
Using Machine Learning as a Surrogate Model for
Agent-Based Simulations

Claudio Angione1,3,4,5,Y,*, Eric Silverman2,Y, Elisabeth Yaneske1,Y,

1 School of Computing, Engineering and Digital Technologies, Teesside University,
Middlesbrough, UK
2 Institute for Health and Wellbeing, University of Glasgow, Glasgow, UK
3 Healthcare Innovation Centre, Teesside University, Middlesbrough, UK
4 National Horizons Centre, Teesside University, Darlington, UK
5 Centre for Digital Innovation, Teesside University, Middlesbrough, UK

YThese authors contributed equally to this work.
*c.angione@tees.ac.uk

Abstract

In this proof-of-concept work, we evaluate the performance of multiple machine-learning
methods as surrogate models for use in the analysis of agent-based models (ABMs).
Analysing agent-based modelling outputs can be challenging, as the relationships
between input parameters can be non-linear or even chaotic even in relatively simple
models, and each model run can require significant CPU time. Surrogate modelling, in
which a statistical model of the ABM is constructed to facilitate detailed model
analyses, has been proposed as an alternative to computationally costly Monte Carlo
methods. Here we compare multiple machine-learning methods for ABM surrogate
modelling in order to determine the approaches best suited as a surrogate for modelling
the complex behaviour of ABMs. Our results suggest that, in most scenarios, artificial
neural networks (ANNs) and gradient-boosted trees outperform Gaussian process
surrogates, currently the most commonly used method for the surrogate modelling of
complex computational models. ANNs produced the most accurate model replications
in scenarios with high numbers of model runs, although training times were longer than
the other methods. We propose that agent-based modelling would benefit from using
machine-learning methods for surrogate modelling, as this can facilitate more robust
sensitivity analyses for the models while also reducing CPU time consumption when
calibrating and analysing the simulation.

Introduction 1

In this paper, we investigate the use of machine-learning-based surrogate modelling for 2

the analysis of agent-based models (ABMs). In this approach, machine-learning 3

methods are used to generate statistical models that replicate the behaviour of the 4

original ABM to a high degree of accuracy; these surrogates are substantially faster to 5

run than the original model, enabling complex sensitivity analyses to be performed 6

much more efficiently. This proof-of-concept work demonstrates that these methods are 7

applicable and useful even in time- and resource-limited modelling contexts, and that 8

these surrogates are capable of closely replicating the behaviour of the original model 9

even when minimal hyperparameter optimisation is performed. We propose that 10

January 21, 2022 1/26



incorporating such methods into standard agent-based modelling practice may allow a 11

significant improvement in the standard of results reporting in certain disciplines, 12

particularly in policy-relevant contexts where analyses of models frequently must be 13

performed quickly and with limited computational resources. 14

Agent-based modelling is a computational modelling approach most often applied to 15

the study of complex adaptive systems [1]. ABMs typically represent individuals 16

directly, and situate these agents in a virtual environment of some kind. These agents 17

then engage in varied behaviours encoded in a set of decision rules that drive their 18

actions in response to behavioural, environmental and social change. The resultant 19

complex interactions between agents and their environments can lead to emergent 20

behaviours, in which the patterns of behaviour seen at the population level have new 21

properties that are not straightforwardly attributable to individual-level actions [2]. 22

Agent-based modelling is growing in popularity in social and health sciences, and 23

recent papers have proposed that agent-based modelling has the potential to provide 24

insight into complex policy challenges that have been resistant to traditional statistical 25

modelling approaches [3]. However, the use of agent-based modelling presents technical 26

barriers in implementation, and the analysis of ABM outputs is a challenging 27

undertaking, and often very demanding of computational resources [4]. 28

The ability of ABMs to model complex interactions and to demonstrate emergence 29

has meant that agent-based modelling is particularly relevant to those disciplines of the 30

social sciences where individual agency is considered important to population-level 31

outcomes. This is not a new phenomenon; one of the very first ABMs was a social model 32

– a simple model of residential housing segregation designed by Thomas Schelling [5]. 33

Since the 1980s and Axelrod’s The Evolution of Cooperation [6], this synergy with the 34

social sciences has led to the development of the field of social simulation, in which this 35

variety of computational social science is used to examine the development and evolution 36

of human society in a wide variety of circumstances [7]. In recent years, more applied 37

areas of social science, such as public health, have proposed agent-based modelling as a 38

means to investigate societal responses to new social or economic policies [3]. 39

As agent-based modelling becomes more commonplace in policy debates, 40

methodological discussions amongst agent-based modelling practitioners have focused 41

on the development of more efficient means for understanding the outputs of these 42

complex simulations. Even a simple ABM may have several interacting processes 43

affecting its agents, meaning that the relationships between model parameters can be 44

highly non-linear – small changes to one parameter can lead to unexpectedly large 45

effects on simulation outcomes, or vice versa. This, in turn, means that understanding 46

an ABM is a complex undertaking, often involving detailed sensitivity analyses 47

performed using Monte Carlo methods, where large numbers of repeated simulation 48

runs are performed at a wide range of parameter values. When ABMs are highly 49

complex, performing these kinds of analyses becomes both time- and cost-prohibitive, 50

potentially leading some modellers to truncate these analyses or eliminate them entirely, 51

leading to a model that is less robust to changes in parameter values [8]. 52

When such analyses are not performed, model verification and validation can 53

become more challenging. In this context, sensitivity analyses can be used to provide 54

insights into the contributions made by model parameters, which can be valuable for 55

verifying whether the model processes driven by those parameters are functioning 56

correctly. ABMs simulate multi-level complex systems, which may be multi-realisable, 57

meaning that the macro-level phenomena of interest may be generated in multiple ways 58

at the individual level [9]. That being the case, validation for ABMs can be particularly 59

challenging, as the ABM may be only one of many possible explanations for the 60

macro-level phenomena. Sensitivity analysis can therefore provide a more complete 61

description of the model’s behaviour, which can help the modeller to justify why their 62

January 21, 2022 2/26



implementation constitutes a useful explanation of the underlying system. Without such 63

analyses, validation relies on face validity and on matching input-output 64

transformations to real data, which cannot provide evidence on whether the underlying 65

model processes and assumptions are valid. 66

In addition, in real health and social policy scenarios, decisions are often taken under 67

significant pressure, and in very short timeframes. Such decisions are often high-risk, 68

affecting millions of individuals, and may generate negative outcomes [10]. Competing 69

political interests and economic pressures have a strong influence on the outcomes of the 70

policy-making process [11]. For modelling tasks within such policy development process, 71

this may create an environment where detailed interrogation of the models may not be 72

practical. Therefore, developing model analyses that are practical in these environments 73

would benefit from the use of alternative methods, rather than the conventional Monte 74

Carlo approach. 75

Recent developments in uncertainty quantification (UQ) have provided alternative 76

means for calibrating and analysing complex simulation models. Using methods like 77

surrogate modelling allows creating a statistical model of the simulation model, meaning 78

the repeated simulation ‘runs’ can be completed in mere seconds using a statistical 79

surrogate of the original complex ABM [12,13]. The most common approach is 80

Gaussian process emulation (GP), which has been used with some success in 81

agent-based modelling applications in a variety of fields including public health [14,15]. 82

We note that the terms ‘surrogate model’ and ‘emulator’ are sometimes used 83

interchangeably, but the originators of the GP approach use the term ‘emulator’ 84

specifically for methods that provide full probabilistic predictions of simulation 85

behaviour, not only approximations of the outputs. 86

Importantly, surrogates cannot serve as complete replacements for the original ABM; 87

the goal of surrogate modelling is to complement the modelling process and help 88

illuminate the behaviour of the original model. Surrogate models can reduce the 89

significant computational demands of the calibration and sensitivity analysis processes, 90

but if one wishes to test the simulation and its assumptions on new empirical 91

information, then the original model should be used, not the surrogate model. However, 92

even in this limited role, the use of surrogate models can save significant computational 93

resources, given that a typical surrogate model is many orders of magnitude faster to 94

run than a complex computational simulation [16]. 95

At the same time, machine and deep learning approaches have shown wide 96

applicability and versatility when simulating mechanistic processes, merging 97

model-driven and data-driven techniques [17]. In agent-based modelling, machine 98

learning approaches have been used for two main applications [18]: (i) modelling 99

adaptive agents that can learn from experience through reinforcement learning 100

approaches; and (ii) analysing and post-processing the (often large-scale) outcomes of 101

running a given ABM. With the advent of accessible machine-learning methods 102

including artificial neural networks (ANNs), various authors have also proposed 103

machine learning as a potentially productive means of creating surrogate models for 104

ABMs [19,20]. 105

These frameworks seem particularly promising in the case of ANNs; while it is 106

well-known that shallow-depth ANNs are universal approximators capable of 107

approximating any continuous function, recent work has shown that modern deep 108

neural networks are capable of similar or greater expressiveness even when the network 109

width is limited [21]. These properties suggest that ANNs can more easily handle the 110

highly non-linear nature of ABMs compared to other approaches. Other 111

machine-learning approaches are significantly faster than training an ANN, and may 112

also prove fruitful for surrogate modelling purposes. 113

Despite its high potential, machine learning can be found only in a very limited 114

January 21, 2022 3/26



number of applications in the agent-based modelling domain. As well as having been 115

used as part of an agent-based modelling calibration process [22, 23], one recent project 116

has proposed to determine single-agent behaviour using machine learning. In this 117

project, a machine-learning model was trained to mimic behavioural patterns, where 118

parameters are given as input and the action is the output, all performed at a 119

single-agent resolution [24]. At the time of writing, machine-learning methods have not 120

been used widely to develop surrogate models for the purpose of sensitivity analysis. 121

The majority of extant examples of machine-learning methods applied to ABM outputs 122

are GP implementations. To our knowledge, various versions of ANNs and other 123

methods have been discussed in principle, but not yet designed and implemented on 124

agent-based simulations applied to human social systems. 125

In this paper, we test a range of machine-learning approaches for the task of 126

replicating the outputs of an ABM that has been used to evaluate social care policies in 127

the UK [14], in order to investigate the potential of these approaches for generating 128

surrogate models of complex policy-relevant models. The model was chosen as an 129

exemplar of the type of ABM that may be applied in policy-relevant modelling studies. 130

We note that models vary widely in complexity, empirical relevance, and underlying 131

behavioural assumptions; therefore, this model serves as a case study, and we do not 132

claim these results will apply to all ABMs. We also apply the chosen machine-learning 133

methods with minimal hyperparameter optimisation, and perform all our calculations 134

on commodity hardware, in order to test the applicability of these methods in 135

conditions reflective of the constraints and optimality tradeoffs that policy-relevant 136

agent-based modelling work is required to meet. 137

We propose that machine and deep learning methods, when applied to the 138

generation of surrogate models, can improve the theoretical understanding of the ABM, 139

help calibrate the model more efficiently, and provide more insightful interpretations of 140

the simulation outputs and behaviours. Therefore, for parameter spaces that cannot be 141

searched effectively with heuristics, machine learning models can be learned from ABM 142

outputs, and machine/deep learning techniques can then be used as a surrogate model 143

of the ABMs with high accuracy. We also contend that such methods can be used even 144

in high-pressure, high-risk environments like health and social policy-making, given that 145

they may be applied quickly and demonstrate highly accurate surrogate modelling 146

performance even with limited hyperparameter optimisation. As this proof-of-concept 147

work demonstrates, machine-learning-based surrogate models can replicate the 148

behaviour of ABMs even where sophisticated methods like GP emulation have failed, 149

suggesting that surrogate modelling may be used practically and straightforwardly even 150

when the model’s behaviour is highly complex. 151

Interpretability of machine-learning models 152

The widespread use of machine-learning models today has led to concerns being raised 153

regarding their interpretability, given that understanding the predictions produced by 154

machine-learning models is far from straightforward [25]. Deep-learning models in 155

particular are enormously complex, often containing hundreds of layers of neurons 156

adding up to tens of millions of parameters. Recently, significant progress has been 157

made in developing tools for interpreting these models, including recent striking 158

interactive attempts to make a large deep-learning model interpretable [26,27]. In 159

biomedicine, for instance, efforts towards interpretability are paramount also when the 160

input data is collected from different sources and is therefore inherently multimodal [28]. 161

Such tools are progressing rapidly, but they still require a significant time investment, 162

and are not yet in widespread use. However, we note that while large machine-learning 163

models may appear particularly problematic, simpler methods like logistic regression 164

can be equally difficult to interpret when dealing with large data sets, and 165

January 21, 2022 4/26



regularisation methods should be used to mitigate this issue [29,30]. 166

While machine-learning models can suffer from difficult interpretability, in the case 167

of building surrogate models the primary aim is to significantly reduce the time required 168

to produce model outputs for sensitivity analyses. Therefore, convenient 169

implementation and computational efficiency are also of high importance. Notably, the 170

surrogate model can produce analyses that help to understand the behaviour of the 171

original model, regardless of the interpretability of the surrogate itself. 172

Machine learning techniques, if used to mimic ABMs and coupled with tools for 173

interpretations of the predictions, can shed light on the input-output relationships. In 174

this context, the recent strong focus on explainability techniques for machine learning 175

models, e.g. SHAP [26], could also quantify the influence that each factor has on the 176

model outcome. For a more in-depth discussion on the advantages and disadvantages of 177

these approaches in the context of ABMs, we refer the reader to the recent systematic 178

literature review and discussion by Dahlke et al. [18]. 179

In this paper, we implement and provide a thorough comparison of the performance 180

of a multitude of machine-learning methods in an ABM surrogate modelling scenario. 181

As an exemplar model, we have used an agent-based model of social care provision in 182

the UK [15], generated sets of observations across ranges of input parameter values 183

designed for optimum parameter space coverage, and attempted to replicate the ABM 184

outputs using machine-learning algorithms. In the following section, we outline the 185

methods we studied, and in the Results section we provide a detailed analysis of their 186

performance in this task. 187

Motivations 188

With this paper, we investigate a question raised elsewhere [19,23]: whether neural 189

networks and other machine-learning methods may be used successfully and efficiently 190

as a method for surrogate modelling of ABMs. The work done in this area thus far has 191

proposed this possibility, but has not taken the step of directly comparing machine 192

learning to other methods for surrogate modelling of ABMs. Previous work by O’Hagan 193

has suggested that neural networks were less well-suited to emulation tasks, by “not 194

allowing for enough uncertainty about how the true simulator will behave” [13]; 195

however, since that paper was written in 2006, neural network approaches have 196

advanced significantly. In an effort to spur further work on this topic, we have 197

developed this comparison of nine different possible methods, with a particular focus on 198

examining the potential for using neural networks for surrogate modelling. 199

We have chosen a selection of the most widely-used machine learning methods for 200

our comparison. The primary advantage of using surrogate models is to drastically 201

reduce the time required to perform detailed analyses of ABM outputs; with that in 202

mind, we chose methods that can generate predictions rapidly once the surrogate is 203

trained. These methods can differ significantly in the time required for training the 204

model, so we compare training times in this paper as well as predictive accuracy. We 205

attempted to provide a survey of numerous ML methods, discussing their strengths and 206

weaknesses specifically for potential use as surrogates. While our case study clearly 207

shows differences in the performance across the machine learning methods and one can 208

in principle pre-select the best-performing methods, we provided the complete set of 209

results as the best method might in principle differ depending on the specific ABM 210

under investigation, and its complexity. 211

Substantial work remains to be done on developing these methods into a more 212

accessible form aimed specifically at model calibration and surrogate modelling, and to 213

further refine their application in this context. We aim to inform these efforts, and to 214

determine whether useful surrogate models can be built using machine learning 215

January 21, 2022 5/26



methods, and which methods are most effective. 216

We also address the problems ABMs pose for current surrogate modelling methods, 217

such as Gaussian process emulators, and investigate whether machine-learning methods 218

can surpass these obstacles. We therefore included Gaussian process emulators in our 219

comparative framework. Both GP emulation and Kriging are popular forms of Gaussian 220

process regression. Here we opted to focus on GP emulation as the main comparator, 221

because GP emulation is found more often in the ABM literature. As we demonstrate 222

below, Gaussian process emulators are both efficient and powerful, but can struggle 223

nonetheless to fit the output of even moderately complex ABMs. Our hope is that 224

ultimately new methods for surrogate modelling can supplement GPs in these cases. 225

To ensure our results are accessible to a wide range of modellers, we have performed 226

our analyses using Mathematica, Matlab and R. The code and results are shared in full 227

in our GitHub repository 228

https://github.com/thorsilver/Emulating-ABMs-with-ML. We chose this 229

approach in the hope that even modellers familiar with graphical agent-based modelling 230

tools like NetLogo or Repast will be able to try the methods and reproduce our results 231

even without extensive programming experience. We performed all our analyses on 232

mid-range desktop PCs, and did not use GPUs for any calculations; this was to ensure a 233

fair comparison across all methods, and that our models could be built even without 234

high-performance computing hardware. Similarly, we performed hyperparameter 235

optimisation to provide a realistic picture of how each method would perform in 236

circumstances where optimality tradeoffs and time constraints are likely required. We 237

note that methods like artificial neural networks may produce even stronger results 238

when extensively optimised. 239

In order to properly interrogate the results, there are currently no universally 240

applied standards regarding how ABMs should be calibrated and analysed. Therefore, 241

in time- and resource-limited contexts, more complex analyses of sensitivity and 242

uncertainty are sometimes omitted to save time and computational expense. We believe 243

that machine learning surrogates that can be built within such constraints provide 244

robust and accessible ways to analyse ABMs even in challenging modelling contexts. We 245

propose that such tools could significantly improve the standard of results reporting by 246

making the production of detailed sensitivity analyses more straightforward and less 247

computationally costly, and this, in turn, may widen the use of agent-based modelling 248

studies in other areas. Our aim is to produce proof-of-concept work that illustrates this 249

possibility, and inspires future development of accessible frameworks for automating 250

machine-learning-based surrogate modelling for ABMs. 251

Materials and methods 252

Table 1 provides a summary of the machine learning methods studied in this paper, and 253

includes a description of each method, with its advantages and disadvantages. This 254

summary is provided as a quick guide, rather than as a definitive comparison between 255

them. For further details on each method, we refer the reader to the key references cited 256

in each description. 257

The ‘Linked Lives’ agent-based model 258

To present a useful comparison of methods for generating surrogate ABMs, we chose to 259

use an exemplar ABM which is neither a simplistic ‘toy model’, nor a highly-detailed 260

simulation with hundreds of parameters. Simplistic ABMs may generate behaviour that 261

is easier to replicate, i.e. they would not present a sufficient test of the capabilities of 262

the emulators, and in practice some simplistic models could be analysed relatively 263

effectively using traditional methods, given the short runtimes. Conversely, 264

January 21, 2022 6/26

https://github.com/thorsilver/Emulating-ABMs-with-ML


Method Description Advantages Disadvantages

Linear Re-
gression

Predicts values using a linear combination
of input features, in this case parameter
values [31].

Fast, extremely well-studied,
easy to implement with any
number of tools.

Not well-suited for data with
non-linear relationships.

Decision
Trees

Generates binary trees that predict the
value of a variable based on several in-
puts, represented as interior nodes in the
tree [32].

Fast and easy to train, simple
to implement, very easy to
understand and interpret.

High variance (slight changes
to input data can produce
very different trees), prone
to overfitting.

Random
Forests

Ensemble approach to decision trees in
which multiple models are trained using
random split points. When making a pre-
diction, the predictions of each tree in the
ensemble are averaged together to produce
the final result [33].

Easy to parallelise, low com-
putational load, low vari-
ance.

Prone to overfitting, low in-
terpretability.

Gradient
Boosted
Trees

Ensemble method that combines weak
learners into a strong learner [34]. Weak
learners are trained sequentially so that
each successive learner improves on its pre-
decessor’s predictions. XGBoost [35] and
LightGBM [36] have further optimised this
approach and are frequently used in a vari-
ety of machine-learning domains.

Fast, low variance, very suc-
cessful across a wide range of
problems.

Prone to overfitting, requires
extensive parameter optimi-
sation.

K-Nearest
Neigh-
bours

This method makes a prediction by find-
ing the K most similar points in the entire
training data set to the new data point we
would like to label, then summarising the
output values at those points to arrive at
the prediction for the new point [37].

Simple to implement, fast,
only requires computational
resources when making a pre-
diction.

Must include the entire train-
ing set, becomes ineffec-
tive as the number of input
variables becomes high (the
‘curse of dimensionality’).

Gaussian
Process
Emulation

The most common method for surrogate
modelling of computer models, GPs model
the simulation as a Gaussian process [13].
Useful measures like the main effects, or
output variance due to each input param-
eter, are straightforwardly derivable from
the emulator.

Very computationally ef-
ficient, highly useful for
sensitivity analyses, spe-
cialised free software (GEM-
SA) speeds the process up
considerably.

Assumes that the surrogate
model is smooth (may not
be the case with complex
ABMs), GEM-SA software
no longer maintained, only
copes with single model out-
puts.

Support
Vector
Machine
(SVM)

Finds a hyperplane in a high-dimensional
space of data points that can separate those
points with the widest possible margin. It
can be used for classification or regression
[38].

Scales well, few hyperparam-
eters to optimise, flexible
and powerful in higher di-
mensions thanks to the ‘ker-
nel trick’.

It can be difficult to choose
the right kernel, long train-
ing times for large datasets,
low interpretability.

Neural
Network

A network of nodes loosely based on bio-
logical neurons, normally consisting of an
input and output layer with one or more
hidden layers of neurons in between. Learn-
ing algorithms adjust the weighted connec-
tions between neurons to enable regression
or classification of input datasets. Deep
neural networks use many hidden layers
and can model complex non-linear relation-
ships [39].

An enormous variety of pos-
sible layer types and net-
work architectures, can learn
supervised or unsupervised,
highly suitable for modelling
non-linear relationships, very
well-supported by powerful
open-source software.

Computationally expensive
hyperparameter optimisa-
tion, prone to overfitting,
large networks require GPU
access for training, low
interpretability.

Table 1. Summary of methods implemented in our study.

January 21, 2022 7/26



high-complexity ABMs may provide a very robust test of the capabilities of ML-based 265

emulation. However, a highly complex model would have taken impractical amounts of 266

CPU time to generate output data and would not be representative of the typical 267

empirical ABM, where overly complex models are often avoided to enable the model to 268

provide explanatory insight into the system of interest. Therefore, for reasons of 269

applicability, practicality, and replicability we chose to use a model between these two 270

extremes, which we call ‘moderately complex’, with runtimes on the order of several 271

minutes and ten configurable parameters. 272

The chosen model is the ‘Linked Lives’ model of social care provision in the UK, 273

which models the interaction between supply and demand of informal social care [15,40]. 274

The model is written in Python, and simulates the movements and life course decisions 275

of agents in a virtual space built as a rough approximation of UK geography. Our 276

simulation code is freely available via GitHub, and the specific release used for this 277

paper is available at 278

https://github.com/thorsilver/Social-Care-ABM-for-UQ/releases/tag/v0.91. 279

The Linked Lives model provides a platform for the investigation of social and 280

economic policies directed at formal and informal UK social care. Social care in the UK 281

is a crucial policy question, as insufficient care being provided can lead to vulnerable 282

people needing hospital treatment or their health status declining further. The care 283

supply in the UK is insufficient for the demand, and demand is projected to rise in the 284

coming decades due to the current demographic trends [41, 42]. A significant proportion 285

of care is provided by informal carers, typically family members who provide their time 286

free of charge to assist one of their relations with daily activities [8, 43]. The Linked 287

Lives model aims to provide a representation of the tradeoffs faced by informal carers as 288

they make decisions about care provision, and thus to enable policy-makers to better 289

address the particular needs of informal carers. 290

The model includes a rough representation of UK geography, in which clusters of 291

households form into cities that mirror the population density of the UK. As the 292

simulation progresses, some agents will develop a need for social care due to long-term 293

health conditions, with the amount of care required varying according to the agent’s 294

level of need. Family members of that agent will attempt to provide social care, but the 295

amount of care they can provide is affected by the social and economic conditions in 296

which they live. The model thus simulates the varied and complex factors that influence 297

an individual’s ability to provide informal care to their loved ones. 298

Agents in the Linked Lives model are capable of migrating domestically, forming and 299

dissolving partnerships, and participating in a simple simulated economy. As agents age, 300

they may develop long-term limiting health conditions that require social care; the 301

probability of developing such a condition varies by age and gender. Care availability 302

varies according to a potential carer’s employment status, geographical location and 303

health status. These caregiving patterns may shift in response to policy changes, which 304

can be implemented in the simulation by altering the simulation parameters. 305

The Linked Lives model is more complex than theoretical ABMs built to examine 306

foundational aspects of social behaviour, such as Schelling’s residential segregation 307

model [5], and better reflects the level of detail seen in empirically-informed models 308

aimed at simulating real-world social systems. The model is intended as a tool for 309

policy development and evaluation in social care, an area of social policy where policy 310

changes may affect millions of families. In this context, an in-depth understanding of 311

the model behaviour is essential if policy-makers need to trust the simulation as a 312

decision support tool. With that in mind, we have chosen the Linked Lives model for 313

this study because it serves as an example of the models being constructed with 314

increasing frequency in various areas of population health. Unlike ‘toy models’ 315

investigating social theory, we decided to adopt a real-world policy-relevant tool 316

January 21, 2022 8/26

https://github.com/thorsilver/Social-Care-ABM-for-UQ/releases/tag/v0.91


Parameter Description Default Range

ageingParentsMoveInWithKids Probability agents move back in with adult children 0.1 0.1 – 0.8
baseCareProb Base probability used for care provision functions 0.0002 0.0002 – 0.0016
retiredHours Hours of care provided by retired agents 60.0 40 – 80
ageOfRetirement Age of retirement for working agents 65 55 – 75
personCareProb General individual probability of requiring care 0.0008 0.0002 – 0.0016
maleAgeCareScaling Scaling factor for likelihood of care need for males 18.0 10 – 25
femaleAgeCareScaling Scaling factor for likelihood of care need for females 19.0 10 – 25
childHours Hours of care provided by children living at home 5.0 1 – 10
homeAdultHours Hours of care provided by unemployed adults 30.0 5 – 50
workingAdultHours Hours of care provided by employed adults 25.0 5 – 40

Table 2. The ten parameters used in the Linked Lives ABM surrogate model
generation process, with descriptions, default values and lower and upper bounds used
when generating simulation output data.

informed by empirical data, to be used for interrogating real-world complex systems. 317

Properties of the Linked Lives model 318

The Linked Lives model would be classified in the emulation literature as a 319

deterministic simulator, meaning that a given set of parameter values will produce the 320

same results, presuming that the same random number seed is used. Many simulations 321

are of this type, as they will be implemented in standard programming languages which 322

use pseudo-random number generators. 323

In previous explorations, the Linked Lives model has demonstrated ergodicity, i.e. 324

the simulation tends to converge to similar outputs at identical parameter values, even 325

if the random seed is different. However, we note that this property, while useful in that 326

it suggests less code uncertainty is present in the simulation, is not essential to the use 327

of surrogate modelling techniques. If the random seed has a significant influence on 328

model outputs, surrogates like Gaussian process emulators can still be constructed. In 329

this context, the distinction between stochastic and deterministic models can be 330

sometimes artificial, as a stochastic simulator can be interpreted as deterministic when 331

the random number seed becomes an input [13]. 332

Therefore, when generating runs for a simulation that has a high degree of 333

stochasticity, modellers should record the used random seed with each run to enable the 334

inclusion of those seeds as an additional input when training the surrogate. In this way 335

the simulation can be treated as a deterministic model. 336

Generating simulation data 337

The Linked Lives model contains 22 user-alterable parameters, 10 of which are 338

potentially relevant to modelling social care policies. Table 2 summarises the ten 339

parameters and their function within the simulation. The input values for these 340

parameters were varied across ranges determined by experimentation to lie at the upper 341

and lower bounds for interpretable simulation behaviour; beyond those bounds, the 342

simulation results were generally highly unrealistic, leading to either collapsing or 343

exploding agent populations. 344

The simulation output of interest is the per capita cost of social care per annum. 345

Each simulation run starts with a random initial population in the year 1860, then runs 346

in yearly time steps until 2050. The final per capita cost of care in 2050 is then recorded 347

along with the input parameter values for that run. Full simulation runs were generated 348

in four different batches consisting of 200, 400, 800 and 1600 runs, in order to allow us to 349

January 21, 2022 9/26



compare the performance of each machine learning method with both smaller and larger 350

sets of observations. Each run constituted a sample for the machine learning methods. 351

When building a surrogate model, generating an appropriate experimental design is 352

essential; the runs of the original simulation must be therefore conducted such that they 353

cover a sufficient portion of the mode’s parameter space. In the Gaussian process 354

emulation literature, maximin Latin Hypercube Design [44] and LP-tau [45] are most 355

typically used to generate experimental designs, and both of these methods are available 356

in the widely-used GEM-SA software package for Gaussian process emulation [46]. The 357

LP-tau method enables the rapid generation of experimental designs even in complex 358

parameter spaces, and provides a good uniformity of distribution across the parameter 359

space [47]. In keeping with our aim to demonstrate the utility of surrogate modelling 360

approaches even in time- and resource-limited modelling contexts, we elected to use 361

LP-tau for the generation of our experimental design. The parameter ranges listed in 362

Table 2 were used to generate the four experimental designs using LP-tau, and the 363

simulation was then run at the generated parameter values for each of those four 364

designs. These four designs spanned the parameter space using 200, 400, 800 and 1600 365

runs, meaning that over the course of this phase of the study we ran the simulation a 366

total of 3,000 separate times at different parameter values. Note that the LP-tau 367

method was used to generate the parameter values for each scenario separately, to 368

ensure that the parameter space coverage was distributed uniformly in each case; as a 369

consequence, each scenario used different parameter values for each individual run. 370

Machine learning models to predict simulation outputs 371

For each of the machine learning algorithms chosen for this comparison, the simulation 372

outputs for each of the four batches outlined above were used to train each algorithm to 373

predict the output of the simulation. The ten simulation parameters described in Table 374

2 were used as input features, and the output to be predicted is the social care cost per 375

capita per annum. 376

The loss function used was the mean-squared error (MSE), the most commonly-used 377

loss function for regression tasks. This is calculated as the mean of the squared 378

differences between actual and predicted values: 379

MSE =
1

n

n∑
i=1

(ŷi − yi)
2, (1)

where ŷ is the n-dimensional vector of actual values, and y is the n-dimensional vector 380

of predicted values. Training times were recorded in units of seconds for each algorithm. 381

All the tested machine learning methods were trained by splitting randomly the 382

simulation run data into training, validation and test sets, as commonly carried out in 383

machine learning approaches. In our simulation, the test set consisted of 20% of the 384

initial set of runs, the validation set consisted of 20% of the remaining 80% after the 385

test set was created, and all the remaining data formed the training set. This three-way 386

split allowed for hyperparameter optimisation to be done using the validation set, 387

without any risk of accidentally training a model on the test set and thus obtaining 388

biased results. The training set was used exclusively for training, and the validation set 389

for the evaluation of the trained model. The final-round MSE loss figures on the test set 390

were then compiled into our results table (within Figure 1), providing a summary of the 391

relative performance of all the machine learning methods for creating surrogate models 392

of the ABM. 393

January 21, 2022 10/26



200 Runs 400 Runs 800 Runs 1600 Runs
Runtime MSE Loss Runtime MSE Loss Runtime MSE Loss Runtime MSE Loss

Neural Network 47.5s 0.965 91.77s 0.761 222.97s 0.224 695.31s 0.188
Linear SVM 1.42s 6.246 2.4s 7.023 3.4s 7.826 11.17s 3.22
Non-Linear SVM 1.7s 5.254 2.87s 2.586 5.61s 0.708 14.25s 0.236
Random Forest 2.14s 16.936 0.397s 12.06 1.58s 2.974 2.16s 2.656
Linear Regression 1.47s 5.237 1.42s 4.374 3.06s 13.439 3.86s 24.18
Gradient Boosted Trees 1.4s 3.778 1.47s 2.526 1.5s 0.452 3.88s 2.774
K-Nearest Neighbours 0.33s 12.895 0.35s 13.422 0.37s 1.356 2.29s 7.404
Gaussian Process 2.02s 4.284 2.97s 1.928 4.12s 0.33 17.7s 37.02
Decision Trees 0.33s 19.734 0.355s 14.321 0.532s 3.855 2.09s 2.247

(a) 200 Runs

Speed [−log(runtime)] 
Accuracy [−log(MSE)]

(c) 800 Runs (d) 1600 Runs

(b) 400 Runs

0

25 (%)

50 (%)

75 (%)

100 (%)1

1

1

1

1 1

1

1

1

Neural Network

Linear SVM

Non−Linear SVM

Random Forest

Linear Regression Gradient Boosted Trees

Nearest Neighbours

Gaussian Process

Decision Trees

0

25 (%)

50 (%)

75 (%)

100 (%)1

1

1

1

1 1

1

1

1

Neural Network

Linear SVM

Non−Linear SVM

Random Forest

Linear Regression Gradient Boosted Trees

Nearest Neighbours

Gaussian Process

Decision Trees

0

25 (%)

50 (%)

75 (%)

100 (%)1

1

1

1

1 1

1

1

1

Neural Network

Linear SVM

Non−Linear SVM

Random Forest

Linear Regression Gradient Boosted Trees

Nearest Neighbours

Gaussian Process

Decision Trees

0

25 (%)

50 (%)

75 (%)

100 (%)1

1

1

1

1 1

1

1

1

Neural Network

Linear SVM

Non−Linear SVM

Random Forest

Linear Regression Gradient Boosted Trees

Nearest Neighbours

Gaussian Process

Decision Trees

Fig 1. Performance of the nine machine-learning methods trained on simulation
outputs from 200, 400, 800 and 1600 runs. The spider plots compare speed and
accuracy across all nine methods for the 200, 400, 800 and 1600 run scenarios in plots
(a), (b), (c) and (d) respectively. For each method, the total computational runtime on
an 8-core i7 CPU and the mean-squared error (MSE) on the test set are shown (both in
log scale, reversed, and mapped to the [0, 1] interval to represent relative speed and
accuracy, respectively). Neural networks were the strongest overall performers, with
gradient-boosted trees also performing well overall, and non-linear SVM performing
increasingly well for higher numbers of runs. The high accuracy of the neural network
models has a significant cost in terms of speed. Gradient-boosted trees and non-linear
SVM consistently perform well in terms of speed, but suffer from a lower accuracy
overall.

January 21, 2022 11/26



Considerations on creating ABM surrogate models with machine 394

learning algorithms 395

Once the simulation runs were completed, we chose a selection of the most commonly 396

used machine learning methods to evaluate as possible means for creating surrogate 397

models of the ABM. Given that the motivation for generating these surrogates is to 398

enable detailed analysis of ABM outputs without having to run the ABM many 399

thousands of times, we sought to test methods that would produce predictions very 400

quickly once the model is trained. As part of our comparison table in Figure 1, we 401

included the training time required for each surrogate model. 402

For this comparison, we investigated the performance of these approaches without 403

requiring a pipeline of extensive hyperparameter optimisation. We note that some of 404

these methods, and especially neural networks, could produce an even stronger result in 405

both accuracy and speed by exploiting recent advances in deep learning 406

surrogates [16,48,49]. 407

We note that in addition to the methods listed, we also tested XGBoost [35] and 408

LightGBM [36]. However, both of these methods proved unable to generate a usable 409

model of the ABM data. This may be due to these methods being more specialised for 410

modelling very large input datasets. Our simulation datasets are comparatively small, 411

and in this study we are seeking methods for generating surrogate models that can 412

provide good predictions even with small training sets, thus allowing substantial time 413

saving when performing model calibration and analyses. That being the case, we elected 414

not to report the results for XGBoost and LightGBM in this paper, as neither method 415

proved optimal for this specific purpose. 416

All the methods listed in Table 1, except for support vector machines (SVM) and 417

neural networks, were implemented using Mathematica 12.0 [50], which has a 418

comprehensive machine learning suite included. The split for training, validation and 419

testing was fixed for all the methods. Mathematica’s Predict function was then used to 420

produce a model based on the supplied input training data, which was then analysed. 421

SVM was implemented in R, while neural networks were built with the NetTrain 422

function, as detailed in the sections below. 423

Support vector machine implementation. Linear and non-linear SVM were 424

implemented in RStudio v1.3.1093 using the caret package. The non-linear model was 425

trained using the radial basis function kernel, while the linear model was trained using 426

the linear kernel function. In the case of SVM, the data was randomly allocated into the 427

training, validation and test sets for each sample. 428

Artificial neural network implementation. The neural network models were 429

implemented using Mathematica’s NetTrain function. The networks were deep neural 430

networks with a 10-node input layer, batch normalisation layer, tanh layer, a variable 431

number of fully connected hidden layers, batch normalisation layer, tanh layer, and a 432

single-node output layer (outputting a scalar). For each set of runs, a brief grid search 433

was conducted using steadily increasing numbers of hidden layers until we found an 434

architecture that provided the best possible fit without overfitting. This produced 435

neural networks that increased in depth as the size of the training set increased. The 436

learning rate was set at 0.0003 for all networks, with L2 regularisation set at 0.03 to 437

help avoid overfitting. All networks were trained for 15,000 epochs, with batch sizes left 438

to default values. 439

Figure 2a shows a sample architecture for the most successful neural network for the 440

800-run training set. This network contains a total of 13 layers, nine of those being fully 441

connected hidden layers with 50 nodes each. Figure 2b shows a simplified view of the 442

January 21, 2022 12/26



0

1

2

3

4

5

6

7

8 9

10

11

12

13

14 15

16

17 18

19

20 21

22

23 24

25

26 27

28

29

30

31

32 33

34

35

36 37

FC

BN t

FC

FC

FC

FC

FC

FC

BN t

FC c
Output layer

Input layer

- Best-performing network in the 800-run scenario 

- Neural network with 10 hidden layers

FC - fully connected layer 
BN - batch normalisation layer 
t - tanh layer

BN BN
Input 1 2 3 4 5 6 7 8 9 10 11 12 Output

10 10 10 10 50 50 50 50 50 50 50 50 1

a

b

Rounds

Lo
ss

2500 5000 7500 10000 12500 15000

1

10

102
validation

training

d

c

0 2 4 6 8 10 12 14

2

4

6

8

10

12

14

Predicted value

Ac
tu

al
 v

al
ue

Fig 2. Sample results on the 800-run simulation scenario. Diagrams of the neural
network architecture in full detail in (a) and in simplified schematic form in (b). In the
800-run scenario, the network with 10 hidden layers pictured here performed the best in
a brief comparison between networks with varying numbers of hidden layers. (c) Loss of
a 15000-round training run of the simple neural network. (d) Comparison plot produced
after training the neural network on the simulation data.

network structure. Figure 2c shows the loss decreasing with the training epochs for a 443

sample neural network trained on the 800-run simulation dataset. The actual and 444

predicted test values are shown in Figure 2d. All the code and results are available in 445

our Github repository: https://github.com/thorsilver/Emulating-ABMs-with-ML. 446

Results 447

Initial investigation using GPs 448

Following the generation of our simulation results, we performed an initial uncertainty 449

analysis using a Gaussian process emulator (GP). This analysis was performed using the 450

GEM-SA software package [13,46], using data gathered from 400 simulation runs. The 451

emulator output in Figure 3 shows that the GP emulator was unable to fit a GP model 452

to the simulation data, suffering from an extremely large output variance. 453

GPs are limited in their capacity to be a surrogate model of certain kinds of complex 454

simulation models, in that they assume that simulation output varies smoothly in 455

response to changing inputs [12,13]. In the case of complex ABMs, this assumption 456

often fails as model outputs can change in unexpected ways in response to small 457

variations in input parameter values. Our exemplar ABM falls into this category, 458

meaning that even though other critical GP assumptions still hold (the model is 459

deterministic, and has a relatively low number of inputs), the emulator is unable to fit a 460

GP model to the simulation data. As the next analysis will show, in this case, 461

determining the impact of the input variables on the final output variance is challenging. 462

This may also have contributed to the low performance of this initial GP emulator 463

attempt. 464

January 21, 2022 13/26

https://github.com/thorsilver/Emulating-ABMs-with-ML


(a)

ageingParents

baseCareProb

retiredHours

ageOfRetirement childHours

femaleAgeCareScaling

maleAgeCareScaling

personCareProb homeAdultHours

workingAdultHours

(b)

Output quantity Value
Largest standardised error 0.1147
Cross-validation variance range 4.9762− 5.5190× 109

Estimate of mean output 11892.8
Estimate of output variance 1.4828× 107

Estimate of total output variance 5.4145× 109

Fig 3. Output of the GP emulator run, performed using the 400-run simulation data
set. (a) Graphs of the main effects of each of the 10 input parameters on the final output
of interest, in this case social care cost per person per year. The graphs demonstrate
that the emulator was unable to fit a model to the simulation results, as each successive
emulator run produced very different results and estimates of the main effects. (b)
Numerical outputs of the emulator. The emulator estimates total output variance at
5.41 billion, a clear indication that the emulator is not able to fit the simulation data.

Investigation of the simulation outputs 465

In order to further investigate the contributions of the simulation parameters to the 466

variance of the final ABM output, we used Principal Component Analysis (PCA). The 467

variables accounting for the greatest variation in per capita social care cost are reported 468

in Figure 4. PCA is a widely used technique used to determine the variables causing the 469

largest variation in a dataset [51]. To ensure that the directions of maximum variation 470

were not affected by the different magnitudes of the variables, the data was first 471

normalised using the z-score: 472

z =
x− x̄

σ
, (2)

where x is the raw score, x̄ is the sample mean, and σ is the standard deviation. 473

The significant principal components from the analysis were selected according to 474

the Kaiser criterion [52] and Jolliffe’s rule [53]. We therefore retained any component 475

that has an eigenvalue with a magnitude greater than one, while additionally requiring 476

that 70% of the variation must be explained, which may require the addition of more 477

components. Applying these criteria to the datasets containing 200 and 400 samples, 478

PCA reduces the dimensionality of the data to seven principal components. PCA 479

identifies a single component in the datasets containing 800 and 1600 samples. 480

We then considered the contribution of each variable towards each principal 481

component [54]. To determine the variable(s) that contribute most to the variance of 482

January 21, 2022 14/26



each component, a correlation above 0.5 was considered significant. As the number of 483

samples in the dataset increases, PCA gives increasingly ambiguous results. At 200 and 484

400 samples, the first and last components are separated by less than 2% and 1% 485

contribution to variance respectively showing very little discrimination between 486

components. Additionally, the two highest contributing variables to the first component 487

in the 200 dataset are different from those identified in the 400 dataset. At 200 samples 488

the highest contributors to principal component 1 are homeAdultHours and 489

ageOfRetirement. Conversely, at 400 samples the highest contributors to principal 490

component 1 are maleAgeCareScaling and workingAdultHours. HomeAdultHours 491

governs the amount of hours unemployed adults are able to devote to care, 492

workingAdultHours determines how many hours working adults can allocate to care, 493

and ageOfRetirement determines when agents are able to retire from work, thus freeing 494

up more hours for care. 495

These variables being the highest contributors suggests that increased availability of 496

informal care hours for adults, either by increasing their allocation generally or through 497

retirement, has a substantial impact on unmet care need. The parameter 498

maleAgeCareScaling quantifies the amount of care need exhibited in the male agent 499

population as they age, so a large change in this value can significantly impact the 500

general level of unmet care need in the agent population. At 800 and 1600 samples, 501

PCA fails to discriminate between the variables and counts all them all as significant 502

contributors to component one, and therefore failing to reduce dimensionality. These 503

results show that PCA is less reliable on smaller datasets, and at 800 samples and 504

above, it is unable to identify which variables have the strongest contribution to the 505

social care cost per capita. This suggests that once a surrogate has been identified it 506

will require further hyperparameter optimisation and a strategy to reduce overfitting. 507

Surrogate modelling results 508

In total, nine different machine-learning methods were implemented to attempt to 509

replicate the behaviour of the ABM (Figure 1). The PCA results reported above 510

demonstrate the difficulties presented in modelling ABM outputs. More specifically, the 511

parameter spaces in such models tend to be complex, and the contribution of model 512

parameters to output variance is difficult to unravel. We tested each of the nine 513

methods on their ability to replicate the final output of the ABM, comparing the 514

strength of fit and computation time. Each method was tested on four datasets 515

containing the results of 200, 400, 800 and 1600 simulation runs; each dataset examines 516

the same range of the model parameter space at an increasingly higher resolution. 517

The full results are reported in Figure 1. Neural networks were the strongest 518

performers overall, particularly in the 800- and 1600-sample cases, although this comes 519

at the cost of a computational speed considerably lower than the other methods. 520

Gradient-boosted trees and non-linear SVM have generally a slightly higher error, but 521

considerably faster runtime. Sample values predicted by each machine learning method 522

are provided in Figure 5 for the 200-run simulation scenario. The results are also shared 523

in full in our GitHub repository 524

https://github.com/thorsilver/Emulating-ABMs-with-ML. 525

Linear regression 526

The linear regression results further reinforce the PCA results, namely that the ABM 527

behaviour is difficult to approximate with linear models. The MSE loss in the 200 and 528

400 sample scenarios was significantly higher than the best-performing methods, 5.237 529

at 200 samples and 4.374 at 400 samples, and at 800 and 1600 samples MSE loss was 530

worst and the second-worst performer (13.439 and 24.18, respectively). This suggests 531

January 21, 2022 15/26

https://github.com/thorsilver/Emulating-ABMs-with-ML


that linear regression was not able to adequately capture the complex behaviour of the 532

original ABM. This is typical of many agent-based modelling studies, where non-linear 533

and even chaotic behaviour is frequently observed. 534

Decision trees 535

Decision trees, in contrast to linear regression, showed increasing accuracy as the 536

number of observations increased. Decision trees in the 200 and 400 sample scenarios 537

were the second-worst-performing out of the nine methods tested, with an MSE loss of 538

19.734 and 14.321 at 200 and 400 samples respectively. In the 800 sample scenario, the 539

MSE loss of 3.855 still placed decision trees as the third-worst performer behind linear 540

SVM and linear regression. At 1600 samples, the predictive performance is inadequate 541

as minimising the loss induces the algorithm to predict a constant output for all input 542

parameters. Training times were among the fastest of the methods tested. Decision 543

trees are fast to train and highly interpretable, and are therefore a popular method for 544

classification problems; however, they are less well-suited to problems featuring 545

continuous variables, which may have contributed to these results. As seen in the 546

Random Forest and Gradient-Boosted Trees results below, bagging and boosting can 547

produce significant improvement in performance in some cases. 548

Random forest 549

Similar to decision trees, Random Forest performed less well in the scenarios with lower 550

numbers of samples, producing the second-worst (16.936) and third-worst (12.06) MSE 551

loss results at 200 and 400 samples. At 800 and 1600 samples, Random Forest produced 552

substantially lower MSE loss but still lower than the strongest-performing methods, 553

with MSE loss of 2.656 at 800 samples and 4.31 at 1600 samples. Similar to Decision 554

Trees, the reported MSE loss is not an ideal loss function in both the 800- and 1600-run 555

scenarios. Training times were low and comparable with gradient-boosted trees. 556

Gradient-boosted trees 557

Gradient-boosted trees were among the more consistent performers, ranking in the 558

middle of the table at 200 and 400 samples (with MSE loss of 3.778 and 2.526 559

respectively). The 800 and 1600 sample scenarios showed gradient-boosted trees 560

producing the third and fourth-lowest MSE loss out of the nine methods tested (0.452 561

and 2.774, respectively). However, as with the other tree-based algorithms, in the 562

800-run scenario the Gradient-boosted trees show poor predictive performance. Overall, 563

our results suggest that gradient-boosted trees are relatively strong performers on this 564

task, with good performance in three scenarios and quick training times, but the 565

inconsistency demonstrated in the 1600-run scenario shows that the results must be 566

interpreted cautiously. Alternatively, a multitude of loss functions should be used and 567

evaluated when training tree-based methods in this context. Overall, the results show 568

that the Gradient-boosted Trees largely improve upon the performance of Decision 569

Trees and Random Forest. 570

K-Nearest neighbours 571

K-Nearest Neighbours (KNN) followed a familiar pattern to the other methods, showing 572

high MSE loss at the 200, 400 and 1600 samples (12.895, 13.422, and 7.404 respectively), 573

then a significantly lower MSE loss at 800 samples (1.356). In the case of KNN, we 574

observe a small difference, with the 200/400/1600 sample results ranking slightly better 575

against the other methods than the 800 sample results. We note that many of the nine 576

methods showed improved performance at 800 samples, so even with the marked 577

January 21, 2022 16/26



reduction in MSE loss, for KNN the actual improvement in ranking was small. Training 578

times were among the fastest of the methods tested. 579

Gaussian Process emulation 580

As expected given the particular characteristics of Gaussian Processes (GPs), the 581

method produced relatively strong results when applied to smaller datasets (MSE loss 582

of 4.284 at 200 samples, 1.928 at 400 samples, 0.33 at 800 samples), and very poor 583

results at high numbers of observations (MSE loss of 37.02 at 1600 samples, the worst 584

performer of the 9 methods). Training times were relatively long compared to the other 585

methods tested, with the second-slowest training times of the methods tested; however, 586

the gap between GPs and the slowest method, neural networks, was significant. These 587

results confirm that GPs are powerful and useful for emulation of many varieties of 588

complex computer simulations, but can prove less effective with ABMs, where the 589

outputs do not necessarily vary smoothly with small changes in input parameters. 590

These results conform with expectations, given the core assumptions underlying the 591

method, namely that the model to be approximated is a smooth, continuous function of 592

its inputs – conditions not met by the vast majority of models [13]. As shown by our 593

initial analysis of this model, the simulation outputs are complex and violate this core 594

assumption. When GP emulation is applied to simulations with sharp changes in 595

outputs due to non-linear processes or sudden phase changes, the emulator will smooth 596

out these spikes, producing very poor results in that area of the parameter space. 597

However, when a model does generate outputs that vary smoothly and continuously 598

with input parameter changes, GP emulation is likely to perform significantly better 599

than in this case study. 600

Support Vector Machine 601

Two methods of SVM were used, linear SVM and non-linear (Gaussian) SVM. 602

Non-linear SVM consistently outperformed Linear SVM across all sample sizes, 603

reinforcing that linear models struggle to be valid surrogate models of ABMs. The MSE 604

loss for non-linear SVM decreased as the sample size increased with the lowest loss 605

achieved at 1600 samples (0.236) second in performance only to neural networks (0.188). 606

The performance of linear SVM dipped with the 400 and 800 samples sizes (7.023 and 607

7.826 respectively) and then began to improve again at the 1600 sample size (3.22), 608

although still significantly worse than the best performers. Non-linear SVM has a 609

relatively fast runtime compared to neural networks, making it a competitive performer. 610

Neural networks 611

Neural networks proved to be highly consistent performers across all four scenarios, 612

with very low MSE loss recorded across all four scenarios. They were the third-lowest 613

(0.965) at 200 samples, second-lowest at 400, and outperformed all eight rival methods 614

in the 800 sample (0.224) and 1600 sample (0.188) scenarios. However, their training 615

time was orders of magnitude longer than any of the other eight methods, particularly 616

compared to SVM, Decision Trees, KNN and Random Forest. We note that, in this 617

particular comparison, we trained the neural networks on CPU to allow for a direct 618

comparison of runtime with the other methods. In practice, however, using GPUs would 619

speed up training times considerably, making them the strongest candidate method for 620

the emulation of ABMs. 621

January 21, 2022 17/26



A note on model assessment 622

Throughout this study, we have relied on MSE metrics and predicted-versus-actual 623

comparison plots as our primary measures of the performance of each of the chosen 624

methods. Other metrics like the mean absolute error (MAE) or the coefficient of 625

determination [55], or a combination of multiple metrics could be used [56]. 626

Machine-learning methods may achieve results that appear reasonable even when the 627

model does not converge. Especially after normalisation, some methods may appear to 628

perform well under certain metrics. Therefore, the additional context provided by 629

multiple metrics will help ensure that an appropriate evaluation of model performance is 630

made even in those circumstances. In this study, the MSE results provide a measure of 631

performance, which is then supplemented and contextualised by the comparison plots 632

(predicted versus actual value) for each method, in order to provide a straightforward 633

comparison between model predictions and actual values. 634

Discussion 635

We tested a range of machine learning tools towards replicating the outcome of a full 636

ABM. Our results suggest that a deep learning approach (using multi-layered neural 637

networks) is the most promising candidate to create a surrogate of the ABM. Neural 638

networks can be trained on the data deriving from the ABM simulations, and can then 639

replicate the ABM output with high accuracy. In general, we have shown that machine 640

learning methods are able to approximate ABM predictions with high accuracy and 641

dramatically reduced computational effort, and thus have great potential as a means for 642

more efficient parameter calibration and sensitivity analysis. 643

The results in Figure 1 also illustrate the challenges of surrogate modelling for 644

ABMs. The performance of most methods – with the notable exception of the neural 645

networks – vary significantly depending on the number of observations. Linear 646

regression, for example, performs well at 200 and 400 runs, but fails to produce a good 647

fit at 800 and 1600, where the complex and jagged nature of the model parameter space 648

becomes more evident. The Gaussian process emulation runs are also instructive – GPs 649

cannot produce a good fit when the function being emulated does not vary smoothly, as 650

is the case in the 1600-run scenario. 651

Neural networks, by contrast, improve steadily in predictive accuracy as the number 652

of observations increases. As per the universal approximation theorem, neural networks 653

with non-linear activation functions have been shown to be able to approximate any 654

continuous function to an arbitrary degree of precision [57]. In our case, they can 655

accurately approximate our simulation output despite its non-linearity and lack of 656

smoothness. There is a significant computational cost, however, in that a more accurate 657

approximation of more complex functions necessitates exponentially more neurons, 658

which leads to longer training times; these shortcomings are reflected in the large 659

increase in runtime for the neural networks as the numbers of observations increase. 660

In our testing for this paper, we decided to perform all the machine-learning tasks 661

using consumer-class CPUs only, to allow for comparisons of computation times. 662

Arguably, this leaves neural networks at a disadvantage, as training neural networks on 663

GPUs leads to enormous reductions in runtime. In this case, the model was moderately 664

complex, meaning that even the 11-layer network used for the 1600-run scenario could 665

be trained in a matter of minutes. For surrogate modelling of more complex ABMs, 666

however, training the neural networks on GPUs will significantly reduce their training 667

time. 668

We should note that the complexity of the neural network architecture could be 669

increased – all networks used here are stacks of fully connected layers with sigmoid 670

January 21, 2022 18/26



activation functions. Despite the lack of extensive architectural optimisation, the neural 671

network models are very accurate in all four scenarios, in some cases significantly more 672

than the other methods. More optimised architectures could potentially achieve even 673

greater accuracy, but at a cost in terms of testing and hyperparameter optimisation. 674

Ultimately, a balanced approach could prove the most effective when approximating 675

ABMs of medium complexity, as our results suggest that even simplistic neural networks 676

can perform very well as surrogate models. 677

Out of the other machine-learning methods tested, non-Linear (Gaussian) SVM, 678

gradient-boosted trees and Gaussian process emulation were the next strongest 679

performers. However, Gradient-boosted trees proved to be somewhat inconsistent, and 680

showed poor predictive performance in the 1600-run scenario, suggesting that some 681

caution may be warranted when using this method, and that hyperparameter tuning 682

may be necessary to achieve optimal results. 683

Non-linear SVM was also a competitive method, improving in performance as the 684

sample size increased, and becoming the second-best performer in the 1600-sample. The 685

Gradient-Boosted Trees performed reasonably well in three scenarios, while the GPs 686

were particularly strong in the 800-run scenario and particularly weak in the 1600-run 687

scenario. Using highly-optimised boosted-tree implementations like XGBoost and 688

LightGBM, although unsuccessful in our model, may prove efficient for more complex 689

ABMs, as they are specialised for use on very large datasets. 690

While this work provides a useful comparison of machine-learning-based surrogate 691

modelling methods applied to a moderately complex ABM, further work could expand 692

on these comparisons. In our experiments, our surrogate models were only required to 693

approximate the behaviour of a model with a single major output of interest; future 694

work could examine how these methods compare when applied to models with multiple 695

outputs. Some of the methods demonstrated here may show improved performance with 696

larger numbers of training examples; however, given that the primary benefit of 697

surrogate modelling is to reduce computation time, we chose to investigate how these 698

methods performed in more constrained scenarios. Future work may supplement this 699

proof-of-concept exploration with more detailed studies of particular machine-learning 700

approaches, with larger numbers of simulation runs produced for training. 701

Furthermore, alternative models for emulation, e.g. Kriging, could be tested and 702

cross-compared with all methods. For instance, when predicting the surface of the 703

Island growth model, Lamperti et al. [23] showed that Kriging was clearly outperformed 704

by machine learning surrogates (XGBoost in particular) in terms of precision and 705

computational efficiency. In our Linked Lives case study, gradient boosted trees perform 706

consistently well, but they are outperformed by neural networks. For these reasons, we 707

preferred to keep the comparison open as the results might differ depending on the type 708

and complexity of ABM under investigation. Gaussian process emulation has been used 709

for emulation of the simulations with multiple outputs, though generating experimental 710

designs is more complicated in this context [58]. There may also be circumstances where 711

a surrogate model that replicates simulation behaviour over time is desirable, rather 712

than focussing only on the final outputs at the end of a simulation run. In this case, 713

machine-learning methods used for predicting time-series data, such as recurrent neural 714

networks, could serve as useful surrogate models. 715

Given the diversity of agent-based modelling approaches that have been applied 716

across numerous disciplines, providing a comprehensive comparison of 717

machine-learning-based surrogate modelling methods would be impractical. Conversely, 718

we aimed to provide a representative example of how these methods may be applied in 719

practice, particularly in policy-relevant modelling areas where time and resources are 720

limited. Our results demonstrate that in these challenging environments, 721

machine-learning-based emulation practices may be applied successfully even with 722

January 21, 2022 19/26



minimal hyperparameter optimisation. 723

While we cannot make a definitive statement on which method of those examined 724

here will prove most reliable in agent-based modelling applications overall, our results 725

suggest that when faced with a model displaying complex behaviour that is not 726

amenable to a Gaussian process emulation approach, neural networks and 727

gradient-boosted trees may be viable replacements. Relatively simple neural network 728

surrogates can be trained effectively even on consumer-level GPUs, but for more 729

complex applications GPU-based training may be necessary. For time-critical 730

applications, or when computational power is at a premium, gradient-boosted trees may 731

be a suitable alternative, given their relatively consistent performance and quick 732

training times even on commodity hardware. 733

Conclusion 734

Gaussian Process emulation has become a popular method for analysing simulation 735

outputs due to their flexibility, power, and the useful measures of uncertainty they can 736

produce. However, their limitations suggest that they are less useful for analysing some 737

complex agent-based simulations. Our comparisons here have shown that alternative 738

ML methods can be viable alternatives in these circumstances. 739

While these alternative ML methods are promising for this application, work 740

remains to be done to establish standards and practices when using surrogate models in 741

this way. As shown in our results, each method can display significant differences in 742

performance as more training examples are provided, and given the tendency of ABMs 743

to generate unexpected emergent behaviour, deciding a suitable cut-off point when 744

generating simulation outputs is a challenging problem. Future work will need to 745

examine more case studies in order to develop suitable guidance and best practices 746

when using these methods. 747

Before these alternative surrogate modelling methods can become widely adopted, 748

we must find efficient and effective ways of making use of these more accurate surrogate 749

models. Unlike GPs, methods like neural networks, non-linear SVM and 750

gradient-boosted trees do not bring with them insightful uncertainty quantification 751

measures ‘for free’. In this respect, more effort will need to be spent on the 752

interpretation of the surrogates, which can be challenging when the surrogate models 753

are complex. 754

However, we note that the often-repeated notion that neural networks or other ML 755

approaches are less interpretable than linear methods is not always clear in practice [29]. 756

Therefore, we avoided classifying these methods by interpretability, as the concept itself 757

is poorly defined and its relative importance will vary enormously depending on the 758

application, whereas runtimes and performance are more broadly useful measures. In 759

addition, as mentioned above, even an opaque surrogate can enable powerful analyses to 760

be performed more quickly, and thus aid in the interpretation of the original simulation. 761

Interpretable machine learning has become a field in its own right in recent years, 762

and powerful techniques for interpretable ML models are now widely accessible [59,60]. 763

As specialised libraries for ML-based surrogate modelling become available, 764

interpretability tools can be integrated into the process, enabling modellers to generate 765

additional understanding from their surrogates as well as more rapid sensitivity 766

analyses. In later extensions of this work, we aim to investigate the use of these tools in 767

ML-based surrogate modelling of agent-based simulations. 768

Following on from this study, we also aim to focus on developing libraries and 769

examples of how to use ML-based surrogate models to generate deeper insights into the 770

behaviour of complex ABMs. This may significantly enhance future modelling efforts in 771

the ABM community by increasing the accessibility of these techniques. These 772

January 21, 2022 20/26



additional methods for simulation analysis would serve to fill the gaps where GPs are 773

unable to produce usable surrogates, ensuring that detailed sensitivity and uncertainty 774

analysis become the norm in agent-based modelling studies. 775

Data, code and materials 776

The code and the results presented in this manuscript are shared in full in our GitHub 777

repository https://github.com/thorsilver/Emulating-ABMs-with-ML. Our 778

simulation of the ‘Linked Lives’ ABM model of social care provision in the UK is 779

available at 780

https://github.com/thorsilver/Social-Care-ABM-for-UQ/releases/tag/v0.91. 781

References

1. De Marchi S, Page SE. Agent-based models. Annual Review of political science.
2014;17:1–20.

2. Janssen MA, Ostrom E. Empirically based, agent-based models. Ecology and
society. 2006;11(2).

3. Rutter H, Savona N, Glonti K, Bibby J, Cummins S, Diane Finegood FG, et al.
Why we need a complex systems model of evidence for public health. The Lancet.
2017;390(10112):2602–2604.

4. Silverman E, Gostoli U, Picascia S, Almagor J, McCann M, Shaw R, et al..
Situating Agent-Based Modelling in Population Health Research; 2020.

5. Schelling TC. Dynamic models of segregation. Journal of Mathematical Sociology.
1971;1:143–186.

6. Axelrod R. The Evolution of Cooperation. New York, NY, USA: Basic Books;
1984.

7. Silverman E. Methodological Investigations in Agent-Based Modelling – With
Applications for the Social Sciences. Berlin, Germany: Springer; 2018.

8. Tennstedt SL, McKinlay JB, Sullivan LM. Informal care for frail elders: The role
of secondary caregivers. The Gerontologist. 1989;29(5):677–683.

9. Sawyer RK. Social Emergence: Societies As Complex Systems. Cambridge
University Press; 2005.

10. Lorenc T, Oliver K. Adverse effects of public health interventions: a conceptual
framework. Journal of Epidemiology & Community Health. 2014;68(3):288–290.
doi:10.1136/jech-2013-203118.

11. Oliver K, Lorenc T, Innvær S. New directions in evidence-based policy research:
a critical analysis of the literature. Health Research Policy and Systems.
2014;12(1):34. doi:10.1186/1478-4505-12-34.

12. Kennedy M, O’Hagan T. Bayesian Calibration of Computer Models. Journal of
the Royal Statistical Society, Series B. 2001;63(3):425–464.

13. O’Hagan A. Bayesian analysis of computer code outputs: a tutorial. Reliability
Engineering and System Safety. 2006;91(10-11):1290–1300.

January 21, 2022 21/26

https://github.com/thorsilver/Emulating-ABMs-with-ML
https://github.com/thorsilver/Social-Care-ABM-for-UQ/releases/tag/v0.91


14. Silverman E, Bijak J, Hilton J, Cao VD, Noble J. When Demography Met Social
Simulation: A Tale of Two Modelling Approaches. Journal of Artificial Societies
and Social Simulation. 2013;16(4):9. doi:10.18564/jasss.2327.

15. Silverman E, Hilton J, Noble J, Bijak J. Simulating the cost of social care in an
ageing population. In: Rekdalsbakken W, Bye RT, Zhang H, editors. Proceedings
of the 27th European Conference on Modelling and Simulation. Dudweiler,
Germany: Digitaldruck Pirrot; 2013. p. 689–695.

16. Kasim M, Watson-Parris D, Deaconu L, Oliver S, Hatfield P, Froula DH, et al.
Up to two billion times acceleration of scientific simulations with deep neural
architecture search. arXiv preprint arXiv:200108055. 2020;.

17. Zampieri G, Vijayakumar S, Yaneske E, Angione C. Machine and deep learning
meet genome-scale metabolic modeling. PLoS computational biology. 2019;15(7).

18. Dahlke J, Bogner K, Mueller M, Berger T, Pyka A, Ebersberger B. Is the juice
worth the squeeze? machine learning (ml) in and for agent-based modelling
(abm). arXiv preprint arXiv:200311985. 2020;.

19. van der Hoog S. Deep Learning in (and of) Agent-Based Models: A Prospectus.
arXiv preprint arXiv:170606302. 2017;.

20. Pereda M, Santos JI, Galán JM. A brief introduction to the use of machine
learning techniques in the analysis of agent-based models. In: Advances in
Management Engineering. Springer; 2017. p. 179–186.

21. Lu Z, Pu H, Wang F, Hu Z, Wang L. The Expressive Power of Neural Networks:
A View from the Width. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus
R, Vishwanathan S, et al., editors. Advances in Neural Information Processing
Systems 30. Curran Associates, Inc.; 2017. p. 6231–6239.

22. Torrens P, Li X, Griffin WA. Building Agent-Based Walking Models by
Machine-Learning on Diverse Databases of Space-Time Trajectory Samples.
Transactions in GIS. 2011;15(s1):67–94.

23. Lamperti F, Roventini A, Sani A. Agent-based model calibration using machine
learning surrogates. Journal of Economic Dynamics and Control.
2018;90:366–389.

24. Kavak H, Padilla JJ, Lynch CJ, Diallo SY. Big data, agents, and machine
learning: towards a data-driven agent-based modeling approach. In: Proceedings
of the Annual Simulation Symposium. Society for Computer Simulation
International; 2018. p. 12.

25. Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L. Explaining
Explanations: An Overview of Interpretability of Machine Learning; 2018.

26. Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In:
Proceedings of the 31st international conference on neural information processing
systems; 2017. p. 4768–4777.

27. Carter S, Armstrong Z, Schubert L, Johnson I, Olah C. Activation atlas. Distill.
2019;4(3):e15.

28. Culley C, Vijayakumar S, Zampieri G, Angione C. A mechanism-aware and
multiomic machine-learning pipeline characterizes yeast cell growth. Proceedings
of the National Academy of Sciences. 2020;117(31):18869–18879.

January 21, 2022 22/26



29. Lipton ZC. The Mythos of Model Interpretability: In machine learning, the
concept of interpretability is both important and slippery. Queue.
2018;16(3):31–57.

30. Magazzù G, Zampieri G, Angione C. Multimodal regularised linear models with
flux balance analysis for mechanistic integration of omics data. Bioinformatics.
2021;.

31. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning.
Springer Series in Statistics. New York, NY, USA: Springer New York Inc.; 2001.

32. Quinlan JR. Induction of decision trees. Machine Learning. 1986;1(1):81–106.
doi:10.1007/BF00116251.

33. Breiman L. Random Forests. Machine Learning. 2001;45(1):5–32.
doi:10.1023/A:1010933404324.

34. Friedman JH. Greedy function approximation: A gradient boosting machine.
Ann Statist. 2001;29(5):1189–1232. doi:10.1214/aos/1013203451.

35. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In:
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. New York, NY, USA: ACM; 2016. p.
785–794. Available from: http://doi.acm.org/10.1145/2939672.2939785.

36. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: A Highly
Efficient Gradient Boosting Decision Tree. In: Guyon I, Luxburg UV, Bengio S,
Wallach H, Fergus R, Vishwanathan S, et al., editors. Advances in Neural
Information Processing Systems 30. Curran Associates, Inc.; 2017. p. 3146–3154.

37. Cover T, Hart P. Nearest Neighbor Pattern Classification. IEEE Trans Inf Theor.
2006;13(1):21–27. doi:10.1109/TIT.1967.1053964.

38. Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press; 2000.

39. Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets.
Neural Computation. 2006;18(7):1527–1554.

40. Noble J, Silverman E, Bijak J, Rossiter S, Evandrou M, Bullock S, et al. Linked
lives: the utility of an agent-based approach to modeling partnership and
household formation in the context of social care. In: Proceedings of the 2012
Winter Simulation Conference (WSC). IEEE; 2012. p. 1–12.

41. Wittenberg R, Hu B, Hancock R, Morciano M, Comas-Herrera A, Malley J, et al..
Projections of demand for and costs of social care for older people in England,
2010 to 2030, under current and alternative funding systems; 2011.

42. Lambert C, Siganporia Z, Blake M, Gorbatsevich E. Unmet need for care. Ipsos
MORI: London. 2017;.

43. Carers UK. Facts and figures; 2015. https://www.carersuk.org/
news-and-campaigns/press-releases/facts-and-figures.

44. Morris MD, Mitchell TJ. Exploratory designs for computational experiments.
Journal of Statistical Planning and Inference. 1995;43(3):381–402.
doi:10.1016/0378-3758(94)00035-t.

January 21, 2022 23/26

http://doi.acm.org/10.1145/2939672.2939785
https://www.carersuk.org/news-and-campaigns/press-releases/facts-and-figures
https://www.carersuk.org/news-and-campaigns/press-releases/facts-and-figures


45. Sobol IM. Uniformly distributed sequences with an additional uniform property.
USSR Computational Mathematics and Mathematical Physics. 1977;16:236–242.

46. Kennedy M, Petropoulos G. GEM-SA: the Gaussian emulation machine for
sensitivity analysis. In: Sensitivity Analysis in Earth Observation Modelling.
Elsevier; 2017. p. 341–361.

47. Sobol IM. On quasi-Monte Carlo integrations. Mathematics and Computers in
Simulation. 1998;47(2):103 – 112.
doi:https://doi.org/10.1016/S0378-4754(98)00096-2.

48. Raghu M, Schmidt E. A survey of deep learning for scientific discovery. arXiv
preprint arXiv:200311755. 2020;.

49. Smith JS, Nebgen BT, Zubatyuk R, Lubbers N, Devereux C, Barros K, et al.
Approaching coupled cluster accuracy with a general-purpose neural network
potential through transfer learning. Nature communications. 2019;10(1):1–8.

50. Wolfram Research Inc . Mathematica 12.0; 2019. Available from:
https://www.wolfram.com/mathematica/.

51. Jolliffe IT, Cadima J. Principal component analysis: a review and recent
developments. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences. 2016;374(2065):20150202.

52. Kaiser HF. The application of electronic computers to factor analysis.
Educational and psychological measurement. 1960;20(1):141–151.

53. Jolliffe I. Principal component analysis. Springer; 2011.

54. Vijayakumar S, Rahman PK, Angione C. A hybrid flux balance analysis and
machine learning pipeline elucidates metabolic adaptation in cyanobacteria.
Iscience. 2020;23(12):101818.

55. Willmott CJ, Matsuura K. Advantages of the mean absolute error (MAE) over
the root mean square error (RMSE) in assessing average model performance.
Climate Research. 2005;30(1):79–82.

56. Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error
(MAE)? Arguments against avoiding RMSE in the literature. Geoscientific Model
Development. 2014;7(3):1247–1250. doi:10.5194/gmd-7-1247-2014.

57. Cybenko G. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems. 1989;2(4):303–314.
doi:10.1007/BF02551274.

58. Fricker TE, Oakley JE, Urban NM. Multivariate Gaussian Process Emulators
With Nonseparable Covariance Structures. Technometrics. 2013;55(1):47–56.
doi:10.1080/00401706.2012.715835.

59. Du M, Liu N, Hu X. Techniques for interpretable machine learning.
Communications of the ACM. 2019;63(1):68–77.

60. Molnar C. Interpretable machine learning. Lulu.com; 2020.

January 21, 2022 24/26

https://www.wolfram.com/mathematica/


1 2 3 4 7 8 9 105 6 

Pe
rc

en
ta

ge
 o

f v
ar

ia
nc

es
0

2
4

6
8

10

Principal Components

Variances - 400 runs

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

Dim1 (10.6%)

D
im

2 
(1

0.
4%

)

5

10

15

20

25
contrib

homeAdultHours

femaleAgeCareScaling
MoveInWithKids

personCareProb

ageOfRetirement

retiredHours childHours
maleAgeCareScaling

workingAdultHours

ageingParents

Variable Contribution (PCA)

1 2 3 4 7 8 9 10

Variances - 1600 runs

5 6 

Pe
rc

en
ta

ge
 o

f v
ar

ia
nc

es
0

20
40

60
80

Principal Components

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

Dim1 (90.3%)

D
im

2 
(3

.7
%

)

9.7

9.8

9.9

10.0

10.1
contrib

Variable Contribution (PCA)

workingAdultHours

homeAdultHours

childHours

ageingParents
personCareProb

retiredHours
MoveInwithKids
ageOfRetirement
maleAgeCareScaling
femaleAgeCareScaling

Fig 4. PCA variable contribution maps and scree plots for the 400- and 1600-sample
datasets. The scree plots of the percent variance contribution of each component
visually convey the location where there is a sharp change in gradient, which defines the
number of significant components, i.e. the components to be retained in the analysis.
The gradient change seen at component 6 of the 400-sample dataset contrasts with the
steep gradient change at component 1 of the 1600-sample dataset. The 400-sample
dataset variable contribution map shows variables beginning to be clustered, however,
there is very little separating the contribution to variance between components with less
than 2% difference between the first and last components (as can be seen in the
400-sample scree plot). The variable contribution map of the 1600-sample dataset shows
the variables converging into a single component (component 1) contributing 90.3% of
the variance. Here PCA is unable to make any useful discrimination between the
variables, while identifying eight parameters (on the first component) significantly
explaining the variance in the ABM social care per capita.

December 5, 2021 26/27

Fig 4. PCA variable contribution maps and scree plots for the 400- and 1600-sample
datasets. The scree plots of the percent variance contribution of each component
visually convey the location where there is a sharp change in gradient, which defines the
number of significant components, i.e. the components to be retained in the analysis.
The gradient change seen at component 6 of the 400-sample dataset contrasts with the
steep gradient change at component 1 of the 1600-sample dataset. The 400-sample
dataset variable contribution map shows variables beginning to be clustered, however,
there is very little separating the contribution to variance between components with less
than 2% difference between the first and last components (as can be seen in the
400-sample scree plot). The variable contribution map of the 1600-sample dataset shows
the variables converging into a single component (component 1) contributing 90.3% of
the variance. Here PCA is unable to make any useful discrimination between the
variables, while identifying eight parameters (on the first component) significantly
explaining the variance in the ABM social care per capita.

January 21, 2022 25/26



5 10 15 20 25 300

5

10

15

20

25

30

Neural Network Linear SVM Non-Linear SVM

5 10 15 20 25 300

5

10

15

20

25

30
Random Forest

-5 0 5 10 15 20 25 30

0

5

10

15

20

25

30
Linear Regression

0 5 10 15 20 25 30

5

10

15

20

25

30
Gradient Boosted Trees

5 10 15 20 25 300

5

10

15

20

25

30
K-Nearest Neighbours

5 10 15 20 25 300

5

10

15

20

25

30
Gaussian Process

0 5 10 15 20 25 30

5

10

15

20

25

30
Decision Trees

Neural Network loss
200 Runs - Results

-10 -5 0 5 10 15 20 25 30
0

5

10

15

20

25

30

5 10 15 20 25 300

5

10

15

20

25

30

Rounds

Lo
ss

2500 5000 7500 10000 12500 15000

1

10

102

validationtraining

Fig 5. Predicted value (x axis) versus actual value (y axis) for the 200 run scenario,
across all the methods implemented in our comparative study. The dotted line
represents the y = x line.

January 21, 2022 26/26


