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Abstract

We consider the frugal coverage problem, an interesting variation of set cover defined as fol-
lows. Instances of the problem consist of a universe of elements and a collection of sets over these
elements; the objective is to compute a subcollection of sets so that the number of elements it covers
plus the number of sets not chosen is maximized. The problem was introduced and studied by Huang
and Svitkina [8] due to its connections to the donation center location problem. We prove that the
greedy algorithm has approximation ratio at least 0.782, improving a previous bound of 0.731 in
[8]. We also present a further improvement that is obtained by adding a simple corrective phase at
the end of the execution of the greedy algorithm. The approximation ratio achieved in this way is
at least 0.806. Finally, we consider a packing based algorithm that uses semi-local optimization,
and show that its approximation ratio is not less than 0.872. Our analysis is based on the use of
linear programs which capture the behavior of the algorithms in worst-case examples. The obtained
bounds are proved to be tight.

1 Introduction

Set cover is among the most popular combinatorial optimization problems with many applications. In the
classical version of the problem, we are given a universe of elements and a collection of sets over these
elements and the objective is to compute a subcollection of sets of minimum size that covers all elements.
The problem is known to be hard to approximate within sublogarithmic factors [5, 14] while the classical
greedy algorithm achieves an almost tight approximation ratio of H,, the n-th harmonic number, where
n is the number of elements in the universe [11]. Several variations of the greedy algorithm have been
proposed that improve this approximation bound by constant (additive) factors [1, 4, 12]. We discuss
techniques that are used in such variations later in this section.

A different objective was recently considered by Huang and Svitkina [8]; they call the new combi-
natorial optimization problem frugal coverage. An instance of frugal coverage consists of a universe of
elements and a collection of sets over these elements, and the objective is to compute a subcollection of
sets so that the number of elements covered plus the number of sets not chosen is maximized. Without
loss of generality, we can assume that each element belongs to at least one set of the input collection. So,
the objective can be thought of as computing a subcollection that covers all elements so that the number
of sets not chosen plus n (the number of elements in the universe) is maximized. Clearly, an optimal
solution for set cover is also an optimal solution for frugal coverage. However, this does not have any
direct implication to the approximation guarantee for frugal coverage algorithms.

*A preliminary version of this paper appeared in Proceedings of the First Joint International Conference on Frontiers in
Algorithmics and Algorithmic Aspects in Information and Management (FAW-AAIM 2011), LNCS 6681, pp. 185-195, 2011.



A nice motivation for studying frugal coverage is the problem of locating donation centers (DCL).
Instances of DCL consist of a bipartite graph G = (A U L, E). An agent, represented by a node
a € A, is connected through an edge e € FE to any donation center [ € L she would be willing
to make a donation. Every agent a has a preference ranking on the corresponding centers, and every
donation center [ has a capacity, meaning that it can accept at most some specific number of donations.
The problem is to decide which centers to open in order to maximize the number of donations, under
the restriction that an agent will only donate to her highest ranked open center. Huang and Svitkina [8]
present an approximation preserving reduction from frugal coverage to the special case of DCL in which
each center has unit capacity and each agent has a degree bound of 2. They also prove that the greedy
algorithm has approximation ratio at least 0.731 for both problems.

In this paper we study combinatorial (greedy-like) algorithms that achieve better approximation
ratios for the frugal coverage problem. In the rest of this section, we independently present the different
techniques used by the algorithms examined, then we informally present the algorithms themselves and
explain the analysis technique used to provide the corresponding approximation bounds.

The techniques used. The greedy algorithm is described as follows: Starting from an empty solution,
the algorithm iteratively augments the solution by a set that contains the maximum number of uncovered
elements until all elements are covered. The performance of the greedy algorithm when applied on the
frugal coverage problem can be further improved by adding a simple corrective phase at the end of
the execution. This corrective phase consists of the removal of redundant sets that were used to cover
two elements. In particular, we consider each set in the solution produced by the greedy algorithm,
that included two uncovered elements when it was selected; if its removal does not leave an element
uncovered, we simply remove this set from the solution.

Duh and Fiirer introduced an interesting technique called semi-local optimization in [4]. Semi local
optimization is a technique that extends pure local search, and was first applied on 3-set cover. The
main idea is to iteratively perform improvement steps, while favoring solutions with fewer 1-sets. The
term ¢-set, for ¢ = 1,..., k, is used to denote a set that covered 7 yet uncovered elements when it was
selected by the algorithm. An (s, ¢)-improvement step for 3-set cover consists of the insertion of up to
s 3-sets and the deletion of up to ¢ 3-sets from the current cover. Note that once the sets of size 3 have
been selected, the remaining elements can be covered optimally by 2-sets and 1-sets, using a maximum
matching computation. The semi-local optimization technique starts with any solution and performs
(s, t)-improvement steps as long as the total number of sets in the cover is reduced, and in case of ties,
prefers the cover with the minimum number of 1-sets. The analysis in [4] shows that the best choice for
the parameters (s, t) is (2, 1), and that, somehow surprisingly, larger values for these parameters do not
yield any further improvements.

Furthermore, we make use of some known set packing heuristics. Hurkens and Schrijver [9] consider
the following i-set packing algorithm: “Start with the empty packing. For any fixed s, update the
solution by replacing p < s sets by p + 1 sets, while you can”. They prove that for a fixed parameter
s = O(log; %), an approximation ratio of 2/i — € is obtained, for any ¢ > 0. Athanassopoulos et al.
in [1] apply a combination of set packing phases and semi-local optimization on k-set cover. The idea
behind the use of set packing phases in set cover is to try to cover as many elements as possible by
relatively “large” sets. Their analysis is improved by Fiirer and Yu [7] who apply a slightly modified
packing algorithm that enhances the above ¢-set packing algorithm with a restriction on the number of 1-
sets needed to finish the cover. They call the modified algorithm restricted k-set packing algorithm and
provide approximation guarantees for it. The restricted k-set packing algorithm applied on a k-set cover
instance starts with an arbitrary maximal collection of k-sets and repeatedly attempts to replace p < s k-
sets by p+1 k-sets. Such a replacement actually takes place only if the number of 1-sets computed by the
semi-local optimization algorithm on the remaining instance is not more than the one computed prior to
the replacement. Note that the number of 1-sets computed by the semi-local optimization lowerbounds



the number of 1-sets in any optimal solution on the corresponding instance, as shown in [4].

The algorithms. First, we present a tight analysis of the greedy algorithm, henceforth called .A,. We
show that its approximation ratio is exactly 18/23 & 0.782, improving the previous bound in [8].

Then, we examine the performance of the greedy algorithm when a corrective phase is added at the
end of its execution. Namely, when the greedy algorithm completes its execution, we consider each 2-set
that was selected, and remove it from the solution if its removal does not leave an element uncovered.
This algorithm is called Ay, and it has an approximation ratio of 54/67 ~ 0.806. A simple instance
shows that this bound is tight. We remark that, even though such a corrective phase can improve the
solution obtained by the greedy algorithm with respect to the standard set cover objective, it does not
improve the worst-case approximation guarantee.

Furthermore, motivated by well known set packing heuristics, we consider a packing based algo-
rithm. Our algorithm (Agy,s) combines restricted set packing phases with semi-local optimization. The
algorithm works in phases starting from phase k, where k is the size of the largest set in the instance.
For phase ¢ = k down to 7, Ag,s computes a maximal collection of i-sets, by greedily adding such sets
to the solution. Then, for phases i = 6,5, 4 of A, the restricted i-set packing algorithm is applied,
and finally A,y applies semi-local optimization on the remaining instance. We prove that this algorithm
achieves an approximation ratio of at least 75/86 ~ 0.872.

The analysis technique. Even though the algorithms we consider are purely combinatorial, our anal-
ysis is based on the use of linear programs. The technique can be briefly described as follows. Given
an algorithm A, we define a linear program that takes a value f € (0, 1) as a parameter. This linear
program witnesses the fact that the algorithm computes an at most f-approximate solution for some
instance. The constraints of the LP capture the properties of the algorithm as well as the structure of the
corresponding optimal solution. Then, a lower bound of p on the approximation ratio of algorithm .4
follows by showing that the corresponding LP with parameter f = p is infeasible. In order to do this,
we exploit LP duality. This particular approach was recently proved to be useful for variations of set
cover such as spanning star forest and color saving [2]. However, due to the different objective of frugal
coverage (and, in particular, the appearance of the number of sets not chosen in the objective function),
additional variables (and different constraints) have to be included in the parameterized LPs. Except
from variations of set cover [1, 13], analysis of combinatorial algorithms through linear programs has
also been performed in contexts such as facility location [10], wavelength management in optical net-
works [3], and the maximum directed cut problem [6]. The use of the LPs in these papers is slightly
different than the approach followed here, since the problem objectives allow for LPs that reveal the
approximation ratio of the algorithms.

Outline. We present the analysis of the greedy algorithm in Section 2 and consider its extension with
an additional corrective phase in Section 3. The analysis of the set packing based algorithm with the
semi-local optimization phase is presented in Section 4. We conclude in Section 5.

2 The greedy algorithm

We first consider the greedy algorithm (A,) which is described as follows. While there is a set that
covers at least one uncovered element, choose the set that covers the maximum number of uncovered
elements. We show that its approximation ratio for frugal coverage is exactly 18/23 ~ 0.782. This
improves the previous lower bound of 0.732 from [8].



2.1 The parameterized LP lemma

Let f € (0,1) and consider an instance Z = (U,C) of the frugal coverage problem, on which A,
computes an at most f-approximate solution. Without loss of generality, we assume that every element
of U belongs to at least one set of C. We denote by O the optimal solution of (i, C), i.e., the subcollection
of C of minimum size that covers all elements in /. We assume that any set of C belongs either to the
optimal solution or is chosen by A,; if this is not the case for the original instance, we can easily
transform it to one that satisfies this assumption so that the solution computed by A, is at most f-
approximate.

The algorithm can be thought of as running in phases, starting from phase k, where k is the size of the
largest set in the instance. In each phase ¢, for ¢ = k, ..., 1, the algorithm chooses a maximal collection
of sets, each containing i yet uncovered elements. Let (U4;, C;), fori = k, ..., 1, denote the corresponding
instance which remains to be solved just before entering phase ¢ of the algorithm. Naturally, {/; consists
of the elements in ¢/ that have not been covered in previous phases and C; consists of the sets of C which
contain at least one such element. We denote by O; the sets in O that also belong to C;. We consider
an assignment of all elements to the sets of O so that each element is assigned to exactly one among the
sets in O that contains it (if more than one). A set in O; is called an (3, j)-set if exactly j elements that
have not been covered until the beginning of phase ¢ are assigned to it. For the phase ¢ of the algorithm
with i = 4, ..., 1, we denote by «; ; the ratio of the number of (4, j)-sets in O; over the number |O| of
optimal sets. Furthermore, let x5 be the ratio of the number of sets in O that are chosen by A, at the
phases k, k — 1,...,5 over |O|. Also, let x;, for i = 4, ..., 1, denote the ratio of the number of sets in O
that are also selected by A, in phase 7, over |O|.

By definition, it holds that |O;| = |O| 23:1 a;j and |O;| < |O| — |0 Z?:Hl zj, fori=1,..,4.
Combining these expressions, we get that

% 5
daij+ > @<l (1)
j=1 j=i+1

We denote by 7' the ratio [U/|/|O|. Our definitions imply that |4;| = |O| 22:1 jagjfori=1,..,4.
By the definitions of 7" and x5, we have

4
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Clearly, for i = 1, ..., 4, it holds that |Ul \Ui71| = |u1| — |Ui71| > X - |O‘ ‘We have
7 i—1
D jouy =Y jai + i, 3)
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Now, consider phase ¢ of the algorithm, for ¢ = 4, 3,2, and a set chosen by A, during this phase.
The i newly covered elements of this set are assigned to at most 4 sets in O;. Furthermore, since Ag4
selects a maximal collection of sets in phase ¢, we know that any set of O; with i assigned elements
intersects some of the sets selected by A, during this phase. This means that the number |U4; \ U;—1|/i
of sets selected by A, during phase i is at least «; ;|O|/i. We obtain that

% i—1

Zjai,j_z‘jaifl,j > 4)

Jj=1 J=1

Now, let Sg denote the ratio of the number of sets chosen by A, over |O|. Clearly, A, selects at
most |U \ Uy|/5 sets in phases k, k — 1, ..., 5, and exactly |I4; \ U;—1]/i sets in phase i, for i = 4, ..., 1.
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Let OPT(Z) denote the benefit of the optimal frugal coverage of Z. This naturally corresponds to solution
O for (U, C). It holds that

OPT(Z) = (T +Sg— ip) 0.

i=1

Furthermore, let A,4(Z) denote the profit A, obtains on Z. We have that

5
Ay(T) = (T +1- Zx) 0.
i=1

The assumption that the solution obtained by A, is at most f-approximate, i.e., A4(Z) < f - OPT(Z),
implies that
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By expressing inequalities (1)-(5) in standard form, we obtain our parameterized LP lemma.

Lemma 1 If there exists an instance L of the frugal coverage problem for which the greedy algorithm
computes a solution of benefit Ay(Z) < f - OPT(Z) for some f € [0,1], then the following linear
program LP(f) has a feasible solution.

Zam—k Z x; <1, fori=1,...4

Jj=t+1

— (i — 1)ay; — Zjai,j +) jai1; <0, fori=2,34

i i—
—Zjai7j+2jai_17j+i:ri <0, fori=1,..4

4
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a; >0, forz=1,...,4andj =1,...,t
z; >0, forj=1,..,5
T>0



The proof of the approximation bound is based on the following lemma.
Lemma 2 For every f < 18/23, LP(f) has no feasible solution.

Proof. We can assume that LP(f) is a maximization linear program with objective 0. By duality, if it
were feasible, then the optimal objective value of the dual minimization linear program should be 0 as
well. We show that this is not the case and that the dual has a solution with strictly negative objective
value. This implies the lemma.

In the dual LP, we use the thirteen variables 31, B2, 3, 04, V2, V3> Y4, 01, 02, 03, d4, 1 and ( cor-
responding to the constraints of LP(f).Variables [3; correspond to the first set of constraints (inequality
(1)) of LP(f), variables ~; correspond to the second set of constraints (inequality (4)), d; correspond to
the third set of constraints (inequality (3)), n corresponds to the next constraint (inequality (2)), and ¢
corresponds to the last constraint (inequality (5)). So, the dual of LP( f) is depicted in Table 1.

min B1+ B2+ B3+ Bs—¢

s.t. Bi+v2—0+0—C(f/2>0 Bs— 34— 304+ 3n—(3f/20 >0
fBo—v2+73—02+03—Cf/6>0 P1—3v4— 464 +4n—C(f/5>0
P2 =2 +2y3—202+203—Cf/3>0 61— (1—f)(=>0
B3 =3+ —03+0d4—(f/12>0 B1+20—(1-f)¢=0
B3 — 273+ 271 — 203 +204 —Cf/6 >0 Bi+P2+353—(1—f)(=>0
B3 —2v3+3v4 —303+304 —Cf/4>0 Bi+Po+P3+404—(1—f)(>0
Bs—71—0s+n—Cf/20>0 L+ P2+ B3+ Bs+5n—(1—f)(>0
Ba—274—264+2n—C(f/10>0 —n+(1-6f/5)(>0
ﬁi,éi 2 0, fori = 1,...,4
v >0, fori=2,3,4
¢Gn=>0

Table 1: The dual of LP(f) in the proof of Lemma 2.

TheSOhltionﬁl = f/2+1/46a62 = f/4aﬁ3 = f/3aﬁ4 = 15/46_](/4)’72 = f/4a73 = f/6774 =
5/46 — f/12,01 =1 — f,09 = 63 =45/46 — 5f /4,64 =1 —5f/4,m=1—6f/5 and ( = 1 satisfies
all the constraints. Observe that 51 + B2 + 03 + B4 — ( = % — %, which implies that the objective

1

value of the dual program is strictly negative since f < %. The lemma follows. [

Theorem 3 The approximation ratio of the greedy algorithm is at least 18 /23.

Proof. By Lemmas 1 and 2, we have that for any f < 18/23 and for any instance Z of the frugal
coverage problem, the greedy algorithm computes a solution of benefit A,(Z) > f-OPT(Z). Hence, its
approximation ratio is at least 18/23. [

2.2 The upper bound

The instance depicted in Figure 1 proves that our analysis is tight. It consists of 18 elements and 11 sets.
The greedy algorithm starts by choosing the 2 horizontal sets of size 3, then it chooses the 3 horizontal
sets of size 2, and, finally, it chooses all the vertical sets in order to cover the last 6 elements. Thus, A,
uses all 11 sets in order to cover the 18 elements for a profit of 18. The optimal solution consists of the
6 vertical sets of size 3 and has a profit of 23 since it covers the 18 elements without using 5 out of the
11 sets. The upper bound follows.
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Figure 1: The tight upper bound for A,.

3 Adding a corrective phase

In this section we show that an improvement in the performance of the greedy algorithm is obtained
by adding a simple corrective phase at the end of its execution. We call the new algorithm A, and
prove that its approximation ratio is exactly 54/67 ~ 0.8059 for frugal coverage. The definition of the
corrective phase is very simple. After the execution of A,, we examine every set s that was chosen
during phase 2; if by removing s we still have a cover of the elements, we simply remove s from the
solution.

3.1 The parameterized LP lemma

We slightly modify the parameterized LP for A, in order to capture the behavior of the corrective phase.
We will need some additional definitions. We denote by Gs and G; the sets included by the algorithm
in phases 2 and 1, respectively. A (2,1)-set of O, is of type I if its uncovered element is included in
a set of Go. A (2,2)-set of Oy is of type A if both of its uncovered elements are included in sets of Gy
and is of type B otherwise. A set of G5 is of type AA if it does not belong to Os and its newly covered
elements (during phase 2) belong to (2, 2)-sets of Oz of type A and is of type kl € {AB, A", BB, BT'}
if its newly covered elements belong to two sets of O of types k and [, respectively. A set of G;
is of type A if its newly covered element belongs to a (2, 1)-set of Oy. We introduce the variables
taa,taB,tar,teB,tBr, trr, and ta to denote the ratio of the number of sets of types AA, AB, AT,
BB, BT, I'T, and A over |O|, respectively. We also use variable d to denote the ratio of the number of
sets removed during the corrective phase over |O|. The next lemma provides a lower bound on d, which
we will use as a constraint in the parameterized LP for A,..

Lemmad4 x1 —tag —tpp —tpr —ta —d <0.

Proof. We partition (2,2)-sets of Qs of type B into two subtypes. Such a (2,2)-set s is of type
B if one of its elements is included in a set of G; that also belongs to Oy and is of type B other-
wise. Now, we extend the notation ¢; to denote the ratio of the number of sets of Go of type k €
{AE,AB,EB,EB,BB,BF,BF} over |O|.

Observe that for each set s of Oy of type B, there exists a set in O1 N G (the one containing the
uncovered element of s at the beginning of phase 1) and any other set of @1 N Gy is of type A. Hence,
x1 Stypt2tgs+itsstitap +ta. Now, observe that the number of sets that will be removed during
the corrective phase include those of type BB. Hence,

d>tgpg>x1—tlyg—tpg—tpg —tpr —ta > o1 —tap —tpp —tpr —la,

as desired. [ ]



Variables a1 1, as,1, and as » will not be explicitly used; observe that we can replace them as follows:

a1 = tap+2tpe+ipr +ta
ag1 = tar +1ipr + 2trr +1ta, and
3 1
oo = tAA+§tAB+itAF-FQtBB-i-tBF-i-JJQ.

The profit Ay.(Z) is now d|O| more than A4 (7), i.e.,

5
Age(T) = <T+ 1-) +d> 0],

i=1

while OPT(Z) is the same as in the previous section. In this way, we have obtained the following
parameterized LP lemma for A,..

Lemma 5 [fthere exists an instance 1 of the frugal coverage problem for which A,. computes a solution
of benefit Aye(Z) < f - OPT(Z) for some f € [0, 1], then the linear program LPy.(f) has a feasible
solution.
5
taB +2tBB +tBF+tA+ij <1
j=2
5

3 3
taa+ gtap + Star + 2tpp + 2tpr + 2trr +ta + 22 + ij <1
=3

i 5
Zam—l- Z r; <1, fori=3,4
j=1

j=it+l

2
—2a33— Y _jas;+2taa+3tap + 2tar + 4tpp + 3tpr + 2trr + ta + 2w <0

j=1
3 3
— 3044,4 — Zja;m + Zja?;,j < 0
j=1 j=1

3
— ) jas; +2taa+ 3tap + 2tar +4tpp + 3tpr + 2trr + ta + 272 + 3x3 < 0

=1
4 3
- Zja4,j + Zja&j +4x4 <0
j=1 =1

4
~T+> jou,+ 525 <0
j=1

x1 —tap —tpp —tpr —ta —d <0
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The proof of the approximation bound is based on the following lemma.
Lemma 6 For every f < 54/67, LPy.(f) has no feasible solution.

Proof. Similarly to the proof of Lemma 2, we assume that LP,.(f) is a maximization linear program
with objective 0. We show that its dual has a solution with strictly negative objective value when f <
54/67. This implies the lemma.

To construct the dual of Lch( f) we use the eleven variables (31, (32, B3, B4, V3, V4> 035 04, 1, [
and ( corresponding to the constraints of LP,.(f). Variables /3; correspond to the constraints in the first
three lines of LPgC( f), variables ~y; correspond to the constraints in the fourth and fifth line, variables J;
correspond to the constraints in the sixth and seventh line, and 7, u, and ¢ correspond to the three last
constraints of LP,.( f), respectively. So, the dual of LP,.(f) is depicted in Table 2.

min B1+ B2+ B3+ Bs—(¢

s.t. ﬁ2+273+253—§420 Bi—ya—0s+n—45¢>0
Bi+3Bs+3y3+30—pn— fC>0 54—274—2544’277_%420
$Bo+2v3+205 — £¢ >0 By — 371~ 304 +3n— 3¢ >0

251+2ﬁ2+4’73+453—ﬂ—%420 54—374—454+477—*C>0
51+2ﬂ2+3’Y3+363—,u fC=>0 p—1-=f)¢=>0

265 + 273 + 203 — £¢ > 0 B+ B +2y3+205 — (1-2)¢>0
ﬁ1+52+73+53—u—?fC20 P+ P2 +303—(1—f)(>0
B3 =3 +74—03+30—L¢C>0 Bi+ P2+ 03+40a—(1—f)( >0

B3 — 273+ 274 — 203 +204 —£C >0 Bi+ P+ B+ Ba+5n—(1— )¢ >0
B3 — 273+ 371 — 303 +30 — ¢ >0 —n+(1-6f/5)¢(>0

6; >0, fort=1,...,4 —u+C>0
vi,0; >0, fori=3,4
G, =0

Table 2: The dual of LPy.(f) in the proof of Lemma 6.

The solution 31 = 41/134, 8, = f/3+ 13/67,83 = 0,04 = 31f/108,v3 = 0,74 = f/12,03 =
0y = 1—-67f/54,n = 1—6f/5,( = land u = 1 — f satisfies all the constraints. Observe that
i+ B+ Ps+Ps—(= % — 1, which implies that the objective value of the dual program is strictly
negative for f < 64 The lemma follows. [

The next statement follows by Lemmas 5 and 6.

Theorem 7 The approximation ratio of Ay is at least 54/67.



3.2 The upper bound

The instance which yields the tight upper bound for A consists of 48 elements and 31 sets; see Figure
2. There, the sets selected by Agy. are shown, while the optimal solution consists of the 12 vertical
disjoint sets of size 4 (note that only half of them are shown in the figure). Clearly, the profit obtained
by Aygc is 48 + 6 = 54, while the profit of the optimal solution is at least 48 + 19 = 67, and the upper
bound follows. We remark that the corrective phase does not remove any set.
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Figure 2: The tight upper bound for A,..

4 Greedy with set packing phases and semi-local optimization

In this section we analyze the performance of the greedy algorithm when it is combined with restricted
set packing phases as well as a semi-local optimization phase. We denote this algorithm by A, and
start by presenting its execution. For ¢ = k,...7, the algorithm first greedily includes disjoint ¢-sets in
the solution until no other ¢-set can be included. Then, the algorithm executes a restricted set packing
phase in order to pick a maximal collection of disjoint 6-sets while it guarantees that the number of 1-sets
in the final solution is not larger than the number of 1-sets in the optimal solution of the 6-set packing
instance at the beginning of this restricted phase. Then, it applies a similar restricted set packing phase
for 5-sets and 4-sets. After this phase, a (U3, C3) instance remains to be solved in order to complete the
solution; the algorithm applies a semi-local optimization phase on it.

4.1 The parameterized LP lemma

First we give a more formal description of the algorithm.
AgpsU,C) :

Greedy phases: For i = k down to 7, do:
Choose a maximal collection of disjoint z-sets.

Restricted Set Packing phases: For i = 6 down to 4, do:
Select a maximal collection of disjoint i-sets using a p;-approximation restricted i-set pack-
ing algorithm. (p; = % —¢,fori=6,5,and py = 1—76)

Semi-local optimization phase: Run the semi-local optimization algorithm on the remaining (U3, C3)
instance.

In [7], Fiirer and Yu guarantee the existence of the set packing algorithms with the specific approxi-
mation ratios, as stated in the theorem.

Theorem 8 (Fiirer and Yu [7]) There exists a restricted 4-set packing algorithm which has approxima-
tion ratio %. For all € > 0 and for any © > b there exists a restricted i-set packing algorithm which has

. . .2
approximation ratio i €.
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Next, we present the analysis of the Ag,s algorithm. Having as a starting point the analysis of the
greedy algorithm in Section 2, we modify it accordingly in order to capture the extra constraints imposed
by the restricted set packing phases as well as the semi-local optimization phase.

For the analysis of A,,s we use variables «; j, fori = 2,...,6 and j = 1, ..., 4, variables x;, for j =
1,...,7, and variable T" following their definition in Section 2. Our algorithm uses restricted set packing
phases in an effort to maximize the number of disjoint sets selected (and hence, elements covered) in
phases 6, 5, and 4. The approximation guarantees in Theorem 8 imply the following inequalities, which
dominate the corresponding ones in equation (4).

4 3 .
ijl Joyg,5 — ijl Jas,j 7
1 > T6a4’47 and

i . i—1 .
Z] 1J%,) .Zj 1J%1—1g > (7. _ 6)0&1,2‘, fori =5,6.
1 1

The restricted phases of the Ay, algorithm also impose the constraint that the corresponding col-
lections of sets are selected accordingly in order to guarantee that the number of 1-sets at the end of
the execution is not larger than that of O;, for ¢ = 6,5,4. The same restriction is indirectly imposed
on phase 3 through the semi-local optimization phase. Remember that when attempting to perform an
improvement step, the ¢-set packing algorithm computes the number of 1-sets selected by the semi-local
optimization algorithm on the remaining (I4;—1,C;—1) instance. Such a replacement actually takes place
only if this number (let that be L;_1) is not larger than the one computed by the semi-local optimization
algorithm prior to the replacement. So, it holds that L; > L;_1, for ¢ = 6,...,4. Also, note that the
number of 1-sets computed by the semi-local optimization lower bounds the number of 1-sets in any op-
timal solution on the corresponding instance. In other words, for each restricted phase ¢ of the algorithm
it holds that ov; 1 > L; > L3 > a2 1. Summing up, it holds that

azq < oyy, fori=3,..,6.

Note that during a semi-local optimization phase, once the 3-sets are chosen, the remaining (U2, C2)
instance is solved optimally. So, we can use variable a ;, for j = 1, 2, to denote the ratio of the number
of ¢-sets in the Agy,s solution (as well as the optimal solution) over O. Clearly, it also holds that

r; < gy, forj=1,2.

The semi-local optimization phase naturally has an impact on the number of sets selected by the
algorithm. For the sake of clarity denote by b3, b2, b1 the number of 3-, 2-, and 1-sets computed by the
semi-local optimization phase divided by |O|. We use the main result of the analysis of Duh and Fiirer
in [4] expressed in our notation.

Theorem 9 (Duh and Fiirer [4]) b1 < a31and by +b1 < a33+az2+ a3 ;1.

Let t3 denote the number of sets selected by the algorithm during the semi-local optimization phase,
over |O|. We compute a bound on 3.

t3 = (bg+b2+b1)|0|
by ba+by  3b3+ 202+ by
- (2 0
(3 L 3 >’ |
(f;1+a3,3+a;,2+a3,1 +3a3,3+2§3,2+a3,1> 0]

1 4 2
= <351 + 303.3 +asz2 + 3a3,1> |0,

11



where, the inequality follows by Theorem 9 and since (3b3+2b2+b1)|O| = (3az3+2a32+a31)|0| =
|Us|.

Next, we compute a bound on the total number of sets selected by the algorithm. Recall that b; is by
definition equal to arp 1. We get

6
1 1
Sgps < <7|U\U6| + ;4 gWi \Ui—1| + t3> /10

] 7 6 1 [ i—1 A 5 1
= - |\T- E Joug | + E A E Jouj — E Jai-ij | +gas3+asga+gasy+ o
j=1 =4 7j=1 j=1
6 i
1 1 , f f 5f 1
Y e—— L ! of L.
7 + 2 Gt j:1]06w + 19 o33 + 2043,2 + 12043,1 + 3a2,1

The profit obtained by the A, algorithm and the optimal algorithm on instance Z, respectively, is
expressed through the following inequalities

7
Agps(T) = <T+ 1— Zx) |O|, and

=1

7
OPT(Z) = (T + Syps — Zm) 0.

i=1

Finally, recall our initial assumption which states that Agps(Z) < f - OPT(Z).
We are now ready to state our parameterized LP lemma.

Lemma 10 If there exists an instance I of the frugal coverage problem for which Agps computes a
solution of benefit Agps(Z) < f - OPT(Z) for some f € [0,1], then the linear program LPg,s(f) has a
feasible solution.

i 7
doaig+ Y w <l fori=2,..6
j=1 j=i+1

3 3
7 . )
= (4= paga - > jouj+ Y jag; <0
i=1 i=1

i—1 i—1

— (i -2+ ie)am — Z]’aid + Zjai—ld <0, fori =5,6
j=1 j=1

7 i—1
_Zjai,j"‘Zjaiij‘FifEi <0, fori=3,...,6
Jj=1 Jj=1
6
~T+> jag,+Tw7 <0
j=1

—og;+x; <0, foryj=1,2
—aj1+agy <0, fori=3,..,6
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6 7 7
(1—8f/7)T—Z ZZ+1 j z‘;ag,g—gagg—ia31—§a271—2(1—f)$i§—1

i=4 j=1 i=1

a;j >0, fori=2,..,6andj=1,.
z; >0, forj=1,..,7
T>0

The proof of the approximation bound is based on the following lemma.

Lemma 11 For every f < 75/86, LPyps(f) has no feasible solution.

Proof. The proof follows along similar lines as the one of Lemma 2. Assuming, without loss of gener-
ality, that LP,,.(f) is a maximization linear program with objective 0, its dual should be a minimization
linear program with objective value 0 as well. We compute the dual of LP,,(f) and show that it has a
solution with strictly negative objective value for f < 75/86. This implies the lemma.

To construct the dual of LPg,s(f) we use the twenty variables j3;, for i = 2, ...,6, corresponding
to the first batch of constraints of LPgys(f), 7s, for i = 4,...,6, corresponding to the i-set packing
approximation constraints, d;, for ¢ = 3, ..., 6, corresponding to the next batch of constraints, 7 for the
next constraint, \;, for ¢ = 1, 2, for the constraints stemming from the optimality of the solution of the
(U2, C2) instance, u;, for ¢ = 3,...,6, corresponding to the constraints regarding the restriction of the
number of 1-sets and ¢ corresponding to the last constraint. The dual of LPg,(f) is presented in Table
3.

min Bo+ B3+ Ba+ B5 + s — ¢

s.t. Bo+ 05+ ps+pa+ s+ ps— M —5C >0 Bo— 76— 06 +1— e — 5¢ >0

B2+ 203 — A > 0 B — 276 — 206 + 2 — £ > 0

B3+ v — 03+ 04— pz — ¢ >0 B6 — 376 — 306 + 37 — ¢ >0

B3+ 2v4 — 203 + 204 — £¢ >0 B6 — 4v6 — 406 +4n — 35¢ >0

B3 + 374 — 303 4364 — ¢ > 0 B6 — 576 — 506 + 51 — 2L¢ >0

Ba— s+ — 04+ 05— pa— ¢ >0 B6 — (4 + 6€)76 — 606 + 61 — L > 0
Bi— 274 + 295 — 204 + 205 — ¢ > 0 M—(1-/)¢>0

B1— 371+ 375 — 304 + 305 — 55¢ >0 A= (1=f)(=0

Bi— (A= Dy +dys — 404 +405 —£¢ >0 B +353—(1— )¢ >0

Bs — 5+ 6 — 05 + 06 — pis — 45¢ > 0 Po+ B3 +404—(1— )¢ =0

Bs5 — 2795 + 296 — 205 + 206 — 15¢ > 0 B2+ B3+ By + 565 — (L= f)( >0

Bs5 — 375 + 376 — 305 + 306 — 5¢ > 0 Bo+ B3+ Ba+ B +656— (1—f)C>0
B5 — dys + dyg — 405 + 406 — TL¢ > 0 B2+ B3+ Ps+ B+ 06 +Tn—(1—f)(>0

55_(34‘56)75"‘576_5(554—556—%CEO —774_(1_%)@‘20
B; >0, fori=2,...,6

vi >0, fori=4,...,6

Siypi >0, fori=3,...,6

A >0, fori=12

¢,n=0

Table 3: The dual of LPg,s( f) in the proof of Lemma 10.

The solution By = 11f/75,83 = f/3,01 = 2f /5,05 = 0,86 = 4f /15,74 = f/12,75 = 0,76 =
f/30,5i :O, fori:3,...,6,17: 1—8f/7,,u3 = U5 :0,M4 :4f/15,,u6 :f/15,)\1 :)\2 =1-
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f and ¢ = 1 satisfies all the constraints, for e < 1/15. Observe that So+ 33+ 4+ 5+ 86— = % -1,
which implies that the objective value of the dual program is strictly negative for f < %. The lemma
follows. [

Theorem 12 The approximation ratio of Agps is at least 75/86.

Proof. By Lemmas 10 and 11, we have that for any f < 75/86 and for any instance Z of the frugal
coverage problem, the greedy algorithm with the restricted set packing phases and the semi-local opti-
mization phase computes a solution of benefit Ay,s(Z) > f - OPT(Z). Hence, its approximation ratio is
at least 75/86. |

4.2 The upper bound

We use the construction of Hurkens and Schrijver [9] for the local search heuristic for 5-set packing to
prove that out analysis is tight. We describe the instance that yields the upper bound as follows. Let there
be 75k elements, where k is a sufficiently large integer. These elements are contained in 15k disjoint sets
of size 5, which we call the vertical sets and denote the optimal solution. The instance has 6% additional
disjoint horizontal sets of size 5, such that each set overlaps exactly five vertical sets, and two elements
from each vertical set are contained in horizontal ones. The construction in [9] guarantees that these
horizontal sets can be defined in such a way that they form a locally optimal solution for the local search
heuristic. The instance is completed by 5k disjoint horizontal sets of size 3, such that each set overlaps
exactly three vertical ones and no horizontal set of size 5. See Figure 3 for an example. Note that, for
the sake of clarity, the horizontal 5-sets are shown to contain consecutive elements.

We now present the solution returned by A,,,. The execution of the algorithm starts at phase 5,
where it selects all horizontal 5-sets. Remember that it follows from the construction that the collection
of the horizontal 5-sets is a local optimum for the restricted 5-set packing algorithm of Furer and Yu
[7]. The algorithm now applies the semi-local optimization phase, since no 4-set exists in the remaining
instance. During this phase A, first selects all horizontal 3-sets, and completes the cover using all
vertical sets. Summing up, the algorithm uses all available sets in order to cover the 75k elements, while
the optimal solution uses only vertical sets, obtaining a profit of 75k + 11k = 86k. This yields an
approximation ratio of 75/86 as desired.

QIOIDIOININININIO DIOIOIOIOI0ININIO
QI0I0IDININI0I0IOE QINIOIDININININI0
QININIDININININI0 QININIOININININI0
o oo o000 oo o oo o000 o0
)@@ 00000 LIALIAJALR\/R LRI\

Figure 3: The tight upper bound for Agy,.

5 Open problems

Our focus in the current paper has been on combinatorial greedy-like algorithms for frugal coverage.
We have demonstrated how to obtain tight bounds on the approximation ratio of these algorithms using
an analysis based on parameterized LPs. The obvious open problem is to design algorithms with bet-
ter approximation ratio than 0.872. Towards this goal we believe that new algorithmic techniques are
required; such techniques could possibly lead to improvements for other covering problems as well.
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