
Integrating Information Flow Analysis in
Unifying Theories of Programming

Chunyan Mu �

Department of Computing and Games

Teesside University, UK

Email: c.mu@tees.ac.uk

Guoqiang Li �

School of Software

Shanghai Jiao Tong University, China

Email: li.g@sjtu.edu.cn

Abstract—This paper presents a formal approach for modelling
and reasoning about information flow control in software sys-
tems under Hoare and He’s Unifying Theories of Programming
(UTP). We investigate the problem of integrating information
flow control into system design in a unified semantic setting.
Our approach can therefore treat information flow analysis
and control in various families of specification languages and
programming paradigms in a more general way. In addition,
we formalise the link between classes of predicates as a paired
function which maps set of the predicates from one class into set
of the predicates from the other with a concern of flow security
preservation. The proposed flow-sensitive combined theories of
multiple level classes of predicates can be applied to ensure flow
security in different paradigms under stepwise development.

Keywords-information flow, language-based security, formal
method, UTP, refinement

I. INTRODUCTION

Traditionally, computer security has been largely enforced

at the level of the operating system via access control policies,

which are designed to restrict access to information, but

cannot regulate information propagation once the information

is accessed. Information flow control is required to prevent

information leakage and violations during user program ex-

ecution, and to defend against attacks from the software ap-

plication level. Software applications are typically specified in

programming languages, so it is natural to express information

flow security policies and enforcement mechanisms at the

programming language level, too.

There are a large number of programming languages, which

can be classified in terms of the paradigms they support,

such as imperative, object-oriented and real-time. Unification

of theories study the relations and variations among the

paradigms. Specifically, observations, denoted by the alphabet

of the theory, are used to describe how the primitive concepts

of the theory relate to the real world; symbols, denoted by the

signature of the theory through a set of operators and atomic

components, are used to combine the primitive statements

of the theory into more complex descriptions of products;

finally, in order to describe the results of a theory, laws,

described as a set of healthiness conditions, are specified to

provide mathematical support for the design of programs and

prediction of the execution results. Theories are then unified

by the sharing elements of their alphabet, signature and laws.

In general, the unifying theories of programming (UTP) [1]

provide a modelling framework for different programming

paradigms. The uniform underlying modelling framework al-

lows the comparison and combination of constructs, notations

and techniques from different theories. Fundamentally, the

semantics of UTP theories is denotational, with algebraic (re-

finement) laws being proved based on the denotational model.

Refinement is used as the primary verification technique, and

laws enable the application of complex refinement strategies.

The UTP studies the hierarchy structures of such theories

and their relationships to provide a foundation for analy-

sis of semantic features of programming languages, towards

their combination and unification. Such a theory explores the

underlying principle and combines theories of one or more

programming languages at different concretisation levels and

provides a deeper understanding in a more general setting.

The notion of secure information flow specifies the security

requirements of the system such that secret information does

not influence publicly observable information. An ideal flow

policy called Non-interference (NI) [2] is a guarantee that

no information about the sensitive inputs can be obtained by

observing a program’s public outputs, for any choice of its

public inputs. This paper aims to treat information flow anal-

ysis of programming languages in the UTP setting. The main

contribution of this work is two-fold. First, we have built the

framework for reasoning about information flow in the UTP

and integrated encoding flow policies into the UTP. Second,

we have constructed a flow-security-preserving connection

between different levels of predicate classes accounting for

the ordering of flow-sensitive predicates.

Integrating flow policies into system design in the UTP

setting allows us: to provide a justification of flow control

mechanisms in programming languages; and to investigate

combined theories of multiple levels of languages for the

purpose of secure flow analysis, so that it can be applied to a

family of specification languages and programming paradigms.

Specifically, we can integrate the control flow of security

properties into a formal stepwise development procedure: con-

structing flow-secure abstract specification which is enforced

by the flow-healthy semantic rules, then performing a series

of flow-security-preserving stages with increasing strength

conditions.

II. PRELIMINARIES

This section presents preliminary material of the UTP in

Section II-A, and reviews approaches to static information flow

analysis, particularly typing systems, in Section II-B.

A. Unifying Theories of Programming

Unifying Theories of Programming [1] is a mathematical

framework for describing and unifying semantic descriptions

of programming languages and modelling notations within the

same descriptive environment of the alphabetised relational

calculus. A UTP theory consists of an alphabet of variable

names, a signature of language constructs (syntax), and a

set of constraints called healthiness conditions. Relations are

encoded by alphabetised predicates that contain additional

information about the relation’s alphabet. Predicates are used

to describe the observable behaviour of the executions of the

program, and therefore give a formal meaning to it. In general,

predicates are also used to specify the requirements to describe

the desired behaviours of the system.
1) Alphabet and observable behaviours: The alphabet of

each theory contains variables relevant to the description of

its programs and paradigm. An alphabet A is a collection

of names referring to variables whose values are relevant to

characterise system behaviour within a given paradigm. An

observation is an interpretation or a state of a program. An

observation of an execution of a particular program will give

both the values observed before and after. Particularly, undec-

orated variables are used to record the initial value, and dashed

variables are used to store intermediate or final observations.

For instance, (x = 6 ∧ x′ = 3 ∧ y = 3 ∧ y′ = 3) is an

observation of a particular run of the program x := x− y. The

underlying UTP theory selects the appropriate and relevant

subset of variables to represent intended behaviours.

Specifically, one can view the alphabet as a collection

of information objects. Information flows among the objects

during the execution of a program. Observable behaviours thus

present the flows and can cause information leakage in terms

of a given flow policy.

2) Signature and predicates: UTP theories are charac-

terised by subsets of predicates that describe the possible

observations that can be made regarding program behaviour.

The signature of a theory captures the language syntax. The

meaning of every program is given as a predicate restricted to

the selected alphabet. Those predicate sets can be specified

by healthiness conditions, and interpreted independently as

a separate closed theory. Healthiness conditions formalise

constraints on the semantic model. Only predicates that satisfy

the healthiness conditions of a theory are considered as valid

models of computations within that theory. It is generally

acknowledged that we can integrate the flow policy into

the healthiness conditions of a theory to ensure the model

behaviours being both secure and healthy.
3) Linking theories: A theory of programming is developed

through a series of Refinement is a central concern of the UTP.

A program P is refined by a program Q, written as P ⊑ Q, iff

Q ⇒ P for all possible values of the variables in the alphabet.

A set of theories with the refining ordering can thus form a

hierarchy structure. The hierarchy structure of a set of theories

and their relationships provides a foundational for analysis of

semantic features of programming languages, towards their

combination and unification. The set of predicates defined in

theory at each level can be viewed as a subset of those of the

previous theory at an upper level. A family of such related

sub-theories at different levels of the structure are linked up.

Specifically, the link between theories at different levels is

defined as a function which maps all predicates from one

theory into a subset of the predicates from the other. Galois

connection is widely used for justification within UTP theories

as a means to enable the description of formal links between

a variety of paradigms.

In general, unifying theories can be used to formalise and

analyse flows in programming languages and to provide a

justification for a variety of theories. The most fundamental

problem investigated in this paper is a framework of the unify-

ing theory of programming languages and the corresponding

linking theories with a specific concern of information flow

analysis and control.

B. Static information flow analysis

Information flow security is concerned with how secure

information is allowed to flow through a computer system.

The flow is considered secure if it accepts a specified policy.

A program is considered secure if all the flows in the program

satisfy the policy. Information flow policies [2], [3] are end-

to-end security policies, which provide more precise control

of information propagation than access control models.

The security policies can be categorised into two core prin-

ciples: confidentiality and integrity. This paper concentrates on

confidentiality problems. The confidentiality policies require

that secret information does not influence publicly observable

information. Such policies constrain who can read the data and

where the secret data will flow to in the future: information

may only flow up the confidentiality lattice. The goal of

confidentiality policies is to ensure that secret data does not

influence public data. An ideal confidentiality property called

non-interference (NI) [2] is a guarantee that no information

about secret inputs can be obtained by observing a program’s

public outputs, for any choice of its public inputs. Intuitively,

the NI policy requires that low security users should not be

aware of the activity of high security users and thus not be

able to deduce any information about their behaviours.

Specifically, the data manipulated by a program can be

typed with security levels [4], [5], which naturally assume the

structure of a partially-ordered set as a lattice under certain

conditions. Security type systems have been substantially

used to formulate the analysis of secure information flow in

programs. Sensitive information was stored in programming

variables, the powerset of program variables thus forms the

universal lattice in terms of the ordering of their security

levels. The flow-sensitive types system was defined by a

family of inference systems which is forced to satisfy a

simple non-interference property. To justify the flow-sensitive

typing systems and to preserve the flow security under related

paradigms, a theory is required to do so.

III. PREDICATE CALCULUS WITH FLOW CONTROL

This section investigates the problem of formalising and

integrating information flow behaviours and policies into the

predicate calculus.

A. Observations and alphabet with security types

For our purpose of constructing a UTP theory for integrating

secure information flow control, we need to record both

the security levels and values of program variables in the

observation of the program. We assign each variable in the

alphabet a security type, the set of the variables therefore forms

a complete lattice Lτ = (Lτ ,≤τ) induced by their security

types, where Lτ is a set of security levels, ≤τ defines the

partial ordering of the security levels. We therefore need four

names for each variable x in the alphabet: the initial and final

values of x will be recorded under name x itself and the dashed

name x′ respectively, the initial and final security levels of x

will be recorded under name xτ and x′τ respectively. Without

loss of generality, we assume the security level of an undefined

variable is ⊥ (system low). Given an expression e (including

boolean expression), τ(e) =
⊔

x∈fv(e) τ(x) denotes the security

level of e, which is the upper bound of the security levels of

the free variables in e. An observation of a single completed

execution of a program will therefore give both the values of

program variables and the security levels observed, before and

after.

In general, a predicate P can be viewed as a set of obser-

vations, we write a flow sensitive observation of (a particular

run of) P, denoted by ω , as:

ω =
∧

x∈inαP

(x = v∧ x′ = v′∧ xτ = t ∧ x′τ = t ′) ∈ P,

where v,v′ ∈ N, t, t ′ ∈ Lτ .

Example 1: For instance, assume we have two variables x

and y, and Lτ = ({H,L},≤τ) (L ≤τ H), and τ(x) = L, τ(y) =
H, then:

ω1 = x = 6∧ x′ = 4∧ xτ = L∧ x′τ = H ∧

y = 2∧ y′ = 2∧ yτ = H ∧ y′τ = H

ω2 = x = 6∧ x′ = 3∧ xτ = L∧ x′τ = H ∧

y = 3∧ y′ = 3∧ yτ = H ∧ y′τ = H

can be two observations of two particular runs of the program

x := x−y. Intuitively, the assignment operation causes sensitive

information stored in y to leak to the low security variable x so

that the security level of x raises up to H after the execution.

�
We consider projections of the observations for the purpose

of flow analysis. For instance, consider t ∈ Lτ , the t-projection

of an observation can be considered as: the conjunction of

the valuation of variables whose undashed security level is

≤ t remains, and all of the valuation of variables whose

undashed security level > t have been removed from the

original observation. For t ∈ Lτ , we say two observations are t-

equivalent if and only if: the dashed part of their t-projections

are equal to each other only if the undashed part of their t-

projections are equal to each other.

Definition 1 (t-projection of an observation): Given a

predicate P, and a security level t ∈ Lτ , the t-projections of

an observation ω ∈ P is given as:

ω ↾t=
∧

x∈inαP∧τ(x)≤t

(x = v∧ x′ = v′)

where v,v′ ∈ N denote the undashed and dashed valuation of

x respectively. In addition, we use ω(x) (ω(x′)) to denote the

undashed (dashed) valuation part of an observation, i.e.,

ω ↾t (x) =
∧

x∈inαP∧τ(x)≤t

(x = v),

ω ↾t (x
′) =

∧

x∈inαP∧τ(x)≤t

(x′ = v′).

Furthermore, we use P ↾t to denote the t-projection of predicate

P, P ↾t (x) and P ↾t (x
′) to denote the undashed and dashed part

of t-projection of P respectively.

Definition 2 (t-equivalent observation): Given a predicate

P, and a security level t ∈ Lτ , let ω1 ∈ P and ω2 ∈ P be

any of two observations. We say ω1 and ω2 are t-equivalent,

denoted by ω1 ≈t ω2 iff for all x ∈ αP:

ω1 ↾t (x) = ω2 ↾t (x)⇒ ω1 ↾t (x
′) = ω2 ↾t (x

′).

Definition 3 (t-equivalent predicate): Given two predicates

P and Q such that αP = αQ = A, and a security level t ∈Lτ ,

we say P and Q are t-equivalent, denoted by P ≈t Q iff for all

ωP ∈ P and ωQ ∈ Q: ωP ≈t ωQ, i.e.,

∀x ∈ A.P ↾t (x) = Q ↾t (x)⇒ P ↾t (x
′) = Q ↾t (x

′).

Definition 4 (Flow secure predicate): Given a predicate P

and a level t ∈ Lτ , we say P is t-flow secure written as P |= φt ,

iff :

∀ω1,ω2 ∈ P.ω1 ≈t ω2.

This condition is quite restrictive, but is intuitive to derive

from the original definition of non-interference.

Example 2: Consider again Example 1, for τ(y) = H > L,

the presented two observations are with respect to two un-

dashed valuations of y = 4 and y = 3. Clearly ω1 6≈L ω2, the

program does not satisfy the flow security condition φL and is

not flow secure. �

B. Signatures

The signature of a programming theory defines the syntax of

the programming language, i.e., the meaning of each program

in the language as a predicate, with free variables restricted

to the alphabet of the language. Table I presents the syntax of

the language considered in this paper.

Exp e ::= x | N | e⊕ e (⊕= {+,−,∗,/,%},x ∈ A)
Bexp b ::= true | ¬b | b∧b | e ⊲⊳ e (⊲⊳= {>,≥,<,≤,=})

x := e assignment of the value of expression e to the variable x
x :∈ S assignment of an arbitrary value from the set S to the variable x

x1, . . . ,xn := e1, . . . ,en concurrently assigning values of e1, . . . ,en to variables x1, . . . ,xn

P;Q sequential composition: Q is executed after P has terminated
P⊳b⊲Q conditional: P is executed if b is true initially, otherwise Q

P⊓Q non-determinism: P or Q is executed without specifying which
var x declaration: introduce a new variable of x

end x undeclaration: terminate the scope of the variable x
µX •F(X) call a recursive procedure which has name X and body F(X)

TABLE I
SIGNATURE OF THE LANGUAGE

C. Flow-sensitive relational predicate calculus

We now specify our flow-sensitive predicate calculus for

programs in the above language. For a program in such a

language, the relevant observations comes in paired-pairs,

with one observation of the values and the security types

of all global variables before program execution, and one

observation of their values and security types after program

termination. The before and after observation pairs in the

language constitutes a relation.

Definition 5 (Flow-sensitive relations): A flow-sensitive

relation is a pair (αP,cτ ⊢ P), where: αP = inαP∪ outαP,

in which inαP is a set of undecorated variables standing for

initial values and initial security types, and outαP is a set of

dashed variables standing for final values and final security

types; P is a predicate containing no free variables other than

those in αP; cτ ∈ Lτ records the observation on the security

level of the local environment (e.g., a branch of a conditional

operator) of P when it starts (in order to eliminate implicit

flows from the environment such as a boolean condition);

cτ ⊢ P specifies the predicate calculus of P under counter

level cτ .

We present a flow-sensitive relational predicate calculus of

a simple sequential language in Table II, where ⊔ denotes

the upper bound. The Assignment is the basic action that

assigns the evaluation(s) of expression e, and the upper bound

of security type(s) of τ(e) of e and the environment counter

type cτ to the final value(s) and security type(s) of the

variable(s) on the left-hand respectively, while variables not

mentioned on the left of := remain unchanged, similar

arguments to the operation :∈ and concurrent assignment.

The Skip II is a no-effect command which leaves the

values and security types of all the variables unchanged.

The Sequential composition P;Q describes a program

executed by first executing P and then executing Q, after P

terminates. In order to record the unobservable intermediate

state passed from P to Q, an existential quantification of a set

of variables ~v0 is introduced to denote the hidden observation

of the intermediate states of variables ~v from P to Q [1].

The Conditional P ⊳ b⊲Q describes a program which

behaves like P if the initial value of b is true and like

Q otherwise; the dashed security levels of variables take the

upper bound of the level of the counter level cτ , the boolean

condition and the levels of relevant variables after execution of

the branch body. The Non-determinism P⊓Q describes

a program executed by either P or Q missing of one will be

chosen. The Declaration var x introduces a new program

variable x which grants permission the use of the variable x

in the following statements, and the complementary operation

Undeclaration end x terminates the permission region of

the use of the variable x. Recursion is modelled by the weakest

fixed point cτ ⊢ µX • F(X), the join operator
d

is applied

to the set of all solutions of [X = cτ ⊢ F(X)] where F is

monotonic function from predicates to predicates:

cτ ⊢ µX •F(X) ,
l

{X | X = cτ ⊢ F(X)}

=
l

{cτi
⊢ F i(X) | i = 0,1, . . . ,n}

where F i+1(X) = F(F i(X)), Fn+1(X) = Fn(X), cτi+1
= cτi

⊔cτ

and cτ0
= cτ . Specifically, for any variable x ∈ A, consider the

initial security type be xτ = t0 = t, assume observation (let us

focus on security levels) regarding the ith time (i = 0,1, . . . ,n)

of applying F be:
∧

x∈A(xτ = ti ∧ x′τ = t ′i), we have t0 = t,

ti+1 = t ′i ⊔ t, t ′n+1 = t ′n, and we reach the weakest fixed point

by applying F n times. Proposition 1 presents a set of alge-

braic laws for our flow-sensitive predicate calculus: classical

laws [1] integrated with flow security environment.

Proposition 1 (Algebraic laws):

L1 cτ ⊢ (x := e;x := f (x))≡ cτ ⊢ x := f (e)
L2 cτ ⊢ (P;IIαP)≡ cτ ⊢ P = cτ ⊢ (IIαP;P)
L3 cτ ⊢ (P⊳ b⊲P)≡ cτ ⊢ P

L4 cτ ⊢ (P⊳ b⊲Q)≡ cτ ⊢ (Q⊳¬b⊲P)
L5 cτ ⊢ (P⊳ b⊲Q)⊳ c⊲R≡ cτ ⊢ P⊳ (b∧ c)⊲ (Q⊳ c⊲R)
L6 cτ ⊢ (P⊳ b⊲ (Q⊳ c⊲R)) ≡ cτ ⊢ (P⊳ b⊲Q)⊳ c⊲ (P⊳

b⊲R)
L7 cτ ⊢ (true;P)≡ cτ ⊢ true

L8 cτ ⊢ (P⊓Q) = cτ ⊢ (Q⊓P)
L9 cτ ⊢ (P⊓P)≡ cτ ⊢ P

L10 cτ ⊢ (P⊓ (Q⊓R))≡ cτ ⊢ ((P⊓Q)⊓R)
L11 cτ ⊢ (P⊓ (Q⊓R))≡ cτ ⊢ ((P⊓Q)⊓ (P⊓R))

Assignment cτ ⊢ x := e , x′ = e∧x′τ = cτ ⊔ τ(e)∧·· · ∧ z′ = z∧ z′τ = zτ , α(x := e), A

cτ ⊢ x :∈ S , x′ = s ∈ S∧x′τ = cτ ⊔ τ(S)∧·· · ∧ z′ = z∧ z′τ = zτ , α(x :∈ S), A

cτ ⊢ x1, . . . ,xn := e1, . . . ,en , x′1 = e1 ∧x′1τ = cτ ⊔ τ(e1)∧·· · ∧ z′ = z∧ z′τ = zτ , α(x1, . . . ,xn := e1, . . . ,en), A

Skip II cτ ⊢ II , x = x′ ∧x′τ = xτ · · · ∧ z = z′ ∧ z′τ = zτ , αII, A

Sequential cτ ⊢ P(~v′);Q(~v), ∃~v0.cτ ⊢ P(~v0)∧Q(~v0) if outαP = inαQ = {~v′}, inα(P(~v′);Q(~v)), inαP, outα(P(~v′);Q(~v)), outαQ

Conditional cτ ⊢ P⊳b⊲Q , cτ ⊢ ((b∧P)∨ (¬b∧Q)) if αb ⊆ αP = αQ, α(P⊳b⊲Q), αP, where:

• cτ ⊢ b∧P , cτ ⊔ τ(b) ⊢ P

• cτ ⊢ P∨Q , ((x′ = xp ∧·· · ∧ z′ = zp)∨ (x′ = xq ∧·· · ∧ z′ = zq))∧ (x′τ = (cτ ⊔ τxp ⊔ τxq)∧·· · ∧ z′τ = (cτ ⊔ τzp ⊔ τzq))
if P = (x′ = xp ∧x′τ = τxp ∧·· · ∧ z′ = zp ∧ z′τ = τzp), Q = (x′ = xq ∧x′τ = τxq ∧·· · ∧ z′ = zq ∧ z′τ = τzq)

Non-determinism cτ ⊢ P⊓Q , cτ ⊢ P∨Q if αP = αQ, α(P⊓Q), αP

Declaration cτ ⊢ var x , ∃x•cτ ⊢ IIA, if x ∈ A, α(var x) , A\{x}

Undeclaration cτ ⊢ end x , ∃x′ •cτ ⊢ IIA, if x′ ∈ A, α(end x) , A\{x′}

Recursion cτ ⊢ µX •F(X),
d
{X | [X = cτ ⊢ F(X)]}

TABLE II
FLOW-SENSITIVE PREDICATE CALCULUS OF A SEQUENTIAL LANGUAGE

L12 cτ ⊢ (P⊳ b⊲ (Q⊓R))≡ cτ ⊢ ((P⊳ b⊲Q)⊓ (P⊳ b⊲R))
L13 cτ ⊢ ((P⊓Q);R)≡ cτ ⊢ ((P;R)⊓ (Q;R))
L14 cτ ⊢ (P;(Q⊓R))≡ cτ ⊢ ((P;Q)⊓ (P;R))
L15 cτ ⊢ (P⊓ (Q⊳ b⊲R))≡ cτ ⊢ ((P⊓Q)⊳ b⊲ (P⊓R))

Theorem 1: if cτ2
≤τ cτ1

, then (cτ1
⊢ P)⇒ (cτ2

⊢ P).
Proof: The proof is obtained directly from the definition

of flow-sensitive relations (Definition 5) and the predicate

calculus presented in Table II.

This theorem shows that any predicate is flow secure under

a lower environment level if it is flow secure under a higher

one.

Theorem 2: (cτ1
⊢ P1)⇒ (cτ2

⊢ P2) iff

(cτ2
≤τ cτ1

)∧ (P1 ⇒ P2).

Proof: The proof is obtained by Theorem 1 and the

definition of implication.

This theorem implies that cτ1
⊢ P1 is stronger because it has a

higher environment security level so its behaviour will be more

restricted for flow security concern in addition to the condition

of P1 implying to P2, and where cτ2
⊢ P2 is considered flow-

secure and satisfied, cτ1
⊢ P1 will be sure flow-secure and

satisfied.

Theorem 3: (cτ1
⊢ P1)⊓ (cτ2

⊢ P2) = (cτ1
⊔ cτ2

) ⊢ (P1 ∨P2).
Proof: The proof is directly obtained from the definition

of flow-sensitive relations (Definition 5) and the predicate

calculus (non-determinism) presented in Table II.

This theorem indicates that the disjunction on a pair of flow-

sensitive predicate calculus can be generalised to the union of

the predicates with the environment security level being the

least upper bound of their security levels.

Theorem 4: (cτ1
⊢ P1)⊳b⊲ (cτ2

⊢ P2) = (τ(b)⊔cτ1
⊢ P1)∨

(τ(b)⊔ cτ2
⊢ P2).

Proof: The proof is directly obtained from the definition

of flow-sensitive relations (Definition 5) and the predicate

calculus (conditional) presented in Table II.

This theorem suggests that the conditional operation on a a pair

of flow-sensitive predicate calculus can be obtained by taking

the union of the two each of which takes their environment

level as the least upper bound of the level of the boolean test

and that of their original environment.

Theorem 5: For 1 ≤ i ≤ n,
l

i

({cτi
⊢ Pi}) = (⊔icτi

) ⊢ (
∨

i

Pi).

Proof: The proof of this theorem is obtained by applying

Theorem 3 multiple times.

Theorem 6 (Monotonicity of the predicate calculus):

The relational flow-sensitive predicate calculus specified in

Table II is monotone.

Proof: The proof is obtained by applying induction on the

relational structure of the predicate calculus. Particularly, for

the case of recursion, the sequences of observations regarding

security types t0, t1, . . . and t ′0, t
′
1, . . . thus form ascending

chains with a weakest fixed point of the calculus on the

security lattice Lτ .

Definition 6 (Predicate flow security condition): We say

the relational predicate cτ ⊢ P is strong flow secure, written

as P ⊢s φcτ , iff:

(1) for all x,x′,xτ ,x
′
τ ∈ αP: x′τ < cτ ⇒ x′ = x;

(2) for all t ∈ Lτ and any two observations ω1 and ω2 of P:

ω1 ≈t ω2.

In addition, we say cτ ⊢ P is weak flow secure if only condition

(2) is satisfied, written as: P ⊢w φcτ .

Condition (1) ensures that for any variables in P, if its dashed

security level is less than the environment security level, then

its value must not be changed by P; condition (2) ensures

that for any security level t ∈ Lτ , if any two observations on

undashed variables are t-equivalent, then the two observations

on dashed variables must be also t-equivalent, i.e., the final

value of a variable - whose final security level less than or

equal to t, must not depend on the initial values of those

variables - whose initial security level greater than t.

Theorem 7: P ⊢s φcτ ⇒ P ⊢w φcτ .

Proof: Trivial.

We write P ⊢ φcτ in general for situations in which “strong”

and “weak” do not need to be distinguished.

Theorem 8: If P and Q are flow secure predicates, then

P∨Q and P∧Q are flow secure as well, i.e., :

• P ⊢ φcτ ∧Q ⊢ φcτ ⇒ (P∧Q) ⊢ φcτ .

• P ⊢ φcτ ∨Q ⊢ φcτ ⇒ (P∨Q) ⊢ φcτ .

Proof: The proof is obtained directly from Definition 6.

Theorem 9 (Soundness of the flow secure predicate):

Every program specified in the flow-sensitive predicate

calculus ensured by conditions specified in Definition 6 is

flow secure predicate, for t ∈ L :

P ⊢ φcτ ⇒ P |= φt .

Proof: If P is skip, assignment, or non-determinism, the

relevant flow secure rules ensure the security level of each

variable after the execution less than or equal to that of

before the execution. So clearly the flow security condition

is satisfied. The rest of the proof follows from definition of

the sequential, conditional and recursion operator presented in

Table II and Theorem 3, 8, 6 by induction on the structure of

the derivation tree.

Example 3: Consider αP = {x,y}, τx = H, τy = L, L ⊏ H ∈
Lτ , and ⊥ ∈ Lτ denotes the system low.

P , ⊥ ⊢ (y := 0⊳ (x = 0)⊲ y := 1)

, ⊥ ⊢ (x = 0∧ y := 0)∨ (¬(x = 0)∧ y := 1)

, H ⊢ y := 0∨H ⊢ y := 1

, (y′ = 0∧ τy = L∧ τ ′y = H)∨ (y′ = 1∧ τy = L∧ τ ′y = H)

6⊢ φ⊥.

Note that there is implicit flow introduced by the boolean test

and the program is not flow secure. �

IV. PRESERVING FLOW SECURITY UNDER REFINEMENT

CALCULUS

This section studies the problem of refining the character-

isation of the class of the flow secure relations. Refinement

guarantees that a refined (concrete) predicate satisfies all the

functionality properties of the refining (abstract) one. We have

discussed that P is considered flow secure if it satisfies the flow

secure condition, which can be enforced by our flow healthy

predicate calculus. However, the refining relation cannot guar-

antee that a refinement of P always preserves the flow security

properties: the refined theory might introduce new elements,

while the secure flow properties and the enforcing rules depend

on the semantics and the flow judging environment.

Example 4: Consider the dining cryptographer problem as

an example. Assume three cryptographers c0, c1 and c2 are

sharing a meal at a restaurant. At the end of the meal,

The cryptographers are told that the meal has been paid by

someone, who might be one of the cryptographers or their

manager. The cryptographer would like to find out whether

their manager paid but respect each other’s right to make an

anonymous payment.
In the first step, we sketch an event-based abstract model

P which produce a decision of “paid” (dec = 1) directly
in program decide after executing pay (payer=0,1,2,999
denotes the bill has been paid by cryptographer c0,c1,c2 and
the manager respectively):

init , payer:=-1; dec:=0;

pay , payer:∈{0,1,2,999};

decide , dec:=1;

P , L ⊢ init; pay; decide;

Let the security level of payer be H which should be kept

secret, and the level of the rest of variables be L and L ≤τ

H. Clearly P ⊢ φL since the value of H level variable payer

(0,1,2) won’t affect the final value of dec in this abstract model

- the waiter has informed them that “the meal has been paid

by someone”.
The dining cryptographer protocol [6] is proposed to check

if the bill has been paid by the manager or by one of the

cryptographers but without releasing the identity of the payer.

There are two stages performed to solve the problem:

(i) every two cryptographers establish a shared one-bit se-

cret: each of them flips a coin (ci is used to record

the flipping result of cryptographer ci, i = 0,1,2), the

outcome is only visible to himself and the cryptographer

on his right, so each cryptographer can see two outcomes:

the one he flipped and the one his left-hand neighbour

flipped - this stage is “private”;

(ii) each cryptographer publicly announces whether the two

outcomes agree or disagree, if the cryptographer is not

the payer, he says the truth, otherwise, he states the

opposite of what he sees - this stage is “public”. When all

cryptographers have announced, they count the number of

disagrees (recorded in ctr). If that number is odd, then

one of them has paid (dec=1), without directly releasing

who is the payer; otherwise the bill has not been paid

(dec=0).
We now propose a refined model P′ to implement a (faulty)

variant of the dining cryptographer protocol specified in
decide’ refined from decide. Stage (i) is performed once
only at the initialisation init’ (before the bill has been paid),
and stage (ii) specified in decide’ is always run with the
secret established during the initialisation. Suppose the faulty
protocol is run once before the bill is paid, and once after it
is paid.

init’ , payer,r0,r1,r2,c0,c1,c2:=-1;

ctr,dec:=0;

flip′0 , (c0 < 0)⊲(c0 :∈ {0,1}); //c0 flip

flip′1 , (c1 < 0)⊲(c1 :∈ {0,1}); //c1 flip

flip′2 , (c2 < 0)⊲(c2 :∈ {0,1}); //c2 flip

pay’ , (payer<0)⊲(payer:∈{999,0,1,2});

//c0 makes announcement

res′0 , ((payer>0)⊲(r0 := c0 ⊕c1))⊳(payer=0)
⊲(r0 := 1− (c0 ⊕c1))

//c1 makes announcement

res′1 , ((payer>=0 ∧ payer<>1)⊲(r1 := c1 ⊕c2))
⊳(payer=1)⊲(r1 := 1− (c1 ⊕c2))

//c2 makes announcement

res′2 , ((payer>=0 ∧ payer<>2)⊲(r2 := c2 ⊕c0))
⊳(payer=2) ⊲(r2 := 1− (c2 ⊕c0))

//disagreement counting

count’ , r0 ≥ 0∧ r1 ≥ 0∧ r2 ≥ 0 ⊲(ctr:=r0 + r1 + r2)

//decision making

decide’ , flip′0; flip′1; flip′2;

res′0; res′1; res′2; count’;

(ctr≥0)⊲(dec:=ctr % 2);

P’ , L ⊢ init’; decide’; pay’; decide’;

Intuitively, the faulty protocol will release the identity

of the payer since one can deduce it by observing whose

announcement differs between the first (prior to payment) run

and the second (post-payment) run of stage ii). By Definition 6,

P′ 6⊢ φL: condition (1) is clearly violated since the final value of

dec depends on that of counter and thus on that of the higher

security level payer which should be kept secret, thus there

is information leakage introduced by an implicit flow through

boolean condition (i=payer), (c0 ≥ 0∧c1 ≥ 0∧c2 ≥ 0) and

(ctr≥0) in the refined model, which reveals the information

of “the bill being paid or not”; condition (2) is also violated

since observations on the executions of the public stage

decide’ are not L-equivalent, when payer changes (e.g.

executions before paid and after paid by i), the observations on

the announcement of the payer (ri) are different which reveals

the identity of the payer. �
Clearly there is no guarantee that the refinement transforma-

tion preserves the proposed flow security properties. Therefore,

it is not enough to prove the security property at one level in

general.

A. The flow secure refinement calculus

The main goal here is to define a subclass Q of relation

P which is ensured to be both flow secure and healthy. To

record the observation on initiation and termination of the

program, following [1], special boolean variables ok and ok′

are introduced to denote the status of the program being

started and being terminated respectively. We present the basic

definition of flow secure design in the refinement calculus as

an extension of the definition of design [1] as follows.
Definition 7 (Flow secure design): Let P and Q be predi-

cates, let cτ ∈ Lτ , a flow secure design is a relation in the

following form:

P |=cτ Q , cτ ⊢ (P∧ok)∧ (P ⊢w φcτ) ⇒

cτ ⊢ (Q∧ok′)∧ (Q ⊢w φcτ)

The predicate cτ ⊢ (P∧ok)∧ (P ⊢w φcτ) ⇒ cτ ⊢ (Q∧ok′)∧
(Q ⊢w φcτ) specifies a relation such that: if the program starts

in a state satisfying flow secure predicate P, it will terminate,

and on termination Q will be true and flow secure.

Theorem 10 (Implication of flow secure designs):

(P1 |=cτ1
Q1)⇒ (P2 |=cτ2

Q2)

iff:

(cτ2
⊢ P2 ⇒ cτ1

⊢ P1)∧ (cτ2
⊢ (Q1 ∧P2)⇒ cτ2

⊢ Q2).

This theorem shows that P1 |=cτ1
Q1 is stronger because it

has a weaker assumption cτ1
⊢ P1, and where cτ2

⊢ P2 is

considered flow-secure, cτ1
⊢ P1 will be sure flow-secure. Note

that cτ2
⊢P2 ⇒ cτ1

⊢P1 implies cτ1
≤ cτ2

and P2 ⇒P1 according

to Theorem 2. The proof can then be obtained by Theorem 2

and Definition 7.

Theorem 11 (Conditional of flow secure designs):

(P1 |=cτ1
Q1)⊳ b⊲ (P2 |=cτ2

Q2)

= (P1 ⊳ b⊲P2) |=cτ1
⊔cτ2

(Q1 ⊳ b⊲Q2).

This theorem implies that the conditional operation on a pair

of flow secure designs can generate a new design with the

assumption being the condition on the assumptions of the two,

and the commitment being the condition on the commitments

of the two, and the environment level being the least upper

bound of the environment levels of the two. Proof can be

obtained by Definition 7 and Theorem 4.

Theorem 12 (Nondeterminism of flow secure designs):

(P1 |=cτ1
Q1)⊓ (P2 |=cτ2

Q2) = (P1 ∧P2) |=cτ1
⊔cτ2

(Q1 ∨Q2).

This theorem suggests that the disjunction of two flow secure

designs can be generalised to the design with the conjunction

of the assumptions of the two as its assumption (stronger) and

the union of the commitments of the two as its commitment

(weaker) and the least upper bound of the environment levels

as its environment level. The proof of this theorem is directly

obtained by Definition 7 and Theorem 3.

Similar results can be obtained regarding disjunction and

conjunction of a set of flow secure designs, shown in Theo-

rem 13 and 14.

Theorem 13 (Disjunction of flow secure designs):
l

i

(Pi |=cτi
Qi) =

∧

i

Pi |=⊔cτi

∨

i

Qi.

Theorem 14 (Conjunction of flow secure designs):
⊔

i

(Pi |=cτi
Qi) =

∨

i

Pi |=⊔cτi
(
∧

i

(Pi ⇒ Qi)).

Example 5: Consider again Example 4, clearly P 6|=L P′ and

P′ is not a flow secure refinement of P. �

B. Building connections between theories

Theories are identified primarily by their set of predicates.

We propose to define a link between theories as a paired

functions which maps all predicates from one into those of

another with a concern of flow security property. Such a link

can be used to reveal significant underlying structure of the

theories to compare, and to enforce no additional leakage

being introduced in the refined theories.

A bijection is a function that shows the exact reversion

between two predicates and thus might lose interesting dis-

tinction between them. In general, different predicates should

have different expressive power: one (stronger) might contain

richer features than another one (weaker). We therefore need

a link function which can be used to connect two predicates at

different expressive levels rather than exact reversion. Galois

connection, represented as a paired function, can be used to

build a link to show both the similarity and interesting mathe-

matical distinction of them. We now study linking theories

between a relatively abstract one (weaker) and a concrete

one (stronger) accounts for flow-sensitive observations by

building connection between them. Definition 8 reviews the

basic definition of Galois connection [7].

Definition 8 (Galois connection): Let S = (S,�S) and T =
(T,�T) be posets, suppose fL : S → T and fR : T → S, we say

the pair (fL, fR) is a Galois connection between S and T if

∀s ∈ S and t ∈ T :

fL(s) �T t ⇔ s �S fR(t),

or:

s �S fR(fL(s)) ⇔ t �T fL(fR(t)).

fL is called the left adjoint of the corresponding fR, and fR is

the right adjoint of fL.

Intuitively, function fL can be constructed to map each predi-

cate of the stronger theory to the weaker one, and fR maps in

the opposite direction.

Consider a predicate is a set of observations (executions)

satisfying the predicate. To build a link between the weaker

and stronger predicate classes accounts for the flow-sensitive

observations, we need to study the ordering of them in order

to construct appropriate maps between them.

Definition 9 (Ordering of flow-sensitive predicates): Given

two predicates P1 and P2 with alphabet A, we define:

P1 ≤φcτ
P2 , P1 |=cτ P2.

Definition 10 (A link between a pair of theories):

Consider two predicates P1 and P2 with alphabet A, let

notation P(X) denote the powerset of set X , then put:

• P1 = (P(P1),⊆): the powerset of the flow-sensitive pred-

icate relations P1 forms a lattice with a partial ordering

on subset relation ⊆;

• similarly, we write: P2 = (P(P2),⊆).

Furthermore,

• for O1 ⊆ P1, we define:

fR(O1) = {Y ∈ P2 | ∀X .(X ∈ O1 → X |=cτ Y)}

• for O2 ⊆ P2, we define:

fL(O2) = {X ∈ P1 | ∀Y.(Y ∈ O2 → X |=cτ Y)}

Paired function (fL, fR) thus build a link between P2 and P1

which accounts for the ordering of flow sensitive predicates.

Essentially, fR is the concretising function which takes a subset

observations O1 of P1 and returns all the possible observations

of P2 implied by the observations in O1 in terms of the ordering

of flow-sensitive predicates. More precisely, fR(O1) is a subset

{Y} of P2 such that for each element X of P1: X |=cτ Y . On the

other hand, fL is the abstraction function which takes a subset

observations O2 of P2 and returns all the possible observations

of P1 implying all observations in O2 in terms of the ordering

of flow-sensitive predicates.

Theorem 15: Link function (fL, fR) defined in Definition 10

forms a Galois connection between P2 and P1.

Proof: By definition of Galois connection, proving

(fL, fR) is a Galois connection between P1 = (P(P1),⊆)
and P2 = (P(P2),⊆) is equivalent to proving the following

equivalence:

∀O2 ⊆ P2,O1 ⊆ P1 : fL(O2)⊇ O1 iff O2 ⊇ fR(O1).

So:

fL(O2)⊇ O1 ⇔ {X |∀Y.(Y ∈ O2 → X |=cτ1
Y)} ⊇ O1

⇔ (∀X ∈ O1)(∀Y ∈ O2)→ X |=cτ1
Y

⇔ (∀Y ∈ O2)(∀X ∈ O1)→ X |=cτ1
Y

⇔ {Y |∀X .(X ∈ O1 → X |=cτ1
Y)} ⊆ O2

⇔ fR(O1)⊆ O2

Therefore, the connection function pair (fL, fR) between P2

and P1 forms a Galois connection.

Next step we study the preservation of the ordering of

flow sensitive observations under a set of linked theories

connected by a set of linked functions constructed in terms

of Definition 10.

Lemma 1: Consider three posets:

P1 = (P(P1),⊆), P2 = (P(P2),⊆), P3 = (P(P3),⊆).

Let (fL, fR) and (gL,gR) be the connection functions between

P2 and P1, and between P3 and P2, specified in Definition 10

respectively. Then the paired function (fL ◦ gL,gR ◦ fR) is a

Galois connection between P3 and P1.

Proof: The proof is obtained directly from Theorem 15

and the composition property of Galois connections.

Theorem 16: Consider two theories connected by Ga-

lois connection specified in Definition 10, for any t ∈ L :

P2(fL, fR)P1, we have:

P1 |= φt ⇒ P2 |= φt .

Proof: By Definition 10, 9, and 7, this can be reduced to

prove: cτ ⊢ (P1 ∧ok)∧P1 ⊢w φcτ ⇒ cτ ⊢ (P2 ∧ok′)∧P2 ⊢w φcτ .

By Theorem 9, we obtain: P1 |= φt ⇒ P2 |= φt .

Theorem 16 implies that the refinement calculus function

specified by (fL, fR) preserves the flow security condition, i.e.,

if P1 is flow secure and P2(fL, fR)P1, then the relevant concrete

one P2 satisfies the flow security condition as well.

Theorem 17: Assume Pn(fL, fR)Pn−1 . . .P2(hL,hR)P1,

where n ∈ N, paired functions (fL, fR), . . . , (hL,hR) are the

Galois connections build by Definition 10 between P2 and

P1, P3 and P2, and so on, for t ∈ L then:

P1 |= φt ⇒ Pn |= φt .

Proof: The proof follows directly from Lemma 1 and

Theorem 16 by induction.

Theorem 17 shows that our refinement calculus, formalised as

a series of paired function from beginning specification to final

design, are guaranteed to preserve the flow security condition.

Example 6: Consider again Example 4, we now propose

refined model P′′ to implement the idea of the correct (original)

dining cryptographer protocol.

P’’ , L ⊢ init’; pay’; decide’;

By Definition 6, P′′ does not satisfy condition (1) due to the

implicit flow through boolean condition (i=payer); P′′ also

violates condition (2), since observations on L-level variables

including dec, ci (i=0,1,2), ri (i=0,1,2), ctr are affected by the

initial value of H-level variable payer. There is information

leakage from the initial value of payer to the observer - one

can at least deduce whether payer ≥ 0 or not, i.e., whether

the bill has been paid or not. Therefore, P′′ 6⊢ φL, and by

Definition 7: P′′ 6|=L P. From the view of connections between

P and P′′, we are not able to find (fL, fR) to build flow

secure link between the observations of P and P′′ based on

Definition 10. �
Example 7: Let us take a further thought of Example 6.

Assume the bill has been paid by one of the three successfully

(i.e., payer:∈0,1,2), and we only allow dec to be observable,

observations on L-level observable variables dec is not af-

fected by the initial value of H-level variable payer, then

condition (2) is satisfied: P′′ ⊢w φL. Under such assumptions

(preconditions), we are able to build a link (fL, fR) between

P and P′′ based on Definition 10, since only dec is included

in the observations and thus X |=cτ Y would be satisfied for

any observation X in P and observation Y in P′′. The identity

of payer (0 or 1 or 2) keeps secret if the bill has been paid in

this case, which meets the intuition of the dining cryptographer

protocol. �
Inspired by the consideration in Example 7, it would be

interesting to consider the observability of variables to provide

more specific flow analysis as an extension of our framework.

V. RELATED WORK

The notion of secure information flow specifies the security

requirements of the system where should be no information

flow from the confidential data to the observer. This paper

relates to the topic of information flow control in formal

programming languages.

Denning and Denning [8] first use program analysis to

investigate if the information flow properties of a program

satisfy a specified multi-level security policy. Security type

systems had been substantially used to formulate the analysis

of secure information flow in programs. Hunt and Sands [9]

presented a flow sensitive type system for program in a simple

While language for multi-level security. Sensitive informa-

tion was stored in programming variables, the powerset of

program variables forms the universal lattice. A family of

inference systems was developed to be forced to satisfy a

simple non-interference property. Their following work [10]

showed how flow-sensitive multi-level security typing can

be achieved in polynomial time. In addition to type-based

treatments of secure information flow analysis for programs,

Clark et. al presented a flow logic approach in [11]. Hammer

and Snelting [12] presented an approach for information flow

control in program analysis based on program dependence

graphs (PDG). Based on [12], [13] extended the PDG-

based flow analysis by incorporating refinement techniques via

path conditions to improve the precision of the flow control.

Such PDG-based information flow control is more precise but

more expensive than type-based approaches. These works did

not include treatments on specification language and secure

abstraction refinements. Absolute information-flow properties,

such as non-interference, are rarely satisfied by real programs.

Declassification [14] and endorsement which are also known

as downgrading, allow high-level security information to be

used in low-level security contexts. There is no confidential

information flows from a restricted execution environment to

a public one without having been properly declassified.

A number of papers addresses flow analysis in specification

languages. Iliasov [15] introduced a method for control flow

properties in Event-B models. The flow analysis in this paper

focused on expressions with event ordering and looked at the

interference between events introduced by a set of conditions

formulated on a machine. It can be used to express flow

properties for a model and to verify them using proofs.

Bendisposto et. al [16] proposed an automatic flow analysis

by deriving a flow graph structure from an Event-B model

specification. The derived graph contained information about

dependence and independence of events which can be used

for flow analysis and model comprehension.

Refinement is a process of making an abstract specification

more detailed. Jocob [17] first pointed out that secure infor-

mation flow properties were not preserved by the standard

notion of refinement in general. There are a number of papers

addressed information flow security and refinement. Heisel et.

al developed a condition for confidentiality-preserving refine-

ment in [18], [19]. The basic idea was that the information

allowed to be revealed by the concrete system should also

be allowed to be revealed regarding the abstract one. Alur

et. al [20] presented a framework for preservation of secrecy

in labelled transition system, and introduced a simulation-

based proof technique for preserving secrecy under refinement.

Mantel [21] proposed a method for preserving information

flow properties under CSP-style refinements regarding an

event system. The event system was considered as a tuple

of a set of input/output events and a set of traces. The idea

here was two fold: introducing refinement operators to refine

specifications and then constructing secure refined event sys-

tem based on low-equivalence relations. Mantel showed how

tailored refinement operators for information flow properties

can construct a refinement in which the resulting refinement

preserves the given flow property. Bossi et. al [22] studied

the problem of preservation of information flow properties

under action refinement in the context of process algebra.

Seehusen and Stølen [23] introduced a schema to specify and

preserve secure information flow properties in the semantics

of STAIRS [24]. Jürjens [25] presented a framework for

preserving secrecy under refinement operators in specification

framework FOCUS [26]. In FOCUS, a process was modelled

by a total stream-processing function which mapped input

streams to sets of output streams. A process was considered

preserving the secrecy if without eventually outputting secrets.

[25] presented a set of conditions w.r.t. FOCUS under which

the refinements preserved proposed secrecy properties. Mor-

gan [27] studied enforcement issues under stepwise refinement

based on the definition of “ignorance-preserving” refinement.

The idea was adding restrictions on adversary’s access to

higher level information during classical refinement. Mu [28]

introduced a more general approach to provide secure flow

control in a specification language. The presented framework

can be used to reason about flow security properties and

relevant relations of the stepwise refinement transformations

in Event B.

However, those works have not placed the foundations

for reasoning about information flow in a unifying theory

setting, and can not be deployed over a various families of

specification languages and programming paradigms as the

approach delineated in this work. Banks and Jocob [29] studied

the problem of formalising and reasoning about confidentiality

property in software design using the UTP. Following this

work, [30] proposed a platform to encode confidentiality prop-

erties in the Circus processes. Comparing with these works,

we focused on extending the UTP theory to integrating flow

control, results regarding possible operations are formalised,

flow security property is naturally coordinated and integrated

in the UTP semantics. We also studied the problem of preserv-

ing flow security under refining the flow security relations: we

extended the definition of design to flow secure design in the

refinement calculus to ensure the flow security condition, and

constructed a link between multiple level theories under flow

secure refinement relation.

VI. CONCLUSIONS

We have presented a unified framework in the UTP setting

for specifying and developing flow secure software. Specif-

ically, we formalise and integrate flow security properties

with the UTP semantics, present semantic enforcing rules

to ensure the flow security condition in an abstract system

design. We then present the definition of flow secure design

in the refinement calculus to specify a subclass which is

guaranteed to be both secure and healthy. We also build a link

between multi-level theories under refinement transformation

from preserving flow security point of view. For future work, it

is promising to extend our framework to support probabilistic

analysis of the flow security properties. It would also be

interesting to consider the observability of variables to provide

more specific flow analysis as an extension of our framework.

Acknowledgement

This research is supported by the China National R&D

Key Research Program (2019YFB1705703) and the In-

terdisciplinary Program of SJTU, Shanghai, China (No.

YG2019ZDA07).

REFERENCES

[1] T. Hoare and J. He, Unifying Theories of Programming. Prentice Hall
Inc., 1998.

[2] J. Goguen and J. Meseguer, “Security policies and security models,” in
S & P, 1982, pp. 11–20.

[3] J. McLean, “Security models and information flow,” in S & P, Oakland,
California, May 1990.

[4] D. E. R. Denning, “A lattice model of secure information flow,”
Communications of the ACM, vol. 19, no. 5, pp. 236–243, 1976.

[5] ——, Cryptography and Data Security. Addison-Wesley, 1982.
[6] D. Chaum, “The dining cryptographers problem: Unconditional sender

and recipient untraceability,” Journal of Cryptology, vol. 1, pp. 65–75,
1988.

[7] M. Erne, J. Koslowski, A. Melton, and G. Strecker, “A primer on galois
connections,” in York Academy of Science, 1992.

[8] D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” Commun. ACM, vol. 20, no. 7, pp. 504–513, 1977.

[9] S. Hunt and D. Sands, “On flow-sensitive security types,” in POPL.
ACM Press, January 2006, pp. 79–90.

[10] ——, “From exponential to polynomial-time security typing via princi-
pal types,” in ESOP, 2011, pp. 297–316.

[11] D. Clark, C. Hankin, and S. Hunt, “Information flow for algol-like
languages,” Comput. Lang., vol. 28, no. 1, pp. 3–28, 2002.

[12] C. Hammer and G. Snelting, “Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs,” Int. J. Inf. Sec., vol. 8, no. 6, pp. 399–422, 2009.

[13] M. Taghdiri, G. Snelting, and C. Sinz, “Information flow analysis via
path condition refinement,” in FAST, 2010, pp. 65–79.

[14] A. Sabelfeld and D. Sands, “Declassification: Dimensions and princi-
ples,” Journal of Computer Security, vol. 17, no. 5, pp. 517–548, 2009.

[15] A. Iliasov, “On event-b and control flow,” School of Computing Science,
Newcastle University, Tech. Rep. CS-TR-1159, 2009.

[16] J. Bendisposto and M. Leuschel, “Automatic flow analysis for event-b,”
in FASE, 2011, pp. 50–64.

[17] J. Jacob, “On the derivation of secure components,” in S & P, 1989, pp.
242–247.

[18] M. Heisel, A. Pfitzmann, and T. Santen, “Confidentiality-preserving
refinement,” in CSFW, 2001, pp. 295–306.

[19] T. Santen, M. Heisel, and A. Pfitzmann, “Confidentiality-preserving
refinement is compositional - sometimes,” in ESORICS, 2002, pp. 194–
211.

[20] R. Alur, P. Cerný, and S. Zdancewic, “Preserving secrecy under refine-
ment,” in ICALP, 2006, pp. 107–118.

[21] H. Mantel, “Preserving information flow properties under refinement,”
in S & P, 2001, pp. 78–92.

[22] A. Bossi, C. Piazza, and S. Rossi, “Action refinement in process algebra
and security issues,” in LOPSTR, 2007, pp. 201–217.

[23] F. Seehusen and K. Stølen, “Maintaining information flow security under
refinement and transformation,” in FAST, 2006, pp. 143–157.

[24] Ø. Haugen and K. Stølen, “Stairs - steps to analyze interactions with
refinement semantics,” in UML, 2003, pp. 388–402.

[25] J. Jürjens, “Secrecy-preserving refinement,” in FME, 2001, pp. 135–152.
[26] M. Broy and K. Stølen, Specification and development of interactive

systems: focus on streams, interfaces, and refinement. Springer-Verlag
New York, Inc., 2001.

[27] C. Morgan, “The shadow knows: Refinement and security in sequential
programs,” Sci. Comput. Program., vol. 74, no. 8, pp. 629–653, 2009.

[28] C. Mu, “On information flow control in event-b and refinement,” in
TASE, 2013, pp. 225–232.

[29] M. J. Banks and J. L. Jacob, “Unifying theories of confidentiality,” in
UTP, 2010, pp. 120–136.

[30] ——, “Specifying confidentiality in circus,” in FM, M. Butler and
W. Schulte, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 215–230.

	Introduction
	Preliminaries
	Unifying Theories of Programming
	Alphabet and observable behaviours
	Signature and predicates
	Linking theories

	Static information flow analysis

	Predicate Calculus with Flow Control
	Observations and alphabet with security types
	Signatures
	Flow-sensitive relational predicate calculus

	Preserving Flow Security under Refinement Calculus
	The flow secure refinement calculus
	Building connections between theories

	Related Work
	Conclusions
	References

