
Improving Search Engine Performance
Through Dynamic Caching

1st Claudio Gutiérrez-Soto
Departamento de Sistemas de Información

Universidad del Bı́o-Bı́o
Concepción, Chile

cogutier@ubiobio.cl

2nd Marco A. Palomino
School of Engineering Computing and Mathematics

University of Plymouth
Plymouth, UK

marco.palomino@plymouth.ac.uk

3rd Ernesto Roa
Departamento de Sistemas de Información

Universidad del Bı́o-Bı́o
Concepción, Chile

erroa@alumnos.ubiobio.cl

4th Patricio Galdames
Departamento de Sistemas de Información

Universidad del Bı́o-Bı́o
Concepción, Chile

pgaldames@ubiobio.cl

Abstract—Web search engines process several millions of
queries per second over several billions of documents. Without
any optimization, this process can be very expensive in terms of
processing times. In this regard, appropriate use of computing
power is essential. One way to tackle this problem is through
the use of caching mechanisms. Keep in mind, most research
based on caching mechanisms uses repetitive queries–it means
queries syntactically equals–to conform caches. Furthermore, the
universe of repetitive queries is small in comparison with a set
of similar semantically queries. This paper presents a dynamic
cache that relies on an online algorithm, which performs a
semantic match between the user’s query and queries stored
in the cache. Broadly speaking, the algorithm employs a priority
queue, where popular queries are stored along with their relevant
documents. Empirical results show that our proposed approach
improves the response times and precision. Moreover, the use of
semantically related keywords proves to be a key contribution
that had been overlooked in previous research.

Index Terms—Web search engines, dynamic caching, semanti-
cally related keywords.

I. INTRODUCTION

Nowadays, it is well-known that social networks are highly
used by million of users who share their concerns, hobbies,
and feelings [1] [2]. Despite this, Web Search Engines (WSEs)
follow being highly used to look for information from several
heterogeneous sources and are also used to make decisions
[3]. Millions of queries per second are submitted by users,
who demand not only high quality in their answers but also
these answers are timely. Furthermore, WSEs are constantly
challenged since the number of pages increases exponentially
day by day. From this baseline, a critical factor to consider is
the running time to process the queries, notably in peak hours
[4]. Accordingly, it is relevant to handle the computing power
efficiently to avoid the server’s overcrowded, considering at
the same time that answers are being provided in acceptable
response times.

A mechanism highly used to tackle this challenge is
caching. A caching can be seen as a little mechanism of high

performance (this can be both hardware or software), which
aims to avoid accessing disk or to main memory. Three metrics
are used to assess the caching policies’ efficiency, cache hit,
cache miss, and cache hit ratio. Thus, when the searched data
is inside the cache, a hit takes place. Note that when a hit
happens, it is unnecessary to access a disk or main memory. On
the contrary, a cache miss occurs when data is not inside the
cache. As regards a cache hit ratio, it is a proportion between
a cache hit and cache miss. It should be noted that both cache
hit and cache miss are just considered when an exact match
between terms occurs. Most approaches that utilize caching
to improve processing times are based on posting lists, which
can be seen as skip list of terms, or the query results pages,
which consider terms in queries.

Notably, in a pioneering approach presented by [5], the
authors provide a caching that relies on a priority queue,
which considers similar queries, using the relevant retrieved
documents from past queries to respond to new queries.
Consequently, it is feasible to improve not only the response
time but also precision. Keep in mind, the similarity between
queries and documents also considers exact terms.

According to our knowledge, no prior work in the literature
deals with caching based on semantic similarity, which means
that a hit can occur without an exact match between terms.
Similar to the approach presented by [5], in this paper, we
present an online algorithm that uses a priority queue, which
is possible to improve both the response times and precision.
One characteristic of this approach is that terms semantically
related between past queries and relevant documents retrieved
are obtained between periods where there are no updates
inside the cache. Thus, the algorithm uses these terms to
update caching and doing a match the new queries from a
semantic point of view. By doing so, new relevant documents
are incorporated as a result, which would not be considered
part of the result without a semantic match.

Incidentally, a traditional collection in IR is conformed

by a documents’ set, a queries’ set, and a set of relevant
documents for each query, whose relevance is determined
by users’ judgments according to the pertinence’s documents
regarding the query. In WSEs, documents can be seen as
web pages and users’ judgments as ranking functions. Most
ranking functions use the “clickthrough rate” — among other
parameters — associated with each page, with the aim to
provide relevance. Nevertheless, this way to give relevance is
not suitable when we wish to evaluate effectiveness over sets
of queries semantically similar. As a consequence, traditional
IR datasets and log file datasets are not convenient to evaluate
this kind of approach. Indeed, this kind of approach requires
two query’s sets along with their respective sets of judgments’
users. From this baseline, we have opted to simulate an IR
system, where two semantically similar query sets along with
their judgments’ users can be properly evaluated. Several ex-
perimental scenarios were carried out comparing our approach
with caching based on repetitive queries, and caching relies
on similar queries as in [5]. Empirical results show that our
approach improves both response times and precision.

The remainder of this paper is organized as follows: Section
II reviews the body of research on related work. Section III
presents the methodology carried out in our study. Section
IV describes the experimental setup. Section V presents our
results, and Section VI discusses them. Finally, Section VII
summarizes our conclusions.

II. RELATED WORK

The relevant literature can be largely divided in four cat-
egories: inverted indexes, results caching, hybrid approaches
and priority queues. We elaborate on each of these categories
in the following subsections.

A. Inverted indexes

Inverted indexes are the de facto data structure to support
keyword search over large volumes of text [6]. An inverted
index stores a mapping from content to locations, which, in
the case of WSEs, generally involves a hashmap that cross-
references Web pages to keywords. For each indexed term,
the inverted index contains a posting list. Each posting is
essentially a set of pointers marking all the term occurrences
in the collection of indexed web pages [7]. By a large, the use
of inverted files involves compressing and decompressing the
posting lists to efficiently compute the results of the queries
and reduce response times [8]–[12]. Incidentally, there is an
additional cost because posting lists have to be crossed, which
can be costly, especially for long posting lists.

In summary, the efficient use of inverted files underlying
suitable management of compressing/decompressing indexes,
expressed in terms of hit/miss ratio, without directly consid-
ering response times and precision.

B. Results caching

Given that query processing costs may differ significantly
from one query to another, scientists have explored the idea
of caching lists of results [13]–[16], or even storing the

actual documents that constitute the results [17]. It is worth
mentioning that all these approaches follow the same trend
that Inverted files to assess the efficiency. Remarkable is the
approach presented by [14], which deals with response times
over log files. Unlike these approaches, we have moved one
step further by maintaining queries with the highest popularity,
relevant documents, and a set of semantically similar terms to
these queries.

C. Hybrid approaches

Hybrid approaches combine the two previous categories.
Examples of this are the work of Baeza et al. [18], Gil-
Costa et al. [19] and Papadakis and Tzitzikas [20]. These
authors devised caching strategies to reduce the number of
computations required to retrieve results submitted to a WSE
using pre-computed information. Again, the metric used to
evaluated efficiency is the hit/miss ratio.

D. Priority queues

Recent research has implemented caching as a priority
queue [21]–[23], whereby the priority of a query depends
on its popularity or frequency—the higher the frequency, the
higher the priority. Only queries that the queue cannot answer
can eventually access a second-level caching, as in Fagni et
al. [21], or for some other mechanism to compute the results.

Excepting Gan and Suel [24], who employed a large
query log from a single WSE to evaluate their caching
policies, the rest of the researchers cited in this section have
tested their proposed methods using simulation instead of
actual query logs. Indeed, Fagni et al. [21], Baeza-Yates
et al. [18], Papadakis and Tzitzikas [20], and Ozcan et al.
[16] used probability distributions to simulate query logs and
carry out their experiments. Ayers et al. employed Intel’s Pin
Tool [25] to capture full instructions and data traces from a
machine in a steady-state, which serves to real user queries.
Li et al. [14] built a cache simulator based on the production
logs of the Bing advertising system.

To sum up, none of the previously mentioned works
deal with semantic similarity. Furthermore, most of them
evaluated precision (it is also well-known as effectiveness)
without use neither users’ judgments nor ranking functions;
precision is mainly obtained under the clickthrough rate
concept. Besides, most of them do not use response time as
a metric to assess efficiency.
We will now explain in detail how our simulation is set up.

III. METHODOLOGY

As Gutiérrez-Soto et al. proposed in [5], we carried out
the simulation in two stages. In the first stage, we create the
terms, documents and queries. We used two distributions to
create the documents: Heaps’ distribution, which is used to
represent the number of terms that a document contains, and
the exponential distribution, which is used to choose terms

from topics. It should be noted that neither stop words nor
stemming were employed.

The second stage involves creating queries from documents
simulating users’ judgments. Bradford’s law [26] was applied
over retrieved documents to specify how relevant they are. We
describe these procedures in depth below.

A. Simulating Documents

The fundamental elements to simulate a document are the
letters of the English alphabet. From these elements, it is
possible to create a term—i.e., a word.

To create a term, the English alphabet’s letters are chosen
by using the uniform distribution. In this way, a set of terms
forms a topic. The main idea of a topic is to represent a
particular issue, for example, “computer science” or “biology”.
It is important to point out that a term does not belong to two
topics. Consequently, the intersection between topics is empty.

A document is formed by terms belonging to different
topics, such as in real documents. However, a document
should contain more terms of a particular topic in comparison
with others. To choose the topic, we employ the exponential
distribution. Subsequently, the uniform distribution is applied
to select a term over the chosen topic. A document of size
O(t), where t is the number of terms, and whose vocabulary
size is (Oβ), where 0 < β < 1, is represented using
Heaps’ law [27]. Therefore, a simulated document expresses
a document O(t2)—i.e., the total number of terms including
the repeated terms [28].

B. Simulating Queries

Documents are used to create past queries. For each past
query —a past query corresponds to a query previously
submitted in the WSE—, one document is selected using a
Uniform distribution. The query’s terms are acquired from the
selected document, and these terms also are chosen using the
Uniform distribution. Note that the intersection between the
set of past queries is empty—i.e., there are no common terms
among them.

To create a new query — a new query corresponds to a
query, which the WSE has not processed —, a past query is
chosen, and one term is changed or added. Therefore, the most
similar query for a new query is its corresponding past query.

C. Relevance judgment simulation

Precision is reached as follows. There are two lists
of recovered documents for each query (i.e., a list of
documents corresponds to a set of documents in decreasing
order, ordered according to its similarity regarding the
query). Cosine distance is used to provide the similarity
between the query and documents. Thereafter, Bradford’s
law is applied over each list with the aim to acquire the
relevance of each document (i.e., a document is classified as
relevant or non-relevant). Aiming to shed light, we provide
the following example. Let A be a list, which has the
documents {d3, d10, d11, d12, d17, d20} and let B be a list
that contains the next documents {d1, d5, d7, d11, d12, d17}.

Firstly, an intersection between both lists is determined,
which is composed by {d11, d12, d17}. Subsequently,
Bradford’s law is applied over this intersection obtaining
{d11(r), d12(r), d17(n)} (i.e., such as di(r) means that di
is a relevant document, by contrast di(n) implies that the
document di is non-relevant). In the final step, Bradford’s law
is applied over each list without overwriting the intersection
between them. In this way, the final result for list A is
given as {d3(n), d10(r), d11(r), d12(r), d17(n), d20(n)},
meanwhile the list B is given as
{d1(r), d5(r), d7(n), d11(r), d12(r), d17(n)}. Consequently,
both lists are formed by relevant and non-relevant documents.
Hence, both lists have different precision (in our case P@10).

IV. EXPERIMENTAL SETUP

In the following paragraph, we define the experimental
environment used in this paper:

• Each term is formed between 3 and 7 alphabet English
letters.

• The total number of terms is 3500.
• The number of topics corresponds to 7, which has formed

by 500 terms each one.
• Each document covers a range between 15 and 30 terms.
• The number of documents used in each experiment covers

700, 1400, 2100, 2800, and 3500.
• The number of queries in each experiment involves 30,

60, 90, 120, 150, 180, and 210.
• Each query has between 3 and 8 terms.

In the semantic approach, 10% of terms by topic contain
similarly semantic terms. The terms having again semantic
terms are selected using a Uniform distribution, and these
can involve between 1 and 3 terms. Three scenarios with
different types of queries are analyzed. The first scenario
implies repetitive queries (e.g., given a query q′ previously
submitted in the WSE, this query q′ is newly submitted in
the WSE); for instance, when the number of queries is 30,
15 queries have a repetitive query. The same rule applies to
all queries in each experiment. The second scenario involves
similar queries (i.e., two queries are similar if they have at
least one term in common, note that if all terms are equal,
then the query is repetitive, and the similarity is 1), in the
same way, that in the first scenario, each query has only
one similar query. Finally, semantic queries are evaluated;
similarly to the previous, each query has a similar semantic
query.

Aiming to build the queue, Exponential distribution (with
parameters λ = 1.0 and λ = 1.5) was applied over each
set of queries. Thereafter, the top K-queries (i.e., in all
experiments K was instantiated with the value 30) are
submitted in the system with the aim to evaluate the ten most
similar documents (i.e., according to the cosine measure)
for each query. To simulate the judgments of users over the
retrieved documents, Zeta distribution was used on the first
ten retrieved documents (with the aim to assess P@10) for

each query (the parameters used in each experiment were
S = 2, S = 3 y S = 4). In this way, it is possible to put
the top K-queries along with their documents in the queue.
In order to simulate the dynamic environment, one hundred
selections of queries are carried out for each set of queries
(e.g., 100 selections are executed over the set of 30 queries).
By doing this, it is feasible to simulate the arrival of new
queries submitted by users in the WSE, checking first if
repetitive, similar, or semantic queries are inside the query;
when this occurs, a hit is done in the cache. On the contrary,
the documents that are retrieved from the system increased
the cache miss (i.e., a miss indicates that the query result was
not in the queue).

Simulations were implemented on C language and running
on Processor Intel Core i5-2410M de 2.30 GHz, 4 GB RAM
memory DDR3; Linux Operating System Ubuntu 16.04.2 LT
and compiler gcc 5.4.0.

V. RESULTS

From Tables 1 and 2, we can observe that precision
increases in all cases regarding the cosine distance (It is
important to point out that precisions are calculated before
putting the queries along with their documents in the queue).
The best results are provided by repetitive queries, this occurs
because when a query is submitted again in the system, the
relevant documents are available to answer this query. In this
way, the relevant documents are shifted at the beginning of
the result list, which allows to improve substantially precision.
Nevertheless, according to Teevan et al. [29], the number of
query repetitive on the web is very low (i.e., this is around
7%). This is in line with the results shown in Tables 3 and
4, where the lowest number of hits is produced by repetitive
queries. Remember that a repetitive query corresponds to a
previously submitted query in the WSE. The second best
precision is presented by semantic queries in Tables 1 and 2.
Although precision decreases in Table 2, This is consistent
with the hits in Tables 3 and 4. On the other hand, the lowest
results of precision are presented by similar queries. However,
these results correspond to improvement regarding the cosine
distance. Roughly, from Tables 1 and 2, every time that S
increases (i.e., this can be seen as follows, when S rises,
a more demanding query takes place since there are fewer
documents relevant for it) precision decreases.

Regarding hits, the best results are provided by semantic
queries followed by similar queries. Both cases provide better
hits than repetitive queries. As mentioned in the previous
paragraph, it is remarkable due to repetitive queries are rare.

Finally, the response times are presented in Table 5,
the lowest times are presented by repetitive queries, followed
by similar queries. The worst response times in the queue
are presented by semantic queries. It is because, in addition
to accessing the queue, a semantic search for each query
keyword is carried out. The latter adds additional time, which

can be seen in Table 5. Nevertheless, these times are much
less than direct access to the system (the system column
in Table 5), where query’s terms are contrasted with the
documents’ terms, the retrieval is carried out providing a list
of ordered documents according to their similarity with the
query, such as occurs in a WSE.

TABLE I
PERCENTAGE INCREASE IN PRECISION OVER TRADITIONAL INFORMATION
RETRIEVAL SYSTEM, USING EXPONENTIAL DISTRIBUTION λ = 1.0, AND

ZETA DISTRIBUTION WITH PARAMETERS S .

S
Precision

Similar Semantic Repetitive
2 6.649% 20.995% 27.755%
3 5.455% 18.868% 26.609%
4 0.727% 15.146% 23.190%

Average 4.277% 18.338% 25.851%

TABLE II
PERCENTAGE INCREASE IN PRECISION OVER TRADITIONAL INFORMATION
RETRIEVAL SYSTEM, USING EXPONENTIAL DISTRIBUTION λ = 1.5, AND

ZETA DISTRIBUTION WITH PARAMETERS S .

S
Precision

Similar Semantic Repetitive
2 9.583% 16.706% 29.196%
3 8.597% 15.272% 27.880%
4 2.288% 10.531% 22.435%

Average 6.822% 14.170% 26.503%

TABLE III
THE AVERAGE NUMBER OF HIT IN THE QUEUE, USING EXPONENTIAL

DISTRIBUTION λ = 1.0.

of q Hit
Similar Semantic Repetitive

30 98.989 98.989 92.776
60 90.007 83.135 80.137
90 80.007 82.537 73.125

120 76.156 78.145 72.005
150 82.876 79.978 75.899
180 73.007 81.012 72.899
210 75.976 80.342 72.125

Average 82.431 83.448 76.995

TABLE IV
THE AVERAGE NUMBER OF HIT IN THE QUEUE, USING EXPONENTIAL

DISTRIBUTION λ = 1.5.

of q Hit
Similar Semantic Repetitive

30 97.989 97.989 97.007
60 78.007 70.005 74.784
90 80.007 80.007 77.137

120 76.007 73.125 74.007
150 78.007 85.125 75.125
180 85.007 85.007 83.989
210 74.007 77.989 68.125

Average 81.290 81.321 78.596

TABLE V
AVERAGE RESPONSE TIMES IN MILLISECONDS, USING EXPONENTIAL

DISTRIBUTION λ.

λ
Response T imes

Similar Semantic Repetitive System
1.0 0.0000055 0.0000069 0.0000053 0.00000191
1.5 0.0000052 0.0000061 0.0000049 0.00000188

Average 0.0000054 0.0000065 0.0000051 0.00000190

VI. DISCUSSION

As we mentioned earlier, works based on log files or
classical IR datasets do not provide adequate user judgments
to assess approaches based on similar and semantic queries.
On the one hand, when precision is assessed using datasets
based on log files, clickthrough is used to relevance the
documents. Incidentally, when precision is evaluated using
classical IR datasets, the terms from retrieved documents are
used to give relevance when documents or queries are new.
In this manner, a document can be considered relevant with a
few terms without it and vice versa. Strictly speaking, there
should be two sets of user judgments, one for each set of
queries (i.e., the set of queries Q has a set of judgments of
user JU . Following this reasoning, for a set of semantically
similar queries to Q (Q′), a corresponding set of judgments
of user JU ′ for Q′) exist. Therefore, the best way to represent
this situation is using simulation. It is worth mentioning that
the use of synthetic datasets is not new; in [30], and [31] (to
mention a few), documents, queries, and judgments’ users
are simulated to evaluate precision using past queries and
probabilistic algorithms, respectively.

It is essential to point out that we assume a set of
terms semantically similar to queries’ terms in the priority
queue. Several techniques can be used to mining this set, to
mention two, deductive logic and query-document clustering.
Both techniques can operate over terms inside the queue (it
includes queries and relevant documents retrieved) to limit the
processing time. To exemplify this, in Gutiérrez-Soto et al.
[32] a measure to capture the context in which the queries are
submitted is presented. Note that this measure incorporates
complimentary terms to the submitted queries and their
relevant documents, which perfectly can be used to link
semantically related terms. Indeed, most complexities times
for clustering algorithms are between O(n2) and O(n2log2n);
therefore, for a small set of queries and documents (inside of
queue), this cost is not considerable and can be fully executed
before doing an update.

On the other hand, regarding the time complexity of
our caching, we have adapted a heap sort over which updates
and searches take place. Each time that a new query is
submitted, it should be compared searching for each term of
the new query a semantic term (i.e., the semantic dictionary
implies a search of O(m2), where m is the number of
terms) in a queue node to obtain the maximum similarity.

In this way, the time complexity to calculate the maximum
similarity of a new query q′ with one node in the queue
(q) is O(tm2(sim(q′, q))) such as t is the number of terms
for the new query, which can be changed by terms of the
dictionary —It is important to mention that to calculate the
cosine distance between two semantic queries, at least should
have one term in common between queries—. According to
Vandic et al. [33], the calculation of cosine distance can be
executed in linear time. Thus, assuming that t is the greater
number of terms between both queries, it implies O(t2m2)
for each new query. Overall, the time complexity implies
O(|Q̂|t2m2log2K), where |Q̂| corresponds to the set of new
queries.

On the other hand, we’re aware that our synthetic dataset is
small; however, we have not found evidence to suggest that
the size of data over a synthetic dataset directly impacts the
final results. By the way, evaluating the caching’s size scapes
from our concern; nonetheless, much research points out that
there is a direct relation regarding the caching’s size.

Finally, according to Beitzel et al. [34], in a WSE the
queries tend to be more similar at peak hours; therefore, we
believe that our approach is a good start since it provides
more hits when the queries are similar (at least have a
one-term in common) and semantically similar (these could
not have common terms).

VII. CONCLUSION AND FUTURE WORK

Every day, WSEs index thousands of documents, so find-
ing relevant information (i.e., relevant documents) for users
becomes a difficult task. Web search engines deal with two
important metrics on which underlying their efficiency. The
first metric aims to the query answer being suitable; in simple
words, it implies improving precision. The second metric
intends to provide the query answers as soon as possible in
terms of processing time. Thus, this paper addressed both
metrics using a priority queue (which stores the popular
queries along with their relevant documents). Specifically,
we evaluated three variants of queries inside the queue. The
first involves repetitive queries (these are unique inside the
queue). The second metric deals with similar queries in the
queue. The third covers semantic queries (each query has a
unique, similar query from a semantic point of view). The
experimental results show that semantic queries provide better
hit (i.e., it means that it is possible to find more answers in the
queue) than the others. However, considering precision, better
results are presented by repetitive queries in the queue. Final
experimental results show that it is feasible to improve the
processing times. Ideas for future research directions in this
area are the following: comparing our approach with other
caching techniques considering different peak hours.

VIII. ACKNOWLEDGEMENTS

This research was supported by Universidad del Bı́o-Bı́o,
Chile, under Grants No. DIUBB GI 195212/EF and DIUBB

2130253 IF/R. Marco Palomino acknowledges the funding
provided by the Interreg 2 Seas Mers Zeeën AGE’IN project
(2S05-014).

REFERENCES

[1] A. Fogli and L. Veldkamp, “Germs, Social Networks, and Growth,”
The Review of Economic Studies, vol. 88, no. 3, pp. 1074–1100, 04
2021. [Online]. Available: https://doi.org/10.1093/restud/rdab008

[2] S. Samanta, V. K. Dubey, and B. Sarkar, “Measure
of influences in social networks,” Applied Soft Com-
puting, vol. 99, p. 106858, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1568494620307961

[3] E. Turner and L. Rainie, “Most Americans Rely on their Own Research
to Make Big Decisions, and that often Means Online Searches,” Pew
Research Center: Internet, Science & Tech (blog), 2020.

[4] M. Zahedi, B. Mansouri, S. Moradkhani, M. Farhoodi, and F. Oroum-
chian, “How questions are posed to a search engine? an empiricial
analysis of question queries in a large scale persian search engine log,”
2017 3th International Conference on Web Research (ICWR), pp. 84–89,
2017.

[5] C. Gutiérrez-Soto, A. C. Dı́az, and P. Galdames, “Exploiting the use
of similar past search results through a dynamic cache,” in 2019
IEEE CHILEAN Conference on Electrical, Electronics Engineering,
Information and Communication Technologies (CHILECON), 2019, pp.
1–5.

[6] S. Büttcher, C. L. Clarke, and G. V. Cormack, Information Retrieval:
Implementing and Evaluating Search Engines. MIT Press, 2016.

[7] P. Baldi, P. Frasconi, and P. Smyth, Modeling the Internet and the Web.
Wiley Online Library, 2003.

[8] M. Catena, C. Macdonald, and I. Ounis, “On Inverted Index Com-
pression for Search Engine Efficiency,” in European Conference on
Information Retrieval. Springer, 2014, pp. 359–371.

[9] D. Arroyuelo, M. Oyarzún, S. González, and V. Sepulveda, “Hybrid
Compression of Inverted Lists for Reordered Document Collections,”
Information Processing & Management, vol. 54, no. 6, pp. 1308–1324,
2018.

[10] Z. Dai and J. Callan, “Inverted List Caching for Topical Index Shards,”
in European Conference on Information Retrieval. Springer, 2018, pp.
577–583.

[11] S. Roy, A. Banerjee, P. Ghosh, A. Chatterjee, and S. Sen, “Intelligent
Web Service Searching Using Inverted Index,” in Contemporary Ad-
vances in Innovative and Applicable Information Technology. Springer,
2019, pp. 13–21.

[12] G. Tolosa, E. Feuerstein, L. Becchetti, and A. Marchetti-Spaccamela,
“Performance Improvements for Search Systems Using an Integrated
Cache of Lists + Intersections,” Information Retrieval Journal, vol. 20,
no. 3, pp. 172–198, 2017.

[13] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory
Hierarchy for Web Search,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2018, pp.
643–656.

[14] C. Li, D. G. Andersen, Q. Fu, S. Elnikety, and Y. He, “Better Caching
in Search Advertising Systems with Rapid Refresh Predictions,” in
Proceedings of the 2018 World Wide Web Conference, 2018, pp. 1875–
1884.

[15] X. Qiao, P. Ren, J. Chen, W. Tan, M. B. Blake, and W. Xu, “Session
persistence for dynamic web applications in Named Data Networking,”
Journal of Network and Computer Applications, vol. 125, pp. 220–235,
2019.

[16] R. Ozcan, I. S. Altingovde, and Ö. Ulusoy, “Cost-Aware Strategies for
Query Result Caching in Web Search Engines,” ACM Transactions on
the Web (TWEB), vol. 5, no. 2, pp. 1–25, 2011.

[17] T. Strohman and W. B. Croft, “Efficient Document Retrieval in Main
Memory,” in Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, 2007,
pp. 175–182.

[18] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras,
and F. Silvestri, “The Impact of Caching on Search Engines,” in
Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, Amsterdam,
The Netherlands, 2007, pp. 183–190.

[19] V. Gil-Costa, M. Marin, C. Bonacic, and R. Solar, “A Graph-Based
Cache for Large-Scale Similarity Search Engines,” The Journal of
Supercomputing, vol. 74, no. 5, pp. 2006–2034, 2018.

[20] M. Papadakis and Y. Tzitzikas, “Answering Keyword Queries through
Cached Subqueries in Best Match Retrieval Models,” Journal of Intel-
ligent Information Systems, vol. 44, no. 1, pp. 67–106, 2015.

[21] T. Fagni, R. Perego, F. Silvestri, and S. Orlando, “Boosting the Perfor-
mance of Web Search Engines: Caching and Prefetching Query Results
by Exploiting Historical Usage Data,” ACM Transactions on Information
Systems (TOIS), vol. 24, no. 1, pp. 51–78, 2006.

[22] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Cliffhanger: Scaling
Performance Cliffs in Web Memory Caches,” in 13th Symposium on
Networked Systems Design and Implementation, 2016, pp. 379–392.

[23] R. Solar, V. Gil-Costa, and M. Marı́n, “Evaluation of Static/Dynamic
Cache for Similarity Search Engines,” in International Conference on
Current Trends in Theory and Practice of Informatics. Springer, 2016,
pp. 615–627.

[24] Q. Gan and T. Suel, “Improved Techniques for Result Caching in Web
Search Engines,” in Proceedings of the 18th International Conference
on World Wide Web, Madrid, Spain, 2009, pp. 431–440.

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation,” ACM SIG-
PLAN Notices, vol. 40, no. 6, pp. 190–200, 2005.

[26] E. Garfield, “Bradford’s Law and Related Statistical
Patterns,” Essays of an Information Scientist, vol. 4,
no. 19, pp. 476–483, May 1980. [Online]. Available:
http://www.garfield.library.upenn.edu/essays/v4p476y1979-80.pdf

[27] H. S. Heaps, Information Retrieval: Computational and Theoretical
Aspects. Orlando, FL, USA: Academic Press, Inc., 1978.

[28] G. Navarro, E. S. De Moura, M. Neubert, N. Ziviani, and R. Baeza-
Yates, “Adding compression to block addressing inverted indexes,” Inf.
Retr., vol. 3, no. 1, pp. 49–77, Jul. 2000.

[29] J. Teevan, E. Adar, R. Jones, and M. Potts, “History repeats
itself: Repeat queries in yahoo’s logs,” in Proceedings of the
29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, ser. SIGIR ’06. New
York, NY, USA: ACM, 2006, pp. 703–704. [Online]. Available:
http://doi.acm.org/10.1145/1148170.1148326

[30] C. Gutiérrez-Soto and G. Hubert, “Evaluating the interest of revamping
past search results,” in Database and Expert Systems Applications,
H. Decker, L. Lhotská, S. Link, J. Basl, and A. M. Tjoa, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 73–80.

[31] C. Gutierrez-Soto and G. Hubert, “On the reuse of past searches in
information retrieval: Study of two probabilistic algorithms,” Int. J. Inf.
Syst. Model. Des., vol. 6, pp. 72–92, 2015.

[32] Claudio Gutierrez-Soto, Marco Palomino, Arturo Curiel, Hector
Riquelme Cerda, Fernando Bejar Rain, “Evaluating the Effectiveness
of Query-Document Clustering Using the QDSM Measure,” Advances
in Science, Technology and Engineering Systems Journal, vol. 5, no. 6,
pp. 883–893, 2020.

[33] D. Vandic, F. Frasincar, and F. Hogenboom, “Scaling pair-wise
similarity-based algorithms in tagging spaces,” in Web Engineering,
M. Brambilla, T. Tokuda, and R. Tolksdorf, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 46–60.

[34] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman, and
O. Frieder, “Hourly analysis of a very large topically categorized web
query log,” in Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
ser. SIGIR ’04. New York, NY, USA: ACM, 2004, pp. 321–328.
[Online]. Available: http://doi.acm.org/10.1145/1008992.1009048

