
A Language-based Approach to Analysing Flow Security Properties

in Virtualised Computing Systems

Chunyan Mu

Department of Computer Science, Teesside University, UK

c.mu@tees.ac.uk

Abstract—This paper studies the problem of reasoning about
flow security properties in virtualised computing networks with
mobility from perspective of formal language. We propose
a distributed process algebra CSP4v with security labelled
processes for the purpose of formal modelling of virtualised
computing systems. Specifically, information leakage can come
from observations on process executions, communications and
from cache side channels in the virtualised environment. We
describe a cache flow policy to identify such flows. A type
system of the language is presented to enforce the flow policy.

Keywords-language-based security, information flow control,
cache non-interference, virtualised computing systems.

I. INTRODUCTION

In cloud systems, computing resources are shared among

multiple clients. This is achieved by virtualisation in which

a collection of virtual machines (VMs) are running upon

the same platform under the management of the hyper-

visor. However, such services can also bring additional

channel threat, and introduce information leakage between

unrelated entities during the procedure of resource sharing

and communications through unintended covert channels.

To address this concern, this paper proposes to develop

formal approaches to specifying, modelling and analysing

flow security properties in virtualised computing networks.

Specifically, information leakage can come from observa-

tions on both program executions and cache usage in the

virtualised environment. On the one hand, for processes

running upon a particular VM instance, consider the pro-

cesses are communication channels, sensitive inputs can be

partially induced by observing public outputs of the pro-

cesses regarding choices of public inputs. On the other hand,

shared caches enable competing VM instances to extract

sensitive information from each other. More precisely, for

processes running upon different VM instances, cache usage

can be considered as a communication channel. Consider

the cache lines accessed by the victim instance and by the

malicious instance as high level input and low level input

respectively, by observing the usage (such as time) of victim

cache lines (low output), the malicious observer can learn

some information of the victim instance. In summary, this

paper considers distributed virtualised computing environ-

ment where the attacker VM steals the information from the

target one by observing executions of victim processes, and

by probing and measuring the usage (timing) of the shared

cache.

In particular, we develop an approach from the software

language-based level to enforce the applications to access

shared cache and to bring interferences in a predictable way.

As a result, we aim to prevent the leakage introduced by such

cache timing channel and the interference between security

objects caused by executions. First, we propose a CSP-like

language for modelling communicating processes running

upon VMs with mobility in the computing environment.

Second, we formalise a cache flow policy to specify the

security condition regarding the threat model we focus on.

Finally, we describe a type system of the language to

enforce the flow policy and control the leakage introduced

by observing the system behaviours. A full version of this

paper [1] provides more details and proofs of the Theorems.

II. THE MODELLING LANGUAGE CSP4v

This section presents a dialect of communicating sequen-

tial processes (CSP) [2] language CSP4v for formal mod-

elling of and reasoning about virtualised computing network

systems considered in this paper. Such an environment can

be considered as a distribute computing system, in which

a group of inter-connected and virtualised computers are

dynamically allocated for serving. Processes can move from

one VM to another and communicate to each other via

sending/receiving messages. Applications and data are stored

and processed in the network but can be accessed from any

location using a client. It is natural to specify and describe

the system as a set of communicating processes in a network

with consideration of resource sharing in a predictable way.

A. Terminology and notation

We consider the infrastructure consists of a set of vir-

tual private networks (VPNs) upon which a set of virtual

machines (VMs) can communicate with each other. A VPN

may include one or more VMs, and the location of VMs can

be viewed as a node (host) of the VPN it belongs to. An

instance is a VM upon which a number of processes locate

and run. Let I denote a set of instances, I = {I, I1, . . . , In}.

Processes (P, P1, . . .) can be constructed from a set of

atomic actions, or be composed using operators to create

978-1-4799-7492-4/15/$31.00 ©2017 IEEE

Expressions exp ::= Vars | CH | INTS | exp⊕ exp (⊕ ∈ {+,−, ∗, /})

b ::= true | ¬b | b ∧ b | exp ⊲⊳ exp (⊲⊳∈ {>,≥, <,≤,==})

Process x := exp | STOP | SKIP | SLEEP(∆t) |
MOVEP (i) | P ;Q | P ⊳ b ⊲Q | b⊲ (P)∗ |
a!w | a?x | P‖Q

VM instances I ::= [[P]] | MOVEI(h) | I‖I
′

Hosts H ::= i : [[I]].MI | H‖H′

VPN networks G ::= h : [[H]] | G‖G′

Table I
SYNTAX OF CSP4v

more complex behaviours. The full set of actions that a

system may perform is called the alphabet (Σ). The op-

erators are required to obey algebraic laws which can be

used for formal reasoning. The interactions carrying data

values between processes take place through “channels”.

From an information theory point of view, a storage device

such as cache which can be received from (reading) and

sent to (writing) is also a kind of communication channel.

CPU data caches locate between the processor cores and the

main memory. We assume the clients (including the attacker)

know the map between memory locations and cache sets,

so we omit the details of the mapping and focus on cache

organisation and operation here. Cache can be viewed as a

set of cache lines: CLines = {li|0 ≤ i ≤ n}.

In addition, in order to encode the desired features of the

language for flow secure virtualised computing systems, we

assign security labels into variables and cache lines (chan-

nels), and allocate cache lines into instances via mappings:

τv : Vars 7→τv L, τc : CLines 7→τc L, αc : CLines 7→αc
I

where L denotes a security lattice. We write τ in stead τv and

τc in general for cases without introducing any confusion.

Furthermore, we consider VM hosts are assigned to different

categories ΩH , with an ordering of subset relations:

βh : Hosts 7→βh
ΩH .

For instance, h1 is assigned to category: Ω1 = {student},

h2 is assigned to category: Ω2 = {student, staff}, and

thus h1 ⊑ h2 since Ω1 ⊆ Ω2. Similarly, we also assign VM

instances into different sub-categories ΩI , with an ordering

of subset relations:

βi : VMs 7→βi
ΩI .

For instance, P running upon VM i1 belonging to sub-

category: ω1 = {UG-1} ⊆ student, Q running upon VM i2
belonging to sub-category: ω2 = {UG-1, UG-2} ⊆ student,

and ω1 ⊆ ω2, so i1 ⊑ i2.

B. Syntax

Table I presents the syntax of the language CSP4v . Ex-

pressions can be variables, channels, integers and arithmetic

operations (denoted by ⊕) between expressions.

Operator x := exp assigns the value of exp to process

variable x. Action operator STOP denotes the inactive pro-

cesses that does nothing and indicates a failure to terminate,

and delayable operator SLEEP(∆t) allows the process to

do nothing and wait for ∆t time units. Moving operator

MOVEP (i) allows to move a process P from current VM

to another one i. We require that VM processes running

upon on a VM instance with lower (category) order are not

allowed to move to a VM instance with a higher (category)

order. Operator P ;Q denotes the sequential composition of

processes P and Q. Branch operator P⊳b⊲Q defines if the

boolean expression b is true then behaves like P otherwise

behaves like Q. Sending operator a!(w) will output a value

in expression w over channel a to an agent, and receiving

operator a?x allows us to input a data value during an

interaction over channel a and write it into variable x of an

agent. P‖Q denotes the synchronous parallel composition

of processes P and Q. Loop operator b⊲ (P)∗ denotes the

loop operation of process P while b is true.

An instance I is a virtual machine (VM) hosted on

a network infrastructure. Operator [[P]] defines the VM

upon which process P runs. Operator MOVEI(h) allows

VM instances (with all processes running on it) to migrate

from current host machine to another host h to keep the

instance running even when an event, such as infrastructure

upgrade or hardware failure, occurs. Similarly to the process

movement, we require that VM instances running upon on a

host with lower (category) order are not allowed to move to

a host with a higher (category) order. So, in the previous

example, instances running upon h1 are not allowed to

moved to h2, and P is not allowed to move to VM i2.

Operator i : [[I]].MI defines the host machine upon which

I runs, MI denotes the cache pages allocated to instance

I . To ensure that no cache is shared among different VM

instances, we require that for any host h upon which any

I1 and I2 are running: I1 6= I2 ⇒ MI1 ∩ MI2 = ∅,

and if an instance I terminates, then set MI to be ∅ for

future allocation to other instances. Virtual private network

provides connectivity for VM hosts. It can be viewed as

a virtual network consisting of a set of hosts where VM

instances can run and communicate with each other. The

location of a host h : [[H]] indicates a network node of G in

which the VM host machine locates.

C. Operational semantics

In order to incorporate as much parallel executions of

events within different nodes as possible, we transform the

network G into a finite parallel compositions of the form:

G = h1 : i11 : [[P11]].M11 ‖ . . . ‖ h1 : i1j1 : [[P1j1]].M1j1

‖ h2 : i21 : [[P21]].M21 ‖ . . . ‖ h2 : i2j2 : [[P2j2]].M2j2

‖

‖ hm : im1 : [[Pm1]].Mm1 ‖ . . . ‖ hm : imjm : [[Pmjm]].Mmjm

where hk denotes the identifier of a host, ikj denotes the

VM instance located at hk. Each component hk : ikj :
[[Pkj]].Mkj is considered as a decomposition of G. We

argue such decomposition is well-defined by applying the

following rules of structural equivalence:

G ‖ G′ ≡ G′ ‖ G

(G ‖ G′) ‖ G′′ ≡ G ‖ (G′ ‖ G′′)

h : [[I ‖ I′]] ≡ h : [[I′ ‖ I]] ≡ h : [[I]] ‖ h : [[I′]]

h : [[(I ‖ I′) ‖ I′′]] ≡ h : [[I ‖ (I′ ‖ I′′)]]

i : [[P ‖ P ′]].Mi ≡ i : [[P ′ ‖ P]].Mi ≡ i : [[P]].Mi ‖ i : [[P ′]].Mi

i : [[(P ‖ P ′) ‖ P ′′]].Mi ≡ i : [[P ‖ (P ′ ‖ P ′′)]].Mi

We now define the operational semantics of CSP4v in

terms of multiset labelled transition system 〈~Γ,Σ,=⇒〉:

• ~Γ is a vector of configurations of a VPN G regarding

the vector of decomposition of G. A configuration Γ,

regarding a single component (say process P) of the

decompositions of G, is defined as a tuple (σ, δ, I,H):

– σ : VarsP 7→ INTS denotes the store;

– δ : CAddrP 7→ (INTS ∪ {∅}) defines the possible

world regarding cache;

– I specifies the owner (the VM instance identifier)

of process P ;

– H specifies the host (location) of the VM instance

of process P .

• Σ is a set of operating events which the processes can

perform;

• =⇒⊆ ~Γ× ~Σ× ~Γ is the multiset transition relations: ~Σ
denotes a vector of operating events for the vector of

components.

The action rules of the operational semantics of CSP4v is

presented in Table II. Notations ⇒, ⇐, ⇓ denote cache

addressing, cache allocation, and evaluation respectively. For

instance, Γ ⊢ exp ⇓ v means that under configuration Γ, exp
evaluates to value v, w ⇐ CAddra means the cache allocated

for expression w locates at CAddra, and a ⇒ CAddra means

cache address of channel a is CAddra, notation CAddrP is

used to denote the cache addresses allocated for P

Store is defined as a mapping from variables to values,

i.e., σ : Vars 7→ INTS. Cache is considered as a mapping

from addresses (of cache lines) to integers (cached) or ∅
(flushed), i.e., δ : CAddr 7→ (INTS ∪ {∅}).

Action rule of assignment 〈x := exp,Γ〉 updates the

configuration such that the state of x is the value v of

expression exp after the execution. Action rule of process

moving operator MOVEP (i
′) updates the configuration such

that the identifier of instance accommodating P turns to

be i′ after the execution of the process movement. Similar

action rule is applied for VM instance movement from

one host to another. Action rule of sending operator a!(w)
updates the configuration such that the value stored in

cache address (CAddra) is v, if expression w evaluates to

v under configuration before the execution and the address

of cache allocated for communicating channel a (to store

Store S ::= {} | {Vars 7→ INTS} ∪ S
Cache M ::= {} | {CAddr 7→ (INTS ∪ {∅})} ∪M

Stop 〈STOP,Γ〉 −→ Γ[δ(CAddrP) = ∅]

Skip 〈SKIP,Γ〉 −→ Γ

Sleep
∆t > 0

〈SLEEP(∆t), Γ〉 −→ 〈SLEEP(∆t − 1),Γ〉
∆t = 0

〈SLEEP(∆t), Γ〉 −→ Γ

Assignment
Γ ⊢ exp ⇓ v

〈x := exp,Γ〉 −→ Γ[σ(x) = v]

Move
Γ ⊢ I ⇓ i

〈MOVEP (i′),Γ〉 −→ Γ[I = i′]

Γ ⊢ H ⇓ h

〈MOVEI(h
′),Γ〉 −→ Γ[H = h′]

Seq
〈P,Γ〉 −→ 〈P ′,Γ′〉

〈P ;Q,Γ〉 −→ 〈P ′;Q,Γ′〉

〈P,Γ〉 −→ Γ′

〈P ;Q,Γ〉 −→ 〈Q,Γ′〉

Branch
Γ ⊢ b ⇓ true

〈P ⊳ b⊲Q,Γ〉 −→ 〈P,Γ〉

Γ ⊢ b ⇓ false

〈P ⊳ b ⊲Q,Γ〉 −→ 〈Q,Γ〉

Send
Γ ⊢ σ(w) ⇓ v w ⇐ CAddra

〈a!(w),Γ〉 −→ Γ[δ(CAddra) = v]

Recv
a ⇒ CAddra Γ ⊢ δ(CAddra) ⇓ v

〈a?x,Γ〉 −→ Γ[σ(x) = v]

Loop 〈b ⊲ (P)∗,Γ〉 −→ 〈(P ; b ⊲ (P)∗) ⊳ b ⊲ SKIP,Γ〉

Parallel
P −→ P ′

P‖Q −→ P ′‖Q
I −→ I′

I‖I′′ −→ I′‖I′′
H −→ H′

H‖H′′ −→ H′‖H′′

Table II
OPERATIONAL SEMANTICS OF CSP4v

expression w) is CAddra. Rule of receiving operator a?x
updates the configuration such that the state of variable x

is v, if the value stored in cache address CAddra of the

communicating channel is v under the configuration before

receiving the data. In the cross-VM communications over

today’s common virtualised platforms, the cache transmis-

sion scheme requires the sender and receiver could only

communicate by interleaving their executions for security

concerns. In order to capture timing behaviour of cache-

related operations, we consider the cache-related operations,

such as communicating, as time-sensitive behaviours whose

lasting time is recorded. We use ∆t(e) to denote the time

duration of event e lasting for. The behaviour of a process

component can now be viewed as a set of sequences of timed

runs.

Definition 1 (Timed run): A timed run of a component of

G is a sequence of timed configuration event pairs leading

to a final configuration:

λ = 〈Γ0, (e0,∆t0)〉 → · · · → 〈Γn, (en,∆tn)〉 → Γ

where, Γ0 and Γ denote the initial and final configuration

respectively. ∀i ∈ {0, n}, ei is an event will take place

with passing time ∆ti under configuration Γi; if ∆ti = 0,

ei is considered as an immediate event, if ∆ti > 0, ei is

considered as a time-sensitive event with lasting time ∆ti.

III. INFORMATION FLOW POLICY

We consider computing environment where malicious

tenants can use observations on process executions and on

the usage of shared cache to induce information about victim

tenants. We assume the service provider and the applications

running on the victim’s VM are trusted. Let us consider the

attacker owns a VM and runs a program on the system,

and the victim is a co-resident VM that shares the host

machine with the attacker VM. In particular, there are two

ways in which an attacker may learn secrets from a victim

process: by probing the caches set and measuring the time

to access the cache line (through the cache timing channel)

- say channel C1, and by observing how its own executions

are influenced by the executions of victim processes - say

channel C2.

Example 1 (C1): Consider VM1 (victim VM, labelled i1)

and VM2 (attacker VM, labelled i2) be two instances running

upon Host1 (labelled h1); victim processes P and Q, run-

ning over VM1, are communicating to each other: P generates

a key and sends it to Q, Q encrypts a message using the

received key and sends the encrypted message to P , P

receives the message and decrypts it; and attacker process

R, running over VM2, keeps probing cache address of the

key. Let keyGen, encrypt and decrypt denote the function

of generating a key, encryption and decryption respectively,

and assume cread(CAddr) is a function probes cache address

CAddr: returns 1 if it is available and returns −1 otherwise.

We present the model in our language as follows.

VPC1
df
= h1 : [[Host1]] ‖ h2 : [[Host2]]

Host1
df
= i1 : [[VM1]].MVM1 ‖ i2 : [[VM2]].MVM2

VM1
df
= [[P‖Q]] VM2

df
= [[R]]

P
df
= x := keyGen(); key!x → P ′

Q
df
= key?y → Q′

Q′ df
= m1 := encrypt(y, “message”); msg!m1 → STOP

P ′ df
= msg?m2 → P ′′

P ′′ df
= m := decrypt(x,m2) → STOP

R
df
= true⊲ (z := cread(CAddrkey))

∗

The communication time between P and Q is affected

by the value of the key generated. There is information

flow from victim VM to malicious VM through cache side

channel.

Example 2 (C2): Consider process P and R are running

upon a VM instance VM. Process P inputs a password

through channel pwd into H-level variable x, and updates

L-level variable y to be 1 if x is odd and to be 0 if x is

even. Process R output variable y through channel res:

VM
df
= [[P‖R]]

P
df
= pwd?x; y := 1 ⊳ (x mod 2 == 1) ⊲ y := 0 → STOP

R
df
= res!(y) → STOP

Assume L ⊏ H ∈ L. Clearly there are implicit flows from

x to y by observing L-level output of the process.

Information flow is controlled by means of security labels

and flow policy integrated in the language. Each of the

identifiers, information container, is associated with a secu-

rity label. Identifiers can refer to variables, communication

channels, and can refer to entities such as files, devices in a

concrete level. The set of the security labels forms a security

lattice regarding their ordering. We study the system flow

policy which prevents information flow leakage from high-

level objects to lower levels and from a target instance to a

malicious one via observing process executions and cache

usage (by measuring the time of accessing cache lines during

communications).

In general, information flow policies are proposed to

ensure that secret information does not influence publicly

observable information. An ideal flow policy called Non-

interference (NI) [3] is a guarantee that no information

about the sensitive inputs can be obtained by observing

a program’s public outputs, for any choice of its public

inputs. Intuitively, the NI policy requires that low security

users should not be aware of the activity of high security

users and thus not be able to deduce any information about

the behaviours of the high users. On the one hand, for

processes running upon a particular VM instance (regarding

C2), the NI policy can be applied to control information

flow from high-level input to low-level output, where state of

sensitive information container (s.a. high-level variables) and

observations on behaviours of public information container

(s.a. low-level variables) are viewed as the high input and

low output respectively. On the other hand, for processes

running upon different VM instances (regarding C1), we

adapt the NI policy here in order to control the informa-

tion flow from processes running upon victim instance to

malicious one through cache side channel. Consider the

cache side channel as a communication channel, the cache

lines accessed by the victim instance and by the malicious

instance are viewed as high level input and low level input

respectively, and the observations on the victim cache usage

(s.a. hits/misses) are considered as low level outputs. Cache

flow non-interference demands the changing of the cache

lines accessed by the victim process (high inputs) does

not affect the public observations on the cache usage (low

outputs). Informally, cache flow interference happens if the

usage (we focus on the accessing time) of the cache lines

accessed by one victim process affects the usage of the cache

lines accessed by attacker VM processes.

Formally, the policy of flow non-interference can be

considered in terms of the equivalence relations on the

system behaviours from the observer’s view, including the

state evolution of information container and the timing

behaviour of cache accessing. This is due to the fact that the

system behaviours are modelled as timed runs with security

classification of identifiers and with timing considerations

when accessing caches during the process communications

in our model.

Definition 2 (Flow security environment): Let L be a fi-

nite flow lattice, ⊑ denote the ordering relation of L, I

denote the set of VM instances running upon any host

h, ΩH and ΩI denote a set of categories for hosts and

sub-categories for instances respectively. The flow security

environment is considered as:

Ξ : (τv, τc, αc, βh, βi),

where τv : Vars 7→τv L, τc : CLines 7→τc L, αc :
CLines 7→αc

I , βh : Hosts 7→βh
ΩH , βi : VMs 7→βi

ΩI .

Furthermore, we say Ξ ⊑ Ξ′ iff ∀x ∈ Vars, l ∈ CLines,

i ∈ VMs and h ∈ Hosts: Ξ(τv(x)) ⊑ Ξ′(τv(x)) ∧ Ξ(τc(l)) ⊑
Ξ′(τc(l)) ∧ Ξ(βh(h)) ⊑ Ξ′(βh(h)) ∧ Ξ(βi(i)) ⊑ Ξ′(βi(i)),
and for t ∈ L, ωI ⊆ ΩI , and ωH ⊆ ΩH , we say Ξ ⊑
(t, ωI , ωH) iff : Ξ(τv(x)) ⊑ t ∧ Ξ(τc(l)) ⊑ t ∧ Ξ(βh(h)) ⊑
ωH ∧ Ξ(βi(i)) ⊑ ωI , where we abuse notation Ξ(τv(x)),
Ξ(τc(l)), Ξ(βh(h)) and Ξ(βi(i)) to denote τv(x), τc(l),
βh(h) and βi(i) in environment Ξ respectively.

Definition 3 ((t, ωI , ωH)-equivalent configuration):

Consider processes running upon hosts of VPN G, let Ξ be

a security environment, t ∈ L be a security level, ωH ⊆ ΩH

be a category and ωI ⊆ ΩI be a sub-category. For any

x ∈ Vars, l ∈ CLines, assume i and h are the instance

and host which x, l belong to, we define store (t, ωI , ωH)-
equivalence under Ξ as follows: σ1(x) =Ξ,(t,ωI ,ωH) σ2(x)
iff : (Ξ(τv(x)) ⊑ t ∧ Ξ(βi(i)) ⊑ ωI ∧ Ξ(βh(h)) ⊑ ωH) ⇒
σ1(x) = σ2(x), and cache line (t, ωI , ωH)-equivalence

under Ξ as follows: δ1(l) =Ξ,(t,ωI ,ωH) δ2(l) iff :

(Ξ(τc(l)) ⊑ t ∧ Ξ(βi(i)) ⊑ ωI ∧ Ξ(βh(h)) ⊑ ωH)

⇒ δ1(l) = δ2(l).

Furthermore, given two configurations Γ1 = (σ1, δ1, i1, h1)
and Γ2 = (σ2, δ2, i2, h2), we say Γ1 =Ξ,(t,ωI ,ωH) Γ2 iff :

(∀x ∈ Vars.σ1(x) =Ξ,(t,ωI ,ωH) σ2(x))

∧ (∀l ∈ CLines.δ1(l) =Ξ,(t,ωI ,ωH) δ2(l))

∧ (βi(i1) ⊑ βi(i2)) ∧ (βh(h1) ⊑ βh(h2)).

Definition 4 (Strong and weak bisimulation): Consider

two timed runs running upon host h under security

environment Ξ:

λ = 〈Γ0, (e0,∆t0)〉 → · · · → 〈Γn, (en,∆tn)〉 → Γ

λ′ = 〈Γ′
0, (e

′
0,∆t′0)〉 → · · · → 〈Γ′

n, (e
′
n,∆t′n)〉 → Γ′

∀Γ0,Γ
′
0 such that Γ0 =Ξ,(t,ωI ,ωH) Γ′

0, we say λ and

λ′ are strong (t, ωI , ωH)-bisimilar to each other, i.e.,

λ
s
∼Ξ,(t,ωI ,ωH) λ′, iff:

∀j ∈ {0...n}.(Γj =Ξ,(t,ωI ,ωH) Γ
′
j) ∧ (∆tj = ∆t′j);

and say λ and λ′ are weak (t, ωI , ωH)-bisimilar to each

other, i.e., λ
w
∼Ξ,(t,ωI ,ωH) λ

′, iff:

(Γ =Ξ,(t,ωI ,ωH) Γ
′) ∧ (

n∑

j=0

∆tj =

n∑

j=0

∆t′j).

Definition 5 (Cache flow security policy): Given a secu-

rity level L ∈ L, ωH ⊆ ΩH , and ωI ⊆ ΩI a VPN G

under security environment Ξ is considered strong cache

flow secure iff :

∀λ, λ′ ∈ Λ.(Γ0 =Ξ,(L,ωI ,ωH) Γ
′
0 ⇒ λ

s
∼Ξ,(L,ωI ,ωH) λ

′),

where Γ0 and Γ′
0 denote the initial configuration of λ and

λ′ respectively, Λ denotes all runs of components of G.

Similarly, the definition of weak cache flow secure can be

given.

Example 3: Consider the model presented in Example 1.

Let τv(x) = τv(y) = H , τv(m1) = τv(m2) = M ,

τv(z) = L, and L ⊏ M ⊏ H ∈ L. Let us assume βi(VM1) =
βi(VM2) = ωI , and βh(Host1) = ωH . Communicating cache

channels are thus assigned with security labels regarding the

data they transmit: τc(CAddrkey) = H , τc(CAddrmsg) = M .

Note that the state of variable z depends on the state of cache

address of key, and is affected by the communication time

for data transmission between P and Q. Therefore the model

does not satisfy the cache flow security policy since for any

given two runs, both the timing condition and configuration

equivalent condition of
w
∼Ξ,(L,ωI ,ωH) are not guaranteed to

be satisfied.

In order to close the cache timing channel, we consider

the communication as a scenario of sending and receiving

processes running in parallel with certain time interleaving

data transmission scheme:

Γ ⊢ w ⇓ v w ⇐ CAddra a ⇒ CAddra t < T

〈SLEEP(T − t) → P ⊳ (t := ∆t(a!w ‖ a?x) < T) ⊲ STOP,Γ〉
a(w)
−→ 〈P,Γ[σ(x) = v, δ(CAddra) = ∅]〉

The communicating procedure needs to complete in T time

units (together with sleeping time) and then behaves as P ;

the value of w is sent to variable x via channel a, channel

a and the relevant cache lines are then tagged as τc(w).
The communication will be considered as failed if T time

units have passed but the communication has not completed

yet. Fixed completion time T prevents the timing leakage

introduced by the cache channel communication.

Example 4: Consider the model presented in Example 1,

we rewrite the communicating procedure as follows:

x := keyGen();

SLEEP(5 − t) → P ′
⊳ (t := ∆t(key!x ‖ key?y) < 5) ⊲ STOP

m1 := encrypt(y, “message”);

SLEEP(5 − t) → Q′
⊳ (t := ∆t(msg!m1 ‖ msg?m2) < 5) ⊲ STOP

The timing condition of weak (t, ωI , ωH)-bisimulation

specified in Definition 4 is now ensured, while the config-

uration condition is still violated. This will be addressed in

next Section.

IV. FLOW SECURITY TYPE SYSTEM FOR CSP4v

In order to make the low observation and cache access-

ing time of the executions be high input independent, the

variables and cache lines are associated with security labels,

VMs and hosts are assigned to categories, rules (semantic

+ typing) are required to ensure that: no information flows

to lower level objects, no cache is shared among different

VM instances, processes (c.f. instances) are not allowed to

move from a lower order instance (c.f. host) to a higher one,

and cache related operations in communications between

processes are forced to be completed in certain time, and

hence the cache flow policy is enforced.

For a process P (w.r.t. a component of G), we consider

the type judgements have the form of:

(τ, ωI , ωH) ⊢ Ξ{P}Ξ′

where the type (τ, ωI , ωH) denotes the (environment)

counter security levels of the communication chan-

nel/variables and and counter categories of VMs/hosts par-

ticipated in the branch events being executed for the purpose

of eliminating implicit flows from the guard. Ξ and Ξ′

describe the type environment which hold before and after

the execution of P . In general, notation:

Ξ ⊢ (exp :τv te, l :τc tl, l :αc
il, i :βi

ωI , h :βh
ωH)

describes that under type environment Ξ, expression exp and

(the address of) cache line l has type te and tl respectively,

l is allocated to VM instance il, instance i is assigned to

a category ωI , and host h is assigned to a category ωH .

The type of an expression including boolean expression is

defined by taking the least upper bound of the types of its

free variables as standard:

Ξ ⊢ exp :τv t iff t = ⊔x∈fv(exp)Ξ(τv(x)).

All memory, caches and channels written by a t-level ex-

pression becomes tagged as t-level. Let VarsP and CLinesP

denote a set of variables defined in and cache lines allocated

to process P . Typing rules for processes with security

configuration are presented in Table III. Details and proofs

of the Theorems are provided in [1] due to page limit.

In overall, the derivation rule (τ, ωI , ωH) ⊢ Ξ{P}Ξ′

ensures that:

• variables and cache lines whose final types in Ξ′ are

less than τ must not be changed by P ;

• the final value of a variable (or a cache line) say x

whose final type is Ξ′(x) = t must not depend on the

initial values of those variables (or cache lines) say z

whose initial type Ξ(z) is greater than t.

• processes (c.f. instances) belonging to a higher order

category instances (c.f. host) must not move to an

instance (c.f. a host) with a lower order category.

Theorem 1 (Monotonicity): Given L and P , for all τ ,

ωI , ωH and Ξ, the type environment transition function:

TP,L(Ξ, (τ, ωI , ωH)) 7→ Ξ′ regarding (τ, ωI , ωH) ⊢ Ξ{P}Ξ′

is monotone.

Definition 6 (Semantic flow security condition): We say

the semantic relation of P satisfies (τ, ωI , ωH)-flow security

property (denoted by φτ,ωI ,ωH
), written as: (Ξ{P}Ξ′) |=

φτ,ωI ,ωH
, iff:

i) for all Γ, Γ′, x and l:

〈P,Γ〉 ⇓ Γ′ ∧ Ξ′
⊏ (τ, ωI , ωH)

⇒ Γ(σ(x)) = Γ′(σ(x)) ∧ Γ(δ(l)) = Γ′(δ(l));

ii) and for all t ∈ L, o ∈ ΩI , o′ ∈ ΩH , Γ1 and Γ2:

Γ1 =Ξ,(t,o,o′) Γ2 ⇒ Γ′
1 =Ξ,(t,o,o′) Γ

′
2.

We say the flow security type system is sound if the

well-typed system is flow secure, more precisely, whenever

(τ, ωI , ωH) ⊢ Ξ{P}Ξ′ then the semantic relation of P is

flow secure.

Theorem 2 (Soundness of the flow security type system):

The type system proposed in Table III is sound, i.e.,

(τ, ωI , ωH) ⊢ Ξ{P}Ξ′ ⇒ (Ξ{P}Ξ′) |= φτ,ωI ,ωH
.

Theorem 3 (Flow secure of communications): Given a

CSP4v model A, for all P running upon any VM i of any

host h in A, if (Ξ{P}Ξ′) |= φτ,ωI ,ωH
, then A is weak

cache flow secure with L = τ .

Example 5: Consider again the model presented in Exam-

ple 1 and 3. It is clear that (τ, ωI , ωH) ⊢ Ξ{R}Ξ′ does not

hold since the assignment to z make Ξ′(z) > Ξ(z); while

Ξ{R}Ξ′ |= φτ,ωI ,ωH
holds if the communication between

P and Q fails and Ξ{R}Ξ′ 6|= φτ,ωI ,ωH
holds otherwise.

V. RELATED WORK AND CONCLUSIONS

This paper relates to the topic of information flow analysis

in virtualised computing systems from perspective of formal

languages with a concern of cache timing attacks.

Cross-VM side-channel attacks in virtualised infrastruc-

ture allowed the attacker to extract information from a target

VM and stole confidential information from the victims [4],

[5], [6]. Over the last decade, there have been a sustained

effort in exploring solutions to defend cache channel attacks

in virtualised computing environment via the approaches of

cache partition at either hardware-level [7], [8], [9], [10] or

system-level [11], [12], [13], [14], [15], and the approaches

of cache randomisation via introducing randomization in

cache uses through either new hardware design [16], [7],

[8], [17], [18], [19] or compiler-assistant design [20], [18],

[21], [22]. More recently, Liu et. al. [15] developed CATalyst

to defend cache-based side channel attacks for the cloud

(TSUB)
τ1 ⊢ Ξ1{P}Ξ′

1

τ2 ⊢ Ξ2{P}Ξ′
2

τ2 ⊑ τ1, Ξ2 ⊑ Ξ1, Ξ′
1 ⊑ Ξ′

2 (TASSIGN)
Ξ ⊢ exp :τv t

(τ, ωI , ωH) ⊢ Ξ{x := exp}Ξ′(x 7→τv τ ⊔ t)

(TSTOP) (⊥L,⊥ΩI
,⊥ΩH

) ⊢ Ξ{STOPP }Ξ′({l 7→τc ⊥ | ∀l ∈ CLinesP }) (TSKIP) (⊥L,⊥ΩI
,⊥ΩH

) ⊢ Ξ{SKIP}Ξ

(TMOVE)
Ξ ⊢ ({x :τv tx, l :τc tl, l :αc

i | ∀x ∈ VarsP , l ∈ CLinesP }), i :βi
ω, i′ :βi

ω′

(τ, ωI , ωH) ⊢ Ξ{MOVEP (i′)}Ξ′({x 7→τv tx ⊔ τ, l 7→τc tl ⊔ τ, l 7→αc
i′

| ∀x ∈ VarsP , l ∈ CLinesP }, i 7→βi
⊔{ω, ω′, ωI})

h : [[I]].MI I = 〈i : [[P1]], i : [[P2]], . . . , i : [[Pn]]〉
h′ : [[I′]].MI′ I′ = 〈i′ : [[P ′

1]], i′ : [[P ′
2]], . . . , i′ : [[P ′

n]]〉
Ξ ⊢ h :βh

ω Ξ ⊢ h′ :βh
ω′

(τ, ωI , ωH) ⊢ Ξ1{MOVEP1
(i′)}Ξ′

1 . . . (τ, ωI , ωH) ⊢ Ξn{MOVEPn
(i′)}Ξ′

n

(τ, ωI , ωH) ⊢ 〈Ξ1,Ξ2, . . . ,Ξn〉{MOVEI(h
′)}〈Ξ′

1,Ξ
′
2, . . . ,Ξ

′
n〉(h 7→ ⊔{ω, ω′, ωH})

(TSEQ)
(τ, ωI , ωH) ⊢ Ξ{P}Ξ′ (τ, ωI , ωH) ⊢ Ξ′{Q}Ξ′′

(τ, ωI , ωH) ⊢ Ξ{P ;Q}Ξ′′
(TBRANCH)

Ξ ⊢ b :τv t
(t ⊔ τ, ωI , ωH) ⊢ Ξ{P}Ξ′

P
(t ⊔ τ, ωI , ωH) ⊢ Ξ{Q}Ξ′

Q

(τ, ωI , ωH) ⊢ Ξ{P ⊳ b ⊲Q}Ξ′
Ξ′ = Ξ′

P
⊔ Ξ′

Q

(TSEND)
Ξ ⊢ w :τv t w ⇐ CAddra

(τ, ωI , ωH) ⊢ Ξ{a!w}Ξ′(CAddra 7→τc τ ⊔ t)
(TRECV)

Ξ ⊢ CAddra :τc t

(τ, ωI , ωH) ⊢ Ξ{a?x}Ξ′(x 7→τv τ ⊔ t)

(TLOOP)

Ξi ⊢ b :τv ti
(ti ⊔ τ, ωI , ωH) ⊢ Ξi{P}Ξ′

i i = 0, . . . , n

(τ, ωI , ωH) ⊢ Ξ{b ⊳ (P)∗}Ξ′
n

Ξ0 = Ξ, Ξi+1 = Ξ′
i ⊔ Ξ, Ξn+1 = Ξ′

n

(TPAR)

(τ, ωI , ωH) ⊢ Ξ{P}Ξ′ (τ, ωI , ωH) ⊢ Ξ{Q}Ξ′′

Ξ′ ⊢ ({x :τv t′x, l :τc t′
l
| ∀x ∈ Vars, l ∈ CLines})

Ξ′′ ⊢ ({x :τv t′′x , l :τc t′′
l
i | ∀x ∈ Vars, l ∈ CLines})

(τ, ωI , ωH) ⊢ Ξ{P‖Q}Ξ′′′({x 7→τv t′x ⊔ t′′x , l 7→τc t′
l
⊔ t′′

l
| ∀x ∈ Vars, l ∈ CLines})

Table III
TYPING RULES FOR PROCESSES WITH SECURITY CONFIGURATION.

computing system. However, these efforts mostly require

significant changes to the hardware, hypervisors, or oper-

ating systems, which make them impractical to be deployed

in current cloud data centres. Formal treatment on flow

security policies upon side-channel attack detection, leverag-

ing program analysis techniques and relevant tools are still

needed in order to improve the accuracy and applicability of

leakage analysis and control in the virtualised infrastructure.

In this paper, we address the flow security issue in virtualised

computing environment from perspective of programming

language and program analysis techniques.

On the other hand, there have been lasting investiga-

tions on flow property specification and enforcement via

approaches of formal language and analysis. The conception

of information flow specifies the security requirements of the

system where no sensitive information should be released to

the observer during its executions. Goguen and Meseguer [3]

formalised the notion of absence of information flow with

the concept of non-interference. Ryan and Schneider [23]

took a step towards the generalisation of a CSP formulation

of non-interference to handle information flows through the

concept of process equivalence. Security type systems [24],

[25], [26], [27], [28], [29], [30] had been substantially used

to formulate the analysis of secure information flow in

programs. In addition to type-based treatments of secure

information flow analysis for programs, Clark et. al pre-

sented a flow logic approach in [31], Amtoft and Baner-

jee proposed a Hoare-like logic for program dependence

in [32]. Hammer and Snelting [33] presented an approach

for information flow control in program analysis based on

program dependence graphs (PDG). However, none of the

above works has addressed the issue of flow analysis in

virtualised computing systems regarding observations on

both executions of communicating processes and affections

of cache timing channels.

We have proposed a language-based approach for infor-

mation leakage analysis and control in virtualised computing

infrastructure with a concern of cache timing attacks. Specif-

ically, we have introduced a distributed process algebra

with processes able to capture flow security characters in

a virtualised environment; we have described a cache flow

policy for leakage analysis through communication covert

channels; and we have presented a type system of the

language to enforce the flow policy. In our future work,

we plan to derive concrete implementation of our approach

and to extend the current model to define and enforce more

practical security policies.

REFERENCES

[1] C. Mu, “Analysing flow security properties in virtualised
computing systems,” CoRR, vol. 2004.05500, 2020. [Online].
Available: http://arxiv.org/abs/2004.05500

[2] C. A. R. Hoare, “Communicating sequential processes,” Com-

mun. ACM, vol. 21, no. 8, pp. 666–677, 1978.

[3] J. Goguen and J. Meseguer, “Security policies and security
models,” in S & P, 1982, pp. 11–20.

[4] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds,” in CCS, 2009, pp. 199–212.

[5] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space:
High-speed covert channel attacks in the cloud,” in USENIX,
2012, pp. 159–173.

[6] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-
vm side channels and their use to extract private keys,” in
CCS, 2012, pp. 305–316.

[7] Z. Wang and R. B. Lee, “New cache designs for thwarting
software cache-based side channel attacks,” in ISCA, 2007,
pp. 494–505.

[8] ——, “A novel cache architecture with enhanced performance
and security,” in MICRO, 2008, pp. 83–93.

[9] L. Domnitser, A. Jaleel, J. Loew, N. B. Abu-Ghazaleh, and
D. Ponomarev, “Non-monopolizable caches: Low-complexity
mitigation of cache side channel attacks,” TACO, vol. 8, no. 4,
pp. 35:1–35:21, 2012.

[10] J. Kong, O. Aciiçmez, J. Seifert, and H. Zhou, “Architecting
against software cache-based side-channel attacks,” IEEE
Trans. Computers, vol. 62, no. 7, pp. 1276–1288, 2013.

[11] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource
management for isolation enhanced cloud services,” in CCSW,
2009, pp. 77–84.

[12] J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-
based side-channel in multi-tenant cloud using dynamic page
coloring,” in IEEE/IFIP DSN-W, 2011, pp. 194–199.

[13] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM:
system-level protection against cache-based side channel at-
tacks in the cloud,” in USENIX, 2012, pp. 189–204.

[14] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach
to defeating side channels in last-level caches,” in CCS, 2016,
pp. 871–882.

[15] F. Liu, Q. Ge, Y. Yarom, F. McKeen, C. V. Rozas, G. Heiser,
and R. B. Lee, “Catalyst: Defeating last-level cache side
channel attacks in cloud computing,” in HPCA, 2016, pp.
406–418.

[16] Z. Wang and R. B. Lee, “Covert and side channels due to
processor architecture,” in ACSAC, 2006, pp. 473–482.

[17] F. Liu and R. B. Lee, “Random fill cache architecture,” in
MICRO, 2014, pp. 203–215.

[18] C. Liu, A. Harris, M. Maas, M. W. Hicks, M. Tiwari, and
E. Shi, “Ghostrider: A hardware-software system for memory
trace oblivious computation,” in ASPLOS, 2015, pp. 87–101.

[19] L. Ren, C. W. Fletcher, A. Kwon, M. van Dijk, and S. De-
vadas, “Design and implementation of the ascend secure
processor,” IEEE Trans. Dependable Sec. Comput., vol. 16,
no. 2, pp. 204–216, 2019.

[20] M. M. Godfrey and M. Zulkernine, “Preventing cache-based
side-channel attacks in a cloud environment,” IEEE Trans.
Cloud Computing, vol. 2, no. 4, pp. 395–408, 2014.

[21] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz,
“Thwarting cache side-channel attacks through dynamic soft-
ware diversity,” in NDSS, 2015.

[22] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital
side-channels through obfuscated execution,” in USENIX,
2015, pp. 431–446.

[23] P. Y. A. Ryan and S. A. Schneider, “Process algebra and non-
interference,” in CSFW, 1999, pp. 214–227.

[24] D. M. Volpano and G. Smith, “A type-based approach to
program security,” in TAPSOFT, 1997, pp. 607–621.

[25] A. C. Myers, “Jflow: Practical mostly-static information flow
control,” in POPL, 1999, pp. 228–241.

[26] K. Honda, V. T. Vasconcelos, and N. Yoshida, “Secure
information flow as typed process behaviour,” in ESOP, 2000,
pp. 180–199.

[27] F. Pottier, “A simple view of type-secure information flow in
the p-calculus,” in CSFW, 2002, pp. 320–330.

[28] S. Hunt and D. Sands, “On flow-sensitive security types,” in
POPL. ACM Press, January 2006, pp. 79–90.

[29] S. Capecchi, I. Castellani, M. Dezani-Ciancaglini, and
T. Rezk, “Session types for access and information flow
control,” in CONCUR, 2010, pp. 237–252.

[30] S. Hunt and D. Sands, “From exponential to polynomial-time
security typing via principal types,” in ESOP, 2011, pp. 297–
316.

[31] D. Clark, C. Hankin, and S. Hunt, “Information flow for algol-
like languages,” Comput. Lang., vol. 28, no. 1, pp. 3–28, 2002.

[32] T. Amtoft and A. Banerjee, “Information flow analysis in
logical form,” in SAS, 2004, pp. 100–115.

[33] C. Hammer and G. Snelting, “Flow-sensitive, context-
sensitive, and object-sensitive information flow control based
on program dependence graphs,” Int. J. Inf. Sec., vol. 8, no. 6,
pp. 399–422, 2009.

