are separated sufficiently in energy to exclude any virtual transitions to them. It is not

straightforward to evaluate the cotunneling rates in Eq. (14) due to the second-order

poles causing the integrals to diverge. These divergences are related to the intermediate

state’s zero width and hence infinite lifetime within this perturbative approach. We

follow the standard regularization procedure to extract the correct cotunneling rates

from Eq. (14) [46, 47, 48, 49, 50]: First, a level width γ ∼ Γnst is introduced as

imaginary parts in the denominators (accounting for the intermediate states’ tunnel-

coupling induced level broadening). These imaginary parts shift the poles away from the

real axis, and the integrals can be carried out. Next, the resulting expression is expanded

in powers of γ. The leading order term is a sequential-tunnelling contribution (reflecting

that, at finite temperature, the final state of any cotunneling-induced transition can also

be reached via two successive single-electron tunnelings). This term is disregarded to

avoid double-counting sequential tunnelling processes. The next-to-leading-order term

in the γ expansion gives the regularized expression for the cotunneling rate, where the

limit γ → 0 can be taken. We provide the regularization calculations and resulting

expressions for the cotunnelling rates WN:χ←N:χ′ in appendix Appendix B.

Given the rates for transitions between different dot states, we write a master

equation describing the dynamics of the probabilities, PN:χ, for the state, |N : χ〉, to be

occupied at a given time,

ṖN:χ =
∑
N ′:χ′

(WN:χ←N ′:χ′PN ′:χ′ −WN ′:χ′←N:χPN:χ), (15)

where the terms with changing particle number, 1 � 2, describe current flow whereas

cotunnelling terms introduce relaxation within the multiplets at fixed particle number.

We solve these rate equations, Eq. (15), in the stationary limit, ṖN:χ = 0, using the

normalization condition
∑
N:χ PN:χ = 1. From the probabilities we compute the total

particle current I = Iseq + Icot, with the sequential tunnel currents flowing from the dot

to lead l,

I lseq =
∑

1:χ,2:χ′

(W l
1:χ←2:χ′)eP2:χ′ − (W l

2:χ′←1:χ)eP1:χ, (16)

and the cotunneling current between lead l′ and l,

I lcot =
∑
N:χ,N:χ′

(W ll′

N:χ′←N:χ −W l′l
N:χ′←N:χ)ePN:χ. (17)

It depends on the tunnelling strength compared to the isolated dot’s level splitting

whether second-order cotunnelling processes contribute significantly to transport. We

define the regime of purely sequential tunnelling for weak dot-lead tunnel coupling, and

the regime of sequential + cotunnelling for stronger dot-lead tunnel coupling, where

second order effects contribute. Numerically, we find that the first regime is realized
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for |tlnst| ∼ ∆EN ,N±1/1000 while reaching the latter regime requires approximately

|tlnst| ∼ ∆EN ,N±1/100.

4. Resolving the two-particle dot states
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Figure 3: The ordering of the dot’s two-particle lowest-state multiplet with symmetric

orbital wave function at zero bias voltage, Eq. (7), depend on the relative magnitude

and sign of the short-range interaction coupling constants, g⊥, g0z, and gz0, and on the

magnetic field.

4.1. Spectroscopy of an orbitally symmetric two-particle ground state

This section considers dots with orbitally symmetric two-particle ground state wave

functions. We discuss the possible level orderings which can result from Eq. (7) and

at zero and finite magnetic field and how to distinguish the spin and valley states in

tunnelling transport.

Possible level orderings of orbitally symmetric two-particle dot states.

We illustrate the various level orderings of the states in Eq. (6) for different signs and

relative magnitudes of the short-range couplings g0z, gz0, and g⊥ in Fig. 3. Generally,

there are three levels at zero magnetic field, being singly, doubly, and three-fold
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degenerate, respectively. These degeneracies are lifted by a finite magnetic field, splitting

different valley and spin states. According to Eq. (7), the coupling constant gzz shifts all

energies equally. The mutual splitting between the two inter-valley coherent states, τ±x,

is proportional to the coupling g⊥, while these states are split from the valley polarized

states, τ±z, proportionally to the sum g0z + gz0.

Tunnelling transitions in the single- and two-particle sector allow identifying the

spin and valley states and determining the short-range couplings by combining the two

following considerations: Firstly, the single- and two-particle states split in a magnetic

field. Transition energies hence depend on the difference in single- and two-particle valley

g-factors. Besides, any single-particle-to-two-particle tunnelling transition is subject to

spin and valley selection rules. Therefore, we can identify the two-particle states that

can be reached, e.g., from the single-particle ground state. With the two-particle levels

being identified, we can relate the level splittings to the short-range interaction couplings

g0z, gz0, and g⊥ as in Fig. 3. Hence, classifying the dot’s two-particle states and their

mutual gaps is a way to quantify bilayer graphene’s microscopic short-range interaction

parameters.

4.1.1. Two-particle states with broken time-inversion symmetry Single-to-two-particle

transitions to the levels in Fig. 3 yield differential conductance features as in Fig. 4.

Here, we consider sequential tunnelling and symmetric coupling to the leads. Differential

conductance maps as the ones in Fig. 4 are cuts at finite bias voltage (we chose VB = 0.45

meV) through the Coulomb diamonds for different values of magnetic field (cf. Fig. 1).

Each allowed single-to-two-particle transition manifests as an increase/decrease in

conductance (red/blue lines) once this transition enters/leaves the bias window. The

differential conductance features at zero magnetic field reflect the splittings of the two-

particle multiplets in Fig. 3. At finite magnetic field, the conductance lines disperse

according to the two-particle and single-particle g-factors. Hence, for similar zero-field

splittings and similar g-factors, the conductance maps can coincide even for distinct

two-particle level orderings.

To facilitate the electron transport through a dot, the bias window must allow

single-particle-to-two-particle transitions between the ground state of the dot with one

and two electrons, respectively. When the two-particle ground state is valley coherent,

the corresponding lines in the differential conductance maps have positive slope in a

magnetic field. While these coherent two-particle states do not disperse with B, the

single-particle ground state, |n, ↓,−〉 is pushed down and the energy required for this

transition increases. Conversely, a K− valley polarized two-particle ground states is

pushed down even faster with B (since 2gnv > gnv ), causing the transitions energy to

decrease. This leads to lines with negative slopes limiting the bias window range in Fig. 4

for these cases. Within the bias window, whether energetically allowed single-particle-to-

two-particle transitions contribute to transport is determined by spin and valley selection

rules. For example, theK+ excited single-particle states can be populated via transitions

to valley coherent two-particle states. However, if there are no such transitions available
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Figure 4: Differential conductance maps for the two-particle multiplets in Fig. 3

for the different possible regimes of short-range interaction constants g⊥, g0z, and

gz0. (sequential tunnelling and symmetric coupling to both leads). The conductance

increases/decreases when a single-particle-to-two-particle transition enters/leaves the

bias window at fixed bias voltage VB = 0.45 mV (red/blue lines). Permissible single-

to-two-particle transitions depend on spin and valley selection rules and whether the

two-particle ground state is spin and valley coherent or polarized. The difference of the

two-particle and single-particle valley g-factors dominates the slope of the lines with

magnetic field. Here, kBT= 0.003 meV.

at equal or lower gate voltage, the K+ single-particle states are depopulated, causing

the corresponding lines to terminate in the differential conductance maps in Fig. 4.

4.1.2. Two-particle states preserving time-inversion invariance In the following

sections 4.1.2, 4.2 and 4.3, we exemplify the quantum dot’s tunnelling characteristics for

one specific level arrangement of the orbitally symmetric two-particle states and study

different regimes of lead couplings as well as the impact of a finite spin-orbit coupling

gap. Numerical values we have estimated previously in one specific dot model[27],

yielded g0z = gz0 = 0, (preserving time-reversal invariance), gzz > 0, g⊥ < 0 (favouring

the spin and valley coherent ground state |nn, σ−x, τ−z〉), and Jgzz � 4|Jg⊥|. For this

choice of short-range couplings, the two-particle triplet is equally spaced at B = 0 (top

left panel of Fig. 5). A finite magnetic field splits the levels according to the spin and

valley configuration (top row of Fig. 5).

The contrasting magnetic field coupling of valley polarized and valley coherent two-
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Figure 5: Transport characteristics of a bilayer graphene quantum dot with an orbitally

symmetric two-particle ground state preserving time-inversion invariance (in which case,

gz0 = g0z = 0, compared to Fig. 4). Top: Single-particle and two-particle dot levels

for different magnetic fields. Bottom left: Differential conductance across the dot in

different tunnelling regimes and symmetric or asymmetric lead coupling (suppressing

coupling to the right lead = source or the left lead = drain, respectively) depending on

a magnetic field, B. For the conductance maps, we fix VB = 0.45 mV and kBT= 0.003

meV. The sequential tunnelling regime is realized for |tlnst| ∼ ∆EN ,N±1/1000 while

significant cotunnelling contributions require approximately |tlnst| ∼ ∆EN ,N±1/100.

Cotunnelling induces relaxation processes within each fixed particle number multiplet

and hence opens additional transport channels compared to purely sequential tunnelling.

The panels on the right consider the potential influence of a finite spin-orbit coupling

gap, ∆SO, possibly smaller (here |∆SO| = 0.02 meV) or larger (here |∆SO| = 0.1 meV)

than the splitting induced by g⊥ and of different sign. The labels A○, B○, C○, D○ indicate

transitions which we discuss in detail in the main text.

particle states leads to level crossings at finite B. For zero and small magnetic field the

state |nn, σ−x, τ+x〉 is the two-particle ground state. This spin- and valley-coherent
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Figure 6: Probabilities for the single-particle and orbitally symmetric two-particle

states to be occupied for fixed magnetic field cuts along the gate voltage axis through

the symmetrically coupled differential conductance maps with zero spin-orbit coupling

in Fig. 5 (leftmost differential conductance maps) in the sequential tunnelling regime.

state does not couple to the magnetic field. At sufficiently large B, the valley polarized

state, |nn, σ−x, τ−z〉, being pushed down by the magnetic field, becomes the two-particle

ground state. Being able to identify the differential conductance characteristics in Fig. 5

with the possible single-particle-to-two-particle transitions allows extracting information

about a symmetric two-particle dot state.

In the regime of sequential tunnelling, transport is possible, once the gate voltage

sufficed to induce the ground state-to-ground state transition. For zero or weak magnetic

field, this is the transition,

A○ : |n, ↓,−〉 → |nn, σ−x, τ+x〉. (18)

The involved two-particle state occupies all four different spin and valley states. Hence,

when one electron leaves the dot in the subsequent tunnelling process, the remaining

electron can be in any of the single-particle states. Consequently, with increasing gate

voltage, all single-particle-to-two-particle transitions become possible and manifest in

the differential conductance maps within the bias window. At higher magnetic fields,

the ground state-to-ground state transition changes to,

B○ : |n, ↓,−〉 → |nn, σ−x, τ−z〉, (19)

where the valley K− polarized two-particle state entails that after the next tunnelling

process, the remaining electron occupies one of the K− single-particle states. As
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a consequence, transitions from the K+ single-particle states do not contribute to

conductance in this regime if there is no transition to a valley-coherent two-particle

state lower in gate voltage. The corresponding lines C○ terminate in the differential

conductance maps in Fig. 5. We note that coupling stronger to the source (left lead in our

convention) and suppressing the drain coupling (right lead) suppresses transport features

from the transitions involving valley polarized two-particle states. In comparison,

stronger coupling to the drain decreases the amplitudes of all transport channels.A finite

spin-orbit coupling gap, ∆SO, further splits the states and corresponding transitions

depending on its sign and magnitude relative to the short-range splittings. When

the spin-orbit gap overcomes the short-range couplings, |∆SO| > 4|g⊥J|, transitions

may occur in a different order, exemplified by the transition D○ in Fig. 5. We depict

representative differential conductance maps in the regime of sequential tunnelling and

symmetric lead-coupling in the bottom right panels of Fig. 5.

Cotunnelling leads to relaxation processes within the multiplets of each seperate

particle number sector and can hence make additional transport channels available. In

the coupling regime where cotunnelling processes play a significant role, the transitions

from the K+ single-particle states to the τ−x two-particle states ( C○ in Fig. 5) reappear

compared to the regime of purely sequential tunnelling as a result of population of

these single-particle states via the |n, ↓,−〉 → |n, ↑,+〉, |n, ↓,+〉 cotunnelling transitions

(cotunnelling assisted sequential tunnelling [23]). Besides, we observe features outside

the Coulomb diamond, where cotunnelling events populate states that do not yet fall

into the bias window for a certain gate voltage value. Increasing magnetic field and

any asymmetry in the lead couplings suppress cotunneling-induced transport features.

The former is due to energy differences between states growing with B, suppressing

inelastic events. The latter suppression comes from the fact that at finite bias, the

relevant contributions to cotunnelling scattering rates involve tunnelling at both leads

(cf. Eq. (14)).

The occupation probabilities, PN:χ shown in Fig. 6 for different values of magnetic

field support the conclusions above about states contributing to transport in different

regimes. Allowed transitions manifest as steps where state occupation numbers change.

Cotunnelling processes alter these steps by introducing alternative transitions between

dot states (see appendix Appendix C).

4.2. Spectroscopy of an orbitally antisymmetric two-particle ground state

Level ordering of orbitally antisymmetric two-particle dot states.

The ten-fold degenerate spin and valley two-particle states’ multiplet with orbitally

antisymmetric wave function, Eq. (8), splits in a magnetic field according to the states’

spin and valley g-factors as in Fig. 7. Hence, since gnv � g, identifying the allowed single-

particle-to-two-particle transitions for tunnelling transport at finite B yields information

about the orbitally antisymmetric two-particle dot state. For non-zero magnetic field,

|nm, σ−z, τ−z〉 is the two-particle ground state (cf. Fig. 8 top row). By purely sequential
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Figure 7: Two-particle dot states with antisymmetric orbital wave function are

degenerate at zero magnetic field and split linearly with B, cf. Eq. (9).

tunnelling, the following transitions are accessible,

E○ : |n, ↓,−〉, |n, ↑,−〉 → |nm, σ−z, τ−z〉, |nm, σ+x, τ−z〉, |nm, σ+z, τ−z〉,
G○ : |n, ↓,−〉, |n ↑ −〉

→ |nm, σ−z, τ+x〉, |nm, σ+x, τ+x〉, |nm, σ+z, τ+x〉, |nm, σ−x, τ−x〉,
H○ : |n, ↓,+〉, |n, ↑,+〉|nm, σ−z, τ+z〉, |nm, σ+x, τ+z〉, |nm, σ+z, τ+z〉. (20)

Each transition in Eq. (20) contributes a line to the differential conductance maps in

Fig. 8, the slopes of which are given by the g-factor difference of the involved single-

particle and two-particle states. The first transition listed in Eq. (20) is the ground

state-to ground state transition. The single-particle excited state |n, ↑,−〉 is populated

from the spin coherent two-particle state |nm, σ+x, τ−z〉 via the tunnelling sequence

|n, ↓,−〉 → |nm, σ+x, τ−z〉 → |n, ↑,−〉. The transitions

F○ : |n, ↓,+〉, |n, ↑,+〉
→ |nm, σ−z, τ+x〉, |nm, σ+x, τ+x〉, |nm, σ+z, τ+x〉, |nm, σ−x, τ−x〉, (21)

are absent in the sequential tunnelling differential conductance maps as the K+

single-particle states are not populated at the values of gate voltage needed for

these transitions. Electrons cannot reach the K+ single-particle states because all

transitions lower in gate voltage, including the ground state-to-ground state transition

|n, ↓,−〉 → |nm, σ−z, τ−z〉, occur between valley K− polarized states. Cotunnelling

transitions, when relevant, enable the transitions in Eq. (21), by populating the K+

single-particle states via inelastic cotunnelling |n, ↓,−〉 → |n, ↑,+〉, |n, ↓,+〉. This

cotunnelling-induced repopulation makes sequential tunnelling from the K+ single-

particle states possible leading to weak features in the differential conductance maps

at the gate voltages required for the transitions in Eq. (21) (bottom row of Fig. 8).

Additionally, we observe cotunnelling-induced transport features outside the Coulomb
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Figure 8: Level orderings and transport characteristics of a bilayer graphene quantum

dot in which two electrons form an orbitally antisymmetric wave function (parameters

for the transport calculations as in Fig. 5). As opposed to an orbitally symmetric dot

state (Fig. 5), there are no zero-field splittings and no inversion of the two-particle

multiplet’s ordering, cf. Fig. 7. Note that here, for visibility we chose ∆SO = 0, a finite

spin-orbit gap yields two split copies of fans in the differential conductance maps shifted

by ±∆SO as a consequence of the two transitions between spin-orbit split single- and

two-particle multiplets allowed by spin and valley selection rules. The labels E○, F○, G○,

H○ mark the transitions in Eqs. (20) and (21).
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Figure 9: Occupation probabilities for the single-particle and orbitally antisymmetric

two-particle states for cuts at B = 0.5 T along the gate voltage axis through

the symmetrically coupled differential conductance maps in Fig. 8 in the sequential

tunnelling regime.

diamond similar to the case of the orbitally symmetric multiplet, Sec. 4.1. Similarly,

all cotunnelling features are suppressed by magnetic field and asymmetric coupling to

the leads. Figure 9 demonstrates the cotunnelling-mediated redistribution of electrons

among the states by comparing the occupation probabilities in the purely sequential

tunnelling and sequential tunnelling + cotunnelling regimes. We note that a finite

spin-orbit coupling gap ∆SO leads to two split copies of fanning lines in the differential

conductance maps as those in Fig. 8.

4.3. Interplay of ground- and excited two-particle state multiplets

The dot’s two-particle ground and first excited state can be sufficiently close in energy

for both to contribute transport signatures within the bias window[27]. We consider

the cases in which the two-particle ground state is either orbitally symmetric or

antisymmetric, while the first excited state’s orbital wave function is of the opposite

symmetry. These scenarios yield distinct cases compared to the isolated two-particle

ground states discussed in the previous sections. The ground state-to-ground state

transitions originating from the two-particle states of opposite symmetry can enable

different transitions in the excited state multiplet compared to the isolated case. Also,

we can clearly distinguish the orbitally symmetric and antisymmetric two-particle states

by their zero-field splittings or absence thereof. Hence, investigating both simultaneously

reveals changes in the orbital composition when comparing the ground and excited two-

particle states.

Figure 10a) depicts the differential conductance across a dot with an orbitally
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Figure 10: Differential conductance maps for tunnelling transport through a bilayer

graphene quantum dot in which the two-particle ground- and first excited state are

close enough in energy for both to be reached within the bias window are not merely

superpositions of the two maps in Figs. 5 and 8 for the two states due to interplay of

the different multiplet states’ occupation numbers. a) Orbitally symmetric two-particle

ground state and antisymmetric excited state, b) Orbitally antisymmetric two-particle

ground state and symmetric excited state. Parameters as in Fig. 5.
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symmetric two-particle ground state and orbitally antisymmetric first excited state.

Transitions to both two-particle multiplets manifest in the differential conductance

maps. Notably, tunnelling channels involving valley-coherent two-particle states in the

orbitally symmetric two-particle manifold lead to a population of the K+ valley at

sufficiently high gate voltages. These populations enable transitions to all the orbitally

antisymmetric two-particle states by purely sequential tunnelling. The differential

conductance lines originating from either multiplet in Fig. 10a) have distinct slopes

with B due to the different orbital composition of the symmetric and antisymmetric

orbital two-particle wave functions yielding different valley g-factors. Since the orbital

composition is unequal also for ground and excited states, the valley g-factors differ for

the orbitally antisymmetric states in Fig. 10a) and Fig. 8.

Similar statements apply to the case of an orbitally antisymmetric two-particle

ground state and orbitally symmetric first excited state, Fig. 10b). Also here, an

orbitally symmetric state occupies different orbitals, n, when being an excited state

compared to a ground state, leading to different valley g-factors and different magnetic

field splittings compared to Fig. 5.

5. Discussion and Conclusion

In summary, we have analysed quantum tunnelling across an electrostatically induced

bilayer graphene quantum dot as a spectroscopic tool to resolve the dot’s single and

highly degenerate two-electron multiplets. Here, we summarise how to use tunnelling

transport maps as a function of gate voltage and magnetic field to distinguish the

interaction regimes specified in Fig. 2 and identify two-particle states with different

orbital, spin, and valley compositions:

• The number and the splittings of peaks in the differential conductance

at zero magnetic field tell about the orbital symmetry of the two-particle

wave function. Neglecting spin-orbit splitting, an orbitally antisymmetric two-

particle state (as for dots with weak screening and strong long-range Coulomb

interaction, cf. Fig. 2) hosts a tenfold degenerate multiplet of spin and valley states

at B = 0 (cf. Fig. 7), manifesting in one single transition. Conversely, the six

possible spin and valley states of an orbitally symmetric two-particle state (which

forms for strongly screened long-range interactions) are slightly split by short-range

lattice-scale interactions (cf. Fig. 3). Such splittings manifest in multiple possible

transitions and corresponding tunnelling transport features within the bias window

at zero magnetic field (Figs. 4, 5, and 8). While weak Kane-Mele spin-orbit splitting

can induce additional level splittings, c.f. Eqs. (1) and (8), the overall statement

remains that orbitally symmetric and antisymmetric two-particle states can be

distinguished by the number of allowed transitions which manifest in tunnelling

transport.

• The various spin and valley states couple differently to a perpendicular

magnetic field. Hence a magnetic field allows us to identify them and
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infer their g-factors. Spin- and valley-polarized states split with B, while

spin- and valley-coherent two-particle states do not couple to a magnetic field.

In combination with spin and valley selection rules, this contrasting magnetic

field dependence helps identify the dispersing lines in the magnetic field-dependent

differential conductance maps with the corresponding single-particle-to-two-particle

transitions. The slope of these lines is proportional to the difference of the

single-particle and two-particle states’ g-factors. The orbital magnetic moment

induced valley g-factor being much larger than the free particle spin g-factor allows

distinguishing spin and valley splittings.

• If multiple two-particle states can be reached within the bias window,

their distinct valley g-factors will help identify them. The valley g-factor

depends on the orbital wave function and its distribution in momentum space.

Hence transitions from the same single-particle state to distinct two-particle states

show as lines with different slopes in the differential conductance maps, as in Fig. 10.

Parts of our results helped to explain tunnelling transport experiments in bilayer

graphene quantum dots in the one- and two-particle sectors with orbitally symmetric

two-particle ground states [20]. All other regimes described in this work yet remain to

be experimentally realized and investigated. The great tunability of bilayer graphene

quantum dots, e.g., the confinement shape, width, depth and the gap (controlling the

orbital single- and two-particle splittings), by virtue of the gates, is a great advantage

allowing to tune between these different regimes. Conversely, tunnelling through two-

particle multiplets split by the short-range interactions allows to draw conclusions

about the short-range couplings, hence rendering tunnelling spectroscopy in the single-

and two-particle sector a tool to study these microscopic material parameters [20].

Identifying and controlling few-electron states is a crucial step towards using their

degrees of freedom for quantum information storage and processing in future devices.
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Appendix A. Sequential tunnelling rates

The sequential tunnelling rates, W l
2:χ←1:χ′ , in Eq. (13) for transitions from single-particle

dot levels to the orbitally symmetric two-particle states, Eq. (6), are given by,

W l
nn,σ−x,τ+x←n↓− =

2π

~
|tln↑+|2f(Enn,σ−x,τ+x − En↓− − µl),

W l
nn,σ−x,τ+x←n↑− =

2π

~
|tln↓+|2f(Enn,σ−x,τ+x − En↑− − µl),

W l
nn,σ−x,τ+x←n↓+ =

2π

~
|tln↑−|2f(Enn,σ−x,τ+x − En↓+ − µl),

W l
nn,σ−x,τ+x←n↑+ =

2π

~
|tln↓−|2f(Enn,σ−x,τ+x − En↑+ − µl),

W l
nn,σ−x,τ−z←n↓− =

2π

~
|tln↑−|2f(Enn,σ−x,τ−z − En↓− − µl),

W l
nn,σ−x,τ−z←n↑− =

2π

~
|tln↓−|2f(Enn,σ−x,τ−z − En↑− − µl),

W l
nn,σ−x,τ−z←n↓+ = W l

nn,σ−x,τ−z←n↑+ = W l
nn,σ−x,τ+z←n↓− = W l

nn,σ−x,τ+z←n↑− = 0,

W l
nn,σ−x,τ+z←n↓+ =

2π

~
|tln↑+|2f(Enn,σ−x,τ+z − En↓+ − µl),

W l
nn,σ−x,τ+z←n↑+ =

2π

~
|tln↓+|2f(Enn,σ−x,τ+z − En↑+ − µl),

W l
nn,σ−z ,τ−x←n↓− =

2π

~
|tln↓+|2f(Enn,σ−z ,τ−x − En↓− − µl),

W l
nn,σ−z ,τ−x←n↑− = 0,

W l
nn,σ−z ,τ−x←n↓+ =

2π

~
|tln↓−|2f(Enn,σ−z ,τ−x − En↓+ − µl),

W l
nn,σ−z ,τ−x←n↑+ = W l

nn,σ+z ,τ−x←n↓− = 0,

W l
nn,σ+z ,τ−x←n↑− =

2π

~
|tln↑+|2f(Enn,σ+z ,τ−x − En↑− − µl),

W l
nn,σ+z ,τ−x←n↓+ = 0,

W l
nn,σ+z ,τ−x←n↑+ =

2π

~
|tln↑−|2f(Enn,σ+z ,τ−x − En↑+ − µl),

W l
nn,σ+x,τ−x←n↓− =

2π

~
|tln↑+|2f(Enn,σ+x,τ−x − En↓− − µl),

W l
nn,σ+x,τ−x←n↑− =

2π

~
|tln↓+|2f(Enn,σ+x,τ−x − En↑− − µl),

W l
nn,σ+x,τ−x←n↓+ =

2π

~
|tln↑−|2f(Enn,σ+x,τ−x − En↓+ − µl),

W l
nn,σ+x,τ−x←n↑+ =

2π

~
|tln↓−|2f(Enn,σ+x,τ−x − En↑+ − µl), (A.1)

in terms of the tunnelling amplitudes, tlξ, and chemical potential, µl, of the left

(l = L) and right (l = R) lead. The sequential tunnelling rates involving the orbitally
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antisymmetric two-particle states, Eq. (6), read,

W l
nm,σ−z ,τ−z←n↓− =

2π

~
|tln↓−|2f(Enm,σ−z ,τ−z − En↓− − µl)

W l
nm,σ−z ,τ−z←n↑− = W l

nm,σ−z ,τ−z←n↓+ = W l
nm,σ−z ,τ−z←n↑+ = 0

W l
nm,σ+x,τ−z←n↓− =

2π

~
|tln↑−|2f(Enm,σ+x,τ−z − En↓− − µl)

W l
nm,σ+x,τ−z←n↑− =

2π

~
|tln↓−|2f(Enm,σ+x,τ−z − En↑− − µl)

W l
nm,σ+x,τ−z←n↓+ = W l

nm,σ+x,τ−z←n↑+ = W l
nm,σ+z ,τ−z←n↓− = 0

W l
nm,σ+z ,τ−z←n↑− =

2π

~
|tln↑−|2f(Enm,σ+z ,τ−z − En↑− − µl)

W l
nm,σ+z ,τ−z←n↓+ = W l

nm,σ+z ,τ−z←|n↑+ = 0

W l
nm,σ−z ,τ+x←n↓− =

2π

~
|tln↓+|2f(Enm,σ−z ,τ+x − En↓− − µl)

W l
nm,σ−z ,τ+x←n↑− = 0

W l
nm,σ−z ,τ+x←n↓+ =

2π

~
|tln↓−|2f(Enm,σ−z ,τ+x − En↓+ − µl)

W l
nm,σ−z ,τ+x←n↑+ = 0

W l
nm,σ+x,τ−z←n↓− =

2π

~
|tln↑+|2f(Enm,σ+x,τ−z − En↓− − µl)

W l
nm,σ+x,τ−z←n↑− =

2π

~
|tln↓+|2f(Enm,σ+x,τ−z − En↑− − µl)

W l
nm,σ+x,τ−z←n↓+ =

2π

~
|tln↑−|2f(Enm,σ+x,τ−z − En↓+ − µl)

W l
nm,σ+x,τ−z←n↑+ =

2π

~
|tln↓−|2f(Enm,σ+x,τ−z − En↑+ − µl)

W l
nm,σ+z ,τ−z←n↓− = 0

W l
nm,σ+z ,τ−z←n↑− =

2π

~
|tln↑+|2f(Enm,σ+z ,τ−z − En↑− − µl)

W l
nm,σ+z ,τ−z←n↓+ = 0

W l
nm,σ+z ,τ−z←n↑+ =

2π

~
|tln↑−|2f(Enm,σ+z ,τ−z − En↑+ − µl)

W l
nm,σ−x,τ−x←n↓− =

2π

~
|tln↑+|2f(Enm,σ−x,τ−x − En↓− − µl)

W l
nm,σ−x,τ−x←n↑− =

2π

~
|tln↓+|2f(Enm,σ−x,τ−x − En↑− − µl)

W l
nm,σ−x,τ−x←n↓+ =

2π

~
|tln↑−|2f(Enm,σ−x,τ−x − En↓+ − µl)

W l
nm,σ−x,τ−x←n↑+ =

2π

~
|tln↓−|2f(Enm,σ−x,τ−x − En↑+ − µl)

W l
nm,σ−z ,τ+z←n↓− = W l

nm,σ−z ,τ+z←n↑− = 0

W l
nm,σ−z ,τ+z←n↓+ =

2π

~
|tln↓+|2f(Enm,σ−z ,τ+z − En↓+ − µl)

W l
nm,σ−z ,τ+z←n↑+ = W l

nm,σ+x,τ+z←n↓− = W l
nm,σ+x,τ+z←n↑− = 0

W l
nm,σ+x,τ+z←n↓+ =

2π

~
|tln↑+|2f(Enm,σ+x,τ+z − En↓+ − µl)

W l
nm,σ+x,τ+z←n↑+ =

2π

~
|tln↓+|2f(Enm,σ+x,τ+z − En↑+ − µl)

W l
nm,σ+z ,τ+z←n↓− = W l

nm,σ+z ,τ+z←n↑− = W l
nm,σ+z ,τ+z←n↓+ = 0

W l
nm,σ+z ,τ+z←n↑+ =

2π

~
|tln↑+|2f(Enm,σ+z ,τ+z − En↑+ − µl). (A.2)
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Appendix B. Cotunnelling rates

By the regularization scheme described in the main text, the cotunnelling rates, Eq. (14),
evaluate to,

W1:χ←1:χ′ =
∑
l,l′

W l,l′

1:χ←1:χ′

=
2π

~

∑
l,l′,χ̃

|tlχ′ t
l′
χ
∗|2
∫∫

dεl
′
k dε

l
k′

∣∣∣ 1

Ei,1:χ′ − E2:χ̃ + εl
′
k + iγ

∣∣∣2f(εl′k − µl′ )[1− f(εlk′ − µl)]δ(E1:χ + εlk′ − E1:χ′ − εl
′
k )

=
2π

~

∑
l,l′,χ̃

|tlχ′ t
l′
χ
∗|2J

(
µl

′
, µl + E1:χ − E1:χ′ ,−E1:χ′ + E2:χ̃

)
, (B.1)

W2:χ←2:χ′ =
∑
l,l′

W l,l′

2:χ←2:χ′

=
2π

~

∑
l,l′,χ̃

|tlχ′ t
l′
χ
∗|2
∫∫

dεl
′
k dε

l
k′

∣∣∣ 1

Ei,2:χ′ − E1:χ̃ − εlk′ + iγ

∣∣∣2f(εl′k − µl′ )[1− f(εlk′ − µl)]δ(E2:χ + εlk′ − E2:χ′ − εl
′
k )

=
2π

~

∑
l,l′,χ̃

|tlχ′ t
l′
χ
∗|2J

(
µl

′
, µl + E2:χ − E2:χ′ ,−E1:χ̃ + E2:χ

)
, (B.2)

exploiting the relation

J(µ1, µ2, E) = lim
γ→0

∫
dεf(ε− µ1)

[
1− f(ε− µ2)

] 1

(ε− E)2 + γ2
−O(

1

γ
)

=
1

2πkBT
nB(µ2 − µ1)Im

[
ψ′(

1

2
+ i

µ2 − E
2πkBT

)− ψ′(1

2
+ i

µ1 − E
2πkBT

)
]
, (B.3)

in terms of the Bose function nB and the polygamma function ψ.

Appendix C. Occupation probabilities

Similar to Figs. 6 and 9 in the main text, here we discuss how the occupation probabilities

of the single-particle and the orbitally symmetric or the orbitally antisymmetric two-

particle states change when varying the gate voltage at fixed values of the bias voltage

and the magnetic field. Figures C1 and C2 compare the occupation probabilities of

the dot states for sequential tunnelling to the regime of sequential + cotunnelling for

the two different two-particle multiplets. We observe how the additional inter-multiplet

transitions induced by cotunnelling processes alter the states’ occupations and enable

different tunnelling sequences compared to purely sequential tunnelling.
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Figure C1: Probabilities for the single-particle and orbitally symmetric two-particle

states to be occupied for fixed magnetic field cuts along the gate voltage axis through

the symmetrically coupled differential conductance maps with zero spin-orbit coupling

in Fig. 5 (leftmost differential conductance maps).
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Figure C2: Probabilities for the single-particle and orbitally antisymmetric two-particle

states to be occupied cuts at B = 0.5 T along the gate voltage axis through the

symmetrically coupled differential conductance maps in Fig. 8.
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[20] Samuel Möller et al. “Probing Two-Electron Multiplets in Bilayer Graphene

Quantum Dots”. In: arXiv:2106.08405 [cond-mat] (June 2021). arXiv: 2106 .

08405 [cond-mat].

[21] N. E. Kaputkina and Yu. E. Lozovik. ““Horizontal” and “Vertical” Quantum-Dot

Molecules”. In: Physics of the Solid State 40.11 (Nov. 1998), pp. 1929–1934. issn:

1090-6460. doi: 10.1134/1.1130689.
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