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Biochar has the recognized potential to sequester carbon, facilitate contaminant amelioration and enhance agricul-
tural crop yield. Different types of biochar have different impacts on ecosystems, and those that are produced locally, 
relative to where they will be used, are considered more sustainable. It is important, therefore, to determine how the 
locally produced biochars affect total and functional microbial communities, especially in agronomic contexts. In this 
study we tested the hypotheses that biochar augmentation would: (1) increase plant yield; and (2) differentially affect 
total and functional microbial community composition and structure in bulk vs. rhizosphere (Trifolium pratense) soils. 
Triplicate randomised seedling cells of a 5% (w/w) mixture of sandy clay loam soil (26% clay, 21% silt and 53% sand), 
with/without locally-produced mixed broadleaf forestry biochar, and with/without 0.1 g clover seeds, were sampled 
destructively at 2-week intervals for 8 weeks post clover germination. Microbial DNA of bulk and T. pratense rhizos-
phere soils were analysed with next-generation sequencing of the 16S rRNA gene. The results showed a statistically 
significant increase in plant biomass in response to biochar addition correlating to increased abundances of Armati-
monadetes and Bacteroidetes specifically in the rhizosphere. Although no significant change in overall alpha diversity 
was observed, significant changes in abundance at the genus level were recorded particularly in the presence of 
biochar for a number of recognised nitrogen-fixing and plant growth-promoting bacteria, including those capable of 
indole acetic acid (IAA) production, plant disease suppression and degradation of toxic compounds. We conclude 
that although overall soil diversity may not be affected by biochar addition, key genera associated with soil health and 
nitrogen fixation, such as Pseudoxanthomonas, Variovorax, Pseudonocardia, Devosia, Lysobacter and Hydrogeno-
phaga, increased and facilitated plant growth.
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Neutral and negative impacts of biochar addition have 
also been documented [5, 6, 8]. Therefore, maintaining 
ecosystem functions remains central to the use of 
biochar. The maintenance of ecosystem services can 
be evidenced through microbial community dynamics 
by, for example, characterisation of total communities 
and analysis of unique functional glades such as plant 
growth-promoting bacteria (PGPB) in agricultural soils. 
Most reports on the latter example [9 - 15] have focused 
on inoculated PGPB instead of those indigenous to the 
soil being studied. Additionally, it is crucial to characterize 
the impacts of biochar on major biogeochemical cycles 
such as the nitrogen cycle, particularly in regard to 
the possibility that biochar augmentation can mitigate 
greenhouse gas emission from agronomic soil.

Robust proof of sustained agronomic ecosystem 
services following biochar augmentation can be achieved 
through use of complete study models that assess 
both plant yield and microbial profiles, in parallel. A 
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INTRODUCTION
Biochar – charcoal applied to land to sequester carbon 

and modify soil properties – has attracted considerable 
global research interest due to its unique physico-chemical 
properties and potential to address several contemporary 
challenges. In particular, multiple findings from laboratory, 
pilot and field studies of various time scales have shown 
that biochar has considerable potential to benefit plants 
through: protection against pathogens [1, 2]; and sorption 
of phytotoxic or growth-inhibitory chemical moieties [3], 
with subsequent increased yield of agricultural crops [4 - 
7]). The proposed mechanisms for these benefits include: 
(i) increased water and fertilizer retention; (ii) mitigation 
of nitrogen loss by reduced ammonia (NH3) volatilization; 
(iii) addition and/or retention of soil micronutrients 
such as trace elements; (iv) provision of substrate for 
functional microbial biofilm formation, including as an 
inoculum carrier; and (v) protection of functional microbial 
communities from predation and desiccation. 
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fortuitous observations on shifts in functional microbial 
communities that have the capacity for contaminant 
degradation, or phytoremediation, within the rhizosphere.

In summary, this study explored two hypotheses: (1) 
addition of broadleaf biochar will enhance the yield 
of the red clover as a model crop; and (2) addition of 
broadleaf biochar will lead to an increase in abundance 
and diversity of the bulk and rhizosphere bacterial 
communities, however, bulk and rhizosphere soil may 
respond differently. To interrogate these hypotheses, we 
used next-generation sequencing to profile the structures 
and compositions of the bulk and rhizosphere soil 
bacterial community.

MATERIAL AND METHODS
Soil and biochar properties

Soil (20 kg) was dug from a secured site at Framwellgate 
Moor, County Durham, U.K. (Lat. 53.15° N, Long. 1.59° 
W) and stored in a sterilised 25-litre airtight bucket prior 
to sieving (ASTM - standard soil sieve No 10; 2 mm 
mesh) to ensure homogeneity.  The soil was analyzed for 
% clay, % silt and % sand content (Forestry Commission, 
Surrey, U.K.). The physico-chemical characteristics of 
the soil and locally produced biochar (mixed broadleaf 
forestry pyrolysis – 500°C < T < 600°C; Yorkshire 
Charcoal Company) were also determined (Derwentside 
Environmental Testing Services Ltd, County Durham, 
U.K.) (Table 1; [24]).

Experimental design, sampling and DNA extraction
The experimental protocol consisted of seedling 

trays, maintained at room temperature (ca 25°C), with 
randomized triplicate treatments of: soil only (110 g fresh 
weight); soil + biochar (5% w/w = 50 g kg-1); soil + clover 
(0.1 g Trifolium pratense seeds); and soil + biochar + 
clover (5% w/w biochar and 0.1 g Trifolium pratense 
seeds) where irrigation was maintained via capillary 
action with deionized water. Clover seeds were planted 
in study Week -2 and allowed to germinate for 2 weeks 
with germination recorded as study Week 0.

Triplicate tray cells were then sampled destructively to 
collect bulk and rhizosphere soil every two weeks up to 
Week 8. The plants were harvested and shaken to dislodge 
the bulk soil while the roots were washed subsequently 
in 5 ml sterile saline to collect the rhizosphere soil. The 
rinsates were centrifuged (10 000 x g for 10 minutes), the 

study by Ducey et al. (2013)[16] used non-planted 
laboratory-scale microcosms, greenhouse pot trials 
and field-scale designs to assess functional microbial 
community dynamics in biochar-supplemented soils and 
their controls. Subsequently, increased total bacterial 
diversity and shifts in metabolic potential were recorded 
in the rhizosphere of tomato (Solanum lycopersicum cv 
1125; cv. Taiwan red cherry) and were associated with 
increased resistance to Botrytis cinerea [5] and Ralstonia 
solanacearum [2]. Also, increases in biological nitrogen 
fixation (BNF) were reported for soils planted with 
mash [17], soybean (Glycine max L.) [18] and common 
(Phaseolus vulgaris L.; [19]) bean in response to biochar 
addition. The same increase resulted for mixed pasture, 
with a dominance of Trifolium repens, due to amendment 
with aged biochar. Mia et al. (2018)[20] reported a similar 
trend for a pot study planted with a mixture of clover and 
grass (Lolium perenne). These positive findings were, 
however, based largely on biochemical and physiological 
analyses, including plant tissue characteristics, nodule 
content and mycorrhizae colonization, with no parallel 
microbial profiling.

The aim of our study was to adopt a holistic approach 
by investigating the impacts of biochar on plant yield, 
parallel to its effects on the bulk and rhizosphere bacterial 
communities of planted soil. Red clover (Trifolium 
pratense) was used because it is a well recognised 
model plant in agronomy and soil research, which will 
allow comparisons between our findings to similar 
investigations on biochar application to agricultural soil 
ecosystems. Studies of planted rhizosphere ecosystems 
have largely used straw-based biochar [14, 21 - 23] in 
temperate climates, and sometimes with additives such 
as urea [7]. The results presented in our study are derived 
from a mixed broadleaf biochar, on a U.K. soil, and thus 
contribute further to similar studies toward a knowledge 
base of how biochar affects ecosystem functions in 
planted (agricultural) soil. Uniquely, our research also 
monitored the occurrence of PGPB that were not added 
exogenously to the study soil. This will add to knowledge 
development on how the application of sustainable 
locally produced biochar maintains ecosystem services 
where enhanced crop yield is the target evidence. 
Biochar-augmented soils are sometimes planted with 
grasses, shrubs trees and other leguminous plants for 
improved bioremediation. Therefore, we also made 
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Table 1. Physico-chemical characteristics of the study soil and mixed broadleaf forestry-derived biochar (Orr et al. 
2016; Data are triplicate analyses from the same soil or biochar sample).
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on 10% inter-quantile range. A counts per million data 
normalisation was performed. 

ANOVA tested for significance of biochar addition, 
sample week and presence of clover with Tukey test 
used to highlight differences between sampling weeks. 
Subsequently, the MarkerData Profiling (MDP) module 
of Microbiome Analyst [28] outlined the diversity 
measurements in relation to the different treatments. 
The MDP module used R phyloseq [29] and VEGAN 
package [30] analyses, and univariate analysis to test for 
significant effects. Specifically, alpha diversity measures 
of Chao, Shannon and Simpson diversity were calculated 
within Microbiome Analyst using the phyloseq package, 
with Kruskal Wallis highlighting significant differences. 
Bray-Curtis distances were plotted using PCoA showing 
clustering with and without biochar and significance 
measured by PERMANOVA. Significant differences 
in phyla and genera linked to biochar addition were 
determined by Kruskal-Wallis sum-rank tests, and 
subsequent linear discriminant analysis to determine the 
effective size of the different abundances.

RESULTS
Plant biomass

Since increased crop biomass is identified as a positive 
outcome of biochar application, clover seedlings were 
harvested bi-weekly for yield determination. Generally, 
both plant height and biomass increased during the 
study. In particular, the addition of biochar resulted 
in statistically significantly increased plant height (P 
<0.001) and biomass (P <0.019) (Table 2) with a final 
average plant height of 102.33 (±11.9) mm with biochar 
and 89.00 (± 6.1) mm for the control.

supernatants discarded and 0.5 g of the pelleted soils 
used for DNA extraction (FastDNA™ SPIN Kit for Soil, 
MP Biomedicals) with the extracts stored at -80°C.

Microbiota analysis
Bacterial community DNA sequencing was made (NU-

OMICs, Northumbria University, Newcastle Upon Tyne, 
U.K.) with a primer set targeting the V4 region of the 16S 
rRNA gene according to Kozich et al. (2013)[25]. The raw 
sequencing reads were processed in FASTQ format and 
analyzed with Mothur software package (version 1.36.1) 
(University of Michigan, U.S.A.). UCHIME was used to 
quality check and filter the FASTA formatted sequences 
for chimeras. These were aligned to the SILVA reference, 
and taxonomic identification of the reads was assessed 
by assigning sequences to operational taxonomic 
units (OTUs) with Ribosomal Database Project 
(RDP) classifier. PCR negative controls were run and 
sequenced in parallel to the experimental samples. The 
OTUs recorded in negative controls and samples were 
excluded from further analysis. Non-bacterial sequences 
(Archaea/Eukaryota/Unclassified) were discarded. OTUs 
less than 3% were classified as rare taxa with these and 
the unclassified OTUs omitted from the plots.

Data and statistical analyses
The Mothur [26] generated Taxonomy and Shared files 

with corresponding metadata were inputted into R version 
3.5.0 [27]. Shapiro-Wilk and Bartlett tests were conducted 
in R to test for normality and homogeneity, respectively. 
Data were subsequently filtered in Microbiome Analyst 
[28] to remove low abundance features based on 20% 
prevalence in samples, and low variance features based 
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Table 2. Average (n =3) plant height and biomass increases during the 8-week study (Data are presented with standard 
deviations; letters show Tukey’s test; different letters show significant differences P<0.05).

Plant Biomass (g) Plant Height (mm)
Biochar No Biochar Biochar No Biochar

Week 0 1.149 ± 0.31 x 1.069 ± 0.32 x 44.67 ± 5.5 a 46.00 ± 9.2 a
Week 2 1.499 ± 0.85 x 1.011 ± 0.57 x 86.33 ± 12.3 bcde 80.33 ± 6.0 b
Week 4 1.395 ± 0.39 x 1.068 ± 0.28 x 105.67 ± 5.9 cde 89.00 ± 7.8 bc
Week 6 2.977 ± 0.48 xy 1.393 ± 0.54 x 108.33 ± 4.9 ce 83.33 ± 9.9 bd
Week 8 3.687 ± 1.81 y 2.663 ± 0.63 xy 102.33 ± 11.9 bcde 89.00 ± 6.1 be

Figure 1. Alpha diversity measurements with (+) and without (-) biochar. A = Chao1 (P = 0.522), B = Shannon diversity 
(P = 0.576), C = Simpson diversity (P = 0.283).
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soil health, and no phytotoxic impacts on the clover.
The plant yield differences were not reflected by 

distinct shifts in total bacterial community structure and 
composition as overall alpha diversity was not affected 
(Fig. 1). Changes in abundance of Gemmatimonadetes, 
Bacteroidetes, Armatimonadetes and Verrucomicrobia 
were, however, observed (Fig. 4). Noyce et al. (2016)[33] 
recorded similar phyla-level changes to our study and 
suggested a pattern of biochar promoting Bacteroidetes 
and reducing Verrucomicrobia compared to surrounding 
soils. They proposed that these were, potentially, a 
result of oligotrophic bacteria such as Verrucomicrobia 
migrating towards the biochar particles, thus reducing 
their abundance in the char-free vicinities. Liao et 
al. (2019)[34] used a Vicia faba L. and Zea mays L. 
intercropping system with stable-isotope and reported 
increases in rhizosphere Bacteroidetes that assimilated 
plant-derived carbon. Further consistency has been 
recorded with increases in Gemmatimonadetes following 
biochar addition. For example, Jenkins et al. (2017)
[32] monitored bacterial community changes at various 
European sites following supplementation with the same 
biochar and reported that, while changes at phyla level 
were variable with location, there were consistencies in the 
dynamics of Gemmatimonadetes. Gemmatimonadetes 
may be particularly sensitive to biochar addition possibly 
due to their correlation with moisture availability [35, 36]. 
In their critical analysis of the literature, Hagemann et al. 
(2016)[37] surmised that water retention and water-filled 
pore space, as determinants of soil moisture content, 
were central to microbial nitrogen cycling in soils in 
terms of transport (leaching) and oxygen concentration, 
respectively. Therefore, the level of impact of biochar 
augmentation on water transport, and oxygen availability 
and water activity in a specific soil, should affect the 
dominances of soil bacterial communities or phyla.

Given the metabolic diversity found within environmental 
phyla and the contradictory findings of previous studies, 
it is perhaps more valid to consider the bacterial genera 
associated with functional change between biochar-
supplemented soils and their controls. In this study, we 
observed statistically significant increases in several 
Proteobacteria and Bacteroidetes genera typically 
associated with nitrogen fixation, plant growth promotion 
and organic toxin degradation (Table 3). Also, many 
Proteobacteria and Actinobacteria increased in numerical 
abundance with biochar addition. This aligns with the 
work of Zhu et al. (2019)[38] who reported that biochar 
addition increased heterotrophic microbial populations, 
and led to enriched metabolic pathways of biosynthesis, 
decomposition of secondary metabolites and polycyclic 
aromatic hydrocarbon (PAH). Many of the genera that 
correlated with biochar addition in our study were also 
found by other researchers [38, 39] to increase in the 
presence of biochar, where they were linked to increases 
in the capacity for nitrogen fixation.

Biochar impacts on the nitrogen-fixing community
Since the N-cycle is central to agriculture, the 

assessment of its dynamics and attendant economics 

Microbiota analysis
Many phyla have been associated with biochar 

addition with identities changing relative to biochar 
feedstock type and soil environment, although many 
observations have been contradictory [31, 32]. 
Therefore, the second hypothesis explored was that 
the addition of forestry biochar would differently affect 
the structure and composition of bulk and rhizosphere 
bacterial communities. No significant differences in 
alpha diversity resulted due to the presence or absence 
of biochar (Figure 1), presence or absence of plant, 
or between the rhizosphere and bulk soils (Figure 2). 
However, significant differences were recorded in the 
relative abundances of Bacteroidetes (P = 0.005), 
Armatimondates (P<0.001) and Planctomycetes (P = 
0.010) when we assessed the impact of biochar addition 
on the rhizosphere communities in comparison with the 
bulk soil populations (Figure 2). Specifically, increases in 
Bacteroidetes and Armatimonadetes, and decreases in 
Planctomycetes, were recorded in the rhizosphere. 

Beta diversity analysis with PCoA and PERMANOVA 
showed significant clustering of soils in the presence or 
absence of biochar (Figure 3), which were dependent on 
bacterial community shifts at the phylum level (Figure 
4). Phyla that increased significantly in abundance 
with biochar addition were Gemmatimonadetes 
and Bacteroidetes, while Armatimonadetes and 
Verrucomicrobia recorded maximum abundances in 
its absence. Several significant changes in genera 
abundance were recorded in both the presence and 
absence of biochar (Table 3). Specifically, the genera 
with increased relative abundances in the presence 
of biochar are associated generally with plant growth-
promoting ability, nitrogen fixation, pathogen predation, 
and toxic compound mineralization.

Impact on functional potential: Plant-growth 
promotion, pathogen suppression and pollutant 
degradation

The impact of biochar on ecosystem services has been 
investigated by measuring the changes in soil microbial 
community structure and how these affect plant growth, 
disease suppression and pollutant clean-up. Our study 
recorded increased abundances of Hoeflea, Variovorax 
and Pseudoxanthomonas that corresponded directly to 
clover biomass promotion, and Lysobacter, Nocardiopsis 
and Pseudonocardia that have been reported to suppress 
known plant pathogens. Also, Pseudoxanthomonas, 
Lysobacter and Ohtaekwangia have previously been 
correlated with contaminant degradation in the presence 
of biochar.

DISCUSSION
Plant yield and total bacterial community change

Measurements of total T. pratense plant height and 
weight showed statistically significant increases between 
the control and 5% (w/w) biochar-augmented soil (Table 
2). These indicated that the mixed broadleaf forestry-
derived biochar had positive effects on T. pratense yield 
with generally no noticeable negative effects on the study 
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Figure 2. Relative abundance of sequence data showing no significant difference in overall phyla throughout the weeks 
(-2 – 8) of the experiment for A: presence (+) or absence (-) of biochar in the rhizosphere (R); and B: bulk soil (B).
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Figure 3. Bray-Curtis distances plotted using PCoA showing clustering with and without biochar. PERMANOVA used 
to measure significance (P<0.001).
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Figure 4. Linear Discriminant Analysis Effect Size showing differences in abundant phyla with (+) and without (-) bio-
char. Significant differences are highlighted with an asterisks; * denotes P<0.01 and ** denotes P<0.001.



Biomolecular Research Reports

Table 3. Genera identified by Kruskal Wallis testing as being increased significantly in the presence or absence of 
biochar.

Phylum Taxa more abundant 
with biochar P Value Taxa more abundant 

without biochar P Value

Alphaproteobacteria

Hoeflea*^
Brevundimonas
Devosia*^
Sphingopyxis1

Bosea*^
Mesorhizobium*^
Sphingobium1

Novosphingobium1*
Sphingomonas*1

8.54 x10-10

3.45 x10-8

8.72 x10-6

2.03 x10-6

6.90 x10-4

2.20 x10-4

5.00 x10-4

6.11 x10-3

2.27 x10-3

Rhizomicrobium2

Rhodomicrobium*^ 4.54 x10-11

2.33 x10-3

Betaproteobacteria Hydrogenophaga*
Variovorax^

4.10 x10-8

8.15 x10-6
Burkholderia2 

Cupriavidus2
3.21 x10-9

4.56 x10-5

Deltaproteobacteria

Nannocystis3

Bacteriovorax3

Enhygromyxa3

Peredibacter3

9.01 x10-4

4.78 x10-3

7.77 x10-3

5.90 x10-3

Gammaproteobacteria Lysobacter^
Pseudoxanthomonas*^

3.51 x10-8

4.86 x10-7

Rudaea2

Alkanindiges1

Aquicella
Dokdonella1

1.01 x10-11

9.49 x10-3

3.74 x10-4

1.42 x10-2

Bacteroidetes

Flavisolibacter^
Ohtaekwangia 
Emticicia
Flavitalea
Terrimonas1 
Fluviicola1

1.01 x10-6

1.83 x10-6

1.45 x10-5

3.31 x10-5

1.86 x10-5

1.39 x10-4

Mucilaginibacter1 3.26 x10-7

Actinobacteria
Nocardiopsis^
Nitriliruptor*1 

Pseudonocardia*^
Nocardioides1^

7.14  x10-13

3.36 x10-9

1.03 x10-7

1.31 x10-2

Planctomycetes Blastopirellula 1.14 x10-5

Armatimonadetes Chthonomonas 4.63 x10-10

Firmicutes Gracilibacter 1.19 x10-3 Cohnella
Thermoactinomyces

1.18 x10-2

1.21 x10-2

Gemmatimonadetes Gemmatimonas 8.28 x10-3

Chloroflexi Bellilinea 1.95 x10-3

Verrucomicrobia Verrucomicrobium 1.23 x10-4

*Nitrogen fixer, ^plant growth promoter, 1degrades toxic compounds, 2associated with poor soil health, 3predators of 
Gram-negative bacteria.
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[40 - 42] and have, consequently, been used as PGPR 
to enhance crop growth/yield. Fox et al. (2014)[4] found 
increases of Variovorax and Hydrogenophaga species in 
soils supplemented with biochar. These bacterial genera 
have functional marker genes for S and P mobilization 
and, in particular, desulphination in crop- and grasslands 
[55]. Also, Variovorax spp have been identified as 
potential biopesticides and biofertilizers due to their 
ability to promote disease resistance, enhance plant 
stress tolerance, and improve nutrient availability and 
uptake [56].

It is possible, however, that other non-microbiological 
mechanisms accounted for the plant growth and yield 
enhancements recorded in our study. These could 
include increased abundance of mycorrhizal fungi 
and low concentrations/availability of potentially toxic 
elements in the biochar used, as proposed previously 
[3, 57, 58]. For example, Xia et al. (2020)[3] found 
that biochar led to decreases in aluminium toxicity as 
Al2SiO5 was complexed on the surface of biochar. The 
researchers proposed that the reduced toxicity and 
increased efficiency in the ability to use the available 
nitrogen led to increased growth of maize seedlings.

Other genera that showed statistically significant 
increases in the current work have been linked to 
biocontrol and the reduction of plant diseases. For 
example, Pseudonocardia have antibacterial [59] 
and antifungal [60] capabilities, with demonstrable 
siderophore production. Lysobacter and Nocardiopsis 
species also produce antifungal and antibacterial 
compounds, which can be used to suppress a key plant 
root pathogen, Rhizoctonia solani [61]. In studies of soils 
infected with Ralstonia, Wang et al. (2017)[62] found 
that healthy soils were often dominated by Lysobacter 
and Pseudonocardia while Rhizomicrobium and Rudea, 
whose abundances decreased with biochar addition 
in the current study, occurred, typically in unhealthy 
soils. These, together with the predatory behaviour 
demonstrated against Gram-negative bacteria by several 
Deltaproetobacteria genera, which were recorded in 
statistically significantly numbers following biochar 
application, may facilitate benefits in soil health.

Potential for degradation of organic compounds 
with biochar addition

Several researchers [22, 63 - 65] investigated the 
potential for biochar-enhanced bioremediation of organic 
and inorganic environmental contaminants in different 
soil-plant systems where specific focus was on profiling 
the rhizosphere microbial communities. Similar to these 
and other studies, we recorded shifts in functional 
genera such as Pseudoxanthomonas, Lysobacter and 
Ohtaekwangia, whose increases have previously been 
correlated with contaminant degradation in the presence 
of biochar. For example, Galitskaya et al. (2016)[66] 
recorded Pseudoxanthomonas increases in an oil-
contaminated soil supplemented with biochar. Similarly, 
Ni et al. (2017)[67] reported that the addition of different 
biochar types to PAH contaminated soil led to increases 
in many genera including Lysobacter, Ohtaekwangia and 

in biochar-supplemented soils remains a key research 
focus. Functionally, nitrogen fixation has been observed 
in a number of the genera sensitive to biochar addition 
including: Brevundimonas [40]; Pseudoxanthomonas 
[41, 42]; Devosia [1, 43]; Lysobacter [44]; and 
Pseudonocardia [45]). Previously, biochar augmentation 
enhanced nitrogen fixed within legume species both in 
terms of nitrogen accumulation [46], and increases in 
both the number of root nodules and nodule biomass [19]. 
Therefore, the increased abundance of Mesorhizobium 
and Bradyrhizobium such as Bosea could be indicative of 
increased clover nodulation in our study. Consequently, 
future investigations should consider other model plant 
species with no known capacity to either fix nitrogen 
or promote microbial communities involved in nitrogen 
fixation. This would provide a wider understanding and 
knowledge base on the tripartite relationship between 
biochar addition, microbial-based nitrogen fixation and 
enhanced crop yield.

Other genera that increased numerically and significantly 
in this study have been linked to other aspects of nitrogen 
cycling. Specific examples include: Variovorax that are 
capable of denitrification [47]; Sphingopyxis that are 
involved in nitrate respiration [48]; and Flavisolibacter 
that are capable of removing nitrogen from agricultural 
systems [49]. At the crop level, Wang et al. (2016)[50] 
observed increased apple yield following bioorganic 
fertilizer application and attributed this to enrichment of 
genera such as Lysobacter and Ohtaekwangia, which are 
linked to increases in organic matter and total nitrogen. 
Correlations with biochar and increased species capable 
of nitrification and denitrification has been reported in 
other systems such as composting with some authors 
suggesting that these processes are enhanced by 
biochar to a greater effect than nitrogen fixation [51, 52].

Quantitative PCR has been used previously to measure 
copy numbers of nitrogen-cycling genes in response to 
biochar. For example, Anderson et al. (2014)[53] and Liu 
et al. (2019)[54] conducted field studies with Pinus radiata 
and rice straw biochars and observed similar results to 
ours where overall alpha diversity remained unchanged. 
They also recorded changes in nitrogen-cycling gene 
copy numbers for denitrification and nitrogen fixation, 
which contrasted our findings where qPCR for nifH 
copy number suggested that significant increases in 
this gene were temporary (Data not shown) in response 
to the forestry broadleaf biochar. Future work on the 
current and similar biochars should combine qPCR and 
metatranscriptomic analyses for better understanding of 
how they impact the expression and dynamics of N-cycle 
genes within agronomic soils.

Increased abundance of plant growth-promoting 
and plant pathogen-suppressing bacteria following 
biochar addition

Several genera that increased in abundance have 
been identified as plant growth promoters. For example, 
Brevundimonas and Pseudoxanthomonas are capable 
of: nitrogen fixation; indole acetic acid (IAA), siderophore 
and ACC deaminase production; and P solubilization 
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increase in plant growth. This alignment highlights the 
significance of knowledge development that includes 
a wide range of feedstocks where we used broadleaf 
forestry-derived biochar instead of wheat straw-based, 
for example. Future work should investigate the likely 
biochar-stimulated rhizosphere mechanisms (shifts 
in SOM, pH, redox potential, net ion concentrations, 
plant N-uptake, plant-derived carbon sources), and 
how they impact bacterial community composition, as 
also demonstrated in several studies [18, 23, 34, 70, 
71]. Also, transcriptomics within planted soils should be 
applied to measure the expression of functional genes, 
such as those involved in nitrogen fixation and cycling, 
to confirm the impact of forestry broadleaf biochar on 
nitrogen as a biogeochemical cycle that is important to 
sustainable agronomy.
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