IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL., NO., 2021

Achieving Privacy-Preserving DSSE for Intelligent
IoT Healthcare System

Yaru Liu, Jia Yu Member, IEEE, Jianxi Fan, Pandi Vijayakumar Senior Member, IEEE and Victor Chang

Abstract—As the product of combining Internet of Things
(IoT), cloud computing and traditional healthcare, Intelligent IoT
Healthcare (IIoTH) brings us a lot of convenience, meanwhile se-
curity and privacy issues have attracted great attention. Dynamic
searchable symmetric encryption (DSSE) technique can make
the user search the dynamic healthcare information from IIoTH
system under the condition that the privacy is protected. In this
paper, a novel privacy-preserving DSSE scheme for IIoTH system
is proposed. It is the first DSSE scheme designed for PHR files
database with forward security. We construct the secure index
based on hash chain and realize trapdoor updates for resisting
file injection attacks. In addition, we realize fine-grained search
over encrypted PHR files database of attribute-value type. When
the user executes search operations, he/she gets only a matched
attribute value instead of the whole file. As a result, the commu-
nication cost is reduced and the disclosure of patient’s privacy is
minimized. The proposed scheme also achieves attribute access
control, which allows users have different access authorities to
attribute values. The specific security analysis and experiments
show the security and the efficiency of the proposed scheme.

Index Terms—Intelligent Internet of Things Healthcare, for-
ward security, attribute access control, searchable encryption,
privacy preserving

I. INTRODUCTION

NTELLIGENT IoT Healthcare (IloTH) system [1-3] has

been rapidly developed in recent years. It is generated
by integrating Internet of Things (IoT) and cloud computing
into traditional healthcare. In an IIoTH system, a set of IoT
devices (e.g, smart bracelets) that construct wireless body area
networks, can continuously collect patient’s health data (e.g,
blood presure). These data are periodically aggregated into
Personal Health Records (PHRs) by the IoT gateway, and then
are uploaded to the cloud. In this way, IIoTH not only provides
timely diagnosis and evidence of health misdiagnosis, but also
greatly facilitates access and share with low local storage costs.

Protecting the privacy of patients is a big challenge in IIoTH
system [4, 5]. Therefore, it is necessary to encrypt the PHR
files before the PHR files are outsourced to the cloud. Whereas,

Y. Liu is with the College of Computer Science and Technology, Qingdao
University, Qingdao 266071, China. E-mail: lyr_0616@163.com

(Corresponding author: J. Yu) J. Yu is with the College of Computer
Science and Technology, Qingdao University, Qingdao 266071, China, with
Guangxi Key Laboratory of Cryptography and Information Security, Guilin,
541004, China. E-mail:qduyujia@gmail.com.

J. Fan is with the School of Computer Science and Technology, Soochow
University, Suzhou 215006, China (Email: jxfan@suda.edu.cn).

P. Vijayakumar is with the Department of Computer Science and Engineer-
ing, University College of Engineering Tindivanam, Tindivanam, Tamil Nadu,
India. Email: vijibond2000@ gmail.com.

V. Chang is with the Artificial Intelligence and Information Systems
Research Group, School of Computing, Engineering and Digital Technologies,
Teesside University, Middlesbrough, UK. Email: ic.victor.chang @gmail.com

the encrypted data loses the ability of being searched based on
keyword. Searchable Encryption (SE) technology successfully
realizes the direct search on the encrypted data. The concept
of searchable encryption was firstly proposed in [6]. In order
to improve efficiency, Goh et al. [7] designed a secure index
based on bloom filter for constructing Searchable Symmetric
Encryption (SSE) scheme. Curmola et al. [8] employed the
structure of inverted index to construct SSE scheme, which
greatly improved the search efficiency. Boneh et al. [9] first
proposed Public key Encryption with Keyword Search (PEKS)
mechanism, which was motivated by the retrieval of encrypted
email system. Compared with SSE technology, the PEKS
mechanism brings higher computation overhead. However, it
can easily achieve richer and more complex functions [10-14].

In IIoTH system, PHR files usually adopt standardized data
format, that is, the data format of attribute-value type. In
attribute-value type database [15, 16], each entry has a unique
identifier which represents a file containing multiple attributes.
Each attribute of the file corresponds to an attribute value.
Some searchable encryption schemes for healthcare have been
proposed [2, 17]. Nonetheless, these schemes must return the
entire PHR file when the user performs search operation.
Actually, the user may need to get only a certain attribute
value but not the whole file. For example, the researcher should
search to get only the allergy information of some patient
but not the patient identity and others in the encrypted PHR
from IIoTH system. Clearly, the existing schemes not only
bring communication burden, but also leak extra information
to users. In addition, PHR files include much sensitive attribute
information of patients, which should not be accessed by
anyone. Only the users authorized by hospital (such as doctors)
can access the attribute value of PHR files. Some attribute
access control keyword search and data sharing schemes are
proposed [18-20]. However, these schemes adopt public key
encryption, which incurs high computation overhead.

In IIoTH system, PHR files often require to be dynamically
updated. As a result, it is significant to design SSE schemes
that can support dynamic updates. Some dynamic searchable
symmetric encryption (DSSE) schemes have been put forward
[21, 22]. However, these schemes cannot resist file injection
attacks [23] when the PHR file is updated. The cloud server
is able to infer the encrypted keyword in the trapdoor by
injecting the forged files into searched database. This kind of
powerful attacks seriously damage the privacy of patients. How
to resist file injection attacks has been becoming a hot topic
of DSSE. Stefanov et al. [24] firstly introduced the definition
of forward security for resisting this attack, which requires
the update trapdoor cannot be linked with previous trapdoors.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL., NO., 2021

Bost proposed >ogos scheme with forward security [25],
in which one-way trapdoor permutation function is used to
update trapdoors. Song et al. [26] presented two efficient DSSE
schemes with forward security. The proposed schemes adopted
the similar hash chain with Yo¢og scheme. Zuo et al. [27]
presented a forward secure DSSE scheme based on bitmap
index and homomorphic addition encryption. Unfortunately,
the existing DSSE schemes with forward security cannot be
directly applied to IIoTH system in which PHR files are stored
in the form of attribute-value type due to the following reasons.
Firstly, existing DSSE schemes with forward security are
designed for traditional file system but not for attribute-type
database. Using previous schemes, cloud server may return
redundant files to the user. The reason is that different attribute
values may contain the same keyword in PHRs. Assume a
user wants to search files whose attribute att value contains
keyword w. Using previous schemes, the user sends trapdoor
obtained by encrypting keyword w to the cloud server. And
then the cloud server returns all the files contain keyword w.
These returned files also contain some files whose another
attribute att’ value contains the keyword w, except the files
with attribute att value containing the keyword w. So some
of these returned files are not what the user requires and may
contain the privacy information of patients. Secondly, the user
might often need to get only one certain attribute value but
not the entire file by performing search operations. Using
previous schemes, the user will have to get the whole file
containing extra attribute values, which obviously leaks the
extra information of patients. In conclusion, previous schemes
not only bring communication burden to the user, but also
cause more information leakage. As a result, how to design
forward secure DSSE scheme for IIoTH system is still an
unsolved problem.

In this paper, a novel Privacy-Preserving DSSE (PPDSSE)
scheme for IIoTH system is proposed. It is the first DSSE
scheme that can be well applied to PHR files database and
be against file injection attacks. In order to achieve forward
security, we construct a hash chain for each keyword of each
attribute. For each update, a fixed length bit string is randomly
chosen as a new state, which is used to update trapdoor. The
update trapdoor cannot match the previous search trapdoors.
Moreover, our scheme can realize fine-grained search and
condition search over PHR database of attribute-value type.
Condition search refers to searching the value of another
attribute att’ on the condition that a certain attribute att
value contains search keyword w. Specially, based on the
keyword w contained in the attribute att value, the user can
only know another attribute att’ value by executing condition
search. Condition search, as a novel notion, is suitable for
IIoTH system. As a result, the disclosure of patient’s privacy
is minimized and the communication cost is reduced. Our
scheme also achieves attribute access control, which allows
different users have different access authorities to attribute
values. Finally, the specific security analysis and experimental
results indicate our scheme is secure and efficient.

We organize the rest of the paper as follows. The next
section presents the system model, design goals, notations,
personal health record and bitmap index. Section III introduces

our scheme in detail. In Section IV and section V, we respec-
tively give security analysis and experimental evaluation. We
conclude this paper in the last section.

II. PROBLEM FORMULATION

A. System Model

Medical records
Update trapdoors

Hospital

Fig. 1: Overview of the system model

As shown in the Fig. 1, there are multiple different kinds
of entities in the system model: Patients, Doctors and Nurses,
Hospital and Cloud server.

o Patients: As the data owner, they would like to store
the collected vital signal data from wearing IoT devices
on the cloud server. First of all, the collected data is
periodically integrated into PHR files by honest IoT
gateway. Then, IoT gateway constructs secure index and
encrypts each attribute value of each file. Finally, the
secure index and the set of encrypted PHR files are both
uploaded to the cloud server.

o Doctors and Nurses: As the data users, they would like
to search some patients’ personal health information or
do research on a certain kind of disease. They require to
generate the search trapdoor corresponding to the search
keyword. And then send the trapdoor to the cloud server.
For convenience of description, we use users to represent
doctors and nurses in the next section.

e Cloud server: After receiving the trapdoor, the cloud
server performs search operations based on the secure
index. And then it judges whether the user has access to
the attributes of matched files. Finally, the cloud server
returns the matched value that user is allowed to access.
In addition, cloud server is assumed to be honest and
curious. It honestly executes the search operation, update
operation and returns the correct file set containing the
search keyword to user. However, the cloud server is
curious about the contents of files. It desires to get more
valuable knowledge from the received data.

o Hospital: Hospital is responsible for generating the en-
crypted/decrypted keys of PHR files. Only patients and
users authorized by the hospital are able to encrypt or
decrypt files.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL., NO., 2021

TABLE I: Notations and Descriptions

Notations Descriptions

DB The PHR files database

EDB The encrypted PHR files database

A The secure parameter

w The keyword

tw The trapdoor

ATT The set of attribute AT'T = {att1, atta, ..., attn}

att The attribute

n The number of attributes

w The keyword set W = {Watt,, Watta, -}

4% The total number of keywords included in W

Watt The keyword set related to the attribute att: Waey =
{w1, w2, ..., w;, ...}

[Watt| The number of keywords included in Wt

ste The latest state

bs The identifier of PHR file

Vis,att The value corresponding to the attribute att in bs

Chs,att The encrypted value set corresponding to Vs a¢¢

att,w The value set corresponding to the attribute att

including keyword w

Catt,w The encrypted value set corresponding to Vatt,w

DB(w) The set of files containing keyword w

DB(u,att) The set of files in which user u is allowed to access
attribute att

Rys The encrypted files corresponding to bs

m The largest number of files

TABLE II: Attribute-value type database

Value Attribute

atty atto atts att,,
In
indy Vi Vio 1 Vin
indo L V2,2 V2,3 V2,n
mndm Vm,l Vm,2 Vm,B Vm,n

B. Design Goals

The following requirements should be satisfied in the pro-
posed scheme.

o Searchability. The proposed scheme should support key-
word search and condition search. Compared with other
DSSE schemes, the proposed scheme should allow user
to obtain an attribute value of the file.

o Dynamic update. The proposed scheme should be able to
dynamically update users and files.

o Forward security. A newly updated trapdoor cannot be
linked with previous search trapdoors in the proposed
scheme.

o Attribute access control. In PHR files, some privacy
information (i.e., ID number, mobile phone number, home
address) is very important for patients, which should not
be allowed to access arbitrarily. The proposed scheme
should support different users have different access au-
thorities to attribute values.

o Privacy preserving. The proposed scheme should ensure
that the meaningful knowledge from the encrypted PHR
files and the stored secure index are not known by the
cloud server, except for permitted leakage.

« Efficiency. The cloud server should efficiently return the
matched search results to the user.

C. Notations

The common notations in this paper are described in Table
L.

D. Personal Health Record(PHR)

We show a simple attribute-value type database for PHR
in TABLE.IL. In such a database, each row represents a PHR
record(file) identified by a unique identifier. Each PHR has
multiple attributes and each attribute corresponds to one value.
If the PHR does not contain one attribute, the corresponding
value is set to 1. As shown in TABLE.II, there are m
records, n attributes and each attribute of each record has a
corresponding value. For record indy, the value of att; is V7 ;.
The value of atts is L, which represents the record ind; does
not contain the attribute atts. In addition, the same attribute
for different records may have the same value.

E. Bitmap Index

Bitmap index: Assume there are total m files at most. In
our scheme, the file identifier is denoted by bitmap index that
actually is a bit string with m bits. We set the bits of bitmap
from the right to the left. If the file f; exists, we set the ¢-th bit
of the bitmap to 1; otherwise, set it to 0. We show an example
with m = 4 shown in Fig. 2. Suppose that there exists one file
f1 (Fig. 2.(a)) initially. When a file f5 is added, we require to
produce a bit string 22 = 0100 and XOR with the original bit
string (Fig. 2.(b)). If the file f; is deleted, we also require to
produce a bit string 2* = 0010 and XOR with the original bit
string (Fig. 2.(c)).

fi 0010 0110
| ® ®
OCT) ? 0100 0010
f 0110 0100
(a) (b) (c)

Fig. 2: Bitmap index

III. CONSTRUCTION OF OUR WORK

In this section, we describe the constructed PPDSSE scheme
in detail.

Update

H,@,|st,) H,(z, | st,) H\@,|lst.,) H,(@,|lst)
H,y(t, || st,) H,(2,|5t,) CHy(, || st,) H,(t, |5t
()) (&)]

L] bs, sty || bs, st ,||bs.., sty || bs.

Fig. 3: Secure index

A. The Detailed Construction

The proposed scheme makes the definition of II = {Setup,
BuildIndex, Update, Search, Dec}. First of all, we illustrate
some used symbols and functions: f,g,y, are pseudo-
random functions; Hy, Hy are hash functions. We use A to

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL., NO., 2021

denote the secure parameter for secret keys and the bit length
of state. We use p, [, 7, ¢ to denote the output length of
pseudo-random functions. Let m be the maximum number of
files that scheme can support. Namely, the length of bitmap
index is m. Hash function H; and Hs are both used to encrypt
the trapdoor and the state. So we use [+ A to denote the
input length of hash functions and use <y to denote the output
length of hash function H;. Because the output of Hs requires
to XOR with previous state and bitmap index, the output
length of Hs is m + A. We use {0,1}* to denote the set of
bit strings with arbitrary length. Let k,,, k1 and k3 be the
secret keys with A\ bits for pseudo-random functions f,y, ¢
respectively. Let k,, be the secret key with ¢ bits for pseudo-
random function g. These functions are defined as follows:
fo 40,1} x ky, — {0,1Y, g ¢ {0,1} x ky, — {0,1},
y o {0,1} x k1 — {0,1}", ¢ : {0,1}" x ko — {0,1}°,
Hy {0, 11" - {0,1}7, Hy : {0,137 = {0,1}™"*. The
detailed algorithms in the proposed scheme are described as
the following:

Setup(1*): Input a secure parameter \ to generate a key set
{k1, ka2, ks, ky, }. Specially, ki, ko is used to encrypt attributes;
ks is used to encrypt search keyword; k,, is the secret key of
user u;, which is used to encrypt the user’s identification and
the accessed attribute. The hospital generates a symmetric key
k. used to encrypt/decrypt files. Only patients and users with
hospital authorization can get the symmetric key k. to encrypt
or decrypt files.

Algorithm 1 Setup

Input:

Output:
Patient:

1: k?17 k27 k57 kui — {07 1})\;
Hospital:

2: ke + SKE.Gen(1*);

3: Return K = {k1, k2, ks, ku,;, ke}.

The security parameter .
The secret key set K.

BuildIndex(K,DB; 1):

1) Scan the PHR file database DB to extract
different keywords and construct keyword = set
W={Wau, }, {Warts }, -+, {Wae, } 3

2) Each attribute value of each PHR file is encrypt-
ed separately using symmetric encryption primitive
Cbs7att=SKE-Enc(kea %s,att);

3) In order to improve search efficiency, initialize an empty
map 7. The map T is used to construct the secure
index in the form of dynamic list with two columns.
The first column is used to store newly updated trapdoor
information and the second column is used to store newly
updated PHR identifier information. One new row will be
added into secure index for each update. Fig. 3 shows the
secure index of the keyword w of attribute att. The secure
index has been updated c times. It is stored on the cloud
server;

4) Initialize an empty map ¥ which is a dynamic list with
two rows to map the relation between keyword and the
latest state. The first row is used to store keyword and
the second row is used to store the latest state. A new
row will be added into > when a new keyword is added.

It is stored by patients and users;

5) Initialize an empty map A to map the relation between
user’s identifier information and user’s attribute access
authority. The map A is a dynamic list with two columns.
The first column is used to store user’s identifier and
access attribute information, and the second column is
used to store user’s attribute access authority. User’s
attribute access authority is represented by bit string. If
the user is allowed to access this attribute of the PHR,
the corresponding PHR position is set to 1, otherwise is
set to 0. We will add (delete) n rows in A when a user
is added (deleted). It is stored on the cloud server.

Algorithm 2 BuildIndex

Input: The PHR file database DB.
Output: The keyword set W, encrypted PHR file and empty maps T, 2
and A.

IoT gateway:
. for each att € ATT do
for each bs € DB do
Extract keyword and construct keyword set Wt
Cbs,att = SKE-EnC(kea ‘/bs,a,tt);
end for
end for
: Initialize three empty maps 7', ¥ and A.
: Return W, {Cps s+ }, T, 2 and A.

e el

Algorithm 3 Update s

Input: The secret key set K, the file identifier bs, the attribute att, the
keyword w, the state st. and user u;.
Output: The latest state st.1, the index location v and the update index
information e.
Patient:
{t} « 0;
: ste + X[att||w], katt <+ yi, (att);
kw 4 @, (att), tw < g, (W);
if st. = L then
st1 + {0,1}*, v < H (tw||st1);
e < Ha(twl|st1) ® (L]|bs);
else
Ster1 + 0,1}, v < Hy (tw]|ster1);
e < Ha(twl|ste+1) D (ste]|bs);
10: end if
11: S[att||w] < stet1;
12: for all users u; allowed to access attribute att do
13: t; fku,- (uiHatt), {t} — {t} Ut
14: end for '
15: Send (v, e, {t}, bs) to the cloud server.
Cloud server:
16: T[v] < e;
17: for t; € {t} do
18: z 4+ Alt;] @ bs, Alti] + =z
19: end for
20: Return 7', A.

R AR A

Update(K, bs, att,w, st; EDB, u, A): When the patient wants
to update (i.e.,add or delete) a file bs which includes the value
of attribute att containing keyword w. She/He firstly encrypts
the attribute att to generate a key k,, which is used for
encrypting the keyword w to generate the update trapdoor %,,.
Forward security requires the update trapdoor cannot match
previous search trapdoors. Therefore, for achieving forward
security, the trapdoor should be updated when an update
happens. The patient randomly chooses A bit string as a new
state to generate a new location in the index 7'. The generated
new index information is stored in the newly updated location.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL., NO., 2021

The previous state is embedded in the newly generated index
information. In addition, attribute access array also needs to
be updated. The update of attribute access array includes two
aspects: one is the update of file; the other is the update of
the user.

« File update. If the user can access the certain attribute
of the update file, the corresponding value of access
attribute in attribute access array A should be updated.
The patient sends the updated file identifier and the
location information to the cloud server. The location
information denotes the entry location of the attribute
that the user is allowed to access in A. According to the
location information of A, the cloud server retrieves the
corresponding value, which is performed XOR operation
with the updated file identifier. The array A is updated in
this way.

« User update. If the user u; leaves the hospital, the user u;
cannot to access the files in [IoTH system any more. The
hospital should revoke all access authorities of the user
u;. All entries associated with the user u; are deleted from
A by the cloud server. If the user u; joins the hospital, the
hospital authorizes the user u; to access certain attributes
of PHR files. Attribute entries associated with the user u;
should be added into A by the cloud server.

Algorithm 4 Update,,

Input: The secret key Ky, , kuj, the added user identifier u;, the allowed
access attribute att; and the deleted user identifier u;.

Output: The updated information {a}, {d}, {bs}.
Hospital:
1: {d}v{a}a{bs} — 0
2: for att; € ATT do
3 ai = fi,, (willatty), di = fr, (ujllatt);
4: {a} + {a} Ua;,{d} + {d} U d;;
S: The corresponding bit positions of the files that can be accessed are

set to 1 and the remaining are set to 0, generating bs;;

{bs} « {bs} Ubs;

: end for

8: Send ({a}, {bs}, {d}) to the cloud server.
Cloud server:

9: for a; € {a},bs; € {bs} do

10: Alas] < Ala;] @ bs;;

11: end for

12: for d; € {d} do

13: Remove A[d;];

14: end for

15: Return A.

2o

Keyword Search(K, att,w, st.; EDB,T, A): When the user
wants to search the value of the certain attribute containing an
interested keyword, she/he needs to encrypt the search attribute
and the keyword to generate search trapdoor. Then she/he
sends the search trapdoor ¢,,, the encrypted attribute kg, and
the latest state st. to the cloud server. The latest state can
be got from the state list X. When the cloud server receives
above information, it is able to compute the location in secure
index T based on the search trapdoor and the latest state st..
The cloud server can obtain all previous states and bitmap by
decrypting the index information corresponding to the index
location. Finally, the cloud server XORs the bit map bs; to get
the final result sum., which is composed by the identifiers of
all files containing the search keyword. Specially, in order to
save storage space of the cloud server, after each search, the

Algorithm 5 Keyword search

Input: The secret key set K, the latest state st., the attribute att, the
search keyword w and the user identifier u.
Output: The search result bs.
User:
: ste + X[att||w];
. if st =1 then
Return @;
else
katt < Yk, (att), kw < Pko (att);
tw < g, (w). s fr,, (ulfatt):
end if
. Send (kqtt, Ste, tw, S) to the cloud server.
Cloud server:
9: sume < 0, st < st¢;

10: while st. #L do

11: v+« Hi(twl||ste), e < T[v];

12: (ste—1]|bs) + e ® Ha(twl|ste);

13: Ste «— Ste—1;

14: SUMe < sume @ bs;

15: Remove T'[v];

16: end while

17: T[] < Ha(twl|st) @ (L]|sume).

18: z + sume A Afs];

19: for (i = 0;i < m;i+ +) do

20: if (2[i]=1) then

21: The search result r[i] = 1, other m — 1 bits are 0.

22: The file identifier obtained above is used to locate the row and
the encrypted attribute k4 to locate the column in the PHR files
database. The intersection of the row and column is the search
attribute value.

A

23: ri] < 0;
24: end if
25: end for

26: Send the encrypted attribute value C' ¢t to the user.

cloud server removes the entries related to the search keyword
and stores the final result sum, corresponding to the current
state st. in the secure index. Different users have different
access authorities to the attributes of files. In order to achieve
fine-grained access control, we construct a dynamic list with
two columns. The first column is user’s information that is
obtained by encrypting user’s identifier and accessed attribute,
and the second column is access authority information that
indicates which PHRs contain the attribute the user can access.
Access authority information is represented by bitmap index.
Specially, the length of bitmap index is equal to the maximum
number of records that the scheme can support. If the user has
access authority to the attribute of the PHR, the corresponding
bit position is set to 1, otherwise is set to 0. In order to
implement fine-grained access control, the user only needs to
send the user’s information generated by encrypting identifier
and accessed attribute with his/her own private key to the
cloud server. After searching PHRs containing the interested
keyword based on the trapdoor, the cloud server needs to judge
whether the user can access the attribute of PHRs. It performs
AND operation on the access authority corresponding to user’s
information in A and the search result sum, (Algorithm 5,
lines 22-29). The bit position 1 of the result indicates that
the user has the access authority to the attribute of the file;
otherwise, does not have. In this way, the cloud server can
judge whether the user has access to PHRs or attributes.

Condition Search(K,att',att,w, st.; EDB,T, A): When the
user would like to search the value of another attribute att’ on
the matched condition that the attribute att contains the search

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL., NO., 2021

keyword w, the user generates the trapdoors by encrypting
keyword w contained in attribute att value and attributes
att’. Especially, the key for encrypting the keyword w is
obtained by encrypting attribute att. And then the user sends
the trapdoor to the cloud server. The cloud server searches
for finding the file identifiers by using the trapdoor of the
keyword w contained attribute att value. It firstly locates the
corresponding row in the encrypted PHRs database, and then
locates the corresponding column by the trapdoor of attribute
att’. The intersection of the row and the column is the value
of searched attribute.

Dec(ke,Cy q1¢): When the user receives the encrypted value,
he/she decrypts the encrypted value with symmetric encryption
key by computing V. 441 < Dec(ke, Cratt).

B. A Toy Example

In order to help reader better understand, we analyze a
simple example to illustrate the scheme.

TABLE III: an example of attribute-value type EHR files

Ind Name | Gender Allergy Symptom

0001 Alice Female 1 Cough, runny nose, sore throat
0010 Bob Male Penicillin | Fatigue, stuffy, fever, headache
0100 | Alice | Female 1 Stomachache
Assume the largest number of files is 4 (i.e., m = 4).

We take Table IIl as an example. As shown in the Table
III, there are three files and four attributes. Each entry is
identified with a unique bit string and the attribute set is
ATT={Name, Gender, Allergy, Symptom}. Suppose one
doctor (i.e., ug) and one nurse (i.e., u,,) can access the PHR
database. They both can access attributes Name, Gender and
Symptom. But only one of them can access Allgery allowed
uq. Now, we construct the secure index and the attribute access
array based on the attribute-value type database. Note that we
have illustrated only one of these attributes (i.e., Name) in
detail.
1) Constructing secure index T’
o Extract keywords for each attribute to generate
keyword set W:
Wz{WNamea WGender7 WAllgery; WSymptom}s
where Wxame = {Alice, Bob} et al.;
o Construct the file set containing keyword:
DB(Alice) = {0001,0100}, DB(Bob) = {0001};
o Encrypt attribute: kngme1=yr, (Name),
kNam62=S0k2 (Name);
o Encrypt keyword: tajice = Gknon.s (Alice),
tob = JkName2 (BOb)7
o For each update, choose a bit string as new state
ste + {0,117
o Encrypt each attribute value in PHR files database:
Cbs,att = SKE.ETLC(/CE, %s,att)-
2) Constructing the attribute access array A
o Build the set of files for attributes that each
user can access: DB(uq, Name) = {0111},
DB(uq4,Gender) = {0111}, DB(ugq, Allergy) =
{0111}, DB(uaq, Symptom) = {0111}. User w,, adopts
the same method to generate D B(u,,, att).

The secure index for the attribute Name is shown in Fig. 4.(a).
The attribute access array A is shown in Table IV. In addition,
patients and users need to store a state array X containing the
latest state of each keyword for each attribute. We show it in
Fig. 4.(b). We give a simple example of condition search to

TABLE IV: Attribute access array A

User information Access authority
fk'u.d (ug, Name) 0111
fkud (ug, Gender) 0111
fkud (ug, Allergy) 0111
fk'u.d (ug, Symptom) 0111
Tk, (Un, Name) 0111
fky,, (un, Gender) 0111
Tk, (un, Allergy) 0000
Tk, (Un, Symptom) 0111
Update Update
H (€ e 1 51,) H(e I 515) H\(ty,,lst) Keyword | Latest state
a a @ Name||Alice st,
Hy(@ e |1 511) Hy(@ e 11 51,) H; (305 11 51) Name][Bob st
® ® ®
1//0001 51,1010 1]]0010
(a) (b)

Fig. 4: Secure index and state array

illustrate the search process. Assume doctor 1 desires to know
the allergy of Alice. That is to say, u, wants to search the value
of Allergy on the matched condition that Name = Alice.
First, ug needs to generate search trapdoors:
tAlice = IkName (Alice)7kName = Pk, (Name)akAllergy =
Yk, (Allergy). And then sends the search trapdoors and the
latest state sto for keyword Alice to the cloud server. Second,
when the cloud server receives above information, it gets
the location in the index T' by computing H1 (f azice||st2). In
this way, the cloud server can get file identifiers containing
the keyword Alice: 0100 & 0001 = 0101. Third, the cloud
server needs to know whether user ug can access the
attribute Allergy of files 0101. The cloud server receives
the information s = fy, (ua, Allergy) from ug. It is able to
search A[s] (i.e., A[s] = 0111). We have A[s] A 0101 = 0101.
It means wug, is allowed to access the Allergy of file
0001 and file 0100. Finally, the cloud server searches the
corresponding attribute value from the encrypted database
in Table III and then returns cooo1, altergy=SKE.Enc{ke, L},
COlOO,AllergyZSKE-EnC{ke,J—} to uq.

IV. SECURITY ANALYSIS.

The proposed scheme satisfies the security definition of
secure searchable encryption [7]. The update query does not
leak the updated keywords, which makes the proposed scheme
satisfy the definition of forward security [24].

Theorem 1: Suppose y,p and g are PRFs, and H;
and H-, are Hash functions. Leakage functions £ =
(Lsetup, LUpdates LSearcn) can be defined as follows:

ESetup = (J—)a
ﬁUpdate(ivbSi,w) = (ivbsi)» (1)
ESearch(att7 w) = (Sp(’lU), ap(w))’

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL., NO., 2021

where sp(w)={i|for each query (i, w)} denotes search pattern,
ap(w) = {t1, 12, ..., to} denotes access pattern, t; = {¢, DB;}
denotes the search query and ¢; = {i,bs; } denotes the update
query. Then our proposed scheme is an £ — adaptively —
secure SSE scheme with forward security.

Proof. We prove this Theorem through a series of games.
Starting from Real}}‘()\), we give total five games. Any game
except the first is lightly different from the previous one.
We will show these games are indistinguishable. The final
game is Ideal'; 5()\). Therefore, we know Real'j(}) is in-
distinguishable from Ideali s(A) according to the property of
indistinguishability.

Game G;: G has no difference with Real';(\) except that
instead of using y to generate k. and using g to generate
t., the game uses maps Token; and Token; to store (w||t,,)
and (att||kqtt) pairs respectively. When ¢,, needs to be used
in the search algorithm, the game first checks whether Token;
contains an entry related to w. If the entry related to w can be
found, the game returns t,,; otherwise, an [bit string is chosen
randomly and stored in Token; in the form of (w,t,,) pairs.
When k. needs to be used in the search algorithm, the game
does the same as that for searching ¢,,. The adversary cannot
distinguish pseudo-random functions g, ¥ and truly random
functions.

Pr[Real'{(\) = 1]-Pr[G; = 1] < Adv()).

Game G5: (G5 has no difference with (G; except using random
oracle to replace H; to generate u. In Gg, for each update
query, we randomly choose a string from {0, 1}" as the update
trapdoor and store it in the map L. For each search query,
we randomly choose a string to perform the random oracle
H; such that H;[(t,]||stc)]=Lltw]||stc]. In G2, ¥ requires to
maintain all states since the execution of the random oracle
requires all states of search keyword. If A makes a query on
H; using t,||ste+1, a value u’ will be returned to A. It is very
likely that «’ # u. The reason is that L[t,,||st.+1] hasn’t been
added to H; and v’ is a string randomly picked by the oracle.
If the adversary A would like to query H; with ¢,,]||st.+1, the
adversary A needs to guess the state st.1, and the probability
is 1/2* for the reason that each state is randomly chosen from
{0, I}A. Suppose a PPT A can make poly()) times queries at
most, we have

Pr(Gs = 1-Pr(Gy = 1] < p()/(2* + neg(M).

Game G3: G3 has no difference with G5 except that instead
of using H» to generate e, Ho is modeled as a random oracle.
Thus, we have

Pr[G3=1]-Pr[Go=11< p(A\)/(2* + neg(N)).

Game G,4: G4 has no difference with G3 except that in Gy,
the number of update is recorded by a counter v and the
update requests after the last search are recorded by a map
up. The counter v is set to 0 in the Setup algorithm. For each
update, v is increased by 1. In G'3, adversary queries random
oracle by t,]||st.+1. In contract, the random oracle is chosen
at random without knowing st in G4. For each update, cloud
server receives two random strings in G5 and Gy4. Thus, it is
impossible for adversary to distinguish G35 and G4. For each

search, cloud server receives four random strings and does the
same as that in G3. From the view of adversary A, what it
sees in G4 and that in G3 are distinguishable.

Pr[G4=1]-Pr[G3s=1]=0.

Idealg, s(A): The Idealg, s(A) game has no difference with
G4 except using sp(w) and uh(w) to replace actual searches
and updates, where uh(w)={(j, bs;)|q; = (j, bs;j, w)(1 < j <
@)}. The simulator S keeps two maps used to simulate random
oracle queries and uses a counter to store the update number.
For each update, S randomly chooses two strings. In the search
algorithm, w = min SP(w) is used to denote the first index
of w that was in the SP(w). It is because the trapdoor t,,
can be generated by w. S can use uh instead of up in Gy
to decide the update queries about keyword w. The simulator
S generates the view that is difficult to be distinguished from
the one generated in Gj.

Pr(Ideal’; s(\)=1]-Pr[G, = 1]=0.
From above all, we have

Pr[Real’ (\)=1]-Pr[Ideal’} s(\)=1]< negl(}).

V. EXPERIMENTAL EVALUATION

In this section, we make comparison of functions with
other SSE schemes and analyze the performance of proposed
scheme with real-world database by experiments.

A. Functional Comparison

As we can see in TABLE V, only our proposed scheme
can simultaneously achieve keyword search, condition search,
file update, user update, forward security and attribute access
control.

TABLE V: Functional comparison of various schemes

Properties [8]1 | [21] | [25] | [28] | [29] | Our scheme
Keyword search v/ v/ v/ v/ N N
Condition search X X X X X N

File update X v/ v/ v/ N N

User update X X v/ X N N
Forward security X X v/ N X N
Attribute access control | X X X N N N

B. Performance Analysis

Experiments are run on a Linux OS equipped with 2.4GHz
Intel(R) Core(TM) i5 CPU 4GB RAM and 2GB RAM, which
are used to simulate cloud server, user and IoT gateway.
We use JAVA language on the Indian Liver Patient Dataset
(ILPD) dataset from the popular medical dataset [30]. The
ILPD dataset includes 583 instances and 11 attributes. We
instantiate pseudo-random functions f, g, y, ¢ with MDS5, hash
functions H; with SHA-1, Hy with SHA-256 and SSE with
AES. So the values of u, [, n and ¢ are 128, the value of
~ is 160, the value of X is 80 and the value of m is 176.
Note that in our system, wearing devices are used to collect
patients vital signs. After that, these collected vital signs are
integrated into Personal Heath Records through IoT gateway.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL., NO., 2021

. ~#=Our scheme [28], 0

35| ——p29)

30
£25
€20
515
210
5

== Our scheme
35 |——p29)

281

40
|——Our scheme —— [28]
5 |——[29]

itio)

neration/ms
N6 w
S & &

gene
B

er
The time of trapdoor

The time of trapdoor
The time of trapdoor
i
N
8

gel
@

100 600

600 5 10 15 20 25 30 35
The number of attributes

Fig. 6: The time of
trapdoor generation

i

o
100 200 300 400 500
Tha Rumber of Keywards.

Fig. 12: The time

100 _200 300 400 500
The number of keywords

200 300 400 500
The number of files

Fig. 7: The time of
trapdoor generation

Fig. 5: The time of
trapdoor generation

The humber of matehing valdes

Fig. 11: The time

@
g
8

The time of search/us
= »
8

0| e

0 100 200 300
The number of matching values

Fig. 13: The time

of search of search of search
N 4000 —_ 5000 .
éssoo oo Eas00 5=

N
S

3 4000 f————eo |
£ 3500
23000
5 2500
2 2000
= 1500
£ 1000

500

23000
3
32500
22000
]
1500
E1000
2 500
=

@

5

o

The time of search/ms

0
0 100 200 300 400 500
The number of matching files

u1 10 20 30 40 50 60
The number of update keywords

Fig. 18: The time
of updates

Fig. 19: The time
of updates

Fig. 17: The time
of search

Our scheme mainly realizes search, dynamic update, forward
security and attribute access control based on these Personal
Health Records. Collecting data is not the focus of our scheme.
Therefore, wearing devices are not involved in our experi-
ment. We use a constrained platform (i.e., 2.4GHz Intel(R)
Core(TM) i5 CPU 2GB RAM) to simulate IoT gateway. In
order to evaluate the performance of our scheme, we also make
comprehensive comparisons with existing schemes [31, 32].

Efficiency of trapdoor generation. When a user (i.e.,
doctor or nurse) wants to search attribute value containing
an interested keyword, she/he generates a search trapdoor and
sends it to the cloud server. In order to evaluate the efficiency
of trapdoor generation, we show trapdoor generation time
according to different numbers of keywords, attributes and
files, respectively. As shown in Figs. 5,6,7, the time of trapdoor
generation is nearly constant, which is about 0.5 us. Therefore,
the time of trapdoor generation is not related with the numbers
of keywords, attributes and files. In addition, compared with
schemes [31, 32], our scheme is much more efficient for
trapdoor generation. Scheme [32] is the least efficient in these
three schemes because it involves public key encryption.

Efficiency of Search. In the proposed scheme, the cloud
server needs to search based on the secure index and attribute
access array. In Figs. 8-15, we show the relationship between
the time of searching index 7" and the number of keywords,
the number of attributes and the number returned matched
values, respectively. To enhance the accuracy, we repeat 10
times for each experiment and take the average. We show how
the number of attributes and the number of matched values
impact on the search time when the number of keywords

12 4 6 8 10 12
The number of update attributes

,3000
22500 | 200 B4
3
$2000
@
451500

3000
2500
2000
1500
1000

The time of searches/us

@
S
o 8

L] 10 15 20 25 30

il‘he mlmber of attrlb 5 30 Thegumbel'ogl matzc‘%\niing v%aolges The number of attributes
Fig. 8: The time Fig. 9: The time Fig. 10: The time
of search of search of search

@
g
S
g

o [5200 o
100 [N 300 (28]
Our scheme

§3u

2500 £

o
S
2
8

1500

000
500

The time of search/us

100 200 300 500
The number of matchlng ﬁles

Fig. 16: The time

0
100 200 300 400 500 600
The number of keywords

Fig. 14: The time

The number of matchlnq values

Fig. 15: The time

of search of search of search
0 22 [~—ourschoms] 20 awrioom0]
% 18] 29 1811 200110000
2 16— p28) 16 {|—— 100150000
1 14 |[——200/50000|
1
1

The time of updates/s

The time of upda

600 10 60
e namber of updste atifbutes

Fig. 22: The time
of updates

0
10, 200 30 00 500
e Aumber of updated uters

Fig. 21: The time
of updates

10 20 30 40 50 60
The number of update keywords

Fig. 20: The time
of updates

is unchanged in Fig. 8 and Fig. 9, As shown in Fig. 8, we
use different colors to represent different numbers of matched
values. When the number of keywords and the number of
attributes are unchanged, the search time increases with the
number of matched values increasing. As shown in Fig. 9, we
use different colors to represent different numbers of attributes
contained in PHR database. When the number of keywords and
the number of matched values are unchanged, the search time
is almost unchanged even if the number of attributes increases.
We show how the number of attributes and the number of
matched values impact on the condition search time when the
number of keywords is unchanged in Fig. 10 and Fig. 11. We
can observe the experimental result is similar with previous
analysis.

We show how the number of keywords and the number of
matched values impact on the search time when the number
of attributes is unchanged in Fig. 12 and Fig. 13. As shown
in Fig. 12, we use different colors to represent different
numbers of matched value. When the number of keywords and
the number of attributes are fixed, the search time increases
with the number of matched values increasing. In Fig. 13,
we use different colors to represent the different numbers of
attributes. When the number of attributes and matched value
is unchanged, as the number of keywords changes, the search
time is almost unchanged. Finally, we show how the number
of keywords and the number of matching values impact on
the condition search time when the number of attributes is
unchanged in Fig. 14 and Fig. 15. Moreover, we compare the
keyword search efficiency and the condition search efficiency
of our scheme with those of schemes [31, 32]. As shown

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL., NO., 2021

in Fig. 16, the keyword search efficiency of our scheme is
obviously better than schemes [31, 32]. Since the scheme
[32] cannot realize condition search, we only compare the
condition search efficiency of our scheme with scheme [31].
As presented in Fig. 17, the condition search efficiency of our
scheme is obviously better than scheme [31].

Efficiency of secure index update. In Fig. 18 and Fig. 19,
we show the time of secure index update. The maximum
number of files is set to 10000 and 50000 in these two
figures, respectively. We show how the update time changes
when the number of attributes is fixed and the number of
keywords changes in Fig. 18. As the number of updated
keywords increases, the update time increases. We show how
the update time changes when the number of update keywords
is fixed and the number of attributes changes in Fig. 19. As
the number of update attributes increases, the update time is
almost unchanged. However, when the largest number of files
increases, the update time increases. We compare the update
time of our scheme with those of schemes [31, 32], Fig. 20
shows that the update time of scheme [32] is much more than
that of our scheme and scheme [31], and the update time of
our scheme is almost the same as that of scheme [31].
Efficiency of attribute access array update. In Fig. 21
and Fig. 22, we show the time of attribute access array
update. In Fig. 21, we show how the number of update
users impacts on the update time. Legend n/m denotes the
number of attributes/the allowed largest number of files in
the scheme. With the number of updated users increasing,
the update time increases linearly. We show how the number
of added attributes impacts on the update time in Fig. 22.
Legend n/m represents the number of added users/the allowed
largest number of files. With the number of added attributes
increasing, the update time increases linearly. Moreover, we
can observe that the update time increases when the allowed
largest number of files increases.

VI. CONCLUSION

In this paper, we explore how to achieve forward-secure
privacy-preserving search based on keyword for IIoTH system.
We propose the first DSSE scheme that can be well applied
into PHR files database and resist file injection attacks. In
order to achieve the design goal, we construct the secure
index based on hash chain and realize fine-grained search on
the database of attribute-value type. In addition, we achieve
efficient access control to protect the privacy of patients’ PHR
files in our scheme. The detailed security analysis and exper-
iments illustrate the security and efficiency of our scheme.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant 61572267; in part by
the Joint Found of the National Natural Science Foundation of
China under Grant U1905211; in part by the Major Scientific
and Technological Innovation project of Shandong Province
under Grant 2020CXGCO010114; in part by the Key Research
and Development Project of Qingdao under Grant 21-1-2-21-
XX; and in part by Guangxi Key Laboratory of Cryptography
and Information Security under Grant GCIS202101.

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

REFERENCES

F. Farshad, A. Rahmani, K. Mankodiya, M. Badaroglu, G.V.
Merrett, P. Wong, and B. Farahani. Internet-of-things and big
data for smarter healthcare: From device to architecture, appli-
cations and analytics. Future Generations Computer Systems,
78:583-586, 2018.

L. Yang, Q. Zheng, and X. Fan. RSPP: A Reliable, Search-
able and Privacy-Preserving e-Healthcare System for Cloud-
Assisted Body Area Networks. In IEEE Conf. Comput. Com-
mun.(INFOCOM), pages 1-9, 2017.

G. Yang, L. Xie, M. Mantysalo, X. Zhou, Z. Pang, L. D. Xu,
S. Kao-Walter, Q. Chen, and L. Zheng. A Health-IoT Platform
Based on the Integration of Intelligent Packaging, Unobtrusive
Bio-Sensor, and Intelligent Medicine Box. IEEE Transactions
on Industrial Informatics, 10(4):2180-2191, 2014.

H. Huang, T. Gong, N. Ye, R. Wang, and Y. Dou. Private and
Secured Medical Data Transmission and Analysis for Wireless
Sensing Healthcare System. IEEE Transactions on Industrial
Informatics, 13(3):1227-1237, 2017.

C. Guo, P. Tian, and K. K. R. Choo. Enabling Privacy-Assured
Fog-Based Data Aggregation in E-Healthcare Systems. IEEE
Transactions on Industrial Informatics, 17(3):1948-1957, 2021.
D. Song, D. Wagner, and A. Perrig. Practical Techniques
for Searches on Encrypted Data. In IEEE Computer Society
Symposium on Research in Security and Privacy, pages 44-55,
2002.

E. Goh. Secure Indexes.
2003:216-234, 2003.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable
symmetric encryption: Improved definitions and efficient con-
structions. Journal of Computer Security, 19:895-934, 2011.
D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano.
Public key encryption with keyword search. In EUROCRYPT
2004, pages 506-522, 2004.

Y. Miao, Q. Tong, K. Choo, X. Liu, R. Deng, and H. Li.
Secure online/offline data sharing framework for cloud-assisted
industrial internet of things. IEEE Internet of Things Journal,
6(5):8681-8691, 2019.

Y. Miao, X. Liu, R. Deng, H. Wu, H. Li, J. Li, and D. Wu.
Hybrid keyword-field search with efficient key management for
industrial internet of things. [EEE Transactions on Industrial
Informatics, 15(6):3206-3217, 2019.

Y. Miao, X. Liu, K. Choo, R. Deng, H. Wu, and H. Li. Fair and
dynamic data sharing framework in cloud-assisted internet of
everything. IEEE Internet of Things Journal, 6(4):7201-7212,
2019.

Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang. Enabling per-
sonalized search over encrypted outsourced data with efficiency
improvement. IEEE Transactions on Parallel and Distributed
Systems, 27(9):2546-2559, 2016.

Z. Fu, X. Wu, Q. Wang, and K.Ren. Enabling central keyword-
based semantic extension search over encrypted outsourced
data. IEEE Transactions on Information Forensics and Security,
12(12):2986-2997, 2017.

P. Nadkarni and B. Cynthia. Data extraction and ad hoc query
of an entity-attribute-value database. Journal of the American
Medical Informatics Association Jamia, 7:511, 1998.

P. Nadkarni, C. Brandt, and L. Marenco. WebEAV: Auto-
matic Metadata-driven Generation of Web Interfaces to Entity-
Attribute-Value Databases. Journal of the American Medical
Informatics Association, 7:343-356, 2000.

C. Xu, N. Wang, L. Zhu, K. Sharif, and C. Zhang. Achieving
Searchable and Privacy-Preserving Data Sharing for Cloud-
Assisted E-Healthcare System. IEEE Internet of Things Journal,
6(5):8345-8356, 2019.

Y. Miao, J. Ma, X. Liu, F. Wei, and Z. Liu. m?-abks: Attribute-
Based multi-keyword search over encrypted personal health
records in multi-owner setting. Journal of Medical Systems,
40:246-258, 2016.

IACR Cryptology ePrint Archive,

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL., NO., 2021

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

Y. Miao, R. Deng, X. Liu, K. Choo, and H. Li. Multi-authority
Attribute-Based Keyword Search over Encrypted Cloud Data.
IEEE Transactions on Dependable and Secure Computing,
2019.

Y. Zhang, D. He, M. S. Obaidat, P. Vijayakumar, and K. H-
siao. Efficient Identity-Based Distributed Decryption Scheme
for Electronic Personal Health Record Sharing System. IEEE
Journal on Selected Areas in Communications, pages 1-11,
2020.

S. Kamara, C. Papamanthou, and T. Roeder. Dynamic search-
able symmetric encryption. In Computer and Communications
Security, pages 965-976, 2012.

X. Ge, J. Yu, H. Zhang, C. Hu, Z. Li, Z. Qin, and R. Hao.
Towards Achieving Keyword Search over Dynamic Encrypted
Cloud Data with Symmetric-Key based Verification. [EEE
Transactions on Dependable Secure Computing, 2019.

Y. Zhang, J. Katz, and C. Papamanthou. All your queries are
belong to us: the power of file-injection attacks on searchable
encryption. In the 25th USENIX Conference on Security, pages
707-720, 2016.

E. Stefanov, C. Papamanthou, and E. Shi. Practical Dynamic
Searchable Encryption with Small Leakage. Network and
Distributed System Security, pages 1-15, 2013.

R. Bost. Y o¢os: Forward Secure Searchable Encryption. In
Computer Communications Security, pages 1143—-1154, 2016.
X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao. Forward
Private Searchable Symmetric Encryption with Optimized I/O
Efficiency. IEEE Transactions on Dependable and Secure
Computing, 17(5):912-927, 2019.

C. Zuo, S. Sun, J. Liu, J. Shao, and J. Pieprzyk. Dynamic
Searchable Symmetric Encryption with forward and stronger
backward privacy. European Symposium on Research in Com-
puter Security, pages 283-303, 2019.

H. Li, Y. Yang, Y. Dai, S. Yu, and Y. Xiang. Achieving secure
and efficient dynamic searchable symmetric encryption over
medical cloud data. IEEE Transactions on Cloud Computing,
8:484-494, 2020.

M. Li, S. Yu, K. Ren, and W. Lou. Securing Personal Health
Records in Cloud Computing: Patient-Centric and Fine-Grained
Data Access Control in Multi-Owner Settings. In Security and
Privacy in Communication Networks, pages 89-106, 2010.
UC Irvine Machine Learning Repository. http://archive.ics.uci.
edu/ml/index.php.

S. Li, C. Xu, Y. Zhang, X. Wen, K. Chen, and J. Ma. Efficient
data retrieval over encrypted attribute-value type databases in
cloud-assisted ehealth systems. IEEE Systems Journal, pages
1-12, 2021.

P. Xu, S. He, W. Wang, W. Susilo, and H. Jin. Lightweight
searchable public-key encryption for cloud-assisted wireless
sensor networks. IEEE Transactions on Industrial Informatics,
14(8):3712-3723, 2018.

Yaru Liu received the BE degree in information
science and engineering from Shandong Normal
University, in 2018. She is currently working toward
the masters degree in computer science and technol-
ogy at Qingdao University. Her research interests
include cloud computing security and searchable
encryption.

Jia Yu received the BS and MS degrees from
the School of Computer Science and Technology,
Shandong University, in 2000 and 2003, respectively,
and the PhD degree from the Institute of Network
Security, Shandong University, in 2006. He was a
visiting professor with the Department of Computer
Science and Engineering, The State University of
New York at Buffalo, Buffalo, NY, from 2013 to
2014. He is currently a professor with the College of
Computer Science and Technology, Qingdao Univer-
sity. His research interests include cloud computing

security, key evolving cryptography, digital signature, and network security.

Jianxi Fan received the BS degree in computer
science from Shandong Normal University in 1988,
the MS degree in computer science from Shan-
dong University in 1991, and the PhD degree in
computer science from City University of Hong
Kong, China, in 2006. He is currently a professor of
computer science in the School of Computer Science
and Technology at Soochow University, China. He
visited as a research fellow in the Department of
Computer Science, City University of Hong Kong,
Hong Kong (october 2006-March 2007, June 2009-

August 2009). His research interests include parallel and distributed systems,
interconnection architectures, design and analysis of algorithms, and graph

theory.

\/

Pandi Vijayakumar received the B.E. degree in
computer science and engineering from Madurai Ka-
maraj University, Madurai, India, in 2002, the M.E.
degree in computer science and engineering from the
Karunya Institute of Technology, Coimbatore, India,
in 2005, and the Ph.D. degree in computer science
and engineering from Anna University, Chennai,
India, in 2013. He is the former Dean and currently
an Assistant Professor with the Department of Com-
puter Science and Engineering, University College
of Engineering Tindivanam, Melpakkam, India. He

has completed four Ph.D. candidates successfully. He has also authored
or coauthored many quality papers in various IEEE transactions/journals,
ACM transactions, Elsevier, IET, and Springer journals. His current research
interests include key management in network security, VANET security, and
multicasting in computer networks. Till now he has authored four books
for various subjects that belong to the department of computer science and

engineering.

Victor Chang is a Full Professor of Data Sci-
ence and Information Systems, School of Comput-
ing and Digital Technologies, Teesside University,
Middlesbrough, UK, since September 2019. He lead-
s Artificial Intelligence and Information Systems
Research Group at Teesside University. He was a
Senior Associate Professor, Director of Ph.D. and
MRes Programs at International Business School
Suzhou (IBSS), Xi‘an Jiaotong-Liverpool University
(XJTLU), Suzhou, China. He joined XJTLU in
June 2016. He is still a Visiting Researcher at the

University of Southampton, UK. Previously he worked as a Senior Lecturer
at Leeds Beckett University, UK, for 3.5 years. Within 4 years, he completed
Ph.D. (CS, Southampton) and PGCert (Higher Education, Fellow, Greenwich)

while working full time.

