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Abstract We present the first calculation of the scattering
amplitude in the singlet channel beyond QCD. The calcu-
lation is performed in SU (2) gauge theory with N f = 2
fundamental Dirac fermions and based on a finite-volume
scattering formalism. The theory exhibits a SU (4) → Sp(4)

chiral symmetry breaking pattern that is used to design min-
imal composite Higgs models currently tested at the LHC.
Our results show that, for the range of underlying fermion
mass considered, the lowest flavour singlet state is stable.

1 Introduction

The discovery of the Standard Model’s (SM) last missing
piece, the Higgs boson, and the increase in precision of tests
of its properties, continue to trigger the study of numerous
mechanisms to address the fundamental problems with its
formulation.

Among other possibilities, a new strongly interacting sec-
tor giving rise to the observed phenomenology at the elec-
troweak scale (EW) and below has been pursued for decades.
Such a new sector could feature a solution to the naturalness
problem and provide a mechanism to generate a non-trivial
mass spectrum together with a large scale separation. These
mechanisms have been used for instance in the context of
Composite Higgs models [1–8], of scenarios of dynamical
electroweak symmetry breaking [9–11], and of Dark Matter
models [12,13]. These appealing ideas motivate the lattice
endeavour to understand gauge theories beyond QCD.

One feature of a strongly interacting sector is the inevitable
presence of a flavour singlet state of positive parity – referred
to as σ in the rest of this paper. In QCD-like theories, the σ
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is expected to be a resonance of two Goldstone bosons in the
limit of massless underlying fermions.

In Composite Higgs scenarios, the embedding of the new
strong sector in the Standard Model is such that the Goldstone
bosons of the strong sector play the role of the SM Higgs
field. In these models, aside from the Goldstone bosons,
also the presence of new resonances like the σ can affect
the predictions for the LHC [14], and could be detected by
the next generation of colliders [15]. In general, the phe-
nomenological implications of the new scalar resonance in
a composite Higgs scenario will depend on the underlying
dynamics and on the details of the electroweak embedding.
Unless the model features a parametrically large scale sepa-
ration between the Goldstone bosons and the σ , the effective
description at the EW scale must take the σ into account.

The mixing of the scalar σ resonance with the Goldstone
bosons associated with the spontaneous symmetry breaking
of the new strong sector is induced by the interaction with the
SM, and gives rise to an additional effective scalar field with a
larger mass, see Refs. [16–18]. Such a resonance is expected
to be produced at the LHC similarly to the SM Higgs, i.e.
via gluon fusion and vector boson fusion mechanisms, as
discussed for instance in Ref. [19]. Effective theories at the
EW scale will encode the actual realisation of the Compos-
ite Higgs scenarios through their low energy constants, under
the assumption of a strong sector weakly coupled to the Stan-
dard Model. Given the large number of low energy couplings
parametrising the effective Lagrangian, additional theoreti-
cal constraints are needed to discriminate among Composite
Higgs models. Lattice calculations can reduce the space of
parameters by performing measurements on the new strong
sector in isolation. The present work contributes to our under-
standing of the role of the σ resonance in the phenomenology
of the class of composite models characterised by the strong
sector we are considering, irrespectively of its embedding.
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In lattice simulations the only rigorous approach to reveal
the nature of a resonance is to estimate the scattering ampli-
tude of the Goldstone bosons. Lattice simulations in various
gauge theories have estimated the mass of the σ in a regime
where it is stable [20–30]. Scattering amplitudes have been
evaluated also for other channels, see for instance the recent
work in a possible nearly conformal theory for SU (3) with
N f = 8 flavours in the maximal-isospin channel [31] and
our recent work in the vector meson channel for SU (2) with
N f = 2 flavours [32].

In this work, we consider an SU (2) gauge theory with
N f = 2 fundamental Dirac fermions. The theory features an
extended SU (4) flavour symmetry that spontaneously breaks
to Sp(4). The theory is used to build a pseudo-Nambu–
Goldstone boson (PNGB) Composite Higgs model in Ref.
[33], and it was recently reviewed in Ref. [34]. In this model,
the physical Higgs boson is a mixture of PNGBs and of the
flavour singlet state of the strong sector. The model has been
shown to pass experimental constraints [34], and the mixing
between the scalar resonance and the Higgs can relax the
bounds on the model [19].

We present here the first calculation of the scattering
amplitude of Goldstone bosons in the flavour singlet chan-
nel beyond QCD. We have used two operators to constrain
the scattering amplitude at two different kinematic configura-
tions. The evaluation of disconnected contributions increases
significantly the computational cost with respect to other
channels.

We also report on the comparison of our results to the
chiral perturbation theory predictions (in isolation of the SM)
of Ref. [35], which should match in the limit of light enough
PNGBs.

2 Lattice setup

We use the HiRep [36] suite to simulate an SU (2) gauge
theory with N f = 2. For the fundamental fermions the action
of choice is the Wilson action [37] with tree-level O(a)-
improvement clover term [38]. For the gauge we use the tree-
level Symanzik improved action [39]. Both the bare mass
term, a m0, and the Wilson term explicitly break the SU (4)

flavour symmetry to an Sp(4) subgroup. All of our simulation
are performed with periodic boundary conditions in all space-
time directions, both in gauge and fermion1 fields.

The ensembles used for this work have been generated for
β = 1.45, and two different values of the bare fermion mass.
We refer to these ensembles as “light” and “heavy” depending
on the value of the pion mass. Here and in the following, we
will make use of the naming convention inherited from QCD,

1 In SU (2), periodic and antiperiodic boundary conditions differ only
by a gauge transformation.

Table 1 Simulation parameters in our ensembles

Ensemble L/a T/a β a m0 csw # configs

Heavy 24 48 1.45 −0.6050 1.0 1980

Light 32 48 1.45 −0.6077 1.0 1160

Table 2 Pion mass, vector mass and decay constant for our two ensem-
bles

Ensemble aMπ aMρ aFbare
π Mπ/Fbare

π

Heavy 0.2065(12) 0.438(27) 0.0395(9) 5.24(11)

Light 0.1597(18) 0.3864(30) 0.0357(9) 4.36(11)

that is, the pseudoscalar PNGB of this theory is referred to
as pion. The spatial size of the ensembles has been tuned
to obtain a value of Mπ L � 5. All the relevant simulation
parameters are given in Table 1.

For each ensemble, we compute the PNGB mass, Mπ , and
the vector mass, Mρ from the Euclidean time dependence of
appropriate correlation functions. We also extract the bare
pseudoscalar decay constant Fbare

π , which renormalises mul-
tiplicatively with the renormalization factor ZA. For more
details about the calculation of these quantities, we refer
the reader to Ref. [40]. All our findings are summarised in
Table 2.

In addition, the non-perturbative determination of ZA was
carried out using the RI’-MOM scheme [41], using the same
strategy as in the previous setup [40]. For detailed informa-
tion about the ZA determination we refer to Ref. [32], where
we estimated ZA = 0.8022(3) for the same value of β used
in this work.

3 Scattering in SU(2)

In this section we will review and extend the necessary theo-
retical background for this work. In particular, we will derive
all the group classification needed to evaluate the operators
and the associated correlation functions for the singlet chan-
nel, as well as the finite-volume scattering formalism and
the effective field theory (EFT) description of the relevant
scattering amplitude.

3.1 Flavour singlet operators

We start by considering the flavour symmetries of the SU (2)

gauge theory with N f = 2. It can be shown that the mass-
less Lagrangian is symmetric under an SU (4) flavour trans-
formation, while the mass term can be shown to be Sp(4)

invariant. This means that there exist five broken generators,
which correspond to the pseudo-Nambu–Goldstone fields.
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More specifically, it can be shown that they correspond to
the three pions and two dibaryons. In terms of the two funda-
mental fermion fields u and d, we can construct one-particle
operators with the right quantum numbers as follows:

�ud(x) = uT (x)(−iσ2)Cγ5d(x),

�ūd̄(x) = ū(x)(−iσ2)Cγ5d̄(x)T ,

π−(x) = ū(x)γ5d(x),

π+(x) = −d̄(x)γ5u(x),

π0(x) = 1√
2

[
ū(x)γ5u(x) − d̄(x)γ5d(x)

]
, (1)

where x ≡ (x, t). The real and antisymmetric matrix (−iσ2)
acts in colour space, and C represents the conjugation charge
matrix, C = iγ0γ2. As we are interested only in the flavour
structure of the operators, we will omit the space-time depen-
dence of the fields in the equations where possible.

In order to build a flavour singlet operator, we introduce:

Q =

⎛

⎜⎜
⎝

uL
dL
ũL
d̃L

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

uL
dL

(−iσ2)CūTR
(−iσ2)Cd̄TR

⎞

⎟⎟
⎠ ,

E =
(

0 12

−12 0

)
,

(2)

where we are using the convention from Ref. [42], sum-
marised in Appendix 1, together with the standard defini-
tion of qL ,R = PL ,R q and q̄L ,R = q̄ PR,L where PL =
(1 − γ5)/2 and PR = (1 + γ5)/2.

With the above convention we can define the multiplet
�i=1,...,5 and the singlet Oσ as

�i = 1

2

[
QT (−iσ2)Cγ5X

i EQ + h.c
]

,

Oσ = 1√
2

[
QT (−iσ2)CEQ + h.c

]
.

(3)

Here Xi=1,...,5 are the broken generators used to parametrise
the coset SU (4)/Sp(4) defined in the appendix.

Considering the infinitesimal transformation

Q −→ (
14 + iαa Sa

)
Q, (4)

where αi=1,...,10 are real parameters, and Sa=1,...,10 are the
generators of the Lie Algebra of Sp(4). The generators obey
the Lie algebra defining relation:

ESa + (Sa)T E = 0. (5)

It is straightforward to show that Oσ is a singlet of Sp(4).
It can also be shown by performing explicitly an infinitesi-
mal transformation that the multiplet � transforms as a 5-

dimensional irreducible representation of Sp(4) and that any
operator proportional to tr [� ⊗ �] is a singlet of Sp(4). The
reader interested in more details is referred to Appendix 1.

The operator

Oππ = − 4√
5

5∑

i=1

�i�i (6)

is therefore a flavour singlet operator. Expressing the operator
Oππ in terms of the bilinear defined in Eq. (1), we find:

Oππ = 1√
5

[
+ π+π− + π−π+ − π0π0

+ �ud�ūd̄ + �ūd̄�ud

]
.

(7)

Similarly the operator Oσ can be expressed in terms of the u
and d fields as:

Oσ = 1√
2

[
ū(x)u(x) + d̄(x)d(x)

]
. (8)

In the following, we will use Oππ and Oσ as the rele-
vant operators to study the singlet channel. We refer to them
respectively as the two-pion and sigma operators.

3.2 Contractions

In the rest of the paper we will use the zero momentum
projection of the operators defined in Eq. (1) for the evalua-
tion of the correlators. Explicitly, this is given by

�ud(t) =
∑

x

�ud(x, t), (9)

and analogously for the other one-particle operators.
The energy of the flavour singlet state can be computed

from the exponential decay in time of the appropriate correla-
tion functions of the two-pion and sigma operators described
in the previous section.

The singlet two-pion operator, with each one-particle
operator projected at zero momentum is

Oππ (t) = 1√
5

[
π+(t)π−(t) + π−(t)π+(t)

− π0(t)π0(t)

+ �ud(t)�ūd̄(t) + �ūd̄(t)�ud(t)

]
,

(10)

where we have included the Euclidean time explicitly. Anal-
ogously, the zero momentum projected sigma operator can
be rewritten as

Oσ (t) = 1√
2

∑

x

(
ū(x, t)u(x, t) + d̄(x, t)d(x, t)

)
. (11)
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Fig. 1 Representation of the different contractions needed for this work. The blobs indicate a fermion bilinear, with gamma matrix γ5 or identity.
The physical correlation functions are constructed from linear combinations thereof as given in Eq. (13)

Using the two operators in Eqs. (10) and (11), we can build
a symmetric two-by-two matrix of correlation functions as
follows:

CX→Y (δt) = 1

T

∑

t

〈OX (t + δt)OY (t)†〉. (12)

By solving the associated generalised eigenvalue problem
(GEVP) [43], we are able to obtain the energy of the two
lowest states in the spectrum, by measuring the exponential
decay of the two eigenvalues.

The three different correlation functions that enter in
Eq. (12) can be built from eight different Wick contractions:

Cσ→σ (t) = −B(t) + 2
(t),

Cππ→ππ (t) = 2D(t) + 3X (t) − 10R(t) + 5V (t),

Cππ→σ (t) = √
10 (T (t) − W (t)) .

(13)

These are defined in Fig. 1, along with their naming conven-
tions. Three of the contractions include disconnected dia-
grams: V , W and 
, and, as will be seen later, they dominate
the statistical uncertainty.

3.3 Extraction of scattering amplitudes

The Lüscher method [44–46] provides a way to obtain two-
particle scattering amplitudes from lattice simulations. The
so-called quantization condition connects the finite-volume
energy levels to the phase shift. It is a well-established tech-
nique [47–55], which has been applied to many systems –
see Ref. [56] for a review. In the context of QCD the sin-
glet channel has often been studied, see for example Refs.
[57–62].

In the case of two identical scalars with only s-wave inter-
actions, the quantization condition reads [44]:

k cot δ0 (k) = 2√
πL

Z00(η
2), η = Lk

2π
, (14)

where the energy levels are in the A+
1 irreducible representa-

tion of the octahedral group, and k is the relative momentum
in the center-of-mass (CM) frame. Furthermore, Z00 is the
standard Lüscher zeta function. Note that in this form, the
quantization condition is a one-to-one mapping between an
energy level and a point in the phase shift curve.

It is convenient, for our discussion later, to highlight how
bound states manifest themselves in the phase shift both at
finite and infinite volume.

In infinite volume, they correspond to poles in the scatter-
ing amplitude. The pole’s position is given by

k cot δ0 (k) = −
√

−k2, (15)

which we denote as bound-state condition. The fact that the
residue of the pole has a positive sign, implies the following
condition [63]:

d

dk2

[
k cot δ0 (k) −

(
−

√
−k2

) ]
< 0. (16)

This means that k cot δ0 must cross the bound-state condition
from below with decreasing k2.

By contrast, the finite-volume solutions to the quantization
condition never intersect the bound-state condition. They are
however exponentially close [64], with an exponent related
to the binding momentum [65].

3.4 EFT prediction

At sufficiently low energies and close to the chiral limit, Chi-
ral Perturbation Theory (ChPT) should provide a satisfactory
description of the interactions of Goldstone bosons in QCD-
like theories. However, the precise predictions depend upon
the symmetry breaking pattern. As explained before, in our
case an SU (4) flavour symmetry is spontaneously broken
down to Sp(4). This was worked out in Refs. [35,66], and is
referred to as the pseudo-real case.
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In the present work the quantity of interest is the two-pion
scattering amplitude in the singlet channel—analogous to
that of the “σ” resonance in QCD. In this exploratory study,
the leading-order (LO) ChPT result will suffice. This reads

TI = M2
π

F2
π

(
−3

2
+ 2

s

M2
π

)
, (17)

where we are using the convention fπ = √
2Fπ for the nor-

malization of the decay constant, and
√
s is the CM energy.

From the scattering amplitude, the momentum dependence
of the phase-shift can be easily derived:

Re
1

TI
= k cot δ I0

16π
√
s
. (18)

The LO result is

k

Mπ

cot δ I0 = Mπ

√
s

13M2
π + 16k2

(
32πF2

π

M2
π

)
. (19)

Furthermore, the scattering length is defined as

lim
k→0

k

Mπ

cot δ I0 = − 1

MπaI
0

, (20)

and its result reads

Mπa
I
0 = − 13

64π

M2
π

F2
π

. (21)

An interesting remark is that the leading-order amplitude has
a zero below threshold (Adler zero), which translates to a pole
in k cot δ I0 . This is located at (k/Mπ )2 = −13/16, and may
limit the converge of a polynomial expansion of k cot δ I0 in
k2 – the so-called threshold expansion. Such behaviour has
been observed, e.g., in the isospin-2 ππ system in QCD [67].

4 Results

4.1 Correlation functions

We construct the correlation functions as indicated in
Eq. (13). In order to evaluate all the contractions depicted
in Fig. 1, we use various types of stochastic sources. First,
for the D, X, R, V and B contractions we use time-diluted
stochastic sources. By placing a source in each of the times-
lices, we can obtain a single stochastic estimator for each of
these contractions. In this case we use 10 stochastic estima-
tors, which require T ×10 inversions of sources. By contrast,
we use 40 volume sources for the 
 contraction, while for
W we combine the building blocks of V and 
. Finally, T
is computed by employing 40 time-diluted sources that have
an additional sequential inversion.

The contractions 
 and W are responsible for the largest
contribution to the statistical uncertainty. This is because they

contain the trace of a single propagator multiplied by the
identity in spinor space, and so, they are dominated by the
gauge noise. Because of this, we choose to measure them
more often than the other building blocks. In fact, we measure
the trace of the single propagator in steps of one unit of Monte
Carlo time.

We perform the analysis of uncertainties using jackknife
samples. In order to account for autocorrelations, we use the
binning procedure. For this, we average correlation functions
within a bin length of 10 units of Monte Carlo time. We have
checked that larger bin sizes, 20 and 30, do not lead to any
substantial change in the estimation of uncertainties.

As the operators have vacuum quantum numbers, there is
an overall constant in all our correlation functions. Because
of this, we will work with the shifted correlator:

C̃(t) = 1

2

[
C(t − 1) − C(t + 1)

]
. (22)

This is a discrete version of the derivative in Euclidean time
that keeps the same exponential decay, but cancels the unde-
sired constant.

The results for the two ensembles are shown in Fig. 2. As
can be seen, the statistical noise is dominated by the ones
including the Oσ operator, which contain the W and 
 con-
tractions in Fig. 1. It is also clear that one cannot trust the
correlator in the region dominated by the statistical noise.

4.2 Spectrum determination

We now turn to the determination of the spectrum. For this,
we build a two-by-two matrix, as presented in Eq. (12). The
GEVP is defined by means of the shifted correlator as

C̃(t)vn(t, t0) = λn(t, t0)C̃(t0)vn(t, t0), (23)

where t0 is a reference timeslice. Note that λn are the eigen-
values of C̃−1(t0)C̃(t). In our case, we choose t0 = 4 as for
both ensembles it is the first stable point.

There are various ways of solving the eigenvalue equation.
One can fix the diagonalisation point, or diagonalise sepa-
rately in each timeslice. We opt for the latter, but we have
seen that it does not lead to any substantial change compared
the the other method. Regarding the estimation of uncertain-
ties, we choose to diagonalise in each jackknife sample sep-
arately. We have also checked that fixing the diagonalisation
in all samples barely alters the outcome.

The dependence of the eigenvalues with Euclidean time
is expected to be a sum of exponentials. Solving the GEVP
allows one to isolate the low-lying energy states. In the limit
of sufficiently large Euclidean time, each eigenvalue decays
as a single exponential:

λi (t) −→ Aie
−Ei t , (24)
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(a)

(b)

Fig. 2 Correlation functions built with two different operators with
singlet quantum numbers. For visualization purposes we include an
arbitrary normalization

which holds up to effects that are exponentially suppressed
with the time extent of the lattice – thermal effects. The cor-
responding exponents, Ei , are associated to one energy level
of the studied channel.

The dependence of the eigenvalues with Euclidean time
is shown in Fig. 3. The dashed lines depict the best fit in the
chosen fit interval. Note that we do not include in the fits the
region in which the C̃σσ correlator is dominated by noise.

A summary of the extracted energy levels – in units of the
pion mass – is given in Table 3 and in Fig. 4. As can be seen,
the central value of the lowest energy is well below threshold,
and the second level is around the two-particle threshold in
both cases. The physical interpretation of these states can
only be discussed after inspecting the scattering amplitude.
In particular, to answer whether the lowest state corresponds
to a bound state, or an attractive scattering state. This will be
addressed in the next subsection.

(a)

(b)

Fig. 3 Lowest two eigenvalues for the two ensembles of this work.
The dashed line indicates the fit range

Fig. 4 Energy levels obtained from our simulations. The blue square
represents the lowest state, and the orange circle the first excited state
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Table 3 Two-particle energy levels in the singlet channel extracted from the fits in Fig. 3. We show the χ2 per degree of freedom, χ2
red = χ2/dof,

and the fit range for each level

Ensemble E1/Mπ χ2
red [ti , t f ] E2/Mπ χ2

red [ti , t f ]
Heavy 1.59 (34) 1.47 [7, 10] 2.27 (28) 0.25 [7, 10]

Light 1.81 (22) 0.18 [7, 14] 1.93 (18) 0.30 [6, 14]

(a) (b)

Fig. 5 s-wave phase shift in the form (k/Mπ ) cot δ0 for the two ensem-
bles of this work. The empty marker is the central value, as the shaded
area represents the 1σ resulting from the quantization condition. The
blue squares correspond to the lowest state, and the orange circles to

the first excited state (same convention as in Fig. 4). Note that the width
of the shaded area is arbitrary, and has been chosen for illustrative pur-
poses. We also include the leading-order chiral prediction, as well as
the bound-state condition

4.3 Results for the scattering amplitude

We are now in the position to explore the scattering amplitude
in the singlet channel using the Lüscher method. For this,
we insert the energy levels of Table 3 into the two-particle
quantization condition in Eq. (14).

The corresponding points in the phase shift are shown
in Fig. 5 for both ensembles, where we also include the 1σ

region for visualization. As can be seen in this figure, we find
in both cases a point below threshold whose central value is
close to the bound state condition. Even if the uncertainty
is large, the most likely interpretation is that there is indeed
a bound state in this channel for the explored pseudoscalar
mass. The second point in the curve is around threshold, and
thus could be used to constrain the scattering length of the
channel. Unfortunately, the uncertainty is too large and the
result is inconclusive.

We can also comment on the comparison of our results and
the leading-order prediction from ChPT. This is depicted as
solid grey line in Fig. 5. The LO ChPT prediction shows no
sign of a bound state in the region where we seem to find one.
It does however predict one bound state well below threshold,
which is an artefact caused by the Adler zero [68]. Moreover,
the leading chiral prediction is also not able to accommodate
the observed points around threshold. Thus, it seems that
the value of the pseudoscalar masses of our simulations are

outside of the window for which leading-order ChPT is a
good description.

5 Conclusion and outlook

This work represents the first study of the singlet channel in
four-dimensional gauge theories beyond QCD. Specifically,
we have considered an SU (2) gauge theory with two fun-
damental fermions that serves as a minimal template for a
Composite Higgs model.

In this theory, the symmetry breaking pattern differs from
that of QCD—the SU (4) flavour symmetry breaks down
to Sp(4). Therefore, we have derived the group-theoretical
setup required to analyse this scattering channel. It can also
be noted that our analysis holds for generic Sp(2N ) gauge
theories with two fundamental fermions, as the same sym-
metry breaking pattern is realised.

We have used two ensembles with different pion masses.
Using two different operators to solve the GEVP, we have
computed the lowest two energy levels. These are fed into the
Lüscher quantization condition, and we have been able to put
non-perturbative constraints on the singlet scattering ampli-
tude. Interestingly, we find that leading-order chiral perturba-
tion theory does not seem to describe the amplitude correctly,
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and fails in predicting a bound state around the region where
we observe it.

Our results strongly suggest that in the explored region
of fermion masses the sigma is most likely a stable particle,
that is, a two-pion bound state. In our two ensembles, we find
that Mσ /Mπ ∼ 1.5–1.8. We however expect this feature to
depend strongly upon the pion mass. Therefore, more work
is required to investigate discretisation effects and to reach
the phenomenologically appealing region, that is, where the
sigma becomes unstable. We expect to pursue this direction
in a subsequent work.
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Appendix A: Lie algebra of SU(4)

Following the convention used in Ref. [42], we define

B1 = σ4, B2 = iσ4, B3 = σ3, B4 = iσ3,

B5 = σ1, B6 = iσ1, D4 = σ2, D5 = iσ2 ,
(A1)

where σ4 is the identity matrix, and σi=1,...,3 are the Pauli
matrices. The ten generators of Sp(4) are denoted Sa=1,...,10,
together with the five broken generators Xi=1,...,5 they are
a basis of the Lie Algebra of SU (4). They are defined as
follows:

Sa = 1

2
√

2

(
σa 0
0 −σ T

a

)
, a = 1, . . . , 4

Sa = 1

2
√

2

(
0 Ba−4

B†
a−4 0

)
, a = 5, . . . , 10

Xi = 1

2
√

2

(
σi 0
0 σ T

i

)
, i = 1, . . . , 3

Xi = 1

2
√

2

(
0 Di

D†
i 0

)
, i = 4, 5 .

(A2)

The generators Sa satisfy the relation (Sa)T E + ESa = 0.
The generators are normalised so that:

tr
[
SaSb

]
= 1

2
δab, tr

[
Xi X j

]
= 1

2
δi j ,

tr
[
Sa Xi

]
= 0 .

(A3)

The structure constants of the algebra of Sp(4) are defined
as fabc = 2tr

[
Sa[Sb, Sc]].

Appendix B: Transformation under the flavour symme-
try group Sp(4)

Using the following relations:

{C, γ5} = 0, CT = −C,

C2 = 1, (−iσ2)
2 = −1,

(B1)

and the definitions of the Goldstone bosons interpolating
fields in Eq. (1) we find that:

� = 1

2

[
QT (−iσ2)Cγ5X

i EQ + h.c
]i=1,...,5

= 1

2
√

2

⎛

⎜⎜⎜⎜
⎝

π− − π+
i(π− + π+)√

2π0

i
(
�ūd̄ + �ud

)

�ūd̄ − �ud

⎞

⎟⎟⎟⎟
⎠

. (B2)
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Performing an infinitesimal transformation Q −→ Q +
iαa Sa where αa are real infinitesimal parameters, we find
that

� −→ � + M�, with

M = √
2

⎛

⎜⎜⎜
⎜
⎝

0 −α3 −α2 −α7 α8

α3 0 −α1 −α6 −α5

α2 α1 0 α9 −α10

α7 α6 −α9 0 α4

−α8 α5 α10 −α4 0

⎞

⎟⎟⎟
⎟
⎠

.
(B3)

Here, M is an antisymmetric matrix that can be decomposed
onto the algebra of SO(5), therefore showing that � belongs
to a 5-dimensional irreducible representation of Sp(4). The
transformation of tr [� ⊗ �] therefore reads:

tr [� ⊗ �] −→ tr [� ⊗ �] + tr [M� ⊗ � + � ⊗ M�]

= tr [� ⊗ �] + �T M� = tr [� ⊗ �],
(B4)

where we have used that M is antisymmetric in the last equal-
ity.
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