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Abstract: Text datasets come in an abundance of shapes, sizes and styles. However, determining
what factors limit classification accuracy remains a difficult task which is still the subject of intensive
research. Using a challenging UK National Health Service (NHS) dataset, which contains many char-
acteristics known to increase the complexity of classification, we propose an innovative classification
pipeline. This pipeline switches between different text pre-processing, scoring and classification
techniques during execution. Using this flexible pipeline, a high level of accuracy has been achieved
in the classification of a range of datasets, attaining a micro-averaged F1 score of 93.30% on the
Reuters-21578 “ApteMod” corpus. An evaluation of this flexible pipeline was carried out using
a variety of complex datasets compared against an unsupervised clustering approach. The paper
describes how classification accuracy is impacted by an unbalanced category distribution, the rare
use of generic terms and the subjective nature of manual human classification.

Keywords: NLP; classification; clustering; text pre-processing; machine learning; National Health
Service (NHS)

MSC: 68T50

1. Introduction

The quantity of digital documents generally available is ever-growing. Classification
of these documents is widely accepted as being essential as this reduces the time spent on
analysis. However, manual classification is both time consuming and prone to human error.
Therefore, the demand for techniques to automatically classify and categorize documents
continues to increase. Automatic classification supports the process of enabling researchers
to carry out deeper analysis on text corpora. Practical applications of classification include
library cataloguing and indexing [1], email spam detection and filtration [2] and sentiment
analysis [3].

Since text documents and datasets exhibit such a wide variety of differences and
combinations of features, it is impossible to adopt a standardized classification approach.
One such feature is the length of the text available as input to the classification process. For
example, a newspaper article is likely to contain significantly more text than a tweet, thus
providing a larger vocabulary which will aid classification. Another important feature of
text is the intended purpose of the text. The intended use of text can significantly affect
the author’s style and choice of vocabulary. Let us suppose you are required to determine
Amazon product categories based on the descriptions of the products. Clearly, certain
keywords are highly likely to appear on similar products, and those keywords are likely to
have the same intended meaning wherever they are used. In contrast, consider the scenario
where you are required to determine whether a tweet exhibited a positive or negative
sentiment. In this case, the same keyword used in multiple tweets may have completely
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different meanings based on the context and tone of the author. The intended sentiment
could vary considerably.

Of course, objectivity and subjectivity can also affect the accuracy of the classification
process. If the same text, based on Amazon products and tweets, was used for manual
classification, then there is likely to be more consensus on the category of a product
description than on the sentiment of a tweet. This is due to the inherent objectivity of the
categories. Aside from these examples, there are numerous other features of a dataset
which can limit classification accuracy [4].

This paper describes the analysis of a complex UK National Health Service (NHS) pa-
tient feedback dataset which contains many of the elements known to restrict the accuracy
of automatic classification. Throughout experimentation, several pre-processing and ma-
chine learning techniques are used to investigate the complexities in the NHS dataset and
their effect on classification accuracy. Subsequently, an unsupervised clustering approach
is applied to the NHS dataset to explore and identify underlying natural classifications in
the data.

Section 2 describes existing work on automatic text classification and provides a
theoretical background of the approaches used. Section 3 establishes our research problem
statement and introduces the datasets used, incorporating both the NHS dataset and
the benchmarking datasets used for evaluation. Section 4 details the pre-processing and
classification pipeline, followed by the results of our experiments in Section 5. Finally, the
findings and conclusions are discussed in Section 6.

2. Related Work and Theoretical Background

The field of automatic text classification incorporates many differing approaches which
vary depending on the type of document and how it needs to be categorized.

The early work in this field focused on the manual extraction of features from text
which were then applied to a classifier. This process of feature extraction has also been
refined through feature weighting [5] and feature reduction [6] to extract a more detailed
representation of input text. The structure of these features when used for classification can
also take many forms with the most common approaches being the bag-of-words (BoW)
model [7] or word-vector representations [8].

A range of different classification models have been used to produce high accuracy
text classification with the most successful approaches being support vector machines
(SVM) [9], naive bayes classifiers [10] and more recently deep learning neural network
architectures [11,12].

Although there is a broad variation in the specific processes used in automatic text
classification, many of these processes can be summarized into four stages shown in
Figure 1.

|

,  Raw Input Text ,‘—> Pre-process Text —» Score Text —> Generate Features —»|

Figure 1. Procedural diagram of the processes used in automatic text classification approaches, where

Train Classifier

rhomboids represent data and rectangles represent processes.

The first stage of the pipeline, text pre-processing, primarily focuses on techniques
to extract the most valuable information from raw text data [13]. Typically, this involves
reducing the amount of superfluous text, minimizing duplication and tagging words based
on their type or meaning. This is achieved by techniques such as:

e  Tokenizing. This technique splits text into sentences and words to identify parts of
speech (POS) such as nouns, verbs and adjectives. This creates options for selective
text removal and further processing.

e  Stop word removal. This technique removes commonly occurring words which are
unlikely to give extra value or meaning to the text. Examples include the words “the”,



Mathematics 2022, 10, 983

30f23

“and”, “for” and “of”. There are many different open-source, stop word lists [14],
which have been used in multiple applications with differing levels of success.

e  Stemming or lemmatization. In this technique words are replaced with differing suf-
fixes, whilst maintaining the same common stem. For example, the words “thanking”,
“thankful” and “thanks” would all be stemmed to the word “thank”. Some of the
most popular stemming algorithms, such as the Porter Stemmer algorithm [15], use a
truncation approach, which although fast can often result in mistakes as it is aimed
purely at the syntax of the word whilst ignoring the semantics. A slightly more robust,
but slower, approach would be lemmatizing, which uses POS to infer context. Thus, it

/a7

reduces words to a more meaningful root. For example, the words “am”, “are” and
“is” would all be lemmatized to the root verb “be”.
e  Further cleaning can also occur depending on the raw text data, such as removing

URLS, specific unique characters or words identified by POS tagging.

The second stage of the pipeline, Word Scoring, involves transforming the text into
a quantitative form. This can be to increase the weighting of words or phrases which are
deemed more important to the meaning of a document. Different scoring measures can be
applied. These include:

e  Term Frequency Inverse Document Frequency (TF-IDF), a measure which scores a
word within a document based on the inverse proportion in which it appears in the
corpus [16]. Therefore, a word will be assigned a higher score if it is common in
the scored document, but rare in all the other documents in the same corpus. The
advantage of this measure is that it is quick to calculate. The disadvantage is that
synonyms, plurals and misspelled words would all be treated as completely different
words.

e TextRank is a graph-based text ranking metric, derived from Google’s PageRank
algorithm [17]. When used to identify keywords, each word in a document is deemed
to be a vertex in an undirected graph, where an edge exists for each occurrence of
a pair of words within a given sentence. Subsequently, each edge in this graph is
deemed to be a “vote” for the vertex linked to it. Vertices with higher numbers of votes
are deemed to be of higher importance, and the votes which they cast are weighted
higher. By iterating through this process, the value for each vertex will converge to a
score representing its importance. Note that, in contrast to the TF-IDF, which scores
relative to a corpus, TextRank only evaluates the importance of a word within the
given document.

e Rapid Automatic Keyword Extraction (RAKE) is an algorithm used to identify key-
words and multi-word key-phrases [18]. RAKE was originally designed to work on
individual documents focusing on the observation that most keyword-phrases con-
tain multiple words, but very few stop words. Through the combination of a phrase
delimiter, word delimiter and stop word list, RAKE identifies the most important
keywords/key-phrases in a document and weights them accordingly.

The third stage of the pipeline is Feature Generation. It is essential to produce an
input which can be used for the machine learning classifier. In general, these inputs need
to be fixed length vectors containing normalized real numbers. The common approach is
the BoW, which creates an n-length vector representing every unique word in a corpus.
This vector can then be used as a template to generate a feature mask for each document.
This resultant feature mask would also be an n-length vector. To produce the feature mask,
each word in the document would be identified within the BoW vector. Subsequently, its
corresponding index in the feature mask vector would be set, whilst all other positions in
the vector would be reset to 0. For example, suppose there is a corpus of solely the following
two sentences: “This is good” and “This is bad”. Its corresponding BoW vocabulary would
consist of four words {This, is, good, bad}. The first sentence would be represented by the
vector {1, 1, 1, 0}, whilst the second sentence would be represented by the vector {1, 1, 0, 1}.
In this example, the value used to set the feature vector is simply the binary representation
(0 or 1) of whether the word exists in the given document. Alternatively, the values used
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to set the vector could also be any scoring metric, such as those discussed above. The
BoW model is limited by the fact that it does not represent the ordering of words in their
original document. BoW can also be memory intensive on large corpuses, since the feature
mask of each document has to represent the vocabulary of the entire corpus. Therefore,
for a vocabulary of size n and a corpus of m documents, a matrix of size nm is required to
represent all feature masks. Further, as the size of n increases, each feature mask will also
contain more 0 values, making the data increasingly sparse [19]. There are alternatives to
the BoW model which attempt to resolve the issue of word ordering. The most common is
the n-gram representation, where n represents the number of words or characters in a given
sequence [20]. The BoW model could be considered an n-gram representation where 7 is
set to 1, also known as a unigram. For example, given the sentence “This is an example”,
an n-gram of n = 2 (bigram) would be the set of ordered words {“This is”, “is an”, “an
example”}. This enables sequences of words to be represented as features. In some text
classification tasks, bigrams have proved to be more efficient than the BoW model [21].
However, it also follows that as # increases, n-gram approaches, are increasingly affected
by the size of the corpus and the corresponding memory required for processing [22].

Word embedding is an alternative to separating the preprocessing of text (second stage)
from the scoring of text (third stage) of the generalized pipeline. It can be used to represent
words in vector space, thus encompassing both sections [8]. A popular model for generating
these vectors is word2vec [23], which consists of two similar techniques to perform these
transformations (i) continuous BoW and (ii) continuous skip-n-gram. Both these processes
manage sequences of words and support any length word encoding to a fixed length vector,
whilst maintaining some of the original similarities between words [24]. Similar techniques
can be used on word vectors to produce sentence vectors, and then on sentence vectors
to produce document vectors. These vectors result in high-level representations of the
document, with less sparce representation and a smaller memory footprint than n-gram
and BoW models. They often outperform the n-gram and BoW models with classification
tasks [25], but they do have a much greater computational complexity which increases
processing time.

The fourth and final stage of the pipeline, Classification, uses the feature masks in
training a classification model. There are many different viable classifiers available, some of
the most widely used approaches in text classification are k-nearest-neighbor (KNN) [26],
naive bayes (NB) [27], neural networks (NN) [28] and support vector machines (SVM) [9].
Each of these classifiers have numerous variations, each with their own advantages and
disadvantages. The specific variations used in our proposed pipeline will be discussed in
further detail in Section 4.

3. Research Problem Statement and Input Data
3.1. Research Problem Statement

We plan to investigate how different dataset characteristics can affect the accuracy of
automatic text classification. We propose to develop a novel, modular text classification
pipeline, so that different combinations of text pre-processing, word scoring and classifica-
tion techniques can be compared and contrasted. Our research will primarily focus on the
complex NHS patient feedback dataset, but also consider other benchmark datasets which
share some of the same dataset characteristics. Through experimentation on these datasets,
with our novel pipeline, we aim to answer the following questions:

(R1) Can our automatic text classification pipeline reduce the workload of NHS staff
by providing an acceptable accuracy compared to manual classification?

(R2) Can the same pipeline improve the automatic text classification accuracy on other
benchmark datasets?

3.2. Input Data

This paper focuses on a challenging text classification dataset provided by University
Hospitals Plymouth NHS Trust. This dataset is known as the “Learning from Excellence”
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(LFE) dataset. It is composed of solely positive written feedback given to staff by patients
and colleagues. These data were organized into 24 themes; categories where the same
sentiment is expressed using slightly different terminology. Subsequently, each item of
text (phrase, sentence) was manually classified into one or more theme. Each item may
be associated with multiple themes which are ordered. The first theme can be considered
the primary theme. As this paper focuses on single-label classification, only the primary
themes will be used. Note that the full list of the themes and their descriptions is available
in Appendix A, Table Al. The LFE dataset has several characteristics which intrinsically
make its automatic classification a difficult task:

1.  The dataset consists of 2307 items. Due to the text or theme being omitted, only
2224 items were deemed viable for classification. This is relatively small compared to
most datasets used in text classification.

2. The length of each text item is short, the average item contained 49.7 words. The
shortest text item is 2 words long and the longest text item is 270 words long.

3. The number of themes is large with respect to the size of the dataset. Even if the
themes were evenly distributed, this would result in an average of less than 93 text
items into each category.

4. The distribution of the themes is not balanced. For example, the largest theme
“Supportive” is the primary theme for 439 items (19.74%). The smallest theme “Safe
Care” is the primary theme for solely 1 item (0.04%). The number of items per category
has a standard deviation of 111.23 items. The distribution for the remaining theme
categories is also uneven, see Figure 2.

5. Since all the text is positive feedback, many of the text items share a similar vocabulary
and tone regardless of the theme category to which they belong. For example, the
phrase “Thank you” appears in 807 items (36.29%). However, only 61 items (2.74%)
belong to the primary theme of “Thank You”.

6. The themes are of a subjective nature, dependent on individual interpretation so
they could be viewed in different ways. For example, the theme “Teamwork” is
not objectively independent of the theme “Leadership”. Thus, there may be some
abstract overlap between these themes. Furthermore, there is no definitive measure to
determine which theme is more important than another for a given text item, making
the choice of the primary theme equally subjective.

Given the classification challenges posed by the LFE dataset, it was important to bench-
mark results. Thus, all experiments are compared to both well-known text classification
datasets and other datasets which share one or more of the characteristics with the LFE
dataset.

The first benchmark dataset was the “ApteMod” split of the Reuters-21578 dataset
(Reuters). This consists of short articles from the Reuters financial newswire service pub-
lished in 1987. This split solely contains documents which have been manually classified as
belonging to at least one topic, making this dataset ideal for text classification. This dataset
is already sub-divided into a training set and testing set. Since k-fold cross validation
was used, the datasets were combined. Finally, since multiple themes were not assigned
with any order of precedence, items which had been assigned to more than one topic were
removed. Although this dataset does not share many of the classification challenges of
the LFE dataset, it is widely used in text classification [29,30]. Thus, it provided indirect
comparisons with other work in this field.
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Figure 2. Chart of LFE theme category distributions, where the size of a bubble denotes the number

of occurrences of each text item for a particular theme category. Note that the position of the bubbles

is synthetic, solely used to portray that overlap occurs between themes.

Three other datasets were chosen since each share one of the characteristics of the LFE

dataset.

The “Amazon Hierarchical Reviews” dataset is a sample of reviews from different
products on Amazon, along with the corresponding product categories. Amazon uses
a hierarchical product category model, so that items can be categorized at different
levels of granularity. Each item within this dataset is categorized in three levels. For
example, at level 1 a product could be in the “toys/games” category. At level 2, it
could be in the more specific “games” category. At level 3, it could be in the more
specific “jigsaw puzzles” category. This dataset was selected as it provides a direct
comparison of classification accuracy, when considering the relative dataset volume
compared to the number of categories.

The “Twitter COVID Sentiment” dataset is a curation of tweets from March and
April 2020 which mentioned the words “coronavirus” or “COVID”. This dataset was
manually classified within one of the following five sentiments: extremely negative,
negative, neutral, positive or extremely positive. The source dataset had been split
into a training set and a testing set. As with the Reuters dataset, these two subsets
were combined.

The “Twitter Tweet Genre” dataset is a small selection of tweets which have been man-
ually classified into one of the following four high level genres: sports, entertainment,
medical and politics.

Each of these datasets share some of the complex characteristics of the LFE dataset

described at the start of this section. Table 1 presents and compares these similarities. The
full specification of all the datasets is available in Table 2.
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Table 1. Comparison of the datasets based on the complexity of their classification characteristics.
The numbered characteristics refer to the list at the start of this section.

Dataset Name and
Shared Characteristics

Description

There are 9160 documents, classified into one of 65 categories. Average of items per category of

3
Reuters 140.90.
The largest category “earn” contains 3923 documents (42.83%). The second largest category “acq”
4 contains 2292 documents (25.02%). The smallest 9 categories only contain 1 document (0.0001%).
The number of items per category has a standard deviation of 553.13.
The average amount of words in a review is 76.5, with the shortest review ! containing 1 word
Amazon 2 -
e hical and the longest containing 1068 words.
1era1.“c 1ca Based on level 3 categorizations, there are 39,999 documents, classified into one of 510 categories.
Reviews 3 A )
verage of items per category of 78.4.
Since all the text are reviews, there are common words in the vocabulary which have no relation
5 to determining the product category. For example, “great” appears in 9762 reviews (24.41%).
However, “great” bears no relation to the product category.
Twitter 2 The average number of words in a tweet is 27.8, with the shortest 2 containing 1 word and the
COVID longest containing 58 words.
Sentiment Sentiment analysis in general has a subjective nature to the classifications given [31]. This dataset
6 also has some specific cases where two very similar tweets have been given opposing sentiments,
an example can be found in Appendix C.
Twitter Tweet 1 This dataset consists of only 1161 documents.
Genre 2 The average amount of words in a tweet is 16 with the shortest ? containing 1 word and the

longest containing 27 words.

1 The shortest review in this dataset contains 0 words and only punctuation. However, this was discounted as it
was removed during pre-processing and not used. > Some tweets in this dataset contain 0 words and only URLs,
retweets or user handles. However, these were discounted as they were removed during pre-processing and
not used.

Table 2. Full specification of datasets. All values presented in this table represent the raw datasets
prior to removal of any invalid entries, pre-processing or text cleaning.

Dataset Name Items Categories Avg. Word Count Avg.CCharacter Avg. Items I;er
ount Category
LFE 2307 24 49.6 290.4 96
Reuters 9160 65 104.4 643.1 140
Amazon Hierarchical Reviews 39,999 6/64/5102 76.5 4241 6666/624/78 2
Twitter COVID Sentiment 44,955 5 27.8 176.4 8950
Twitter Tweet Genre 1161 4 16.0 101.9 290

1 Assuming items were evenly distributed between categories, this is the minimum number of items assigned
to each category. 2 Multiple values are presented for the Level 1, Level 2 and Level 3 hierarchy of categories,
respectively.

Currently, the LFE dataset is manually classified by hospital staff, who have to read
each text item and assign it to a theme. Therefore, we are the first to experiment with
applying automatic text classification to this dataset. The Amazon Hierarchical Reviews,
Twitter COVID Sentiment and Twitter Tweet Genre datasets were primarily selected for
their similar characteristics to the LFE dataset. However, another advantage they provided
was that they contained extremely current data having all been published in 2020 (April,
September and January, respectively). Although these datasets were useful for our inves-
tigation into how dataset characteristics affect classification accuracy, it was difficult to
draw direct comparisons with related work in this field due to the dataset originality. The
Reuters dataset was selected because of its wide use in this field as a benchmark, allowing
direct comparisons of our novel pipeline results to other well-documented work.

Some of the seminal work in automatic text classification on the Reuters dataset was
by Joachims [32]. Through the novel use of support vector machines, a micro averaged
precision-recall breakeven score of 86.4 was achieved across the 90 categories which con-
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tained at least one training and one testing example. After this, researchers have used
many different configurations of the Reuters dataset for their analysis. Some have used
the exact same subset but applied different feature selection methods [33], while other
work has focused on only the top 10 largest categories [34,35]. Unfortunately, the wide
range of feature selection and category variation limits reliable comparison. However, by
selecting related work with either (i) similar pre-processing and feature section methods, or
(ii) similar category variation, we aim to ensure our proposed pipeline is performing with
comparable levels of accuracy.

4. Methodology

For this research, a software package was developed using the Python programming
language (Version 3.7), making use of the NumPy (Version 1.19.5) [36] and Pandas (Version
1.2.3) [37] libraries for efficient data structures and file input and output. The core concept
was to develop an intuitive data processing and classification pipeline based on flexibility,
thus enabling the user to easily select different pre-processing and classification techniques
each time the pipeline is executed. As discussed in Section 2, classification often uses a gen-
eralized flow of data through a document classification pipeline. The approach presented
in this paper follows this model. Figure 3 shows an overview of the pipeline developed.

Since the LFE dataset contained a range of proper nouns which provided no benefit to
the classification task, they were removed to optimize the time required for each experiment.
The Stanford named entity recognition system (Stanford NER) [38] was used to tag any
names, locations and organizations in the raw text. Subsequently, these were removed from
the dataset. In total, 3126 proper nouns were removed. A manual scan was performed
to confirm that most cases were covered. Some notable exceptions were the name “June”
(which was most likely mistaken for the month) and the word “trust” when used in the
phrase “NHS trust”. Neither of these were successfully tagged by Stanford NER. The
dataset used in this work is the final version with the names, locations and organizations
removed.

To maintain similarity in the pre-processing approaches, the Stanford core NLP
pipeline [39], provided through the Python Stanza toolkit (Version 1.2) [40], was used
where possible. This provided the tools for tokenizing the text, and lemmatizing words.
However, Stanford core NLP did not provide any stemming options, so an implementation
of Porter Stemmer [41] from the Python natural language toolkit (NLTK) (Version 3.5) [42]
was used. NLTK also provided the list of common English stop words for stop word re-
moval. The remaining pre-processing techniques (removal of numeric characters, removal
of single character words and punctuation removal) were all developed for this project.
The final pre-processing component was used to specifically clean the text of the Twitter
collections. This consisted of removing URLs, “#” symbols from Twitter hashtags, “@”
symbols from user handles and retweet text (“RT”). This was the final part of the software
developed for this project’s source code.

A selection of four word scoring metrics is made available in the pipeline. RAKE [10]
was used via an implementation available in the rake-nltk (Version 1.0.4) [43] Python
module. A TextRank [9] implementation was designed and developed derived from an
article and source code by Liang [44]. An implementation of TF-IDF and a term frequency
model were also developed.

Within the stage of feature extraction, the BoW model was developed using standard
Python collections. These were originally listed and subsequently converted to dictionar-
ies to optimize the look-up speed when generating feature masks. Feature masks were
represented in NumPy arrays to reduce memory overhead and execution time.
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(NLTK Porter stemmer)
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Figure 3. Representation of the text processing and classification pipeline, showing each stage
described in Section 2. Rhomboids represent data, rectangles represent processes and diamonds
represent decisions which can be made modified within the software parameters.
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All classifiers used in this publication originate from the scikit-learn (Version 0.24.1) [45]
machine learning library. This library was selected since (i) it provided tested classifier
builds to be used, (ii) a range of statistical scoring methods and (iii) it is a popular library
used in similar literature thereby enabling direct comparison with other work in this field.
For this project a set of wrapper classes were designed for the scikit-learn classifiers. All
classifier wrappers were developed upon an abstract base class to increase code reuse, speed
up implementation of new classifiers and ensure a standardized set of method calls through
overriding. The base class and all child classes are available in the “Classifiers” package
within the source code. A link to the full source code can be found in the Supplementary
Materials Section.

Within the final stage of Classification, four of the most common text classifiers
are provided. These are k-nearest neighbor (KNN), compliment weighted naive bayes
(CNB), multi-layer perceptron (MLP) and support vector machine (SVM). Tuning the hyper
parameters of each of these classifiers, for every dataset, would have produced too much
variability in the results. Therefore, each classifier was tuned to the LFE dataset; the same
hyper parameters were used on all datasets. When tuning was performed, only one variable
was tuned at a time, the remainder of the pipeline remained constant, see Figure 4.

/ Raw Input Text /

v

Remove all Names,
Locations and
Organisations
(Stanford NER)

Remove all numeric

characters, single

‘Tokenlse text on words Lemmatize words ‘

L )
LTSl ‘ (Stanford Core NLP) character words and

‘L (Stanford Core NLP) | remaining punctiation

/ Cleaned and

/ Text with each
' Word Scored /

TEELE / Formatted Text /

Generate Bag of Words Create Feature Mask

— i
from Vocabulary b 2@3;@%&? S aud
Y
| Text Feature
Complement | Mask
Weighted Naive [~ [
Bayes

Y

Trained Classifier /

Figure 4. Representation of the processing pipeline used for hyper parameter tuning. From the
text input all the way through the processes of tokenizing, lemmatizing, additional text cleaning,
TF-IDF scoring, BoW modeling, creation of feature masks to the final stage of using the complement
weighted naive bayes classifier.

The first classifier, KNN, determines the category of an item based on the categories
of the nearest neighbors in feature space. The core parameter to set is the value of k; the
number of neighbors which should be considered when classifying a new item. To define
k, a range of values were tested, and their accuracy was assessed based on their F1 score.
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See the full results in Appendix C, Table A2. The value of k was defined as 23. Work by
Tan [46] suggested weighting neighbors based on their distance may improve results when
working with unbalanced text corpuses. Thus, this parameter was also tuned. However,
when this was applied to the LFE dataset, uniform weighting produced better results. The
results of these tests are shown in Appendix C, Table A3.

The second classifier, Compliment weighted Naive Bayes (CNB), is a specialized
version of multinomial Naive Bayes (MNB). This approach is reported to perform better
on imbalanced text classification datasets, by improving some of the assumptions made in
MNB. Specifically, it focuses on correcting the assumption that features are independent,
and it attempts to improve the weight selection of the MNB decision boundary. This
approach did not require any hyper parameter tuning, and the scikit-learn CNB was
implemented as described by Rennie et al. [27].

The third classifier provided is based on the multi-layer perceptron (MLP). There
are multiple modern text classification approaches which use deep learning variants of
neural networks. Some notable examples are convolutional neural networks (CNN) [47]
and recurrent neural networks (RNN) [11], both of which have been used extensively in
this field. These approaches have a substantial computational overhead for feature creation.
Therefore, deep learning would have been too unwieldly for some of the datasets used
in this work. Furthermore, scikit-learn does not provide an implementation of CNN or
RNN neural network architectures. Therefore, their use would require another library,
reducing the quality of any comparisons made between classifiers. For these reasons, a
more traditional, MLP architecture, with a single hidden layer, was used instead. The
main parameter to tune for this model was the number of neurons used in the hidden
layer. There is much discussion on how to optimize selection of this parameter, but the
general rule of thumb is to select the floored mean between the number of input neurons
and output neurons as defined below:

Misdden = Lninput 'gnoutputJ

The remaining MLP hyper parameters are the default values from scikit-learn and
a full list of these can be found in Appendix C, Table A4. The MLP was also set to stop
training early if there was no change in the validation score, within a tolerance bound of
1 x 107#, over ten epochs.

For the fourth classifier, SVM, it has been reported that the selection of a linear kernel
is more effective for text classification problems than non-linear kernels [48]. Four of the
most commonly used kernels were tested and confirmed that this was also the case with
the LFE dataset. Therefore, a linear kernel was selected for use in this classifier. The results
of the tests are found in Appendix C, Table A5. To account for the class imbalance in the
LFE dataset, each class is weighted proportionally in the SVM to reduce bias.

Aside from these supervised classification approaches, an unsupervised model was
also developed using scikit-learn and the same classification wrapper class structure. The
purpose of this was to examine whether any natural clusters form within the LFE dataset,
to enable a wider range of comparisons. K-means [49] was selected as the unsupervised
approach, where k represents the number of groups the data should be clustered into.
To tune this parameter, two metrics were recorded for a range of potential values of k:
the j-squared error and the silhouette score [50]. A lower j-squared error represents a
smaller average distance from any given data point to the centroid of its cluster, and a
higher silhouette score represents an item exhibiting a greater similarity to its own cluster,
compared to other clusters. Therefore, an optimal k value should be minimizing j-squared
error whilst maximizing silhouette score. However, j-squared error is likely to trend lower
as more clusters are added, leading to diminishing returns for larger values of k. So, it is
better suited to examining where the benefit starts to drop off, this is often referred to as
finding the “elbow” in the graph.

Appendix C, Figure A1 shows the graph comparing the j-squared error and the average
silhouette score for all clusters. From this analysis it was difficult to define the optimal
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value of k, since the j-squared error trended downwards almost linearly, and the average
silhouette score was low for all values of k. Therefore, the LFE dataset was clustered using
different small values of k, {2, 8, 13, 16, 20}, which performed better.

5. Results

This research evaluates how fundamental differences in database volume, category
distribution and subjective manual classification affect the accuracy of automatic document
classification. All experiments were performed on the same computer. It had the following
hardware specification: Intel Core i5-8600K, 6 cores at 3.6 Ghz. RAM: 32 GB DDR4. GPU:
Gigabyte Nvidia GeForce GTX 1060 6 GB VRAM. The Stanza toolkit for Stanford core
NLP supported GPU parallelization, and all experiments exploited this feature. The scikit-
learn library did not have any GPU enabled options, so all classification was processed by
the CPU.

During experiments, each dataset was tested for the given variables. A fivefold cross
validation was used, and the mean score for each validation is reported. If not otherwise
stated, all other elements of the pipeline are identical to the constant processing pipeline,
described in Section 4. The core metric used for evaluating accuracy was the F1 score,
which combines both precision and accuracy into a single measure. This was recorded as
both a micro average and a macro average.

Tables 3-5 contain the experimental results yielded by the evaluation of changes to the
different sections of the proposed pipeline (pre-processing, word scoring and classification
respectively). Based on the results from Tables 3-5, the optimum pipeline for each dataset
was tested and the results can be found in Table 6.

Table 3. Evaluates the effect of different pre-processing techniques on the accuracy of classification.
The same processing pipeline is maintained aside from pre-processing (TF-IDF, BoW, CNB).

Dataset Name Pre-Processing F1 Score (Micro) F1 Score (Macro)
None 0.358 0.133
LFE Stop Word Removal 0.334 0.151
Word Lemmatizing 0.351 0.136
Both 0.323 0.153
None 0.870 0.477
R Stop Word Removal 0.890 0.526
euters Word Lemmatizing 0.858 0.446
Both 0.886 0.505
None 0.829 0.826
Amazon Hierarchical Stop Word Removal 0.834 0.832
Reviews Word Lemmatizing 0.827 0.825
Both 0.837 0.833
None 0.439 0.445
Twitter COVID Stop Word Removal 0.431 0.438
Sentiment Word Lemmatizing 0.434 0.438
Both 0.427 0.434
None 0.800 0.801
Stop Word Removal 0.786 0.787

Twitter Tweet Genre Word Lemmatizing 0.807 0.808

Both 0.791 0.791
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Table 4. Evaluates the effect of using different word scoring techniques on the accuracy of classifi-
cation. The same processing pipeline is maintained aside from word scoring (stop words removal,
words lemmatization, additional text cleaning, BoW, CNB).

Dataset Name Word Scoring F1 Score F1 Score
Method (Micro) (Macro)
RAKE 0.152 0.089
TextRank 0.174 0.045
LFE Term Frequency 0.342 0.154
TF-IDF 0.323 0.153
RAKE 0.461 0.348
TextRank 0.597 0.100
Reuters Term Frequency 0.898 0.552
TF-IDF 0.886 0.505
RAKE 0.381 0.268
Amazon Hierarchical TextRank 0.605 0.573
Reviews Term Frequency 0.834 0.832
TF-IDF 0.837 0.833
RAKE 0.213 0.192
Twitter COVID TextRank 0.385 0.364
Sentiment Term Frequency 0.435 0.441
TF-IDF 0.427 0.434
RAKE 0.427 0.422
. TextRank 0.658 0.608
Twitter Tweet Genre Term Frequency 0.826 0.827
TF-IDF 0.791 0.791

Table 5. Evaluates the use of different classifiers. The processing pipeline is maintained aside from
word scoring (stop words removed, words lemmatized, additional text cleaning, TF-IDF, BoW).

Dataset Classifier F1 Score F1 Score Fit Score
Name (Micro) (Macro) Time Time
KNN 0.224 0.053 0.039 0.0758

LFE CNB 0.323 0.153 0.050 0.0077
MLP 0.329 0.099 49.029 0.0327

SVM 0.241 0.102 12.865 2.2606

KNN 0.624 0.297 9.618 132.67

R CNB 0.886 0.505 33.872 2.526
euters MLP 0.928 0.656 46,840.85 31.941
SVM 0.771 0.561 49,310.23 35.715

A KNN 0.652 0.624 10.831 145.69
- maz;’,“ | CNB 0.834 0.832 35.250 2.724
‘g—ra?C 1ca MLP 0.841 0.839 50,840.12 35.769
eviews SVM 0.822 0.817 56,527.68 39.935
T KNN 0.313 0.302 7.787 149.136
Cg‘t]tl% CNB 0.424 0.431 42274 2.497
Senti MLP 0.387 0.384 48,257.21 30.676
entiment SVM 0.395 0.407 51,774.16 35.027
KNN 0.478 0.405 0.021 0.031

Twitter Tweet CNB 0.791 0.791 0.026 0.004
Genre MLP 0.748 0.748 15.946 0.012

SVM 0.761 0.765 2.095 0.605
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Table 6. Optimum pipeline result for each dataset with F1 micro averaged score.
. Word Scoring o F1 Score
Dataset Name Pre-Processing Method Classifier (Micro)
LFE None Term Frequency CNB 0.358
Reuters Stop Word Removal =~ Term Frequency MLP 0.933
Amazon
Hierarchical Both TF-IDF MLP 0.841
Reviews
Tw1tter. COVID None Term Frequency CNB 0.440
Sentiment
Twitter Tweet Genre ~ Word Lemmatizing  Term Frequency CNB 0.828

To benchmark the accuracy of our pipeline against other related work on automatic
text classification, Table 7 presents our results on the Reuters corpus compared to the works
mentioned in Section 3.2. As stated in this previous section, it should be noted that a
direct comparison of these results is difficult due to the differences in document/category
reduction, pre-processing approaches and feature selection. However, the results presented
suggest that the approach outlined in this paper produces comparable accuracy to other
state-of-the-art approaches.

Table 7. Comparison of the highest achieved micro-averaged score of our pipeline (shown in bold),
compared to other published automatic text classification results on the “ApteMod” split of the
Reuters-21578 corpus. Accuracy metrics are all F1 scores, except Joachims which is the precision-
recall breakeven point.

Overall Accuracy

Automatic Text Classification Approach (Micro-Averaged)

Joachims, T. SVM [32] 0.864

Banerjee, S. et al. SVC [33] 0.870

Ghiassi, M. et al. “DAN2” MLP ! [34] 0.910
Zdrojewska A. et al. Feed-forward MLP with ADAM [35] 0.924
Haynes, C. et al. Novel Pipeline MLP 0.933

1 This score is not stated explicitly but was calculated as the average of the F1 testing scores provided in the
referenced paper.

6. Discussion
6.1. Practical Implications

Based on the results of our experiments we will discuss the two research questions
introduced in Section 3.1.

(R1) The NHS is likely to adopt our approach to automatically classify feedback. This
means we have successfully reduced the workload of NHS staff by providing a tool
which can be used in place of manual classification. Therefore, the answer to (R1)
is positive. Although our proposed classification pipeline attained a lower micro-
averaged F1 score on the LFE dataset compared to the benchmark datasets, given
the limitations of the dataset, the NHS has found this better than the alternative of
manually classifying future datasets.

(R2) The performance of the classification pipeline published in this paper is evaluated by
comparing it against the results of the Reuters dataset with other published work. In this
research, a micro-averaged F1 score of 93.30% was achieved. As shown in Table 7, that
accuracy outperforms the seminal SVM approaches of Joachims [32], which achieved
a micro-averaged breakeven point of 86.40%. Furthermore, the classification pipeline
performed in-line with or surpassed more recent approaches [33-35]; demonstrating that
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this classification pipeline produces high accuracy results on other datasets. Therefore,
the answer to (R2) is positive.

6.2. Theoretical Implications

Despite the classification pipeline performing very well, the LFE dataset attained a
lower micro-averaged F1 score than the benchmark datasets. This discussion will outline
the factors which may have caused this result. The four comparison datasets all outper-
formed the LFE dataset for almost all potential pipeline setups. This suggest that there
is an underlying limiting factor, or factors, within the dataset itself. To break down this
comparison, each of the characteristics (see Section 3) will be discussed.

1. The dataset is relatively small. The overall size of the items in the dataset may have
resulted in an advantage to the Reuters and Amazon Hierarchical Reviews results,
as it is widely accepted that a larger and more varied dataset will produce better
classification results [51,52]. However, the much smaller Twitter Tweet Genre dataset,
also achieved a high level of accuracy with a micro-averaged F1 score of 82.80%.
Considering the LFE dataset had almost double the number of items, this characteristic
alone is unlikely to be the sole cause of the low accuracy results.

2. Thelength of each text item is short. Both Twitter datasets attained vastly different results
to the LFE dataset despite the fact they are similarly characterized as being short in
length. These Twitter datasets also had considerably shorter average word counts
than the LFE dataset and still outperformed it overall. In conclusion, the average
length of each text item is unlikely to be a discriminatory characteristic.

3. The number of text items per category is small. The average distribution of items per
category did not limit performance on the Reuters dataset. However, that could be
attributed to the larger overall size, which would have provided more samples for
each category in comparison to the LFE dataset.

4. The distribution of categories is not balanced. In terms of category distribution, all
classification techniques for both the Reuters and LFE datasets suffered from the
same issue, where the smallest categories were never applied when classifying the test
dataset. Specifically, nine of the Reuters categories and five of the LFE categories never
appeared in any of the test classifications. Although this did not impact the overall
results of the Reuters classification, the percentage of small categories was much
greater in the LFE dataset. In the LFE dataset, 25% of categories comprised less than
1% of the dataset compared with 13.8% in the Reuters dataset. These tiny categories
are almost certainly a contributing factor to the lower accuracy of the LFE results.

5. All the text is positive. The use of common terms across all categories did not have a
significantly negative impact on the classification accuracy of the Amazon Hierarchical
Reviews dataset. However, the use of common terms did significantly impact the LFE
results. This could be attributed to the fact that each Amazon review had an average
word count of more than 50% the average LFE item, resulting in a diluting effect of the
repeated common words. Due to the overall larger size of the Amazon Hierarchical
Reviews dataset, it had a much larger vocabulary in comparison to the LFE dataset,
which may explain why TF-IDF was the optimal scoring method for this dataset.

6. The categories are subjectively defined. The subjective nature of both the manual classifica-
tion and the categories themselves are likely to have played a role in the lower scores
for accuracy in both the LFE and the Twitter COVID Sentiment datasets. Although, if
the accuracy alone is considered, it is not possible to determine a direct link.

Based on these comparisons, the limiting factors in the LFE classification results are
most likely to be (i) the imbalanced category distribution, (ii) the use of repeated common
terms across different categories and (iii) the subjective nature of the manual classification.
To explore these factors, a manual analysis was performed on the K-means clustering
result to see if these same factors were limiting when the LFE dataset was treated as an
unsupervised clustering problem, rather than a supervised classification problem.
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The first test was used to evaluate how evenly the text items are distributed for
different values of k (2, 8, 13, 16, 20 and 150). For any number of clusters, a similar trend
emerged, where one cluster would account for between 51% and 98% of all the items. The
remaining items were thinly spread between the remaining categories. Figures 5 and 6
depict how the data is unevenly distributed with k values of 20 and 150, respectively.
Therefore, there is no evidence of a natural separation for most of the text items in the LFE
dataset. Thus, they are either sufficiently generic they get clustered into one large group or
that they are overly similar leading to the formation of limited smaller clusters.

Number of text items per Cluster when K = 20
1800
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Figure 5. Distribution of LFE dataset when clustered using k-Means where k = 20.
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Figure 6. Distribution of LFE dataset when clustered using k-Means where k = 150.

To investigate this clustering and to evaluate other limiting dataset characteristics,
a manual comparison of the text entries in the small and medium sized clusters was
performed. When k = 8, a cluster emerged with only 29, out of the total 2307, items assigned
to it. This cluster had a lot of similarities in its text items; almost always congratulating
a member of staff on completing a course or gaining a qualification. Words such as

/a7

“course”, “success”, “level”, “pass” and “congratulations” appeared in this cluster in scales
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of magnitude higher than across the rest of the clusters. As the value of k varied, this cluster
appeared with a 96.6% overlap with a cluster in k = 2, and a 79.3% overlap with a cluster in
k=13.

Furthermore, when k = 8, there was an even smaller cluster identified which contained
only 9, out of the total 2307, items. This tiny cluster came from sequential items in the
dataset, which share almost exactly the same words. It appears that someone submitted
multiple “excellence texts” for a range of different staff. They copied and pasted the same
text framework, just changing the name, organization or slightly rewording the text. So,
after using the NER, cleaning, lemmatization and removing the stop words, all these items
are virtually identical. What is also interesting in this cluster is how the word “fantastic”
appeared in every entry whereas it only appears in 5.98% of the whole corpus. This shows
one of the downsides to TF-IDF in this case, as words which have no bearing on the
classification are getting scored highly due to their rarity across the rest of the corpus. This
also supports the argument that common terms, unrelated to the category, could be limiting
the classification accuracy. A full breakdown of the occurrence of the most common words
in each cluster when k = 8, shown in Table 8, shows a general theme can be manually
identified for most of clusters.

Table 8. The percentage of times words appeared in each text item, in each cluster, when k = 8. Only
the five largest clusters are shown, since the other three clusters only contained a single item each.
Bold values represent statistically significantly values (p < 0.5) in a given cluster when compared to
their occurrence in the entire dataset. The case (upper or lower) of the words was not considered.

Overall Cluster Cluster Cluster Cluster Cluster
IDO0 ID1 ID3 ID 5 ID7
Word/Size 2307 9 1853 319 11 29
Thank 43.44% 100.00% 39.50% 70.22% 0.00% 3.45%
Mentor 1.66% 0.00% 0.81% 6.27% 18.18% 0.00%
Placement 1.57% 0.00% 0.49% 6.58% 45.45% 0.00%
Support 32.10% 0.00% 29.25% 52.04% 36.36% 3.45%
SAU 0.90% 0.00% 0.27% 4.70% 0.00% 0.00%
Work 41.46% 100.00% 43.82% 26.33% 9.09% 55.17%
Hard 15.83% 0.00% 17.00% 7.21% 0.00% 48.28%
Help 31.79% 22.22% 29.30% 50.47% 0.00% 3.45%
Team 32.87% 0.00% 36.97% 13.79% 18.18% 0.00%
Staff 22.84% 0.00% 25.74% 9.72% 0.00% 0.00%
Course 2.52% 0.00% 1.35% 2.19% 0.00% 86.21%
Success 3.33% 100.00% 2.10% 1.88% 0.00% 68.97%
Level 4.90% 0.00% 2.10% 1.88% 0.00% 58.62%
Pass 5.94% 0.00% 6.58% 1.25% 0.00% 20.69%
Patient 37.54% 0.00% 42.31% 15.67% 9.09% 0.00%
Fantastic 5.98% 100.00% 5.45% 3.45% 81.82% 10.34%
Congratulation 1.39% 0.00% 0.38% 0.31% 0.00% 79.31%
Ward 14.12% 0.00% 14.25% 14.11% 27.27% 6.90%

VAT

e  Placement. Cluster ID 5 has a high prevalence of the words: “placement”, “mentor”,
“support” and “team”.

e  Course Pass. Cluster ID 7 has a high prevalence of the words: “course”, “success”,
“level”, “pass”, “hard” and “work”.

e  General Support. Cluster ID 3 has a high prevalence of the words: “thank”, “support”
and “help”.
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Consider how the large remaining cluster has a similar distribution of words when
compared to the full dataset. This suggests that this large cluster is a ‘catch-all’ for all the
items not specific enough to be classified elsewhere. This reinforces the conclusion that
rarely used but generic terms in the LFE dataset are biasing the accuracy of classification.

This could also explain why the simple scoring metric of term count was optimal for
the LFE data. The other single word scoring methods (Text Rank and TFE-IDF) both give
higher weight to words which are common in a given item, in comparison to the rest of the
corpus. However, in this dataset the most commonly used words are actually those that
most closely represent the categories:

e  “Thank” appears in 43.44% of items.
“Support” appears in 32.10% of items.
“Work” appears in 41.46% of items, “Hard” appears in 15.83% of items.

i

When you consider there are categories specifically for “Thank you”, “Supportive”
and “Hard Work”, it is clear these terms being underweighted could be another limiting
factor of the LFE dataset. The limiting factor of subjective manual classification is evident
in this same analysis. Although “Thank” appears in 43.44% of items, only 2.74% of the
items have got a primary theme of “Thank you”. A specific example of this can be seen
in one of the text items, after it has been lemmatized and stop words have been removed.
Consider the text “ruin humor wrong sort quickly good day much always go help support thank” .
This seems quite generic and contains many keywords which might suggest “Supportive”
or “Thank you” as the category. However, this text item was manually classified with a
primary theme of “Positive Attitude” and a secondary theme of “Hard Work” despite it
not having any of the common keywords associated with these themes.

Overall, the data suggest that the common limiting factors of classifying the LFE
dataset are also present when it is clustered. Indeed, this means that there is an intrinsic
limitation on the ability to classify this specific dataset.

6.3. Future Research

A number of open issues offer opportunities for future work. For example, it would
be interesting to evaluate our pipeline with the latest iteration of the LFE dataset, as new
entries are added every month. A larger dataset would hopefully provide more instances
of different themes and reduce the imbalanced theme distribution.

An alternative option would be to see if the accuracy of our pipeline could be improved
on the same dataset if the number of themes was reduced. For instance, some similar themes
could be combined such as “Kindness” and “Positive Attitude”, which have a high degree
of overlap. Some of the more generic, larger themes could also be removed entirely, for
example, “Supportive” and “Hard Work”. Based on the discussion above, it would be
expected that this would reduce the imbalanced theme distribution and increase the ratio
of text items to themes.

A separate area of research would be improvements to novel pipeline software. Cur-
rently, it is a useful tool to test a range of different text pre-processing, word scoring and
classification methods to determine which is the most suitable for a given dataset. However,
it could be improved if this process was automated, so that the pipeline would test different
combinations, rank them and automatically select the most efficient one. To achieve this,
the novel pipeline would require a high level of optimization and structure reordering.
However, this addition would make this tool more accessible to researchers outside the
field, as it would require less inherent knowledge of the processes used.
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Supplementary Materials: The full source code for the developed software tool can be downloaded
from: https://github.com/ChristopherHaynes /LFEDocumentClassifier (accessed on 8 February 2022).

Author Contributions: Conceptualization, C.H. and M.A.P; methodology, C.H. and M.A.P; software,
C.H.; validation, C.H.; formal analysis, C.H.; investigation, C.H. and M.A.P.; resources, D.V., FH.
and G.C,; data curation, D.V,, FH. and G.C. and C.H.; writing—original draft preparation, C.H.;
writing—review and editing, C.H., M.A.P. and L.S.; visualization, C.H. and L.S.; supervision, M.A.P.
and L.S.; project administration, L.S. and K.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: “Reuters-21578 (ApteMod)”: Used in our software package via Python
NLTK platform, direct download available at http:/ /kdd.ics.uci.edu/databases/reuters21578 / reuters2
1578.html. Retrieved 25 April 2021 “Amazon Hierarchical Reviews”: Yury Kashnitsky. Hierarchical
text classification. (April 2020). Version 1. Retrieved 29 April 2021 from https://www.kaggle.com/
kashnitsky /hierarchical-text-classification/version /1. “Twitter COVID Sentiment”: Aman Miglani.
Coronavirus tweet NLP—Text Classification. (September 2020). Version 1. Retrieved 27 April 2021 from
https:/ /www.kaggle.com/datatattle /covid-19-nlp-text-classification/version/1. “Twitter Tweet
Genre”: Pradeep. Text (Tweet) Classification (January 2020). Version 1. Retrieved 28 April 2021 from
https:/ /www.kaggle.com/pradeeptrical / text-tweet-classification /version/1.

Acknowledgments: The authors are grateful to the NHS Information Governance for allowing us to
make use of the anonymized LFE dataset.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Full list of “Learning from Excellence” dataset themes.

Theme Description
Above and Beyond Performing in excess of the expectations or demands.
Adaptability Being able to adjust to new conditions.
Communication Clearly conveying ideas and tasks to others.

Coping with Pressure Adjusting to unusual demands or stressors.
Dedicated Devoting oneself to a task or purpose.

Education Achieving personal improvement through training/schooling.
Efficient Working in a well-organized and competent way.
Hard Work Working with a great deal of effort or endurance.
Initiative Taking the opportunity to act before others do.
Innovative Introducing new ideas; original and creative in thinking.
Kindness Being friendly and considerate to colleagues and/or patients.
Leadership Influencing others in a group by taking charge of a situation.
Morale Providing confidence and enthusiasm to a group.
Patient Focus Prioritizing patient care above other tasks.
Positive Attitude Showing optimism about situations and interactions.
Reliable Consistently good in quality or performance.
Safe Care Taking all necessary steps to ensure safety protocols are met.
Staffing Covering extra shifts when there is illness /absence.
Supportive Providing encouragement or emotional help.
Teamwork Collaboration with a group to perform well on a given task.
Technical Excellence Producing successful results based on specialist expertise.
Time Devoting additional time to colleagues and/or patients.
Thank You Giving a direct compliment to a member of staff.

Well-Being

Making a colleague and/or patient, comfortable and happy.
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Appendix B

Examples of similar tweets from the Twitter COVID Sentiment dataset which have
similar content, but were given opposing manual classifications:

e  “My food stock is not the only one which is empty ... PLEASE, don’t panic, THERE
WILL BE ENOUGH FOOD FOR EVERYONE if you do not take more than you
need. Stay calm, stay safe. #COVID19france #COVID_19 #COVID19 #coronavirus
#confinement #Confinementotal #ConfinementGeneral https:/ /t.co/zrlG0Z520j\T1
\textquotedblright---Manually classified as “extremely negative”.

e “Me, ready to go at supermarket during the #COVID19 outbreak. Not because I'm para-
noid, but because my food stock is literally empty. The #coronavirus is a serious thing, but
please, don’t panic. It causes shortage . .. #CoronavirusFrance #restezchezvous #5Stay-
AtHome #confinement https:/ /t.co/usmualq72n\T1\textquotedblright---Manually
classified as “positive”.

Appendix C

Table A2. KNN tuning: how the F1 score varied (micro and macro averaged) as the value of k was
altered. Tests performed using the constant processing pipeline. Selected k value shown in bold.

k F1 Score (Micro) F1 Score (Macro)
9 0.205481 0.053783
11 0.215820 0.053813
13 0.223463 0.055129
15 0.223917 0.053341
17 0.227964 0.054558
19 0.232904 0.054457
21 0.230655 0.053048
23 0.242796 0.055268
25 0.241004 0.050718
27 0.238308 0.049159
29 0.230211 0.047173
31 0.232014 0.047116

Table A3. KNN tuning: F1 score (micro and macro averaged) using uniform weighting compared
to distance weighting. Although the F1 macro average score is higher for distance weighing, micro
averaging is less susceptible to fluctuations from class imbalance, therefore this was chosen as the
deciding factor. Tests performed using the constant processing pipeline. Selected weighting method
shown in bold.

Weighting Method F1 Score (Micro) F1 Score (Macro)
Uniform 0.242796 0.055268
Distance 0.236509 0.067957

Table A4. MLP hyper parameter list.

Parameter Type/Value
Activation function Rectified linear unit function (RELU)
Weight optimization algorithm Adam
Max epochs 200
Batch size 64
Alpha (regularization term) 0.0001
Beta (decay rate) 0.9
Epsilon (numerical stability) 1x 1078
Early stopping tolerance 1x 1074

Early stopping iteration range 10
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Table A5. SVM tuning: F1 score (micro and macro averaged) for different kernels. Although the F1
macro average score is higher for the linear kernel, micro averaging is less susceptible to fluctuations
from class imbalance, therefore this was chosen as the deciding factor. Tests performed using the
constant processing pipeline. Selected weighting method shown in bold.

Kernel F1 Score (Micro) F1 Score (Macro)

RBF 0.241 0.102515

Polynomial (Degree 3) 0.118252 0.026344

Sigmoid 0.369148 0.207289

Linear 0.375895 0.19138
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Figure A1. K—Means Tuning Graph. Comparison of how the j-squared error and average silhouette
score vary for differing numbers of clusters (k).
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