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Abstract

This thesis presents the exact discrete time representations of first order continuous time models with un-

equally spaced stocks, flows and mixed data. With unequally spaced data, given that the underlying contin-

uous time models have constant coefficients and homeskedastic disturbances, the exact discrete time repre-

sentations exhibit more complicated properties such as time-varying coefficients and heteroskedastic moving

average disturbances, which arise due to the irregularity in sampling intervals. When data are purely stock

variables, the exact discrete time representation follows a VAR(1) process with time-varying coefficients

and serially uncorrelated heteroskedastic disturbances. When data are purely flow variables or a mixture of

stocks and flows, the exact discrete time representation follows a VARMA(1, 1) process with time-varying

coefficients and moving average heteroskedastic disturbances. Based on unequally spaced real life data, the

empirical results show that the parameter estimates are different when accounting for the unequal sampling

intervals compared to the approach that assumes data are equally spaced. In addition, the Monte Carlo evi-

dences indicate that there are gains to be made in the estimation, such as smaller estimation bias, when the

irregular sampling intervals are correctly accounted for.
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1 Introduction

1.1 Why Modelling in Continuous Time

The last few decades have seen growing applications of continuous time models in macroeconomics and

finance. The economy and financial markets are operating continuously, where agents are making decisions

continuously and economic variables are adjusting gradually in response to deviations from equilibrium.

Such adjustment process may be difficult to specify using traditional discrete time models, while continuous

time models could provide more realistic description since they account for the interaction among variables

during the observation interval.

One major advantage of continuous time models is the flexibility in modelling the underlying interactions. A

continuous time model does not restrict the model structures to match the sample interval, therefore the spec-

ification of such models is independent of the available data frequency. When the underlying phenomenon is

continuous, modelling in continuous time could avoid misspecification due to the discrepancies in intervals

between the model and the observations. Moreover, a continuous time model would allow variables to adjust

continuously in analysing the dynamic adjustment mechanisms, which permit more realistic specifications

of the partial adjustment process. Since the specification of a continuous time model does not depend on

the data frequency, continuous time models allow one to forecast at different (shorter) intervals to the data

used in the estimation. However, a discrete time model would generate forecasts at the same frequency as

the data.

Another advantage of modelling in continuous time is that such models reduces temporal aggregation bias.

In discrete time models, there are no distinction between stock variables (observed at discrete points) and

flow variables (observed over discrete intervals), which generates temporal aggregation bias associated with

the mistreatment of flow variables (which are observed at a slower rate than at which it operates). Ignoring

temporal aggregation could result in biased estimates. On the other hand, a continuous time model provides

the correct treatment of both stock variables and flow variables, which helps to reduce the temporal aggre-

gation bias in estimating discrete time models with flow variables (see Bergstrom, 1996 and Bergstrom and

Nowman, 2007 for the advantages of continuous time models over discrete time models).
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1.2 The Econometric Issues

Despite the fact that continuous time models have several advantages and broad applications in different

fields such as finance and macroeconomics, there are costs of modelling in continuous time. Since most

observed data are available only at discrete intervals while the model is formulated in continuous time, the

major econometric challenge is to relate the parameters of the continuous time model to the discretely ob-

served data. To estimate parameters of a continuous time model, it is possible to obtain a discrete time

representation of the continuous time model and then estimate those parameters from discrete data. Early

approaches involve using the approximation method to obtain an approximate discrete time model (see, for

example, in Phillips, 1959, 1974; Bergstrom, 1976; and Phillips and Yu, 2009). Other approaches include the

frequency domain approach (see Hannan, 1970; Robinson, 1976a, 1976b, 1993); the Kalman filter method

with state space equations (see Harvey and Stock, 1985; and Zadrozny 1988); and the exact discrete time

representation (see Bergstrom, 1983, 1986).

The fundamental issues of modelling in continuous time relate to the aliasing problem as well as the diffi-

culty of deriving statistical distribution theory that underpins estimators of the continuous time parameters

based on discrete time data. One issue the practitioner could face in estimating the continuous time models

of stochastic processes would be the identification of the structural parameters such that the continuous time

spectral density function cannot be inferred from the (equispaced) discrete time data, which is referred to

as the aliasing problem (Hansen and Sargent, 1983; and Bergstrom and Nowman, 2007). With multivariate

continuous time Markov process, there are many aliases of the continuous time (CT) coefficient matrix such

that they could generate the same (equally spaced) discrete data through taking the place of the CT matrix

(McCrorie, 2009). The aliasing identification problem might be solved by imposing Cowles Commission

type restrictions on the structural parameters (Phillips, 1973), or by making the sampling interval (unit ob-

servation period) sufficiently small (Hansen and Sargent, 1983). An alternative approach, as suggested by

Bergstrom, Nowman andWymer (1992), involves the use of bounds and the speed of adjustment parameters.

The other issue of estimation continuous time models with discrete time data relates to deriving the asymp-

totic distribution of the estimator of continuous time parameters. The Maximum Likelihood (ML) method is
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commonly used for parameter estimation and statistical inference as the ML estimates have good asymptotic

properties (Yu, 2014). Common approaches to deriving the asymptotic distribution include the long-span

asymptotic theory and the in-fill asymptotic theory. The long-span asymptotic distribution is obtained when

the sample size T → ∞ and the sampling interval h is fixed; while the in-fill asymptotic distribution is

obtained when the sampling interval h → 0 and the sample size T is fixed. However, ML estimates of con-

tinuous time parameters may be biased (even with large sample size and small sampling intervals) due to the

finite sample issues, particularly when the continuous time process is nearly a unit root. Although the finite

sample problems are applicable to other estimation methods as well, including GMM, nonlinear least squares

and Quasi ML, this issue could potentially limit the applications to some financial time series which con-

tain a root near unity, such as interest rates and volatility. The finite sample performances of ML estimates

might be improved via the Jackknife estimation (see, for example, in Phillips and Yu, 2005 and Yu, 2014) or

via indirect inference estimation (see in Phillips and Yu, 2009b; and Fasen-Hartmann and Kimmig, 2018).

Addressing these issues is beyond the scope of this thesis, nonetheless, these are the fundamental issues

(particularly for practitioners) in continuous time modelling, which are worth exploring in future work.

1.3 Approaches to Estimate Continuous Time Models

1.3.1 Approximation

Early literature has shown great interest as well as development in estimating continuous time models based

on approximate discrete models. As argued by Strotz and Wold (1960), systems of stochastic differential

equations can be approximated using a simultaneous equation model. Concerned with the specification er-

rors associated with the approximation using nonrecursive models, Bergstrom (1966) provided a numerical

example using a three-equation model with restriction on certain elements of the continuous time coefficient

matrix to be zero. By applying the three-stage least squares method, one can compute the exact asymptotic

bias of the continuous time parameter estimates. Based on Bergstrom's framework, Sargan (1974, 1976)

worked on approximating discrete models by applying the methods of two-stage least squares, three-stage

least squares, and full information maximum likelihood. Later, Wymer extends the work on estimating

approximate discrete time models by developing the method for obtaining full information maximum like-
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lihood estimates (Wymer, 1972) and providing applications of this method to modelling UK financial mar-

ket (Wymer, 1973). Such method could see wide applications in the empirical work (see discussions in

Bergstrom, 1988), nevertheless, Bergstrom and Wymer (1976) indicate that the temporal aggregation bias

arises with the full information maximum likelihood estimator. Another important work on the approxima-

tion scheme was done by Phillips (1972) where he applied the minimum-distance procedure to estimate a

three-equation trade cycle model. The results show larger root mean square errors of estimates in the ap-

proximate discrete model compared to those in the exact discrete model, and using the exact discrete model

rather than the simultaneous equations approximation helps to eliminate the asymptotic bias.

Another common approach of the approximation method is the Euler approximation. The Euler scheme in-

volves approximating the transition densities to obtain an approximation to the exact discrete time model,

which takes the first order term in some Taylor expansions (see details in Phillips and Yu, 2009a). Under

the Euler approximation scheme, it is easy to obtain the likelihood function, which associates with low com-

putational cost and can be applied to a wide range of models. However, the accuracy of the approximation

depends on the observation interval. With relatively high frequency data (such as daily or higher), the Euler

approximation provides a good approximation discrete time model. With lower frequency data (when the

observation interval is large), such method would generate the discretization bias whose magnitude is deter-

mined by the observation interval. Specifically, the estimator is inconsistent when the observation interval

is fixed (see Lo, 1988; Phillips, 1974; and Sargan, 1974). Even though a number of improvements to the

Euler method have been suggested (see in Sargan, 1974; Phillips, 1974; and Lo, 1988), estimators obtained

from the approximated models remain inconsistent with a fixed observation interval. Other approximation

methods include the closed-form approximation and infill approximations (see Phillips and Yu, 2009a for

review of these methods).

1.3.2 Kalman Filter

Apart from the approximation methods, the Kalman filter approach can also be used in the estimation of

continuous time systems with discrete data. Jones (1981) proposed a Kalman filter state space representation

to calculate the exact likelihood for Gaussian ARMA processes, which can be used to calculate the likelihood
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for equally or unequally spaced data. Built on Jones' work, Harvey and Stock (1985) extended the work to

estimate higher-order continuous time autoregressive models using the Kalman filter method, considering

three cases - observations are stocks, flows and a mixture of stocks and flows (while Jones' work did not

consider flows). In their further works, Harvey and Stock (1988, 1989) applied the Kalman filter method for

estimating the parameters of continuous time autoregressive models with cointegrated and integrated vari-

ables. Besides, in a benchmark work, Zadrozny (1988) extended Harvey and Stock's (1985) treatment of

mixed samples at the same frequency to mixed frequencies, where he provided the Kalman filtering based

algorithm for computing the Gaussian likelihood function in continuous time ARMA systems, which can

also include exogenous variables. In a more recent work, Singer (1995) presented a Kalman filtering based

method for estimating the continuous state space model with irregular samples, where the likelihood function

is computed using analytic derivatives.

As an alternative approach to Maximum likelihood estimation, the Kalman filter method can be modified to

deal with mixed samples as well as irregularly sampled data (including missing observations), be extended

to allow for measurement error, and be extended to nonstationary models and models including exogenous

variables. Such method seems more general compared to exact discrete methods and computationally at-

tractive. In particular, it is computationally efficient in equally spaced observation cases (Harvey and Stock,

1985). Rather than deriving the full exact discrete time model, with the Kalman filter approach, one needs to

derive just the first-order difference equation with the state vector which includes both unobservable compo-

nents and the observed variables (Chambers, McCrorie and Thornton, 2018). In addition, the Kalman filter

produces the optimal estimate of the unobservable components of the state vector; however, it is “less readily

comparable” (Chambers, McCrorie and Thornton, 2018) to exact discrete time representations.

1.3.3 Frequency Domain

When the autocorrelation structure of unobservable disturbances is not parameterized, as pointed by Robin-

son (1991), it is possible to estimate their spectra based on initial and consistent estimates of the parametric

part of the model, which leads to the frequency domainmethods (of estimating spectra nonparametrically). In

an important work, Hannan (1970) used the spectral estimates to obtain parameter estimates of GLS type for



6

static and dynamic models. Later Robinson (1976a, 1976b) developed Fourier methods for the estimation of

open continuous time dynamic models. Then he extended the work to estimate closed stationary continuous

time dynamic models by maximizing a frequency-domain Gaussian likelihood approximation (Robinson,

1977a) and to estimate closed and open systems with mixed samples (Robinson, 1993). The frequency do-

main methods offer relatively wide applications, such as closed and open systems, flow variables, mixed

samples, and exogenous variables. Such methods can be powerful and computationally efficient for estimat-

ing stationary continuous time models, but less attractive than the Kalman filter or exact discrete methods

when dealing with unequally spaced data (see Bergstrom, 1988; and Chambers, McCrorie and Thornton,

2018 for detailed reviews).

1.3.4 Exact Discrete Time Representation

More recent work on fitting discrete data in continuous time systems has been concerned with methods that

take account of the exact restrictions on the distribution of the discrete data implied by continuous time

system. Work on the exact method of estimating higher-order continuous time models commenced with

Bergstrom's seminal paper concerned with the efficient estimation of higher order continuous time dynamic

models (Bergstrom, 1983). The article presented the derivation of exact discrete time representations of con-

tinuous time systems with stock and flow variables (mixed sample case was also outlined) and proved the

existence and uniqueness of the solution to a higher order system. Under appropriate assumptions and sub-

ject to the boundary conditions, the exact Gaussian method yields the exact maximum likelihood estimates,

which are asymptotically efficient and convenient to compute.

Bergstrom's paper (1983) proposed a different algorithm for obtaining the exact Gaussian estimates from

the Kalman filter methods, which provides the possibility of extended research, in several ways, on the ex-

act Gaussian or quasi-maximum likelihood estimation of continuous time models. In a subsequent paper,

Bergstrom (1985) derived an efficient algorithm for computing the exact Gaussian likelihood for nonstation-

ary second order continuous time models, which can be applied to a system of any order with mixed data.

In another subsequent paper, he extended the work on the exact Gaussian likelihood estimation of closed

higher order continuous time models by introducing exogenous variables (Bergstrom, 1986). Further ex-
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tension, based on this paper, to investigate exogenous variables can be found in McCrorie (2001). Later,

Bergstrom (1989) derived a model for forecasting stock and flow data generated by a higher order contin-

uous time system. This paper proposed an algorithm that provides the optimal forecasts of the post-sample

discrete observations, which has potential practical applications in economic forecasting. A further extended

work developed a computational algorithm for mixed order models with stochastic trends and mixed stock

and flow data (Bergstrom, 1997). The development in the algorithm for the exact Gaussian estimates and

its computing technology makes it feasible to apply the exact discrete methods to estimating higher order

continuous time macroeconometric model (see Bergstrom and Nowman, 2007; and Bergstrom, Nowman and

Wymer, 1992).

1.4 Developments in the Exact Discrete Estimation

Bergstrom's works on the exact Gaussian estimation mostly consider continuous time models of higher or-

der (second order), while Agbeyegbe (1984, 1987) extended the work by considering some special cases.

Agbeyegbe (1984) pointed out that in Bergstrom and Wymer's (1976) study of a neo-classical growth model

of the UK economy, the authors treated all thirteen equations as first order equations, which would generate

misspecification bias. To avoid such misspecification bias, he proposed the derivation of the exact discrete

analog to a closed linear mixed order system. This paper focused on cases of stock variables, while cases of

flows and mixed data can be considered in further research. In a further research, Agbeyegbe (1987) derived

the exact discrete model of a first order continuous time system with mixed data. This paper not only is a

special case of Bergstrom's (1986) work but also provides a general approach to estimate first order systems.

Bergstrom's work (1983) requires the continuous time coefficient matrix to be non-singular, which restricts

its applications to stationary process and hence rules out important cases such as unit roots and cointegration.

Although he extended the work to nonstationary systems (for example, in Bergstrom, 1985), there have been

significant development in the work on estimation of nonstationary continuous time models. For instance,

Phillips (1991) derived an exact discrete time Error CorrectionModel (ECM) of a triangular cointegrated sys-

tem, where the continuous time coefficients are always identified in the discrete time reduced form. Further,

Chambers (1999) extended the (original) model to non-stationary higher order systems (of order greater than
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two) with mixed sample data. The exact discrete time representations derived in the paper can be applied

in stationary, nonstationary and explosive systems. For estimating the exact discrete time representations

of cointegrated systems, for example, Chambers (2003) used the representation in a theoretical analysis of

the asymptotic efficiency of optimal estimators; Chambers and McCrorie (2007) used the frequency domain

methods; while Chambers (2009) used the time domain methods.

When the data are observed at different frequencies, the approach to aggregate all variables to the lowest

frequency would potentially discard information contained in the high frequency data (Chambers, McCrorie

and Thornton, 2018). Therefore it is important to incorporate mixed frequency data in the context of contin-

uous time models. For example, Chambers (2011) analysed the effects of sampling frequency on estimators

of cointegrating parameters. In a more recent paper he derived the exact discrete model of a CAR(1) pro-

cess with mixed sample data that are observed at mixed frequencies (Chambers, 2016). The discrete time

representations are applicable to both stationary and nonstationary (including cointegrated) series, while the

approach might be extended to deal with continuous time ARMA processes.

Besides mixed frequency data, another recent development in the work on continuous time modelling is to

extend the continuous time models to continuous time ARMA systems by including moving average distur-

bances. In Chambers and Thornton's (2012) paper, the authors derived exact discrete time representations

of a continuous time ARMA system (or CARMA models) with mixed stocks and flows. The approach does

not incorporate mixed processes, therefore Thornton and Chambers (2017) proposed the representation and

estimation of mixed CARMA systems. In another joint work, the authors presented estimation of CARMA

models based on the exact discrete approach with examples of applications in finance (Thornton and Cham-

bers, 2016). In particular, this paper outlined the process of calculating the matrix exponential based on

results by Van Loan (1978), which is used in the estimation of cointegrated systems in this thesis. More

reviews on continuous time modelling can be found in Chambers, McCrorie and Thornton (2018).
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1.5 Unequally Spaced Data

In most of publish works on continuous time modelling, it is common (and possibly easier) to treat obser-

vations as equally spaced, where the sampling interval can be normalised as unity for simplicity reasons. In

many time series, however, the observation interval is not constant across sample. In real life data, some

monthly data would have unequally spaced intervals which vary with the variation in the length of calendar

month, leading to the observation intervals vary from 28 days to 31 days (with approximately 10% differ-

ence). Moreover, for instance, data on infrequent trade could also exhibit irregularity in observation intervals.

Irregularity in observation intervals may also associate with missing observations or occur in “jittered” sam-

pling when there are small random deviations in the sample intervals, which is more common in financial

data especially when data frequency is high.

The existence of unequally spaced data has drawn attention in the continuous time literature. In earlier works

by Jones (1962, 1971) and Parzen (1963), the authors used spectral analysis to deal withmissing observations.

Robinson (1977b) argued that structure analysis may be less preferable in the estimation of finite parameter

models from unequally spaced data, and presented the exact discrete representation of a first order univariate

continuous time model with an unequally spaced stock variable. Based on Gaussianity requirement, Dun-

smuir (1983) derived a central limit theorem (CLT) for estimates of parameters of a stationary Gaussian time

series with zero mean. Alternative Kalman filter methods can also be used in the estimation of continuous

time models from unequally spaced data. As discussed above, Harvey and Stock (1985) and Jones (1981)

proposed the method for computing the exact maximum likelihood of continuous time models based on the

Kalman filter approach. The method can be extended easily to incorporate unequally spaced data including

missing observations.

Until now, the Kalman filter methods appears to be a common approach to deal with unequally spaced data in

the context of continuous time modelling. In a more recent paper on estimating continuous time models with

time-varying coefficients, Robinson (2009) pointed out the possibility to extend the work by investigating

irregular intervals in the sample. Chambers (2016) has also indicated the potential to allow for the sample

intervals to vary when combining monthly and daily data as the numbers of days differ in calendar months.
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Although Robinson (1977b) has presented an example of estimating continuous time models from unequally

spaced data based on exact discrete time representations, unfortunately there has not been sufficient (ex-

tended) work on applying the exact discrete methods to handle unequally spaced data in the literature.

One important advantage of the Kalman filter algorithm compared to the exact discrete time representation is

its broader applications, including cases ofmissing observations, measurement errors as well as data observed

at unequal intervals (see discussions in Bergstrom, 1985). On the other hand, the exact discrete represen-

tation approach has a number of advantages over the Kalman filter approach. Firstly, it is computationally

less costly than the Kalman filter methods when the sample size is sufficiently large. Additionally, when

the exact discrete time model is required for other reasons, the exact discrete time representations would

provide comparative advantage over the Kalman filter method even when the samples are small. Moreover,

the exact discrete representations method does not require the system to have distinct eigenvalues. Besides,

the Kalman filter method is arguably computationally efficient when observations are equally spaced and

none are missing as the sampling interval can then be normalised as unity and the Kalman filter converges

to a steady state (Harvey and Stock, 1985). Given unequally spaced data, advantages in the Kalman filter

algorithm may be less obvious. It is therefore worth exploring the method for estimating continuous time

models from unequally spaced data based on the exact discrete time representations, which is the aim of this

thesis. While comparisons with other methods might be interesting, these are beyond the scope of this thesis

but can be explored in future work.

1.6 Discussion on Specification and Applications of Continuous Time Models

One specification concern in modelling in continuous time is whether it is more appropriate to model the

dynamics of a single variable (univariate case) or the dynamics of multiple variables (multivariate case).

The univariate continuous time models are simpler (to identify and compute) and have relatively wide appli-

cations, for example, in finance. In the univariate case, the diffusion is reducible, through some one-on-one

transformation into some diffusion, whose diffusion matrix is the identity matrix (Ait-Sahalia, 2007). The

density of the transformed diffusion can be approximated around a standard normal distribution in the form of

an expansion in Hermite polynomials; while the coefficients of the expansion can be computed in closed form
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(Ait-Sshalia, 2002). The closed-form likelihood expressions make maximum likelihood a feasible method

for estimating parameters in continuous-time diffusion models with discrete samples.

In econometric literature, many models of interest require multivariate specification, especially in macroe-

conomic analysis. Unlike in the univariate case where every diffusion is reducible, the reducibility of mul-

tivariate diffusion depends on the specification of its variance matrix (Ait-Sahalia, 2007). Therefore, the

multivariate models are not obtained as extending the univariate models by replacing the scalars by matrices.

With a reducible continuous-time diffusion, an expansion can be computed for the transition density of such

diffusion by computing the density of the transformed diffusion and then transforming it back to the contin-

uous-time diffusion, while irreducible diffusions would involve a more complex process (see Ait-Sahalia,

2007 for details).

In the estimation of multivariate models, the identification of the parameter vector could be problematic when

the continuous time Markov process is not reversible, which would cause the aliasing problem (discussed in

1.2). One potential solution would be restricting the continuous time parameter matrix to have no complex

eigenvalues and no confluence in the eigenvalues (McCrorie, 2009). This restriction, however, rules out

time series with cyclical behaviour or trend behaviour. Another issue associated with multivariate case is the

controllability problem, where the covariance matrix estimator is not positive semi-definite. For example,

Barndorff-Nielsen, Lunde and Shephard (2011) extended the univariate model to a multivariate model for

modelling time-varying financial volatility, which requires removing the effects of non-synchronous trading

as well as the covariance matrix estimator to be positive semi-definite. The authors show that the univariate

realised kernel estimator converges at a faster rate than the multivariate realised kernel estimator. However,

the former relies on the assumption that the noise is white noise, which rules out tick-by-tick data, while the

latter allows for a general form of noise, which can be applied to tick-by-tick data. Moreover, the conver-

gence rate of the multivariate estimator enables one to construct a positive semi-definite estimator, which is

not the case in the univariate case.

One popular development in continuous timemodelling is in linear-in-the-variablesmodels, where the bench-

mark work is by Bergstrom. In particular, linear-in-the-variables models are common (and perhaps popular)
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in estimating continuous time models based on the exact discrete time methods, which is also the focus of this

thesis. The linear models make it possible to estimate (continuous time) parameters via a likelihood function

derived based on the transition probability density of the discrete data (McCrorie, 2009). In the univariate

case (see in 2.6 as an example), the analytical solution of the maximum likelihood estimator (MLE) is equiv-

alent to the OLS estimator; while in the multivariate case, the analytical solution of the MLE is obtained

by evaluating (maximizing) the log-likelihood function derived from the transition probability density of the

discrete data.

From the practitioners' prospective, linear models may have certain limitations in capturing more extreme

events such as jumps and asymmetric adjustments across cycles (Martin, Hurn and Harris, 2013). The non-

linear behaviour might be captured by models with nonlinearities such as threshold time series models, bi-

linear models and Markov switching models. In continuous time econometrics literature, many financial

(and macroeconomic) time series are modelled in the nonlinear form, while in many nonlinear models, the

transition density and log-likelihood function cannot be written in closed form (McCrorie, 2009). However,

on the other hand, the alias problem may be less of an issue with small system nonlinear (in the parameters)

continuous time models. Although the focus of this thesis is on the theoretical framework of estimating linear

continuous time models with unequally-sampled discrete data based on the exact method, these specification

issues may be considered in extended work, particularly in empirical work.

As discussed above (in 1.5), the irregularity in the sampling intervals may impose some challenges on for-

mulating and estimating continuous time models via the exact discrete time model, such as time-varying

coefficients, which occur due to the variation in the sampling intervals, and the covariance matrix does not

converge (which may cause additional computational cost), unlike in the equally sampled case. In the con-

tinuous time literature, especially in the high-frequency econometrics, there are several studies addressing

the issue of unequally spaced data. One important empirical application of high-frequency unequally spaced

data is in the realized measures, which use the intra-day price observations to measure and forecast the un-

observable asset volatility (Corsi, Peluso and Audrino, 2015). When the price behaves like a continuous

Brownian semimartingale, the integrated variance of a Brownian motion can be approximated by the sum of
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a large number of intra-day squared returns. Corsi, Peluso and Audrino (2015) pointed out that the standard

realized covariance measures may generate attenuation bias when the irregularity in the sampling intervals

is not taken into account; and the bias increases with sampling frequency. The authors proposed a Kalman

Filter state space approach to address this (asynchronicity) problem by treating the the irregularly spaced data

as synchronous ultra-high-frequency data with missing observations. The Kalman smoother and expectation

maximization (KEM) approach estimator is robust to both asynchronicity and microstructure noise, which

is feasible on large dimensions as well. In a related work, Phillips and Yu (2009b) applied the realized mea-

sures to estimate integrated volatility based on a flat trading model, which incorporates flat trading features

into an efficient price process. To deal with samples that are intermittently observed (observed at random

times) at high frequency, the authors extended the Stopping Time model based on the work of Mykland and

Zhang (2006) and Jacos (1993) by allowing for the stopping time scheme (sampling points) to be random and

depend on past prices. Such models may perform well in removing the effect of noise when high-frequency

data with random sampling intervals are employed. The irregular sampling intervals in high-frequency data

could appear in non-synchronous trading, where any two assets rarely trade at the same instant. Barndorf-

f-Nielsen, Lunde and Shephard (2011) noted that the irregularly spaced and non-synchronous trading is a

distinctive feature of multivariate financial data. The authors proposed a multivariate kernel for estimat-

ing time-varying financial volatility and the estimator, which can be applied to deal with non-synchronous

trading, presents good properties, including consistency and asymptotic mixed Guassainity, the guarantee of

positive semi-definite and being robust to measurement errors. More recently, Dias, Fernandes and Scher-

rer (2021) investigated how the standard continuous time price discovery measures from discretely sampled

(high-frequency) prices vary with the sampling interval via the Information share (IS) and Component share

(CS) measures. Under the exact discretization, the CS measure is invariant to sampling intervals, which

indicates the continuous time price discovery model fits the discrete data well. In addition, the authors show

that continuous time models may be more appropriate for estimating based on very high frequency data.

The method in this chapter offers the possibility to address the issue of high-frequency unequally spaced

data in continuous time modelling based on the exact discrete time representation as an alternative approach.

The analysis of high-frequency unequally spaced data is outside the scope of this thesis, but it would be an
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interesting (and potentially important) extended work in the future.

1.7 About this Thesis

The aim of this thesis is to derive the exact discrete time representations of multivariate continuous time

models with unequally spaced data. The underlying continuous time models are of first order and the in-

volved data are either all stocks, or all flows, or a mixture of stocks and flows. These methods, alternative

to the Kalman filter methods, are applicable to both stationary processes and nonstationary processes under

a certain weak assumption. The theoretical framework indicates that with unequally spaced data, given that

the underlying continuous time models have constant coefficients and homeskedastic disturbances, the ex-

act discrete time representations exhibit more complicated properties such as time-varying coefficients and

heteroskedastic moving average disturbances (which arise due to the irregularity in sampling intervals). In

addition, theMonte Carlo evidences indicate that there are gains to be made in the estimation, such as smaller

estimation bias, when the irregular sampling intervals are correctly accounted for. The thesis is organised as

follows:

Chapter 2 derives the exact discrete time representation of continuous time models with stocks, flows and

mixed data. The continuous time model is in the form of a first-order multivariate system with deterministic

time trends. Exact discrete time representations are provided for the three main cases of interest, where the

observed vector is comprised purely of stock variables, purely of flow variables, or of a mixture of both

stocks and flows. For stocks, the exact discrete time representation follows a VAR(1) process with serially

uncorrelated heteroskedastic disturbances; while for flows or mixed data, the exact discrete time represen-

tation follows a VARMA(1, 1) process with moving average heteroskedastic disturbances. In all cases, the

exact discrete time representation has time-varying coefficients and heteroskedastic disturbances although

the underlying continuous time system is time invariant and has homeskedastic disturbances. These charac-

teristics arise mainly due to the irregularity of the observation interval. Results from a simple Monte Carlo

simulation indicates improvement in estimate properties when the unequal sampling intervals are correctly

measured.
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Results in Chapter 2 require the underlying continuous time system to be stationary with flow variables or

mixed data. Such restrictions would limit the applications to non-stationary systems such as unit roots and

cointegration. Chapter 3, therefore, provides an extended work on deriving the exact discrete time repre-

sentation of non-stationary continuous time models with unequally spaced data. This chapter presents an

approach to derive the exact discrete time model with flows, which does not require the continuous time

coefficient matrix to be non-singular hence the results can be applied to both stationary and non-stationary

processes. For mixed data, the result relies on a weak assumption that a sub-matrix of the continuous time co-

efficient matrix to be non-singular, which unfortunately rules out cointegration in stock variables. Still, this

approach provides broader applications compared to that in the previous chapter. Following the theoretical

work, a Monte Carlo simulation is conducted, which estimates a cointegrated continuous time system with

unequally spaced flows. Simulation evidence suggests gains (reduced estimation bias etc.) from correctly

accounting for the unequal sampling intervals.

Chapter 4 presents some empirical applications of the theoretical models provided in the previous two chap-

ters. Based on the work of the previous two chapters, this chapter presents the Gaussian estimation of con-

tinuous time models with unequally spaced macroeconomic data, aiming to illustrate gains from accounting

for the unequal sampling intervals in reducing estimation bias. This chapter considers two cases - a uni-

variate model with a stock variable (vacancy stock) and a multivariate (bivariate) model with flow variables

(vacancy inflow and outflow). The data are reported labour market vacancies, whose count dates are not

made at regular frequency. The empirical results show that the parameter estimates are different when ac-

counting for the unequal sampling intervals compared to the approach that assumes data are equally spaced.

In addition, the Monte Carlo simulation evidence suggests that estimation bias is smaller when accounting

for the unequally spaced intervals, indicating potential gains in estimation when the appropriate approach is

applied. Especially for the model with flow variables, the bias in parameter estimates is obviously smaller

under the appropriate approach. Even with relatively small variation in sampling intervals, there are gains

to be made by incorporating the correct discrete time representation of the continuous time models. These

evidences support the argument that the unequal spacing should be taken into account in the estimation pro-

cedure. Finally, Chapter 5 briefly summerizes the main results and contributions in this thesis, in addition to
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discussing the limitations and suggestions for further research.
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2 Discrete Time Representation of Continuous Time Models with Un-

equally Spaced Stocks, Flows and Mixed Data

This chapter deals with estimation of continuous time systems with data that are observed at unequally spaced

intervals. Exact discrete time representations are provided for the three main cases of interest, where the ob-

served vector is comprised purely stock variables, purely flow variables, or of mixed stocks and flows. In

all cases, the exact discrete time representations exhibit time-varying coefficient and heteroskedastic dis-

turbances. With stock variables, the exact discrete time representation follow a VAR(1) process, while the

discrete time representation follow a VARMA(1, 1) process with flow variables or mixed stocks and flows.

Results of some Monte Carlo simulation are reported that attempt to examine the estimate properties when

the unequal sampling intervals are correctly measured. Evidence from simulation indicates that estimates

have better properties from the exact discrete time model where the irregularity of sampling intervals are

correctly accounted for.
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2.1 Introduction

The major technical issue for modelling in continuous time models, perhaps, is the discrepancy between the

models, which are defined in continuous time, and the available data, which are observed in discrete time.

This requires for econometric estimation methods for fitting continuous time models with discrete time data.

The general solution is to obtain the discrete form of the continuous time models to fit the data.

One commonly used approach is to approximate the likelihood of the continuous time models (see Phillips

and Yu, 2009 for an overview of the approximation scheme). This approach provides accurate approximation

only when data frequency is high (when observation interval is small) since ignoring the higher-order term

in the discrete model does not cause much information loss. Whereas the exact discrete time representation,

as a good alternative to approximation methods, allows one to obtain estimate (of parameters) of a contin-

uous time model with good properties regardless of data frequency (Chambers, 1999). Recent literature in

modelling in continuous time shows a favour of the latter approach.

A benchmark research on this problem is done by Bergstrom (1983) in which he provided derivation of ex-

act discrete time representation of a closed high-order continuous time system with stocks, flows and mixed

sample, respectively. The approach to deriving the exact discrete time models was later applied to estimate

non-stationary higher-order continuous systems (see Bergstrom, 1985; and Chambers, 1999 as representa-

tive research); and to open higher-order continuous time dynamic models where exogenous variables were

incorporated (see Bergstrom, 1986; and Chambers, 1991). Further, Chambers (2009) presented the exact dis-

crete representation of cointegrated continuous time systems with mixed sample. More recently, Thornton

and Chambers (2013) extended the work on continuous time dynamic models to estimating continuous time

autoregressive moving average (CARMA) process with discrete data (see also in Chambers and Thornton,

2012).

Existing research has shown great interests in estimation of continuous time models, as well as applications

of continuous time models. In financial markets, for instance, continuous time models are used in modelling

asset and option prices, measuring stochastic volatilities and also in forecasting post-sample observations

(see, for example; Bergstrom, 1989; and Robinson, 1977b). In addition to analysis on financial data, contin-
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uous time models have found various applications in macroeconomics. For instance, Bergstrom, Nowman

and Wymer (1992) provided the first application of the exact Gaussian estimation methods for higher-order

continuous time models to a macroeconometric model with mixed sample.

Current literature on continuous time models has focused greatly on estimating models with data observed at

equally spaced intervals or even at the same frequency, while in many time series, the observation interval is

not constant over time as pointed out in Robinson (1977b). For example, observation intervals may vary with

the variation in the length of calendar months which is common in monthly data. Additionally, irregularity in

observation intervals may occur in “jittered” sampling when there are small random deviations in the sample

intervals. This phenomenon is more common in financial data especially when data frequency is high.

In Robinson's (1977b) paper he briefly presented a discrete time AR(1) model with stock variables observed

at unequally spaced intervals and argued the potential for modelling irregularly sampled time series. This

paper only considered the univariate case for a stock variable, however, he did not continue to work on the

unequally spaced data in the context of continuous time modelling, although he pointed out the possible

extensive work on investigating irregular intervals in the sample in a more recent paper (Robinson, 2009).

Nevertheless, little work has been done in addressing this problem properly. Deriving the exact discrete time

representation of the continuous time models with unequally spaced data, given the length of observation

intervals are known, looks a feasible research to fill this gap in literature. Such models may potentially pro-

vide estimate that has better properties; and may be applied to address a variety of problems, for instance, in

prediction (forecasting), which is commonly used in financial analysis.

Until now the sample intervals in discrete time models are treated as equal, while observations in some data

are not equally spaced hence the sample intervals are mis-measured. Giving that the discrete time parameter

is a function of the observation interval, if the sample interval is mis-measured, estimation using such mod-

els could be (more) biased. One feasible solution to improve estimation accuracy is to derive the discrete

time model in which the irregular sampling intervals are correctly measured. The key to deriving suitable

discrete time representations is to write the model in the form such that observation intervals are allowed to

vary across observations. Inspired by Robinson's (1977b) work, this chapter extends his work on estimating
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unequally spaced time series based on the exact discrete method to multivariate cases as well as flow data

and a mixture of stocks and flows. In particular, the discretization of the continuous time models with mixed

sample is an extended work based on an earlier work by Agbeyegbe (1987), which is also a benchmark to this

chapter. Agbeyegbe (1987) provided the exact discrete time model of a first-order continuous time system

with equally spaced mixed sample, while this chapter modified the model by allowing for the sampling inter-

vals to vary across observation, where the equally spaced data is merely a special case. Results suggest that

the discrete time model follows a heteroskedastic VAR(1) process with time-varying coefficients with stocks

only, the discrete time disturbance vector is heteroskedastic but serially uncorrelated. While with flows or

mixed samples the discrete time model follows a VARMA(1, 1) process of order one and the discrete time

disturbance vector is a heteroskedastic moving average process.

A simple Monte Carlo study is conducted to examine whether the model with unequally spaced data out-

performs the model with equally spaced data, giving that the data are unequally spaced whose intervals are

known and only stocks. The results indicate that when observation intervals are measured correctly, the

estimates of continuous time parameters from the model with unequally spaced data seem to have better

properties than the estimates of continuous time parameters from the model with equally spaced data.

Although the main focus of the chapter is to provide a theoretical framework of derivation of the exact dis-

crete time representation of a first-ordermultivariate continuous time vector autoregressive (CVAR(1))model

with unequally spaced data, the results may be broadly applied in macroeconomics and finance, where many

time series are not observed at a regular basis. In particular, the CVAR specification might be more directed

towards macroeconomic analysis where low-frequency data modelling is still dominating (McCrorie, 2009).

However, this typical specification may have limited applications in finance since the small-order nonlinear

continuous time models are preferred in measuring high-frequency financial time series. As discussed in 1.6,

the exact discrete approach could face certain limitations, including the aliasing problem with multivariate

models and the lack of guarantee that the discrete time covariance matrix is positive semi-definite, which

may cause the controllability problem. In the exact discrete model, coefficients are time varying, which oc-

cur entirely due to the variation in the sampling intervals; and the discrete time covariance is not converging,
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which may impose some computational complexities. The aliasing problem may be solved by modelling in

discrete time models, which, however, suffer from a lack of time invariance (McCrorie, 2009; Chambers,

McCrorie & Thornton, 2017). Alternatively, as discussed in McCrorie (2009), the aliasing problem may

be solved by imposing the restriction on the continuous-time coefficient matrix such that the matrix has no

complex eigenvalues and no confluence in the eigenvalues. This unfortunately limits the applications to time

series with cyclical or trend behaviour.

Despite some limitations of the exact discrete approach in the continuous time estimation, this chapter offers

a potentially important alternative to the Kalman filter method for estimation based on unequally spaced data.

The Kalman filter method imposes less restriction with transition, while the discretization is an approxima-

tion. The exact discrete method requires replacing the unobservable terms, which imposes more restrictions,

while the discretization is exact rather than being an approximation. The Kalman filter approach seem to

provide a good method for estimating continuous time models with unequally spaced data, which has been

regarded as an advantage over the exact discrete approach (see discussions in 1.3.2). Nevertheless, the results

of this chapter indicate that with unequally spaced data it is also possible to estimate continuous time models

using the exact discrete time model. This may be particularly attractive to mixed frequency data since the

discretization based on the exact discrete method is not an approximation, and one does not need to worry

about different frequency.

The chapter is organised as follows: Section 2.2 briefly presents the continuous time model and its solution.

Section 2.3 derives the exact discrete time representation of the continuous time model with stock variables

and the result is presented in Theorem 2.1. Section 2.4 presents the derivation of discrete time form of the

continuous time model with flow variables, while Section 2.5 derives the discrete time model from a contin-

uous time model where data are mixed of stocks and flows. Results of Section 2.4 and 2.5 are presented in

Theorem 2.2 and 2.3, respectively. Then in Section 2.6, a Monte Carlo simulation is conducted on testing

the estimation performance of models with unequally spaced data and with equally spaced data, respectively.

Section 2.7 concludes the main results and briefly discusses some possible further research questions.
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2.2 The Model and its Solution

This section briefly reviews the solution of the continuous time model in Bergstrom (1983, 1984) on which

the methods of this chapter are based. Consider the system of stochastic differential equations where an

intercept and a deterministic time trend are included:

dx(t) = [µ+ γt+Ax(t)]dt+ ζ(dt), (2.1)

where x(t) is an (n × 1) vector of random processes, µ is an (n × 1)vector of unknown constants, γt is an

(n × 1) vector of deterministic time trend with γ being the unknown slope and A is an (n × n) matrix of

unknown coefficients. The disturbance vector, ζ(dt), is assumed to be a vector stochastic process which has

the following properties:

Assumption 2.1.

E[ζ(dt)] = 0

E[ζ(dt)ζ(dt)′] = Σdt,

where Σ is an unknown symmetric positive definite matrix and

E[ζi(∆1)ζj(∆2)
′] = 0,

for i, j = 1, 2, ..., n; i ∕= j; and ∆1 ∩∆2 = ∅.

The system (2.1) is loosely described as a closed-form linear system of first order stochastic differential

equations. Since the derivative (d/dt)X(t) is not well defined, system (2.1) is not mean square differentiable.

An interpretation of system (2.1) is to take integration of system (2.1) over the interval from t1 to twith t1 < t,

from which we obtain:

x(t)− x(t1) = A

! t

t1

x(r) dr +

! t

t1

[µ+ γr] dr +

! t

t1

ζ(dr), (2.2)

where
" t

t1
ζ(dr) = ζ(t1, t].

Conditional on x(0), a predetermined boundary condition, the solution to (2.1) is given by:

x(t) =

! t

0

e(t−r)A ζ(dr) + etAx(0) +

! t

0

e(t−r)A[µ+ γr] dr, (2.3)

where etA =
#∞

j=0(j!)
−1(tA)j for any square matrix A.
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2.3 Discrete Time Representation of Continuous Time Model with Stocks

In this section, a first order system with a sample of observations at discrete points of time is concerned.

We shall consider a system that only includes stock variables x(ti) = [x1(ti), x2(ti), ..., xn(ti)]
′, that are

observed at each discrete point of time ti, with i = 1, 2, ..., T . The sample interval is defined as δi = ti−ti−1

for i = 1, 2, ..., T , which might not be equal to unity.

The system of stock variables, based on solution to system (2.1), can be written as

x(ti) =

! ti

0

e(ti−r)A ζ(dr) + etiAx(0) +

! ti

0

e(ti−r)A[µ+ γr] dr, (2.4)

with boundary conditions x(0) = α for t0 = 0 and α is any constant vector such that at time t = 0, the

observation x(0) is pre-determined.

Given that Assumption 2.1 is satisfied, the exact discrete time representation of system (2.4) is given by

Theorem 2.1.

Theorem 2.1. Let x(t) be generated by (2.1). Then, under Assumption 2.1, subject to the boundary condition,

the discrete time data satisfy

x(ti) = eδiAx(ti−1) + µi + γiti + η(ti), i = 2, ..., T. (2.5)

E[η(ti)] = 0,

E[η(ti)η(ti)
′] = Ωi =

! δi

0

[erAΣerA
′
]dr,

E[η(ti)η(tj)
′] = 0 for i ∕= j,

where

µi = Giµ−Hiγ,

γi = Giγ,
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Gi =

! δi

0

esA ds,

Hi =

! δi

0

esAs ds,

Proof. The derivation of the exact discrete model of (2.4) is straightforward. By partitioning (2.4)

x(ti) =

! ti−1

0

e(ti−r)A ζ(dr) +

! ti

ti−1

e(ti−r)A ζ(dr) + etiAx(0)

+

! ti−1

0

e(ti−r)A[µ+ γr] dr +

! ti

ti−1

e(ti−r)A[µ+ γr] dr

= eδiA
$! ti−1

0

e(ti−1−r)A ζ(dr) + eti−1Ax(0) +

! ti−1

0

e(ti−1−r)A[µ+ γr] dr

%

+

! ti

ti−1

e(ti−r)A[µ+ γr] dr +

! ti

ti−1

e(ti−r)A ζ(dr)

= eδiAx(ti−1) +

! ti

ti−1

e(ti−r)A[µ+ γr] dr +

! ti

ti−1

e(ti−r)A ζ(dr), (2.6)

we obtain (2.5) with

ci =

! ti

ti−1

e(ti−r)A[µ+ γr] dr,

=

! δi

0

esA dsµ+

! δi

0

esA(ti − s) dsγ

=

! δi

0

esA dsµ−
! δi

0

esAs dsγ +

! δi

0

esA dsγti

= µi + γiti,

and

η(ti) =

! ti

ti−1

e(ti−r)A ζ(dr).

The properties of the discrete time disturbance vector η(ti) are derived as follows:
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The mean of vector η(ti) is obtained as

E[η(ti)] = E

&! ti

ti−1

e(ti−r)A ζ(dr)

'

=

! ti

ti−1

e(ti−r)A E[ζ(dr)]

= 0.

The variance of η(ti) is obtained as

E[η(ti)η(ti)
′] = E

&! ti

ti−1

e(ti−r)A ζ(dr)

'&! ti

ti−1

e(ti−r)A ζ(dr)

'′

=

! ti

ti−1

[e(ti−r)AΣe(ti−r)A′
] dr

=

! δi

0

[erAΣerA
′
]dr.

The autocovariances of η(ti) is obtained as

E[η(ti)η(tj)
′] = E

&! ti

ti−1

e(ti−r)A ζ(dr)

'&! tj

tj−1

e(tj−r)A ζ(dr)

'′

= 0,

for i ∕= j. Since i ∕= j implies δi ∕= δj , and hence [ti−1, ti] ∩ [tj−1, tj ] = ∅. End of proof.

As shown in Theorem 2.1, the discrete time disturbances are functions of vector ζ(dt). The properties of

the discrete time disturbance vector η(ti) depend on the properties of continuous time disturbance vector

ζ(dt) in system (2.1). Note that the original form of the discrete time representation of a continuous time

process was defined in Robinson (1977b), in which he only presented a univariate first-order process of stock

variable without any intercept or time trend (i.e. n = 1 and µ = γ = 0). Theorem 2.1 extends his result

to a more general case where a multivariate process with an intercept term and a deterministic time trend is

involved.

The discrete time disturbance vector η(ti) in the model with stock variables is a heteroskedastic serially

uncorrelated process. It has zero mean, heteroskedastic variance as the variances Ωi changes across obser-

vations with the sample interval δi, and zero covariance. The discrete time model with stocks exhibits a
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heteroskedastic VAR(1) process with time-varying coefficients. Further more, when n = 1, (2.1) becomes

a univariate continuous time series where µ, γ and a are scalars and the system contains only one variable

x(t). When µ = γ = 0, (2.1) becomes a system of purely stochastic differential process without any drift or

trend. The derivation of the exact discrete time model with stock variables does not require the assumption

that the matrix A is non-singular, which suggest that Theorem 2.1 is valid also for non-stationary process

(i.e. systems that contain unit roots and cointegration ).
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2.4 Discrete Time Representation of Model with Flows

This section presents the derivation of the exact discrete time representation of a first order system with

a sample of unequally spaced integral observations 1, generated by (2.1). We shall consider a system that

includes only flow variables - a sample of random vectors [xt1 , xt2 , ..., xtT ] observed as aggregations over

discrete intervals [ti−1, ti]

xti =

! ti

ti−1

x(r) dr, (2.7)

for i = 1, 2, ..T , and x(ti) is the solution of the model (as presented in section 2.2).

In order to derive the exact discrete model, it is convenient to make an assumption on the coefficient matrix

A such that

Assumption 2.2. The matrix A is non-singular.

Note that Assumption 2.2 rules out any systems that contain unit roots, for example I(1) systems or cointe-

grated systems. The result suggested in Theorem 2.2 is valid for only stationary processes.

Given that Assumption 2.1 and 2.2 are satisfied and the boundary condition holds, the exact discrete model

is given by Theorem 2.2.

Theorem 2.2. Let x(ti) be generated by (2.1). Then, under Assumption 2.1 and 2.2, subject to the boundary

condition, the discrete time observations on the flow variables satisfy

xti = eδiAxti−1
+m0i +m1iti + ξti , i = 2, . . . , T, (2.8)

E[ξti ] = 0,

E[ξtiξ
′
ti ] = Vi =

! δi

0

Φi(r)ΣΦ
′
i(r) dr +

! δi−1

0

Ψi(r)ΣΨ
′
i(r) dr,

E[ξtiξ′tj ] =

(
))))))*

))))))+

Pi =
" δi−1

0
Ψi(r)ΣΦ

′
i(r) dr if j = i− 1

Li =
" δi
0

Φi(r)ΣΨ
′
i(r) dr if j = i+ 1

0 otherwise,

1I am grateful to my supervisor for suggesting the method for deriving the exact discrete time model with flows.



28

where

m0i = αiµ− βiγ,

αi =

! δi

0

Φi(s) ds+

! δi−1

0

Ψi(s) ds,

βi =

! δi

0

Φi(s) sds+

! δi−1

0

Ψi(s) sds+

! δi−1

0

Ψi(s) dsδi,

m1i =

! δi

0

Φi(s) dsγ,

Φi(r) = A−1[erA − I],

Ψi(r) = A−1[eδiA − erA].

Proof. Integrating (2.1) over the interval (ti−1, ti] yields

x(ti)− x(ti−1) =

! ti

ti−1

(µ+ γr)dr +Axti +

! ti

ti−1

ζ(dr). (2.9)

But ti−1 = ti − δi and so x(ti) − x(ti−1) = (1 − Lδi)x(ti) = ∆ix(ti) where L denotes the lag operator

and ∆i = 1− Lδi . Applying the operator ∆i to (2.5) we obtain

∆ix(ti) = eδiA∆ix(ti−1) +∆icti +∆iη(ti). (2.10)

But∆ix(ti−1) = ∆iL
δix(ti) = Lδi∆ix(ti), and so (2.10) can be written

(I − eδiALδi)∆ix(ti) = ∆icti +∆iη(ti). (2.11)

Applying the operator (I − eδiALδi) to (2.9) and using (2.11) to substitute for the term on the left-hand-side

we obtain

∆icti +∆iη(ti) = (I − eδiALδi)

! ti

ti−1

(µ+ γr)dr + (I − eδiALδi)Axti + (I − eδiALδi)

! ti

ti−1

ζ(dr),
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which can be re-written in the form

Axti = eδiAAxti−1 +∆icti − (I − eδiALδi)

! ti

ti−1

(µ+ γr)dr

+ ∆iη(ti)− (I − eδiALδi)

! ti

ti−1

ζ(dr). (2.12)

But the matrices A and eδiA commute i.e. AeδiA = eδiAA and so

xti = eδiAxti−1 +A−1

,
∆icti − (I − eδiALδi)

! ti

ti−1

(µ+ γr)dr

-

+ A−1

,
∆iη(ti)− (I − eδiALδi)

! ti

ti−1

ζ(dr)

-
(2.13)

which, upon collection of terms, is the required equation (2.8).

In (2.13), uing ti−1 = ti − δi we have

gi = A−1

! ti

ti−1

(e(ti−r)A − I)(µ+ γr)dr +A−1

! ti−1

ti−2

(eδiA − e(ti−1−r)A)(µ+ γr)dr,

=

! δi

0

Φi(s) dsµ+

! δi−1

0

Ψi(s) dsµ−
&! δi

0

Φi(s) sdsγ +

! δi−1

0

Ψi(s) sdsγ

'

+

! δi

0

Φi(s) dsγti +

! δi−1

0

Ψi(s) dsγ(ti − δi)

= m0i +m1iti,

and

ξti =

! ti

ti−1

Φi(ti − r) ζ(dr) +

! ti−1

ti−2

Ψi(ti−1 − r) ζ(dr).

Properties of the discrete time disturbances ξti are characterized as follows.

The mean of the disturbance vector is obtained as

E[ξti ] = E

&! ti

ti−1

Φi(ti − r) ζ(dr) +

! ti−1

ti−2

Ψi(ti−1 − r)

'

=

! ti

ti−1

Φi(ti − r)E[ζ(dr)] +

! ti−1

ti−2

Ψi(ti−1 − r)E[ζ(dr)]

= 0.
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The variance of the disturbance vector is obtained as

E[ξtiξ
′
ti ] = E

&! ti

ti−1

Φi(ti − r) ζ(dr) +

! ti−1

ti−2

Ψi(ti−1 − r)

'

×
&! ti

ti−1

Φi(ti − r) ζ(dr) +

! ti−1

ti−2

Ψi(ti−1 − r)

'′

=

&! ti

ti−1

Φi(ti − r)ΣΦ′
i(ti − r) dr

'

+

&! ti−1

ti−2

Ψi(ti−1 − r)ΣΨ′
i(ti−1 − r) dr

'

=

&! δi

0

Φi(r)ΣΦ
′
i(r) dr

'
+

&! δi−1

0

Ψi(r)ΣΨ
′
i(r) dr

'
.

The autocovariance of the disturbance vector is expressed as

E[ξtiξ
′
tj ] = E

&! ti

ti−1

Φi(ti − r) ζ(dr) +

! ti−1

ti−2

Ψi(ti−1 − r)

'

×
&! tj

tj−1

Φj(tj − r) ζ(dr) +

! tj−1

tj−2

Ψj(tj−1 − r)

'′

.

If j = i− 1, then the covariance becomes

E[ξtiξ
′
ti−1

] =

&! ti−1

ti−2

Ψi(ti−1 − r)ΣΦ′
i(ti−1 − r) dr

'

=

&! δi−1

0

Ψi(r)ΣΦ
′
i(r) dr

'
.

If j = i+ 1, then the covariance becomes

E[ξtiξ
′
ti+1

] =

&! ti

ti−1

Φi(ti − r)ΣΨ′
i(ti − r) dr

'

=

&! δi

0

Φi(r)ΣΨ
′
i(r) dr

'
.

End of proof.

The properties of the discrete time disturbance vector ξti depend on the properties of continuous time dis-

turbance vector ζ(dt) in system (2.1). Obviously, the discrete disturbance vector ξti has moving average
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(MA) properties since it has zero mean, heteroskedastic variance and are correlated with one lead and one

lag respectively.

The discrete time model with flow variables follows a heteroskedastic VARMA(1, 1) process with time-vary-

ing coefficients. When allowing for irregularity in observation intervals, the discrete time model appears to

exhibit more complicated properties such as the coefficients are no longer constant but change with obser-

vations over time (time-varying), the variance of the discrete time disturbances is heteroskedastic in both

stock-variable model and flow-variable model, while the auto-covariance of the disturbances in the model

with flow variables is asymmetric. The derivation of the estimation method requires taking account of time--

varying coefficients, heteroskedastic variance and asymmetric covariance simultaneously.
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2.5 Discrete Time Representation of Models with Mixed Sample

In this section, we shall consider a system that includes both stock variables and flow variables. The fol-

lowing of this section derives the discrete model from a mixed sample, which follows Agbeyegbe's (1987)

procedure. Consider a system includes a sample of observations that contain a mixture of stocks and flows.

The observation can be partitioned into stocks and flows as

x(ti) =

.

//0
xs(ti)

xf (ti)

1

223 , i = 1, 2, ..., T.

Note xs(ti) is a vector of (ns × 1) stock variables and xf (ti) is a vector of (nf × 1) flow variables, with

ns+nf = n. Since both types of variables are observed at the same frequency, the numbers of observations

for stocks and flows are equal. Stock variables are observed at discrete points of time: t = t1, t2, ..., tT ,

while flow variables are observed as intervals over [ti−1, ti], with t = t1, t2, ..., tT .

The system of stock and flow variables, generated by (2.1), is partitioned as

d(xs(t)) = [Assxs(t) +Asfxf (t) + µs + γst]dt+ ζs(dt), (2.14)

d(xf (t)) = [Afsxs(t) +Affxf (t) + µf + γf t]dt+ ζf (dt), (2.15)

where A =

.

//0
Ass Asf

Afs Aff

1

223, µ =

.

//0
µs

µf

1

223, γ =

.

//0
γs

γf

1

223,and ζ(dt) =

.

//0
ζs(dt)

ζf (dt)

1

223.

In order to derive the exact discrete time model, given that assumption 2.1 and 2.2 are satisfied and the

Boundary Condition holds, the result of the exact discrete time representation is valid if the following as-

sumptions on the sub-matrix of matrix A is also valid.

Assumption 2.3. The matrix eδiA − I is non-singular for all i = 1, 2, ..., T ;

Assumption 2.4. The sub-matrix Ass is non-singular.

To derive the discrete time model with a mixture of stocks and flows, it is necessary to define an (n × 1)

random vector zt1 , zt2 , ..., ztn in the form

zti =

.

//0
xs(ti)− xs(ti−1)

" ti
ti−1

xf (r) dr

1

223 , i = 1, 2, ..., T. (2.16)
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The vector zti defined above represents a mixture of stock variables and flow variables. Given that As-

sumption 2.1 to 2.4 are satisfied and the boundary condition holds, the exact discrete time model is given by

Theorem 2.3.

Theorem 2.3. UnderAssumption 2.1 to 2.4, subject to the boundary condition, the randomvectors zt1 , zt2 , ..., ztn

defined by (2.17) satisfy the system

zti = Πizti−1 + kti + εti , (2.17)

E[εti ] = 0,

E[εtiε
′
ti ] = Wi =

! δi

0

[M(r)ΣM(r)′] dr +

! δi−1

0

[N(r)ΣN(r)′] dr,

E[εtiε′tj ] =

(
))))))*

))))))+

Qi =
" δi−1

0
[N(r)ΣM ′(r)] dr if j = i− 1

Ri =
" δi
0
[M(r)ΣN ′(r)] dr if j = i+ 1

0 otherwise,

where

Πi =

.

//0
Π11

i Π12
i

Π21
i Π22

i

1

223 ,

kti =

.

//0
ksti

kfti

1

223 ,

εti =

! ti

ti−1

M(ti − r)

.

//0
ζs(dr)

ζf (dr)

1

223+

! ti−1

ti−2

N(ti−1 − r)

.

//0
ζs(dr)

ζf (dr)

1

223

=

.

//0
εsti

εfti

1

223 ,

Π11
i = [Assθssi +Asfθfsi ][Ass]−1,
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Π12
i = [Assθsfi +Asfθffi ]−Π11

i Asf ,

Π21
i = θfsi [Ass]−1,

Π22
i = θffi −Π21

i Asf ,

ksti = Assqsi +Asfqfi +

! ti

ti−1

[µs + γsr] dr −Π11
i

! ti−1

ti−2

[µs + γsr] dr

kfti = qfi −Π21
i

! ti−1

ti−2

[µs + γsr] dr,

qi = A−1

! ti

ti−1

[e(ti−r)A − I][µ+ γr] dr

+ A−1[eδiA − I]

! ti−1

ti−2

4
e(ti−1−r)A − eδi−1A[eδi−1A − I]−1[e(ti−1−r)A − I]

5
[µ+ γr] dr

=

.

//0
qsi

qfi

1

223 ,

εsti =

! ti

ti−1

ζs(dr) +Assζsti +Asfζfti −Π11
i

! ti−1

ti−2

ζs(dr),

εfti = ζfti −Π21
i

! ti−1

ti−2

ζs(dr),

M(ti − r) =

.

//0
I 0

0 0

1

223+

.

//0
Ass Asf

0 I

1

223

.

//0
Ass Asf

Afs Aff

1

223

−1 .

//0
[e(ti−r)A]ss − I [e(ti−r)A]sf

[e(ti−r)A]fs [e(ti−r)A]ff − I

1

223 ,

N(ti−1 − r) =

.

//0
Ass Asf

0 I

1

223

.

//0
Ass Asf

Afs Aff

1

223

−1 .

//0
[eδiA]ss − I [eδiA]sf

[eδiA]fs [eδiA]ff − I

1

223

×

(
))*

))+

.

//0
[e(ti−1−r)A]ss [e(ti−1−r)A]sf

[e(ti−1−r)A]fs [e(ti−1−r)A]ff

1

223−

.

//0
[eδi−1A]ss [eδi−1A]sf

[eδi−1A]fs [eδi−1A]ff

1

223

×

.

//0
[eδi−1A]ss − I [eδi−1A]sf

[eδi−1A]fs [eδi−1A]ff − I

1

223

−1 .

//0
[e(ti−1−r)A]ss − I [e(ti−1−r)A]sf

[e(ti−1−r)A]fs [e(ti−1−r)A]ff − I

1

223

6
))7

))8

−

.

//0
Π11

i 0

Π21
i 0

1

223 .
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Proof: Integrating (2.1) over the interval [ti−1, ti] obtains

x(ti)− x(ti−1) = A

! ti

ti−1

x(r) dr +

! ti

ti−1

[µ+ γr] dr +

! ti

ti−1

ζ(dr), (2.18)

while the first row of equation (2.18) is

xs(ti)− xs(ti−1) = Ass

! ti

ti−1

xs(r) dr+Asf

! ti

ti−1

xf (r) dr+

! ti

ti−1

[µs + γsr] dr+

! ti

ti−1

ζs(dr). (2.19)

Re-arranging (2.18) as

! ti

ti−1

x(r) dr = A−1[x(ti)− x(ti−1)]−A−1

! ti

ti−1

[µ+ γr] dr −A−1

! ti

ti−1

ζ(dr). (2.20)

Since (2.5) is valid

x(ti) = eδiAx(ti−1) +

! ti

ti−1

e(ti−r)A[µ+ γr] dr +

! ti

ti−1

e(ti−r)A ζ(dr), (2.5)

where

eδiA =

.

//0
[eδiA]

ss
[eδiA]

sf

[eδiA]
fs

[eδiA]
ff

1

223

=

.

//0
I 0

0 I

1

223+ δi

.

//0
Ass Asf

Afs Aff

1

223+ δi
2/2!

.

//0
Ass Asf

Afs Aff

1

223

2

+ ...,

and

e(ti−r)A =

.

//0
[e(ti−r)A]ss [e(ti−r)A]sf

[e(ti−r)A]fs [e(ti−r)A]ff

1

223 .

Subtracting one lag from (2.5) yields

x(ti)− x(ti−1) = eδiAx(ti−1)− eδi−1Ax(ti−2) +

! ti

ti−1

e(ti−r)A[µ+ γr] dr

−
! ti−1

ti−2

e(ti−1−r)A[µ+ γr] dr +

! ti

ti−1

e(ti−r)A ζ(dr)

−
! ti−1

ti−2

e(ti−1−r)A ζ(dr). (2.21)
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Lagging (2.5) for one period yields

x(ti−1) = eδi−1Ax(ti−2) +

! ti−1

ti−2

e(ti−1−r)A[µ+ γr] dr +

! ti−1

ti−2

e(ti−1−r)A ζ(dr). (2.22)

Substituting out x(ti−1) in (2.21) on the right hand side by (2.22) yields

x(ti)− x(ti−1) = [eδiA − I]eδi−1Ax(ti−2) +

! ti

ti−1

e(ti−r)A[µ+ γr] dr +

! ti

ti−1

e(ti−r)A ζ(dr)

+

! ti−1

ti−2

[eδiA − I]e(ti−1−r)A[µ+ γr] dr +

! ti−1

ti−2

[eδiA − I]e(ti−1−r)A ζ(dr),(2.23)

where

eδiA − I =

.

//0
[eδiA]

ss − I [eδiA]
sf

[eδiA]
fs

[eδiA]
ff − I

1

223 .

Lagging (2.18) for one period

x(ti−1)− x(ti−2) = A

! ti−1

ti−2

x(r) dr +

! ti−1

ti−2

[µ+ γr] dr +

! ti−1

ti−2

ζ(dr). (2.24)

Substituting out x(ti−1) in (2.24) by (2.22) yields:

[eδi−1A − I]x(ti−2) = A

! ti−1

ti−2

x(r) dr −
! ti−1

ti−2

[e(ti−1−r)A − I][µ+ γr] dr

−
! ti−1

ti−2

[e(ti−1−r)A − I]ζ(dr), (2.25)

where

e(ti−1−r)A − I =

.

//0
[e(ti−1−r)A]

ss − I [e(ti−1−r)A]
sf

[e(ti−1−r)A]
fs

[e(ti−1−r)A]
ff − I

1

223 .
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Re-arranging (2.25) as

x(ti−2) = [eδi−1A − I]−1A

! ti−1

ti−2

x(r) dr − [eδi−1A − I]−1

! ti−1

ti−2

[e(ti−1−r)A − I][µ+ γr] dr

− [eδi−1A − I]−1

! ti−1

ti−2

[e(ti−1−r)A − I]ζ(dr). (2.26)

Substituting out x(ti−2) in (2.23) by (2.26) yields

x(ti)− x(ti−1) = [eδiA − I]eδi−1A[eδi−1A − I]−1A

! ti−1

ti−2

x(r) dr

− [eδiA − I]eδi−1A[eδi−1A − I]−1

! ti−1

ti−2

[e(ti−1−r)A − I][µ+ γr] dr

− [eδiA − I]eδi−1A[eδi−1A − I]−1

! ti−1

ti−2

[e(ti−1−r)A − I]ζ(dr)

+

! ti

ti−1

e(ti−r)A[µ+ γr] dr +

! ti

ti−1

e(ti−r)A ζ(dr)

+

! ti−1

ti−2

[eδiA − I]e(ti−1−r)A[µ+ γr] dr +

! ti−1

ti−2

[eδiA − I]e(ti−1−r)A ζ(dr).(2.27)

Combining (2.27) with (2.20), obtains

! ti

ti−1

x(r)dr = A−1[eδiA − I]eδi−1A[eδi−1A − I]−1A

! ti−1

ti−2

x(r) dr

− A−1[eδiA − I]eδi−1A[eδi−1A − I]−1

! ti−1

ti−2

[e(ti−1−r)A − I][µ+ γr] dr

− A−1[eδiA − I]eδi−1A[eδi−1A − I]−1

! ti−1

ti−2

[e(ti−1−r)A − I]ζ(dr)

+ A−1

! ti

ti−1

e(ti−r)A[µ+ γr] dr +A−1

! ti

ti−1

e(ti−r)A ζ(dr)

+ A−1

! ti−1

ti−2

[eδiA − I]e(ti−1−r)A[µ+ γr] dr +A−1

! ti−1

ti−2

[eδiA − I]e(ti−1−r)A ζ(dr)

− A−1

! ti

ti−1

[µ+ γr] dr −A−1

! ti

ti−1

ζ(dr)

= Θi

! ti−1

ti−2

x(r) dr + qi + ζti , (2.28)
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where

Θi = A−1[eδiA − I]eδi−1A[eδi−1A − I]−1A

=

.

//0
Θss

i Θsf
i

Θfs
i Θff

i

1

223 ,

qi =

.

//0
qsi

qfi

1

223

is define by (2.17),

ζti = A−1

! ti

ti−1

[e(ti−r)A − I] ζ(dr)

+ A−1[eδiA − I]

! ti−1

ti−2

4
e(ti−1−r)A − eδi−1A[eδi−1A − I]−1[e(ti−1−r)A − I]

5
ζ(dr)

=

.

//0
ζsti

ζfti

1

223 .

Partitioning (2.28) as
! ti

ti−1

xs(r)dr =

! ti−1

ti−2

θssi xs(r) dr +

! ti−1

ti−2

θsfi xf (r) dr + qsi + ζsti , (2.29)

! ti

ti−1

xf (r)dr =

! ti−1

ti−2

θfsi xs(r) dr +

! ti−1

ti−2

θffi xf (r) dr + qfi + ζfti . (2.30)

Lagging (2.19) for one period obtains

xs(ti−1)− xs(ti−2) = Ass

! ti−1

ti−2

xs(r) dr +Asf

! ti−1

ti−2

xf (r) dr

+

! ti−1

ti−2

[µs + γsr] dr +

! ti−1

ti−2

ζs(dr). (2.31)
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Re-arranging (2.31) as

! ti−1

ti−2

xs(r) dr = [Ass]−1[xs(ti−1)− xs(ti−2)]− [Ass]−1Asf

! ti−1

ti−2

xf (r) dr

− [Ass]−1

! ti−1

ti−2

[µs + γsr] dr − [Ass]−1

! ti−1

ti−2

ζs(dr). (2.32)

Substituting out
" ti
ti−1

xs(r)dr and
" ti
ti−1

xf (r)dr in (2.19) by (2.29) and (2.30), respectively, yields

xs(ti)− xs(ti−1) = [Assθssi +Asfθfsi ]

! ti−1

ti−2

xs(r) dr + [Assθsfi +Asfθffi ]

! ti−1

ti−2

xf (r) dr

+ Assqsi +Assζsti +Asfqfi +Asfζfti

+

! ti

ti−1

[µs + γsr] dr +

! ti

ti−1

ζs(dr). (2.33)

Then the object is to eliminate the unobservable term
" ti−1

ti−2
xs(r) dr in (2.33) and (2.30), respectively.

Substituting out
" ti−1

ti−2
xs(r) dr in (2.33) using (2.32)

xs(ti)− xs(ti−1) = [Assθssi +Asfθfsi ][Ass]−1[[xs(ti−1)− xs(ti−2)]

− Asf

! ti−1

ti−2

xf (r) dr −
! ti−1

ti−2

[µs + γsr] dr −
! ti−1

ti−2

ζs(dr)]

+ [Assθssi +Asfθffi ]

! ti−1

ti−2

xf (r) dr +Assqsi +Assζsti +Asfqfi +Asfζfti

+

! ti

ti−1

[µs + γsr] dr +

! ti

ti−1

ζs(dr)

= Π11
i [xs(ti−1)− xs(ti−2)] +Π12

i

! ti−1

ti−2

xf (r) dr + gsi + εsti . (2.34)

Substituting out
" ti−1

ti−2
xs(r) dr in (2.30) using (2.32) yields

! ti

ti−1

xf (r)dr = θfsi [Ass]−1[[xs(ti−1)− xs(ti−2)]

− Asf

! ti−1

ti−2

xf (r) dr −
! ti−1

ti−2

[µs + γsr] dr −
! ti−1

ti−2

ζs(dr)]

+ θffi

! ti−1

ti−2

xf (r) dr + qfi + ζfti

= Π21
i [xs(ti−1)− xs(ti−2)] +Π22

i

! ti−1

ti−2

xf (r) dr + gfi + εfti . (2.35)
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Combining (2.34) and (2.35) obtain.

//0
xs(ti)− xs(ti−1)

" ti
ti−1

xf (r) dr

1

223 =

.

//0
Π11

i Π12
i

Π21
i Π22

i

1

223

.

//0
xs(ti−1)− xs(ti−2)

" ti−1

ti−2
xf (r) dr

1

223+

.

//0
gsi

gfi

1

223+

.

//0
εsti

εfti

1

223 . (2.36)

Properties of vector εti depend on properties of the continuous time disturbance vector ζ(dt) in system (2.1).

The mean of the disturbance vector is obtained as

E[εti ] = 0.

The variance of the disturbance vector is obtained as

E[εtiε
′
ti ] =

! ti

ti−1

[M(ti − r)ΣM(ti − r)′] dr +

! ti−1

ti−2

[N(ti−1 − r)ΣN(ti−1 − r)′] dr

=

! δi

0

[M(r)ΣM(r)′] dr +

! δi−1

0

[N(r)ΣN(r)′] dr.

The autocovariance of the disturbance vector is presented as

E[εtiε
′
tj ] = E

&! ti

ti−1

M(ti − r)ζ(dr)

'&! tj

tj−1

M(tj − r)ζ(dr)

'′

+ E

&! ti

ti−1

M(ti − r)ζ(dr)

'&! tj−1

tj−2

N(tj−1 − r)ζ(dr)

'′

+ E

&! ti−1

ti−2

N(ti−1 − r)ζ(dr)

'&! tj

tj−1

M(tj − r)ζ(dr)

'′

+ E

&! ti−1

ti−2

N(ti−1 − r)ζ(dr)

'&! tj−1

tj−2

N(tj−1 − r)ζ(dr)

'′

.
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If j = i− 1, the autocovariance becomes

E[εtiε
′
ti−1

] =

! ti−1

ti−2

[N(ti−1 − r)]ΣM ′(ti−1 − r)] dr

=

! δi−1

0

[N(r)ΣM ′(r)] dr.

If j = i+ 1, the autocovariance becomes

E[εtiε
′
ti+1

] =

! ti

ti−1

[M(ti − r)]ΣN ′(ti − r)] dr

=

! δi

0

[M(r)ΣN ′(r)] dr.

End of proof.

The exact discrete time model presented in Theorem 2.3 follows a VARMA(1, 1) process, which holds

for stationary process of first order. Similar to the discrete disturbance vector in the flow variable case, the

discrete time vector εti forms a MA(1) process of order one with zero mean, heteroskedastic variance and are

correlated with one lead and one lag respectively. Interestingly, the covariance of vector εti is time-varying,

whose value depends the length of the observation interval.
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2.6 A Monte Carlo Simulation Study

To test whether the discrete time model with unequally spaced sample improves estimation performance

(such as smaller estimation bias), a Monte Carlo study is conducted. That is, given an unequally spaced

sample whose intervals are known, would the estimates exhibit better properties when the irregular sampling

intervals are correctly meadured?

This study only concerns the simplest case in which a first-order scalar continuous time model with stock

variable is considered. The main procedure of this study is to simulate a sample of monthly stock data for

a 20-year span with the sample interval varies with the length of calendar month. Then, using the same

simulated data, the study compares estimation results by using the “unequally-sampled” model where obser-

vations are unequally spaced to the estimation results using the “equally-sampled” model where observations

are treated as equally spaced. As has been expected, the simulation results show that the “unequally-sampled”

model provides estimate that has better properties, compared to the “equally-sampled” model. The study also

explores how the parameter estimation results vary with the value of the continuous time parameter a. Both

maximum likelihood estimate (“unequally-sampled” model) and OLS estimate (“equally-sampled” model)

perform well, while the former provides less biased estimations. With non-stationary time series, when the

value of a increases the data explodes at a faster rate, the OLS estimate turn to have poor properties.

2.6.1 A Brief Introduction

This subsection briefly describes the procedure of the Monte Carlo study. We shall consider a simple case:

a first-order scalar continuous time model

dx(t) = ax(t)dt+ ζ(dt), (2.37)

with

ζ(dt) ∼ NID(0,σ2dt).

Only stock variable is included. Let x(t) be observed at a sequence of known unequal time points as x(ti)

with i = 1, 2, ..., T .
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Based on the result suggested in Theorem 2.1, the exact discrete time model of (2.37) is obtained as

x(ti) = eaδix(ti−1) + η(ti), (2.38)

with

η(ti) =

! ti

ti−1

ea(ti−r)ζ(dr).

Next we characterize the properties of the discrete time disturbance η(ti). The mean of η(ti) is obtained as

E[η(ti)] = 0,

while the variance of η(ti) is obtained as

E[η2(ti)] = σ2

! ti

ti−1

e2a(ti−r)ζ(dr)

= σ2(e2aδi − 1)/2a

= σi
2.

We shall then allocate some values to the continuous time parameters a and σ. To explore how the estimation

results vary with the value of a, we allocate a with a range of values from -0.95 to 0.03 (presented in table

1), while σ = 1 in all cases. Note that the results in Theorem 2.1 are valid for also non-stationary process,

so we allow a to take small positive values as well.

In the next step, we shall specify a small sample of stock variable, which includes 240 monthly stocks for

20 year starts from January. The first observation is observed in January, thus its interval is normalised

as 31/30, which equals to 1.03. Whereas the second observation is made in February, whose interval is

thus 0.93 (28/90). Hence the vector of observation intervals for the first 12 observations (first year) is

[1.03, 0.93, 1.03, 1.00, 1.03, 1.00, 1.03, 1.03, 1.00, 1.03, 1.00, 1.03]′, and is repeated 20 times. Note that, to

simplify the estimation procedure, all Februaries are assumed to have 28 days.

We have the sample size n = 240, and discrete time parameters eaδi and σi
2 = σ2(e2aδi − 1)/2a, which is

used to generate data for x(ti). Given the values of a and σ, we are able to calculate the values of the discrete
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time parameters. Then data for x(ti), whose form is given in equation (2.38), is simulated by using a random

generation process. Each sample includes 240 observations and the simulation is repeated for 10,000 times

(namely, 10,000 replications).

The last step is to estimate the continuous time parameters using the data simulated in the previous steps.

The Gaussian estimates of parameters â and σ̂2 is obtained when the Gaussian Log-likelihood function

L(a,σ2) = −(n/2) ln(2π)− 1/2

n9

i=1

lnσ2
i − 1/2

n9

i=1

[x(ti)− eaδix(ti−1)]
2/σ2

i

is maximized. Note that the Gaussian likelihood function is a function of the continuous time parameters.

After the 10,000 replications we obtain the distribution of the maximum likelihood estimates. The closer the

mean of the estimates E[â] and E[σ̂] to their “true values” (a = −0.95, ..., 0.03 and σ = 1), the better the

estimate properties are.

The next object is to estimate the “equally-sampled” model in which observations are treated as equally

spaced by using the same data simulated before. If the “unequally-sampled” model improves estimation

accuracy, we would expect the values of the estimates from the “unequally-sampled” model to be closer to

their “true values”, compared to the values of the estimates from the “equally-sampled” model.

The exact discrete model assuming equally spaced sample is obtained as

x(t) = φx(t− 1) + ε(t), (2.39)

where

φ = ea,

and

ε(t) =

! t

t−1

ea(t−r)ζ(dr).

The discrete observation interval h = t − (t − 1) = 1 for all observations. The mean of the discrete time
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disturbance ε(t) is

E[ε(t)] =

! t

t−1

ea(t−r)E[ζ(dr)]

= 0,

and the variance of ε(t) is

E[ε2(t)] = σ2

! t

t−1

e2a(t−r)dr

= σ2

! 0

1

e2ardr

= σ2(e2a − 1)/2a

= σ2
ε .

Note ε(t) is white noise and x(t) is an AR(1) process. The variance of ε(t) depends on the continuous time

autoregressive parameter a. With stock variables, (2.48) could be estimated consistently byOLS, which gives

the same estimates as maximum likelihood estimate. Note this gives estimates of the discrete parameters φ̂

and σ̂ε. Then the estimates of the continuous time parameters a and σ are obtained as

â = ln φ̂,

and

σ̂2 = 2âσ̂2
ε /(e

2â − 1).

The next subsection discusses the Monte Carlo simulation results.

2.6.2 Simulation Results

As expected, by considering irregular observation intervals, the model provides more accurate estimates.

The Maximum likelihood estimate (based on “unequally-sampled” model) has better properties compared to

OLS estimate (based on “equally-sampled” model). Table 2.1 presents bias and standard errors (in parenthe-

sis) of each estimator under different values of a while σ always equals to 1. â1 and σ̂2
1 represents maximum
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likelihood estimators of a and σ2, respectively; while â2 and σ̂2
2 are the OLS estimators of a and σ2, respec-

tively.

With stationary time series (when a takes negative values), maximum likelihood estimate is obviously less

biased. Both maximum likelihood and OLS estimates underestimate a (as suggested by the negative sign)

while overestimate σ2. In particular, estimation bias of OLS estimator σ̂2
2 , is significantly larger than that

of maximum likelihood estimator σ̂2
1 . With non-stationary process, both estimates present similar results

despite that OLS estimator of σ2 is more biased. When a equals to 0 the process becomes a pure random

walk, maximum likelihood estimate provides less biased estimation of a while OLS estimate provides less

biased estimation of σ2, but the two estimates provide similar results. With the increase in value of a, the

process explode at a faster rate, while maximum likelihood still perform well, OLS estimate turns to over

estimate the continuous time variance σ2. When a takes value of 0.03, as shown in column 8, the bias of

OLS estimate of σ2 is 1.427 with standard error of 2.07, which is far from its “true” value.

Overall, the Monte Carlo simulation results suggest that estimation from a model where observation intervals

are measured correctly rather than being assumed as equal, turn to have better properties.
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Table 2.1: Monte Carlo Estimation Results

Estimator Value of a

-0.95 -0.50 -0.05 0 0.01 0.02 0.03

Bias & standard error

â1 -0.020 -0.012 -0.008 -0.007 -0.005 -0.001 0.000

(0.164) (0.088) (0.025) (0.013) (0.010) (0.006) (0.004)

â2 -0.033 -0.019 -0.009 -0.008 -0.005 -0.001 -0.000

(0.166) (0.089) (0.025) (0.014) (0.011) (0.006) (0.004)

σ̂2
1 0.008 0.003 -0.001 0.019 -0.006 -0.010 -0.009

(0.147) (0.059) (0.094) (0.093) (0.091) (0.090) (0.091)

σ̂2
2 0.026 0.021 0.017 0.009 0.016 0.021 1.427

(0.150) (0.120) (0.096) (0.093) (0.093) (0.096) (2.076)
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2.7 Conclusion and Discussion

This chapter has provided exact discrete time representations of continuous time models with stocks, flows

and mixed sample that are irregularly spaced. The discrete time model with stock variables follows a VAR(1)

process, which has heteroskedastic disturbances which are serially uncorrelated. While the discrete time

models with flow variables or with mixed sample follow a VARMA(1, 1) process, which have heteroskedas-

tic disturbances with asymmetric covariance.

Given that some data are not regularly spaced and the length of observation intervals are known, the chapter

then provides a simple Monte Carlo simulation aiming at examining whether our model improves estimation

accuracy. In the study, a sample of monthly stock observations is simulated. The Monte Carlo study is com-

pleted by estimating the continuous time parameters from the “unequally soaced” model and the “equally

spaced” model using the same data simulated.

The simulation results suggest that by introducing irregularity in observation intervals to the discrete time

models, one would be able to obtain estimates that have better properties. The estimates (maximum likeli-

hood) of the parameters from the “unequally-sampled” model are more accurate than estimates (OLS) from

the “equally-sampled” model. The simulation is repeated several times with different values of the contin-

uous time coefficient parameter a (from −0.95 to 0.03). The maximum likelihood estimate performs well

in all cases and is less biased. The OLS estimate performs well when a is smaller than 0 (with stationary

process), however, it turns to over estimate the continuous time variance parameter σ2 significantly when a

exceeds 0 and gets larger (with non-stationary process).

This chapter has brought up a few issues which can be addressed in future research. Firstly, results presented

in Theorem 2.2 and 2.3 are valid for only stationary systems, which could limit the applications to non-sta-

tionary systems such as unite root or cointegrated systems. It might be possible to derive the exact discrete

time model without relying on Assumptions 2.2 to 2.4 using other technique. One potential alternative as-

sumption is the existence of the mean-square derivative of the stock variables since the integral of the mean

square derivative of the stocks is the first difference of the stock variables as defined in (2.16). Given such

assumption, McCrorie (2000) proposed an alternative method for deriving the exact discrete time model by
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integrating the solution of the continuous time model in state space form; and then the covariance matrix

is derived via a nonstandard change in the order of three type of integration without further restrictions on

the data. By using Cholesky factorization of the covariance matrix, the exact discrete time representation is

obtained as a VARMA process. Although this approach provides the possibility to derive the discrete time

representation without ruling out nonstationary processes, it comes at the cost of additional complexity in

the form of the covariance matrix.

Other issues related to the exact discrete method include the aliasing problem, the controllability problem

and finite sample estimation bias. These issues may be considered in further extended research. In addition,

the model might be extended to higher order multivariate system, which might be used in macroeconomic

studies. However, estimating higher-order models could be much more complicated, which involves prob-

lems of defining observable vectors with mixed data as well as requiring the rank condition to eliminate

unobservable variables (see detailed discussions in McCrorie, 2009).
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2.8 Appendix A

Characterise Properties of Vector εti

εti =

.

//0

" ti
ti−1

ζs(dr) +Assζsti +Asfζfti −Π11
i

" ti−1

ti−2
ζs(dr)

ζfti −Π21
i

" ti−1

ti−2
ζs(dr)

1

223

=

.

//0
I 0

0 0

1

223

.

//0

" ti
ti−1

ζs(dr)

" ti
ti−1

ζf (dr)

1

223+

.

//0
Ass Asf

0 I

1

223

.

//0
ζsti

ζfti

1

223

−

.

//0
Π11

i 0

Π21
i 0

1

223

.

//0

" ti−1

ti−2
ζs(dr)

" ti−1

ti−2
ζf (dr)

1

223

=

! ti

ti−1

.

//0
I 0

0 0

1

223

.

//0
ζs(dr)

ζf (dr)

1

223+

! ti

ti−1

.

//0
Ass Asf

0 I

1

223

.

//0
Ass Asf

Afs Aff

1

223

−1

×

.

//0
[e(ti−r)A]ss − I [e(ti−r)A]sf

[e(ti−r)A]fs [e(ti−r)A]ff − I

1

223

.

//0
ζs(dr)

ζf (dr)

1

223

+

! ti−1

ti−2

.

//0
Ass Asf

0 I

1

223

.

//0
Ass Asf

Afs Aff

1

223

−1 .

//0
[eδiA]ss − I [eδiA]sf

[eδiA]fs [eδiA]ff − I

1

223

×

(
))*

))+

.

//0
[e(ti−1−r)A]ss [e(ti−1−r)A]sf

[e(ti−1−r)A]fs [e(ti−1−r)A]ff

1

223−

.

//0
[eδi−1A]ss [eδi−1A]sf

[eδi−1A]fs [eδi−1A]ff

1

223

×

.

//0
[eδi−1A]ss − I [eδi−1A]sf

[eδi−1A]fs [eδi−1A]ff − I

1

223

−1 .

//0
[e(ti−1−r)A]ss − I [e(ti−1−r)A]sf

[e(ti−1−r)A]fs [e(ti−1−r)A]ff − I

1

223

6
))7

))8

×

.

//0
ζs(dr)

ζf (dr)

1

223−
! ti−1

ti−2

.

//0
Π11

i 0

Π21
i 0

1

223

.

//0
ζs(dr)

ζf (dr)

1

223

=

! ti

ti−1

M(ti − r)

.

//0
ζs(dr)

ζf (dr)

1

223+

! ti−1

ti−2

N(ti−1 − r)

.

//0
ζs(dr)

ζf (dr)

1

223
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The variance is obtained as

E[εtiε
′
ti ] = E

&! ti

ti−1

M(ti − r)ζ(dr)

'&! ti

ti−1

M(ti − r)ζ(dr)

'′

+ E

&! ti

ti−1

M(ti − r)ζ(dr)

'&! ti−1

ti−2

N(ti−1 − r)ζ(dr)

'′

+ E

&! ti−1

ti−2

N(ti−1 − r)ζ(dr)

'&! ti

ti−1

M(ti − r)ζ(dr)

'′

+ E

&! ti−1

ti−2

N(ti−1 − r)ζ(dr)

'&! ti−1

ti−2

N(ti−1 − r)ζ(dr)

'′

=

! ti

ti−1

[M(ti − r)ΣM(ti − r)′] dr +

! ti−1

ti−2

[N(ti−1 − r)ΣN(ti−1 − r)′] dr

=

! δi

0

[M(r)ΣM(r)′] dr +

! δi−1

0

[N(r)ΣN(r)′] dr

= Wi

The covariance

E[εtiε
′
tj ] = E

&! ti

ti−1

M(ti − r)ζ(dr)

'&! tj

tj−1

M(tj − r)ζ(dr)

'′

+ E

&! ti

ti−1

M(ti − r)ζ(dr)

'&! tj−1

tj−2

N(tj−1 − r)ζ(dr)

'′

+ E

&! ti−1

ti−2

N(ti−1 − r)ζ(dr)

'&! tj

tj−1

M(tj − r)ζ(dr)

'′

+ E

&! ti−1

ti−2

N(ti−1 − r)ζ(dr)

'&! tj−1

tj−2

N(tj−1 − r)ζ(dr)

'′
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If j = i− 1, the covariance becomes:

E[εtiε
′
ti−1

] = E

&! ti

ti−1

M(ti − r)ζ(dr)

'&! ti−1

ti−2

M(ti−1 − r)ζ(dr)

'′

+ E

&! ti

ti−1

M(ti − r)ζ(dr)

'&! ti−2

ti−3

N(ti−2 − r)ζ(dr)

'′

+ E

&! ti−1

ti−2

N(ti−1 − r)ζ(dr)

'&! ti−1

ti−2

M(ti−1 − r)ζ(dr)

'′

+ E

&! ti−1

ti−2

N(ti−1 − r)ζ(dr)

'&! ti−2

tj−3

N(ti−2 − r)ζ(dr)

'′

=

! ti−1

ti−2

[N(ti−1 − r)]ΣM ′(ti−1 − r)] dr

=

! δi−1

0

[N(r)ΣM ′(r)] dr

If j = i+ 1, the covariance becomes:

E[εtiε
′
ti+1

] = E

&! ti

ti−1

M(ti − r)ζ(dr)

' :! ti+1

ti

M(ti+1 − r)ζ(dr)

;′

+ E

&! ti

ti−1

M(ti − r)ζ(dr)

'&! ti

ti−1

N(ti − r)ζ(dr)

'′

+ E

&! ti−1

ti−2

N(ti−1 − r)ζ(dr)

' :! ti+1

ti

M(ti+1 − r)ζ(dr)

;′

+ E

&! ti−1

ti−2

N(ti−1 − r)ζ(dr)

'&! ti

ti−1

N(ti − r)ζ(dr)

'′

=

! ti

ti−1

[M(ti − r)]ΣN ′(ti − r)] dr

=

! δi

0

[M(r)ΣN ′(r)] dr
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3 Discrete TimeRepresentation of Non-stationary Continuous TimeMod-

els with Unequally Spaced Data

This chapter presents the exact discrete time representation of non-stationary continuous time systems with

unequally spaced flows or a mixture of stocks and flows. The approach to obtain the exact discrete time rep-

resentation with flow variables does not depend on the continuous time parameter matrix being non-singular,

namely the underlying continuous time system may be non-stationary. In both cases the exact discrete time

representations follow a VARMA(1, 1) process with time-varying parameters and heteroskedasticity, despite

that the underlying continuous time model has constant parameters and homoskedasticity. The time-varying

parameters and the heteroskedastic variance arise due to the variations in the sampling intervals, whereas

the moving average disturbances arise due to the flow nature of the observations. A Monte Carlo simulation

on estimation of a cointegrated continuous time system with unequally spaced flows is conducted, aiming at

assessing estimate properties when unequal sampling intervals are correctly accounted for. Simulation evi-

dence indicates the favour of exact discrete time models accounting for the irregularity of sampling intervals.
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3.1 Introduction

Estimating continuous time models based on the exact discrete time analogue has been a popular topic in

time series analysis for decades. Most research in estimations of continuous time models assume data are

observed over the same interval, which is often time normalised as unity. The fact that some data are not

observed on a regular basis has drawn some attention, for instance, Robinson (1977b) pointed out the possi-

bility for modelling irregularly sampled time series.

Unequally spaced data can be found in a number of fields including economics and finance. A leading exam-

ple can be found in monthly data, in which observation intervals may vary with the variation in the length of

calendar months ranging from 28 days to 31 days with roughly 10 percent difference. Unequally spaced data

could also appear in financial data, such as data on trades that take place infrequently. In addition, for daily

closing price of stock exchange, weekends and public holidays would lead to the irregularity in the sampling

intervals. Such type of data could also be obtained in other fields such as the timing of elections, which does

not happen on regular basis, in political science.

Several work have addressed the issue in estimating continuous time models with unequally spaced data.

One approach to estimate such models would be adopting state space representations. For example, Harvey

and Stock (1985) estimated continuous time autoregressive systems using Kalman filter recursions. Their

study is further extended to allow for exogenous variables and mixed frequency in (unequally spaced) data

by Zadrozny (1988). Harvey and Stock (1993) later provide estimation of continuous time structural time

series model where data are stocks, flows or a mixture of both that are unequally spaced. In Koopman et al.

(2018) paper, the authors estimated continuous time structural models via the state space approach with high

frequency traffic data observed at unequally spaced points in time.

In previous work I provide the derivation of exact discrete time representations of continuous time systems

when data are unequally spaced. Exact discrete time representations are provided in three cases: when data

are purely stock variables, purely flow variables, or mixed of both stocks and flows. In all cases the exact

discrete time representations exhibit time-varying parameters and heteroskedasticity. When data are purely

stock variables or a mixture of stocks and flows, the exact discrete time representations require the underly-
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ing continuous time system to be stationary. Such restriction would limit the applications to non-stationary

systems such as unit root or cointegrated systems.

The focus of this chapter is on providing an approach to derive exact discrete time representation of non-sta-

tionary continuous time systems with unequally spaced flows and mixed data. The approach does not impose

restrictions on the continuous time coefficient matrix. The discrete time representation is exact and is ap-

plicable to non-stationary systems as well. Despite that the underlying continuous time system has constant

parameters and is homoskedastic, the exact discrete time representations, in both cases, follow a VARMA(1,

1) process with time-varying parameters and heteroskedasticity. Such a scenario arises when the continuous

time system is observed at unequally spaced intervals. Both time-varying parameters and heteroskedastic

variances arise due to the variations in the sampling intervals, whereas the moving average disturbances

arise due to the flow nature of the observations. The time-varying parameters and variances arise system-

atically, which are entirely due to the unequally spaced intervals, indicating that such time variation in the

discrete time models may merely be a manifestation of the unequally spaced data rather than any inherent

time variation in the model itself. In contrast with the discrete-time literature, where time-varying parameters

may be employed in discrete time series models (such as AR or ARMAmodels) in order to better fit for data

that are generated in finer intervals, the method proposed in this chapter solves the issue of incompatibility

in discrete time models (where parameter estimates are tied only to a specific sampling frequency) since the

specification of the exact discrete time model is independent of the sampling interval (see further discussions

in Chambers, McCrorie and Thornton, 2018; and in McCrorie, 2009).

The Monte Carlos simulation shows an example of estimation of a continuous time cointegrate system of

two flow variables whose intervals vary with the variation of the calendar month. The example in 3.4 only

considers a simple case (the Monte Carlo simulation is presented for illustrating the potential gain from

correctly accounting for the unequal sampling intervals), whereas estimating cointegrated continuous time

system has been an important development in the continuous time literature. Existing research has shown

a number of techniques for estimating the exact discrete time models of the cointegrated continuous time

systems, including frequency domain (Phillips, 1991; Chambers and McCrorie, 2007), the representation in
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a theoretical analysis of the asymptotic efficiency fo optimal estimator (Chambers, 2003) and the time do-

main method (Chambers, 2009). In addition, Kessler and Rahbek (2001) derived the asymptotic behaviour

of the maximum likelihood estimators of the (multivariate) cointegrated systems and showed that the limit-

ing distributions derived are the same as in discrete time AR model. Later the authors provided a method to

re-address the aliasing issue for both general ergodic and cointegrated models, which relaxes the assumption

that the original coefficient matrix is diagonalizable with distinct eigenvalues (Kessler and Rahbek, 2004).

It is therefore possible to extend the result not only to deal with unequally spaced data, but also to solve the

aliasing problem in multivariate cointegrated systems in future research.

In the following, section 3.2 provides the derivation of the exact discrete time representation of a continuous

time systemwhere the variables are observed over unequally spaced discrete intervals. Themodel considered

is multivariate and includes a deterministic time trend. The discrete time representation has time-varying pa-

rameters and heteroskedsticity. In particular, the disturbance vector is a time-varying moving average, where

the covariance matrix is time dependent.

Section 3.3 considers the case where the variables of interest are a mixture of stocks and flows, where the

discrete time representation relies on the assumption that a sub-matrix of the continuous time parameter is

non-singular (hence is invertible). This assumption, although limiting the potential applications, for example,

to systems involving zero roots, is weaker than many that have appeared in the literature to date. The discrete

time representation also has time-varying parameters and heteroskedastic moving average disturbances.

Results of aMonte Carlo simulation study are reported in Section 3.4. The study considers a cointegrated sys-

tem of flow variables whose sampling intervals coincide with the variation of calendar months. Simulation

results indicate that estimation bias is reduced when the unequal sampling intervals are correctly accounted

for (rather than assuming all intervals are the same). Section 3.5 contains some concluding comments and

detailed Monte Carlo simulation procedures are provided in the Appendix B.
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3.2 An Exact Discrete Time Model with Flows

This section provides derivations of discrete time representation of a continuous model. 2 The continuous

time model is a system of first-order stochastic differential equations with flow variables and stochastic

trends.

Let x(t) be an n× 1 stochastic process generated by

dx(t) = [µ+ γt+Ax(t)]dt+ ζ(dt), t > 0, (3.1)

where µ and γ are n × 1 parameter vectors, A is an n × n matrix, and ζ(dt) is an n × 1 vector of random

measures satisfying:

Assumption 3.1.

E[ζ(dt)] = 0

E[ζ(dt)ζ(dt)′] = Σdt,

where Σ is an unknown symmetric positive definite matrix and

E[ζi(∆1)ζj(∆2)
′] = 0,

for i, j = 1, 2, · · · , n; i ∕= j; and ∆1 ∩∆2 = ∅.

In what follows, it is assumed that samples are observed at the points ti (i = 1, . . . , T ) such that 0 < t1 <

. . . < tT and ti = ti−1 + δi for some δi > 0 (i = 1, . . . , T ). In the case of a stock variable the sequence of

observations is of the form

x(t1), x(t2), · · · , x(tT ). (3.2)

Extensive use is made of the matrix exponential and various functions thereof.The matrix exponential is

defined as

eA =

∞9

j=0

1

j!
Aj ,

2The method for deriving the exact discrete time model with flows follows the joint paper with my supervisor- Time-Varying Pa-

rameters and Heteroskedasticity: Continuous Time Systems with Unequally-Spaced Data.
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and it is convenient to define the matrix functions

F (z) = eAz,

G(z) =

! z

0

eAsds,

H(z) =

! z

0

seAsds,

J(z) =

! z

0

G(s)ds =

! z

0

<! s

0

eArdr

=
ds,

K(z) =

! z

0

H(s)ds =

! z

0

<! s

0

reArdr

=
ds,

M(z) =

! z

0

sG(s)ds =

! z

0

s

<! s

0

eArdr

=
ds,

in all cases z is a known constant. In particular, when z = δi the particular matrices are defined as

Fi = F (δi), Gi = G(δi), Hi = H(δi), Ji = J(δi),Ki = K(δi),Mi = M(δi), (i = 1, . . . , T ).

In the case of unequally spaced stock variables (when x(t) is a stock variable), based on results of Theorem

2.1 in Chapter 2, the discrete time representation of (3.1) is obtained as

x(ti) = c0i + c1iti + Fix(ti−1) + η(ti), i = 1, . . . , T, (3.3)

where c0i = Giµ − Hiγ, c1i = Giγ, η(ti) =
" ti
ti−1

eA(ti−r)ζ(dr) and η(ti) satisfies E (η(ti)) =

0n×1, E (η(ti)η(tj)
′) = 0n×n for i ∕= j and E (η(ti)η(ti)

′) = Ωi =
" δi
0

eArΣeA
′rdr, i = 1, . . . , N.

The discrete time model with unequally spaced stock data generated by (3.1) follows a VAR(1) process. In

the discrete time model, the coefficients are time-varying and the disturbances are heteroskedastic while the

parameters in the continuous time model (equation (3.1)) are constant and the variance is homoskedastic.

These discrepancies are generated by the variations of the sampling intervals.

In the case of unequally spaced flow variables, the observations constitute a sequence of flow vectors of the

form

xti =

! ti

ti−1

x(r)dr =

! δi

0

x(ti − r)dr =

! δi

0

x(ti−1 + r)dr, i = 1, . . . , T. (3.4)

With equally spaced observations a discrete time representation can be obtained by integrating (3.3) over the
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common observation interval. This procedure, however, is inappropriate when the observations are unequally

spaced due to the following reason. Integration over (ti−1, ti] will yield xti on the left-hand-side but, on the

right-hand-side,

! ti

ti−1

x(r − δi)dr =

! ti−δi

ti−1−δi

x(s)ds =

! ti−1

ti−1−δi

x(s)ds ∕= xti−1
=

! ti−1

ti−2

x(s)ds.

The problem concerns the lower limit where ti−1 − δi ∕= ti−2 = ti−1 − δi−1. The approach to derive the

discrete time representation, which is presented in the previous chapter imposes restrictions on the matrix A

to be nonsingular. This rules out applications to systems involving unit roots and cointegration. This section

provides the discrete time representation which has the advantage of not requiring any additional conditions

beyond Assumption 3.1. The derivation relies on the following lemma.

Lemma 3.1. Gi is nonsingular for all i = 1, . . . , T .

Proof. From the series expansion of exp{As} we find that

Gi =

! δi

0

eAsds =

! δi

0

∞9

j=0

Ajsj

j!
ds

=

∞9

j=0

1

j!

,! δi

0

sjds

-
Aj

=

∞9

j=0

1

j!

,
δj+1
i

j + 1

-
Aj

=

∞9

j=0

cjA
j

where cj = δj+1
i /(j + 1)!. It is shown by Abadir and Magnus (2005, p.262) that, if Φ(A) =

#∞
j=0 cjA

j ,

then |Φ(A)| =
>n

i=1 φ(λi), where λ1, . . . ,λn are the eigenvalues ofA (not necessarily distinct) and φ(λ) =

#∞
j=0 cjλ

j . The matrix Gi is clearly of the form Φ(A) and we shall demonstrate that |Gi| ∕= 0, using the

above result, and, hence, thatGi is nonsingular. Note that, if an eigenvalue ofA is zero, then φ(0) = c0 = δi

whereas, for real or complex λ ∕= 0,

φ(λ) =

∞9

j=0

cjλ
j =

∞9

j=0

δj+1
i λj

(j + 1)!
=

1

λ

∞9

j=0

δj+1
i λj+1

(j + 1)!
=

1

λ

! δiλ

0

esds
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i.e. φ(λ) = (eδiλ−1)/λ. Let there be n1 zero eigenvalues and n2 non-zero eigenvalues, where n1+n2 = n,

ordered so that λj = 0 (j = 1, . . . , n1) and λj ∕= 0 (j = n1 + 1, . . . , n). Then

|Gi| =
n1?

j=1

φ(0)

n?

j=n1+1

φ(λj) = δn1
i

n?

j=n1+1

(eδiλj − 1)

λj

because φ(0) = δi. This expression can be zero only if δi = 0 or if eδiλj − 1 = 0. The first possibility is

ruled out because δi > 0 and the second because δiλj ∕= 0 owing to δi > 0 and λj ∕= 0 for j = n1+1, . . . , n.

Hence |Gi| ∕= 0 and Gi is nonsingular as claimed. End of proof.

The invertibility of Gi is used in the derivation of the exact discrete time model; Lemma 3.1 shows that no

further conditions need to be imposed on the matrix A for this property to hold. The discrete time represen-

tation is given by Theorem 3.1.

Theorem 1. Let x(t) be a flow variable generated by (3.1) which is observed as the sequence in (3.4). Under

Assumption 3.1, the observations satisfy

xt1 = m01 +G1x(0) + ξt1 ,

xti = m0i +m1iti + Φixti−1
+ ξti , i = 2, . . . , T,

wherem01 = ρ01 + ρ11δ1 and, for i = 2, . . . , N , Φi = GiFi−1G
−1
i−1,

m0i = ρ0i +Gi(c0,i−1 − c1,i−1δi)− Φi(ρ0,i−1 − ρ1,i−1δi),

m1i = ρ1i +Gic1,i−1 − Φiρ1,i−1,

ρ0i = Jiµ+ (Mi −Ki − Jiδi)γ

ρ1i = Jiγ.

Furthermore, ξti is a heteroskedastic MA(1) process with autocovariance matrices given by

Ω0,i = E[ξtiξ
′
ti ] =

(
))))*

))))+

! δ1

0

G(s)ΣG(s)′ds, i = 1,

! δi

0

G(s)ΣG(s)′ds+

! δi−1

0

Γi(s)ΣΓi(s)
′ds, i = 2, . . . , T,

Ω−1,i = E[ξtiξ
′
ti−1

] =

! δi−1

0

Γi(s)ΣG(s)′ds, i = 2, . . . , T,

Ω1,i = E[ξtiξ
′
ti+1

] =

! δi

0

G(s)ΣΓi+1(s)
′ds, i = 1, . . . , T − 1,
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where Γi(x) = GiF (x)− ΦiG(x).

Proof. We first derive the equations for i = 2, . . . , N and then for i = 1. (3.4) implies that

x(ti−1 + s) = cs + eAsx(ti−1) +

! ti−1+s

ti−1

eA(ti−1+s−r)ζ(dr), 0 < s < δi (3.5)

where

cs =

! ti−1+s

ti−1

eA(ti−1+s−r) (µ+ γr) dr.

Evaluating this deterministic integral enables us to show that

cs = G(s)µ−H(s)γ +G(s)γ(ti−1 + s).

Hence integrating (3.5) over s ∈ (0, δi] results in

! δi

0

x(ti−1 + s)ds =

! δi

0

G(s)dsµ−
! δi

0

H(s)dsγ +

! δi

0

G(s)(ti−1 + s)dsγ

+

,! δi

0

eAsds

-
x(ti−1) +

! δi

0

! ti−1+s

ti−1

eA(ti−1+s−r)ζ(dr)ds.

Given that ti−1 = ti − δi, the above equation can be written as

xti = ρ0i + ρ1iti +Gix(ti−1) + eti , i = 1, . . . , T, (3.6)

where ρ0i = Jiµ+ (Mi −Ki − Jiδi)γ, ρ1i = Jiγ, and eti =
" δi
0

" ti−1+s

ti−1
eA(ti−1+s−r)ζ(dr)ds.

Using Lemma 1 we can solve (3.6) for x(ti−1):

x(ti−1) = G−1
i (xti − ρ0i − ρ1iti − eti) . (3.7)

But, from (3.3), we know that

x(ti−1) = c0,i−1 + c1,i−1ti−1 + Fi−1x(ti−2) + ηti−1 . (3.8)

Using (3.7) and its lag to substitute for x(ti−1) and x(ti−2) in (3.8) results in

G−1
i (xti − ρ0i − ρ1iti − eti) = c0,i−1 + c1,i−1ti−1

+Fi−1G
−1
i−1

@
xti−1 − ρ0,i−1 − ρ1,i−1ti−1 − eti−1

A
+ ηti−1 . (3.9)
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Multiplying (3.9) by Gi, using ti−1 = ti − δi, we obtain

xti = m0i +m1iti + Φixti−1 + ξti , i = 1, . . . , T,

whereΦi = GiFi−1G
−1
i−1,m0i = ρ0i +Gi(c0,i−1 − c1,i−1δi)− Φi(ρ0,i−1 − ρ1,i−1δi),

m1i = ρ1i +Gic1,i−1 − Φiρ1,i−1 and ξti = eti − Φieti−1
+Giηti−1

. (3.10)

The equation for i = 1 is obtained in a similar manner; setting ti−1 = 0 in (3.6), and noting that t1 = δ1, we

obtain

xt1 = m01 +G1x(0) + ξt1 ,

wherem01 = ρ01 + ρ11δ1 and ξt1 = et1 .

To derive properties of the disturbances, it is necessary to reduce the double integral defining eti to a more

convenient form:

eti =

! ti

ti−1

,! δi

r−ti−1

eA(ti−1+s−r)ds

-
ζ(dr)

=

! ti

ti−1

<! ti−r

0

eAwdw

=
ζ(dr)

=

! ti

ti−1

G(ti − r)ζ(dr), i = 1, . . . , T.

Hence, using (3.10), for i = 2, . . . , T , ξti can be written as

ξti =

! ti

ti−1

G(ti − r)ζ(dr)− Φi

! ti−1

ti−2

G(ti−1 − r)ζ(dr) +Gi

! ti−1

ti−2

F (ti−1 − r)ζ(dr)

=

! ti

ti−1

G(ti − r)ζ(dr) +

! ti−1

ti−2

Γi(ti−1 − r)ζ(dr),

where Γi(x) = GiF (x)− ΦiG(x), while for i = 1 we have

ξt1 =

! t1

0

G(t1 − r)ζ(dr).

The autocovariances follow from these expressions. Properties of ξ are obtained as

E[ξti ] = 0, i = 1, . . . , T,
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E[ξt1ξt1
′] = E

:! t1

0

G(t1 − r)ζ(dr)

; :! t1

0

G(t1 − r)ζ(dr)

;′

=

! t1

0

G(t1 − r)ΣG(t1 − r)′dr

=

! δ1

0

G(s)ΣG(s)′ds, i = 1,

E[ξtiξti
′] = E

&! ti

ti−1

G(ti − r)ζ(dr)

'&! ti

ti−1

G(ti − r)ζ(dr)

'′

+ E

&! ti−1

ti−2

Γi(ti−1 − r)ζ(dr)

'&! ti−1

ti−2

Γi(ti−1 − r)ζ(dr)

'′

=

! ti

ti−1

G(ti − r)G(ti − r)′dr +

! ti−1

ti−2

Γi(ti−1 − r)ΣΓi(ti−1 − r)′dr

=

! δi

0

G(s)ΣG(s)′ds+

! δi−1

0

Γi(s)ΣΓi(s)
′ds, i = 2, . . . , T,

E[ξtiξ
′
ti−1

] = E

&! ti−1

ti−2

Γi(ti−1 − r)ζ(dr)

'&! ti−1

ti−2

G(ti−1 − r)ζ(dr)

'′

=

! ti−1

ti−2

Γi(ti−1 − r)ΣG(ti−1 − r)′dr

=

! δi−1

0

Γi(s)ΣG(s)′ds, i = 2, . . . , T,

E[ξtiξi+1
′] = E

&! ti

ti−1

G(ti − r)ζ(dr)

'&! ti

ti−1

Γi(ti − r)ζ(dr)

'

=

! ti

ti−1

G(ti − r)ΣΓi(ti − r)′dr

=

! δi

0

G(s)ΣΓi(s)
′ds, i = 1, . . . , T − 1.

End of Proof.

Theorem 3.1 shows that the discrete time model with flow variables follows a VARMA(1, 1) process with

time-varying coefficients and heteroskedasticity. The heteroskedastic variances arises due to the variations

in the sampling intervals while the heteroskedastic MA(1) disturbances arise due to the flow nature of the

observations. Furthermore, Theorem 3.1 does not require restrictions on the matrix A (i.e. requiring matrix

A to be nonsingular), which indicates that the results of the theorem are applicable in nonstationary and

cointegrated models as well as stationary systems. In addition, Theorem 3.1 can be used when data are

equally spaced, namely, when δi = 1 for all i. The advantage of this approach is that matrix A is not

required to be nonsingular, which hence does not rule out applications to nonstationary systems.
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3.3 An Exact Discrete Time Model with Mixed Samples

In this section, a system that includes both stock and flow variables is considered. The derivation of the exact

discrete time representation follows Agbeyegbe's (1987) procedure. In the case of mixed samples, both the

stocks and flows are assumed to be observed at the same frequency. The observations are of the form

x(ti) =

.

//0
xs(ti)

xf (ti)

1

223 =

.

///0

xs(ti)

! ti

ti−1

xf (r)dr

1

2223
, i = 1, 2, · · · , T. (3.11)

Note xs(ti) is a vector of (ns × 1) stock variables and xf (ti) is a vector of (nf × 1) flow variables, with

ns + nf = n. The system of stock and flow variables, generated by (3.1), is partitioned as

d(xs(t)) = [Assxs(t) +Asfxf (t) + µs + γst]dt+ ζs(dt), (3.12)

d(xf (t)) = [Afsxs(t) +Affxf (t) + µf + γf t]dt+ ζf (dt), (3.13)

where A =

.

//0
Ass Asf

Afs Aff

1

223, µ =

.

//0
µs

µf

1

223, γ =

.

//0
γs

γf

1

223,and ζ(dt) =

.

//0
ζs(dt)

ζf (dt)

1

223.

In order for Theorem 3.2 to be valid, we shall need the following assumption on the sub-matrix of A.

Assumption 3.2. The sub-matrix Ass is non-singular.

The main challenge with mixed data is eliminating unobservable terms from the system: integrals of stock

variables,
" ti
ti−1

xs(r)dr, and the levels of flow variables, xf (ti). To derive the exact discrete time model, it

is necessary to define an (n× 1) random vector zt1 , zt2 , · · · , ztn in the form

zti =

.

//0
xs(ti)− xs(ti−1)

" ti
ti−1

xf (r) dr

1

223 , i = 1, 2, · · · , T. (3.14)

The vector zti defined above represents a mixture of stock variables and flow variables. The exact discrete

time model for mixed data is given by Theorem 3.2.

Theorem 3.2. Let x(t) be generated by (3.1) which is observed as the mixed-sample sequence in (3.11).

Under Assumption 3.1 and 3.2, the random vectors zt1 , zt2 , · · · , ztn defined by (3.14) satisfy the system
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zti = Πizti−1
+ gi + εti , (3.15)

E[εti ] = 0,

Vi = E[εtiε
′
ti ]

=

(
))*

))+

" δ1
0

Ψ(s)ΣΨ(s)′ ds i = 1,

" δi
0

Ψ(s)ΣΨ(s)′ ds+
" δi−1

0
S(s)ΣS(s)′ ds, i = 2, · · · , T,

W−1,i = E[εtiε′t1 ] =
" δi−1

0
S(s)ΣΨ(s)′ ds i = 2, · · · , T,

Wi =
" δi
0

Ψ(s)ΣS(s)′ ds i = 1, · · · , T − 1,

where

Πi =

.

//0
Πss

i Πsf
i

Πfs
i Πff

i

1

223 ,

gi =

.

//0
gsi

gfi

1

223 ,

εti =

! ti

ti−1

Ψ(ti − r)ζ(dr) +

! ti−1

ti−2

S(ti−1 − r)ζ(dr)

=

.

//0
εsti

εfti

1

223 ,

Πss
i = [AssΦss

i +AsfΦfs
i ][Ass]−1,

Πsf
i = [AssΦsf

i +AsfΦff
i ]−Π11

i Asf ,

Πfs
i = Φfs

i [Ass]−1,

Πff
i = Φff

i −Π21
i Asf ,
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gsi = Assms
0i +Asfmf

0i + (Assms
1i +Asfmf

1i)ti +

! ti

ti−1

[µs + γsr] dr −Πss
i

! ti−1

ti−2

[µs + γsr] dr,

gfi = mf
0i +mf

1iti −Πfs
i

! ti−1

ti−2

[µs + γsr] dr,

εsti =

! ti

ti−1

ζs(dr) +Assξsti +Asfξfti −Πss
i

! ti−1

ti−2

ζs(dr),

εfti = ξfti −Πfs
i

! ti−1

ti−2

ζs(dr),

Ψ(ti − r) =

.

//0
I 0

0 0

1

223+

.

//0
Ass Asf

0 I

1

223

.

//0
[G(ti − r)]ss [G(ti − r)]sf

[G(ti − r)]fs [G(ti − r)]ff

1

223 ,

S(ti−1 − r) =

.

//0
Ass Asf

0 I

1

223

.

//0
[Γi(ti−1 − r)]ss [Γi(ti−1 − r)]sf

[Γi(ti−1 − r)]fs [Γi(ti−1 − r)]ff

1

223−

.

//0
Πss

i 0

Πfs
i 0

1

223 ,

G(ti − r) =

.

//0
[G(ti − r)]ss [G(ti − r)]sf

[G(ti − r)]fs [G(ti − r)]ff

1

223 ,

Γi(ti−1 − r) =

.

//0
[Γi(ti−1 − r)]ss [Γi(ti−1 − r)]sf

[Γi(ti−1 − r)]fs [Γi(ti−1 − r)]ff

1

223 .

Proof. Integrating (3.1) over the interval [ti−1, ti] obtains

x(ti)− x(ti−1) = A

! ti

ti−1

x(r) dr +

! ti

ti−1

[µ+ γr] dr +

! ti

ti−1

ζ(dr), (3.16)

while the first row of equation (3.16) is

xs(ti)− xs(ti−1) = Ass

! ti

ti−1

xs(r) dr+Asf

! ti

ti−1

xf (r) dr+

! ti

ti−1

[µs + γsr] dr+

! ti

ti−1

ζs(dr). (3.17)

Partitioning (3.10) as
! ti

ti−1

xs(r) dr = Φi
ss

! ti−1

ti−2

xs(r) dr + Φi
sf

! ti−1

ti−2

xf (r) dr +m0i
s +m1i

sti + ξti
s, (3.18)



67

! ti

ti−1

xf (r) dr = Φi
fs

! ti−1

ti−2

xs(r) dr + Φi
ff

! ti−1

ti−2

xf (r) dr +m0i
f +m1i

f ti + ξti
f , (3.19)

where

Φi =

.

//0
Φi

ss Φi
sf

Φi
fs Φi

ff

1

223 ,

m0i =

.

//0
m0i

s

m0i
f

1

223 ,

m1i =

.

//0
m1i

s

m1i
f

1

223 ,

and

ξti =

.

//0
ξti

s

ξti
f

1

223 .

Substituting out
" ti
ti−1

xs(r) dr and
" ti
ti−1

xf (r) dr in (3.17) by (3.18) and (3.19), respectively

xs(ti)− xs(ti−1) = [AssΦi
ss +AsfΦi

fs]

! ti−1

ti−2

xs(r) dr + [AssΦi
sf +AsfΦi

ff ]

! ti−1

ti−2

xf (r) dr

+ Assm0i
s +Asfm0i

f + [Assm1i
s +Asfm1i

f ]ti +

! ti

ti−1

[µs + γsr] dr

+ Assξti
s +Asfξti

f +

! ti

ti−1

ζs(dr). (3.20)

From (3.17) we obtain

! ti

ti−1

xs(r) dr = [Ass]−1[xs(ti)− xs(ti−1)]− [Ass]−1Asf

! ti

ti−1

xf (r) dr

− [Ass]−1

! ti

ti−1

[µs + γsr] dr − [Ass]−1

! ti

ti−1

ζs(dr). (3.21)

Lagging (3.21) for one period

! ti−1

ti−2

xs(r) dr = [Ass]−1[xs(ti−1)− xs(ti−2)]− [Ass]−1Asf

! ti−1

ti−2

xf (r) dr

− [Ass]−1

! ti−1

ti−2

[µs + γsr] dr − [Ass]−1

! ti−1

ti−2

ζs(dr). (3.22)



68

The object now is to eliminate the unobservale term,
" ti−1

ti−2
xs(r) dr in (3.20) and (3.19). Substituting out

" ti−1

ti−2
xs(r) dr in (3.20) using (3.22)

xs(ti)− xs(ti−1) = [AssΦi
ss +AsfΦi

fs][Ass]−1

B
[xs(ti−1)− xs(ti−2)]−Asf

! ti−1

ti−2

xf (r) dr

C

+ [AssΦi
sf +AsfΦi

ff ]

! ti−1

ti−2

xf (r) dr +Assm0i
s +Asfm0i

f

+ [Assm1i
s +Asfm1i

f ]ti +

! ti

ti−1

[µs + γsr] dr

− [AssΦi
ss +AsfΦi

fs][Ass]−1

! ti−1

ti−2

[µs + γsr] dr

+ Assξti
s +Asfξti

f +

! ti

ti−1

ζs(dr)

− [AssΦi
ss +AsfΦi

fs][Ass]−1

! ti−1

ti−2

ζs(dr)

= Πi
ss[xs(ti−1)− xs(ti−2)] +Πi

sf

! ti−1

ti−2

xf (r) dr + gi
s + εti

s. (3.23)

Substituting out
" ti−1

ti−2
xs(r) dr in (3.19) using (3.22)

! ti

ti−1

xf (r) dr = Φi
fs[Ass]−1

B
[xs(ti−1)− xs(ti−2)]−Asf

! ti−1

ti−2

xf (r) dr

C

+ Φi
ff

! ti−1

ti−2

xf (r) dr +m0i
f +m1i

f ti

− Φi
fs[Ass]−1

! ti−1

ti−2

[µs + γsr] dr + ξti
f − Φi

fs[Ass]−1

! ti−1

ti−2

ζs(dr)

= Πi
fs[xs(ti−1)− xs(ti−2)] +Πi

ff

! ti−1

ti−2

xf (r) dr + gi
f + εti

f . (3.24)

Combining (3.23) and (3.24) we obtain (3.15)
.

//0
xs(ti)− xs(ti−1)

" ti
ti−1

xf (r) dr

1

223 =

.

//0
Πss

i Πsf
i

Πfs
i Πff

i

1

223

.

//0
xs(ti−1)− xs(ti−2)

" ti−1

ti−2
xf (r) dr

1

223+

.

//0
gsi

gfi

1

223+

.

//0
εsti

εfti

1

223 .

Properties of vector εti depend on properties of the continuous time disturbance vector ζ(dt).

The mean of εti :

E[εti ] = 0, i = 1, . . . , T.
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The variance of εti :

E[εt1ε
′
t1 ] = E

:! t1

0

Ψ(t1 − r)ζ(dr)

; :! t1

0

Ψ(t1 − r)ζ(dr)

;′

=

! t1

0

Ψ(t1 − r)ΣΨ(t1 − r)′dr

=

! δ1

0

Ψ(s)ΣΨ(s)′ds, i = 1,

E[εtiε
′
ti ] = E

&! ti

ti−1

Ψ(ti − r)ζ(dr)

'&! ti

ti−1

Ψ(ti − r)ζ(dr)

'′

+ E

&! ti−1

ti−2

S(ti−1 − r)ζ(dr)

'&! ti−1

ti−2

S(ti−1 − r)ζ(dr)

'′

=

! ti

ti−1

Ψ(ti − r)ΣΨ(ti − r)′ dr +

! ti−1

ti−2

S(ti−1 − r)ΣS′(ti−1 − r) dr

=

! δi

0

Ψ(s)ΣΨ(s)′ ds+

! δi−1

0

S(s)ΣS(s)′ ds, i = 2, . . . , T.

The autocorariance of εti :

E[εtiε
′
ti−1

] = E

&! ti−1

ti−2

S(ti−1 − r)ζ(dr)

'&! ti−1

ti−2

Ψ(ti−1 − r)ζ(dr)

'′

=

! ti−1

ti−2

S(ti−1 − r)ΣΨ(ti−1 − r)′dr

=

! δi−1

0

S(s)ΣΨ(s)′ ds, i = 2, . . . , T,

E[εtiε
′
ti+1

] = E

&! ti

ti−1

Ψ(ti − r)ζ(dr)

'&! ti

ti−1

S(ti − r)ζ(dr)

'′

=

! ti

ti−1

Ψ(ti − r)ΣS(ti − r)′dr

=

! δi

0

Ψ(s)ΣS(s)′ ds, i = 1, . . . , T − 1.

End of proof.

Theorem 3.2 shows that, with mixed data, the exact discrete time model follows a VARMA(1, 1) process

with time-varying coefficient, and the disturbance vector εti is a heteroskedastic MA(1). The underlying

continuous time model, instead, has constant parameters and homoskedastic disturbance. The derivation
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procedure in 2.5 requires assumption 2.3 to be valid since (2.26) involves the inverse of coefficient matrix

exponential; while the procedure in this section uses a different technique for discretization, which imposes,

at least, a weaker assumption.

3.4 Simulation Evidence

AMonte Carlo simulation is conducted to examine the performance of estimation of continuous time models

where unequal sampling intervals are correctly measured. This study considered a cointegrated system of

flow variables whose sampling intervals coincide with the variation of calendar months. The lengths of

monthly sampling intervals vary from 28 days to 31 days, which are normalised by dividing each interval by

30. Note that we ignore leap years, assuming each February has 28 days for reducing computation cost. The

resulting sampling intervals are δmin = 0.93̇, 1.00 and δmax = 1.03̇. The model of interest is

dx(t) = Ax(t)dt+ ζ(dt), t > 0,

where A =

.

//0
α1 −α1β

α2 −α2β

1

223 is an n× n coefficient matrix with β = 1 and α1 −α2β < 0 and ζ(dt) satisfy

Assumption 3.1. In particular, the variance of ζ(dt) is Σ = σ2In with σ2 being some random variable.

The observations are made at points ti with ti = ti−1 − δi, i = 2, · · · , T and δi denotes sample intervals. T

is the sample size and, specifically, we assume t0 = 0 and x(0) = 0 as the Boundary Condition. In this case

we have 2 variables hence n = 2.

To explore the impact of values of the parameters and sample size on the estimation results, we compare the

simulation results with α1 and α2 are -1.25 and 0.75 respectively to the results with α1 and α2 are -0.95 and

-0.05 respectively; while the sample size change from 120 (10 year span) to 240 (20 year span). β = 1 and

σ2 = 0.25 in all cases.

Using results from Theorem 3.1, the discrete time model is obtained as

xt1 = G1x(0) + ξt1 ,

xti = Φixti−1 + ξti , i = 2, . . . , T,
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where properties of ξti satisfy Theorem 3.1. The parameters to be estimated are θ = [α1,α2,β,σ
2]′. Esti-

mates of θ are obtained when the Gaussian log-likelihood function is maximised.

L(θ) = −T

2
ln2π − 1

2
ln|Ω|− 1

2
ξ′Ω−1ξ,

where ξ = [ξ1
′, · · · , ξT ′]′ is an nT × 1 vector of disturbances and the nT × nT covariance matrix of ξ is

Ω = E [ξξ′]

=

.

//////////////////0

Ω0,1 Ω1,1 0 0 · · · · · · 0

Ω−1,2 Ω0,2 Ω1,2 0 · · · · · · 0

0 Ω−1,3 Ω0,3 Ω1,3 · · · · · · 0

...
...

. . .
...

0 0 · · · · · · Ω−1,T−1 Ω0,T−1 Ω1,T−1

0 0 · · · · · · 0 Ω−1,T Ω0,T

1

2222222222222222223

.

Note that estimating the parameters, θ, by maximising the above log likelihood function may not be conve-

nient since inverting the matrixΩ is (computationally) costly. An alternative method is to find the Choleskey

factorization of Ω, then follow a recursive procedure that avoids directly inverting Ω (see Bergstrom, 1985,

1990).

Let M be the real nT × nT lower triangular matrix with positive elements along the diagonal such that

MM ′ = Ω. Thus |Ω| = |MM ′| = |M ||M | = |M |2 and Ω−1 = (M ′)
−1

(M)
−1. The sub-matrices ofM ,

M11, · · · ,Mt,t−1,Mtt(t = 2, · · · , T ) can be computed as

M11M
′
11 = Ω00,

Mi,i−1 = Ω′
1,i−1(M

′
i−1,i−1)

−1,

Mi,iM
′
i,i = Ω0,i −Mi,i−1M

′
i,i−1, i = 2, · · · , T.

Then define a normalised nT × 1 vector ε, satisfying E [ε] = 0 and E [εε′] = I , such thatMε = ξ. Hence
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we have ξ′Ω−1ξ = ξ′(M ′)
−1

(M)
−1

ξ = ε′ε. Then log-likelihood function can thus be evaluated as

L =

nT9

i=1

(εi
2 + 2ln(mii)),

wheremii is the i-th diagonal element ofM .

Then ξ can be computed recursively as

ξ1 = M11ε1,

ξi = Mi,i−1εi−1 +Mi,iεi, i = 2, · · · , T.

The Gaussian estimates of θ are obtained when L is minimised. See Appendix B for derivation details.

With the simulated unequally-spaced data, we re-estimated the parameters using the model, which sampling

intervals are treated as equal (“equally-spaced”model) and are normalised as unity. Namely, δ = t−(t−1) =

1 for all observations. The estimation procedure is very similar to the model of interest (“unequally-spaced”

model). See Appendix B for derivations. We then compared the estimations results from using the two

models, expecting the estimates of “unequally-spaced” model to have smaller estimation bias.

The results from 10, 000 replications in each case are presented in Table 3.1. The table contains the simulation

bias (calculated as estimated valueminus fixed value) and standard error for each estimator (in the parenthesis

under). The estimates of α1,α2,β and σ2 are denoted by α̂1, α̂2, β̂ and σ̂2, respectively. “Model I” indicates

the “unequally-spaced” model while “Model II” indicates the “equally-spaced” model. The estimation bias

(in absolute terms) in Model I are smaller than that in Model II, except for estimates of σ2. The bias in

estimates of σ2 is smaller in Model II, though the standard errors of these estimates are slightly larger in

Model II. The standard errors are smaller in Model I than for Model II in all cases. Moreover, estimation

bias get smaller with the increase in sample size in both models. Interestingly, the bias of estimates of β is

of different signs in the two different parameter configurations. Overall, the results are broadly favouring

Model I, which correctly accounts for the unequal sampling intervals, suggesting that there are improvements

to be made in the estimation procedures when the sampling intervals are correctly measured.
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Table 3.1: Monte Carlo Simulation Results

Parameter α1 α2 β σ2

Fixed Value −1.25 0.75 1 0.25

T = 120 Estimate α̂1 α̂2 β̂ σ̂2

Bias (Model I) −0.022 0.035 0.033 −0.127

(0.0665) (0.0762) (0.0749) (0.0006)

Bias (Model II) 0.040 0.046 0.040 −0.122

(0.0716) (0.0828) (0.0862) (0.0007)

T = 240 Bias (Model I) −0.014 0.018 0.012 −0.125

(0.0291) (0.0348) (0.0276) (0.0003)

Bias (Model II) −0.031 0.030 0.016 −0.120

(0.0316) (0.0393) (0.0339) (0.0003)

Parameter α1 α2 β σ2

Fixed Value −0.95 −0.05 1 0.25

T = 120 Estimate α̂1 α̂2 β̂ σ̂2

Bias (Model I) −0.042 0.043 −0.016 −0.122

(0.026) (0.0181) (0.0283) (0.0007)

Bias (Model II) −0.061 0.052 −0.016 −0.115

(0.0277) (0.0202) (0.0332) (0.0009)

T = 240 Bias (Model I) −0.019 0.021 −0.011 −0.123

(0.0104) (0.007) (0.0117) (0.0003)

Bias (Model II) −0.040 0.027 −0.013 −0.114

(0.0113) (0.0087) (0.0156) (0.0005)
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3.5 Conclusion

For discretizing continuous timemodels with unequally-spaced date, the previous chapter provides a method,

which imposes restrictions on the parameter matrix A to be nonsingular. This, however, rules out applica-

tions to nonstationary systems such as unit root and cointegrated systems. This chapter presents an alternative

method to derive the exact discrete time representation of continuous time models with unequally-spaced

flows and mixed data. In all cases the discrete time representations follow a VARMA(1, 1) process with

time-varying parameters and heteroskedasticity, despite that the underlying continuous time model has con-

stant parameters and homoskedasticity. The time-varying parameters and the heteroskedastic variance arise

due to the variations in the sampling intervals, whereas the moving average disturbances arise due to the flow

nature of the observations.

The exact discrete time representation for flow variables can be applied to nonstationary systems such as unit

root and cointegrated systems since it imposed no restrictions on the matrix A; while the exact discrete time

model for mixed samples requires the sub-matrix Ass to be nonsingular. This restriction limits the potential

applications to systems involving zero roots and cointegration between the stocks.

A Monte Carlo simulation study is conducted, aiming at examining estimates properties for the model which

correctly measures the unequal sampling intervals. The main procedure of the study is to simulate unequal-

ly-spaced data (monthly data) and then estimate the continuous time parameters using the exact discrete time

model, which accounts for the unequal sampling intervals. Comparing to estimations results, based on the

simulated data, from using the model, which treats sampling intervals as equal, the simulation results suggest

that estimation bias is reduced when the unequal sampling intervals are measured correctly.

In the Monte Carlo study, we only simulate monthly data, which presents relatively small variation in sam-

pling intervals. Though the simulation evidence indicates the favour of exact discrete timemodels accounting

for the irregularity of sampling intervals, the estimation results are close when using different discrete time

models. These relatively small estimation bias discrepancies may be explained by the small variations in

the sampling intervals. With more irregularly spaced data, the advantage of accounting for the unequal sam-

pling intervals could get bigger. Another potential extended work could be deriving the exact discrete time
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representation for mixed data, which does not impose restriction on the sub-matrix Ass, such that the results

could have broader applications of interest. This possibly request a different method which does not require

inverting Ass.

The exact discrete time representation provided in this chapter have wide applicability since restrictions on

the underlying continuous time model are relatively weak, hence it can be applied to both stationary and non-

stationary processes. This chapter focuses on deriving the exact discrete time representation, the approach

may be extended in several directions in further research. One potential extension of the model is to deal with

mixed frequency (unequally spaced) data, which is suggested in Chambers' (2016) paper where the deriva-

tion of exact representations of multivariate continuous time model with mixed frequency data is presented.

The methods in Chambers (2016) may be applied to derive the exact discrete time model with data that are

observed at different frequencies as well as unequal intervals. Although the process could be complex, such

approach could provide a more realistic setting as well as wider applicability.
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3.6 Appendix B

3.6.1 Cholesky factorization of the covariance matrix Ω

LetM be the real nT × nT lower triangular matrix with positive elements along the diagonal:

M =

.

//////////////////0

M11 0 0 · · · · · · 0 0

M21 M22 0 · · · · · · 0 0

0 M32 M33 · · · · · · 0 0

...
...

. . .
...

0 0 · · · · · · MT−1,T−2 MT−1,T−1 0

0 0 · · · · · · 0 MT,T−1 MT,T

1

2222222222222222223

.

The sub-matrices,M11, · · · ,Mt,t−1,Mtt(t = 2, · · · , T ) can be computed as

M11M
′
11 = Ω0,

M21 = Ω1(M
′
11)

−1,

M22M
′
22 = Ω0 −M21M

′
21,

...

Mt,t−1 = Ω1(M
′
t−1,t−1)

−1,

MttM
′
tt = Ω0 −Mt,t−1M

′
t,t−1, t = 2, · · · , T.

To computeM , we need to compute (elements of ) Ω; then we need to compute ξ. It is necessary to define

a normally distributed nT × 1 vector satisfyingMε = ξ: Define an nT × 1 vector ε = [ε′1, · · · , ε′T ]′ such

that Mε = ξ, where E[ε] = 0, E[εε′] = InT and E[εt] = 0, E[εtε
′
t] = In, E[εtε

′
s] = 0 for s ∕= t and

s, t = 1, · · · , T . Therefore, ξ′Ω−1ξ = ξ′(M ′)−1M−1ξ = ε′ε. Then ξ is computed as ξ = Mε, whose

procedure is given in section 4.
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3.6.2 Computing elements of Ω

Elements of the matrix Ω include

Ω01 =

! δ1

0

G(s)ΣG(s)′ds

=

! δ1

0

! s

0

! s

0

eArΣeA
′wdwdrds

= Ψ(δ1),

Ω1,i =

! δi

0

G(s)ΣΓ(s)′ds

=

,! δi

0

! s

0

eArΣeA
′sdrds

-
G′

i+1 −
,! δi

0

! s

0

! s

0

eArΣeA
′wdwdrds

-
Φ′

i+1,

= Λ(δi)G
′
i+1 −Ψ(δi)Φ

′
i+1,

where Λ(δi) =
" δi
0

" s

0
eArΣeA

′sdrds =
" δi
0

G(s)ΣF (s)′ds, and Ψ(δi) =
" δi
0

" s

0

" s

0
eArΣeA

′wdwdrds =

" δi
0

G(s)ΣG(s)′ds, i = 2, · · · , T in the following,

Ω−1,i =

! δi−1

0

Γi(s)ΣG(s)′ds

= GiΛ(δi−1)
′ − ΦiΨ(δi−1)

′,

Ω0,i =

! δi

0

G(s)ΣG(s)′ds+

! δi−1

0

Γi(s)ΣΓi(s)
′ds

= Ψ(δi) +GiL(δi−1)G
′
i −GiΛ(δi−1)

′Φ′
i − ΦiΛ(δi−1)G

′
i + ΦiΨ(δi−1)Φ

′
i,

where A(δi) =
" δi
0

eAsΣeA
′sds =

" δi
0

F (s)ΣF (s)′ds.

In order to compute elements of Ω, we need to compute following matrix exponential and its integrals:

Fi = eδiA, Gi =

! δi

0

eAsds, L(δi) =

! δi

0

eAsΣeA
′sdsds,

Λ(δi) =

! δi

0

! s

0

eArΣeA
′sdrds,Ψ(δi) =

! δi

0

! s

0

! s

0

eArΣeA
′wdwdrds.

Since the matrix A is singular, we cannot directly compute
" δi
0

eAsds = A−1(eδiA − I). The matrix expo-

nential, eAδi , and the integrals of the matrix exponential can be obtained from the computation of a 4n× 4n
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matrix exponential (see Van Loan, 1978; and Thornton and Chambers, 2016).

Let C be the 4n× 4n upper triangular matrix, defined by

C =

.

//////////0

−A I 0 0

0 −A Σ 0

0 0 A′ I

0 0 0 0

1

22222222223

.

Then for δi ! 0 for all i,

ecδi = exp

(
))))))))))*

))))))))))+

δi

.

//////////0

−A I 0 0

0 −A Σ 0

0 0 A′ I

0 0 0 0

1

22222222223

6
))))))))))7

))))))))))8

=

.

//////////0

F1(δi) G1(δi) H1(δi) K1(δi)

0 F2(δi) G2(δi) H2(δi)

0 0 F3(δi) G3(δi)

0 0 0 F3(δi)

1

22222222223

,

where

F3(δi) = eA
′δi ,

G2(δi) =

! δi

0

e−A(δi−s)ΣeA
′sds

= e−Aδi

! δi

0

eAsΣeA
′sds,

G3(δi) =

! δi

0

eA(δi−s)ds,

H2(δi) = e−Aδi

! δi

0

! δs

0

eAsΣeA
′rdrds,

Therefore,

Fi = F3(δi)
′,

Gi = G3(δi),

L(δi) = F3(δi)
′G2(δi),

Λ(δi) = F3(δi)
′H2(δi),

Ψ(δi) = F3(δi)
′K1(δi) +K1(δi)

′F3(δi).
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3.6.3 Derivation of “equally-spaced” model

In the case of model with equally spaced flows, observations, xt, are made over equally spaced discrete

integrals, (t− 1, t), such that xt =
" t

t−1
x(r)dr, t = 1, · · · , T.

Let x(t) be an n× 1 stochastic process generated by

dx(t) = Ax(t)dt+ ζ(dt), t > 0,

where A =

.

//0
α1 −α1β

α2 −α2β

1

223.

If x(t) is a stock variable, then the discrete time form of (1) obtained as

x(t) = Fx(t− 1) + η(t), t = 1, · · · , T,

where F = eAδ = eA, given that δ = 1, η(t) =
" t

t−1
eA(t−r)ζ(dr).

If the observations are flow variables then

xt =

! t

t−1

x(r)dr =

! 1

0

x(t− r)dr =

! 1

0

x(t− 1 + r)dr.

From the discrete time model for stock variables we obtain

x(t− 1 + s) = eAsx(t− r) +

! t−1+s

t−1

ζ(dr).

Integrating the above equation over the interval s ∈ (0, h] obtains

! 1

0

x(t− 1 + s)ds = (

! 1

0

eAs)x(t− 1) +

! 1

0

! t−1+s

t−1

eA(t−1+s−r)ζ(dr)ds,

which can be represented as

xt = Gx(t− 1) + et,

where G =
" 1

0
eAsds, et =

" 1

0

" t−1+s

t−1
eA(t−1+s−r)ζ(dr)ds =

" t

t−1
G(t− r)ζ(dr), t = 1, · · · , T.

Re-arranging the above equation yields

x(t− 1) = G−1(xt − et).
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Lagging the discrete time model for stocks for one period and substituting out x(t − 1) using the above

equation obtains

G−1(xt − et) = FG−1(xt−1 − et−1) + η(t− 1).

Re-arranging the above equation obtains the reduced-form discrete time model

x1 = Φx(0) + ε1,

xt = Φxt−1 + εt, t = 2, . . . , T,

where ε1 = e1 =
" 1

0
G(1− r)ζ(dr) with t(0) = 0 and t1 = δ = 1, εt =

" t

t−1
G(t− r)ζ(dr) +

" t−1

t−2
Γ(t−

1− r)ζ(dr), t = 2, . . . , T.

Properties of the disturbances are given by

Ω0 = E[εtε
′
t] =

(
))))*

))))+

! 1

0

G(s)ΣG(s)′ds, t = 1,

! 1

0

G(s)ΣG(s)′ds+

! 1

0

Γ(s)ΣΓ(s)′ds, t = 2, . . . , T,

Ω−1 = E[εtε
′
t−1] =

! 1

0

Γ(s)ΣG(s)′ds, t = 2, . . . , T,

Ω1 = E[εtε
′
t+1] =

! 1

0

G(s)ΣΓ(s)′ds, t = 1, . . . , T − 1,

Furthermore, let Ω00 denote the variance when t = 1 and the we have

Ω00 =

! 1

0

G(s)ΣG(s)′ds,

and the covariance matrix is

Ω = E [εε′]

=

.

//////////////////0

Ω00 Ω1 0 0 · · · · · · 0

Ω−1 Ω0 Ω1 0 · · · · · · 0

0 Ω−1 Ω0 Ω1 · · · · · · 0

...
...

. . .
...

0 0 · · · · · · Ω−1 Ω0 Ω1

0 0 · · · · · · 0 Ω−1 Ω0

1

2222222222222222223

.
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The simulation procedure is the same as in the “unequally-spaced” model.
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4 Exact Gaussian Estimation of Continuous TimeModels with Unequally

Spaced Data

This chapter presents empirical applications of the exact discrete time representation method to estimate

continuous time models with data observed at unequally spaced intervals. Two cases are considered - a uni-

variate model with a stock variable (vacancy stock), and a bivariate model with two flow variables (vacancy

inflow and outflow). The data are reported labour market vacancies, whose count dates are not released at

a regular basis, which leads to irregular sampling intervals. The empirical results show that the parameter

estimates are different when accounting for the unequal sampling intervals compared to the approach that

assumes data are equally spaced. In addition, the Monte Carlo simulation evidence suggests that estimation

bias is smaller when accounting for the unequally spaced intervals, indicating potential gains in estimation

when the appropriate approach is applied. Especially for the model with flow variables, the bias in param-

eter estimates is obviously smaller under the appropriate approach. Even with relatively small variation in

sampling intervals, there are gains to be made by incorporating the correct discrete time representation of

the continuous time models. These evidences support the argument that the unequal spacing should be taken

into account in the estimation procedure.
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4.1 Introduction

Since the seminal work by Bergstrom (1983) on the Gaussian estimation of continuous time dynamic mod-

els based on the exact discrete time representation, continuous time modelling has been applied in a wide

range of areas. Advantages of modelling in continuous time over discrete time have been broadly discussed

in Bergstrom et al. (1996) and Bergstrom and Nowman (2007). The development and application of con-

tinuous time models has been an important contribution and extension of the original work to the existing

literature. One major ongoing development has been the estimation of continuous time models in finance. In

a benchmark work by Black and Scholes (1973) the continuous time model was used for option pricing. Fur-

ther applications include modelling interest rates (for example, in Vasicek, 1977; Chan et al., 1992) and asset

pricing (see Huang, 1987). Continuous time models have also been extensively applied in macroeconomic

modelling since Bergstrom andWymer (1976) first derived a continuous time macroeconometric model. For

example, Bergstrom and Chambers (1990) and Chambers (1992) presented a continuous time model of con-

sumer's demand in the UK. Further, Campbell et al. (2004) used continuous time models to model optimal

intertemporal portfolio and consumption choice. More recently, Diez de los Rios and Sentana (2011) used a

continuous time approach to derive a new test of uncovered interest parity.

In much of the work on estimation of continuous time models, the data are treated as equally spaced, while

in much time series data the observation interval is not constant over time. For example, irregular observa-

tion intervals may arise due to missing observations, irregular observing behaviour, small random deviations

in the interval (in “jittered” samples) or simply the variation in the length of calendar months. Early ap-

proaches to estimate with irregular sampled data include spectral analysis. For instance, Jones (1962, 1971)

and Parzen (1963) have employed spectral estimation with missing observations. However, with relatively

small samples, the spectral analysis method may be not preferred in estimating finite-parameter models from

unequally spaced data as argued by Robinson (1977b). In his paper he presented the discretisation of a uni-

variate continuous time model with an unequally spaced stock variable as an alternative method to spectral

analysis.

Robinson's paper (1977b) has provided the possibility to extend the original model of Bergstrom (1983) to
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estimate continuous time models with unequally spaced data based on the exact discrete time method. How-

ever, he did not continue to work on deriving the discrete time model with irregularly sampled time series.

In my previous chapters I have derived the theoretical framework of the exact discrete representation of

continuous time systems with unequally spaced samples that are observed at a sequence of known real time

points (rather than missing observations). The exact discrete time representations exhibit more complicated

characteristics such as heteroskedastic errors and time-varying coefficients compared to regularly sampled

case. When the irregularly sampled data are mistreated as equally spaced, estimation results are likely to be

more biased, which is consistent with simulation evidences. Given the available unequally spaced data, this

chapter aims to provide some examples of empirical applications of the theoretical model, with an illustration

on gains (such as reduced estimation bias) in the estimation procedure when the unequal sampling intervals

are correctly measured.

The data employed in the empirical studies are the monthly job vacancies in UK posted through Jobcen-

tre Plus, which include vacancy stocks, inflows and outflows from 2004 to 2012 (when the administrative

data collection work discontinued). Firstly, this dataset provides data on vacancies, which is an important

topic in the macroeconomic and labour economic literature. The number of vacancies in a labour market

can be treated as a direct measure of the demand for labour since firms usually recruit via posting vacancies.

Significance of vacancies in the context of theoretical macro-labour literature is emphasised in search and

matching models following the benchmark work by Diamond (1982), Mortensen and Pissarides (1994), and

Pissarides (2000). The Diamond-Mortensen-Pissarides (DMP) model has become the canonical model of

labour macroeconomics. Therotically, in the DMP model, the (endogenous) stock of vacancies is a compo-

nent of labour market tightness (measured as the ratio of vacancy to unemployment), and workers job-finding

rates (and therefore unemployment duration, and aggregate unemployment rates) are determined by tight-

ness. On the other hand, empirically, Shimer (2005) indicated that there is a very strong relationship between

tightness and job finding rate. Therefore, understanding the behaviour of vacancy stocks and flows is crucial

for understanding workers' labour market outcomes and the aggregate dynamics of the labour market. Sec-

ondly, the data are observed at irregular intervals that vary from 28 days to 35 days according to the count

dates, which fit the purpose of this chapter well. Although there are available up-to-date vacancy data, which
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can be found, for example, in the ONS website, these data do not contain vacancy flows as well as the precise

count dates, making it difficult to measure any irregular sampling intervals. Rather than addressing a specific

issue in macroeconomics (or labour economics), the focus of this chapter is to provide evidence on gains in

the estimation when the unequal sampling intervals are correctly measured via empirical applications.

This chapter provides two applications of the methods in the earlier chapters. The first application presents

the exact Gaussian estimation of a univariate continuous time model of job vacancy stock variable. Results

show small differences in estimations when comparing to estimation assuming equally spaced data, but the

standard deviations are significantly smaller when using the approach that correctly accounts for the unequal

sampling intervals. In practitioners' view, perhaps a more interesting related empirical exercise would be to

estimate a model of the joint dynamics of vacancies and unemployment stocks (e.g. a VAR model). How-

ever, one limitation of the NOMIS data for this purpose is that the count dates of vacancy and unemployment

are different and the method developed in this thesis requires that both sticks are observed at the same basis.

Therefore, this exercise is outside the scope of this thesis, but could be interesting to investigate in future

research.

The second application is the estimation of a bivariate continuous time models with vacancy inflow and out-

flow that are observed at the same basis. Comparing to the approach that treats the data as equally spaced, the

differences in the estimated drift parameters are still small, but the differences in variance estimates are large.

The results still indicate the possibility of gains from correctly accounting for the unequal sampling intervals.

The approach presented in this chapter may be extended/modified to labour economic/macroeconomic anal-

ysis such as mixed-sample case (e.g. vacancy flows and stocks), although such work could involve complex

process in model specification as well as estimation. In addition, given that the model is multivariate, the

aliasing problem could impose some additional challenge in solving such problem. Again, solving this prob-

lem is beyond the scope of this thesis, but it may offer a new insight into labour market as a future research.

The rest of the chapter is organised as follows. Section 4.2 considers an application to estimating a univariate

continuous time model with unequally spaced vacancy stocks based on the exact discrete time method. The

empirical study involves two sets of estimations based on the same (unequally spaced) data: one approach
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takes the irregular sampling intervals into account while the other assumes data are equally spaced. The

estimation results indicate that there are differences in parameter estimates and smaller standard errors for

estimates from the approach which accounted for the unequal sampling intervals. Then a Monte Carlo sim-

ulation is conducted in order to examine the impact of correctly measuring sampling intervals on estimate's

properties. Simulation evidence suggests that there are gains (such as smaller estimation bias and standard

errors) to be made in the estimation of continuous time models when the unequal sampling intervals are cor-

rectly accounted for, even with relatively small variation in the sampling interval.

Section 4.3 estimates a bivariate continuous time system with vacancy inflows and outflows from the same

dataset. The underlying continuous time model is estimated based on two different approaches, one con-

siders the unequal sampling intervals while the other assumes intervals are equal. Estimation results are

different for the two approaches, particularly in the estimate of the variance. Following a Monte Carlo simu-

lation study, the simulation results suggest that with flow variables, the Gaussian estimation bias is obviously

larger when the sampling intervals are mistreated as equally spaced. The bias is reduced when the unequal

sampling intervals are correctly measured, particularly in estimates of the variance. Section 4.4 concludes

the main results.
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4.2 Estimation of Continuous Time Models with an Unequally Spaced Stock Variable

This section presents an application of estimation of continuous time models with stock variables based on

the exact discrete time representation method. A simple case is considered: the continuous time model is in

the form of a first corder univariate autoregressive model (AR(1) process) while the data are vacancy stocks

in UK.

The data were obtained from the Nomis (ONS) website, which are vacancies posted through Jobcentre Plus,

including monthly vacancy stocks, inflows and outflows from April 2004 to April 2012 with irregular count

date. In the data, sampling intervals vary from 28 days to 35 days. Note that in the original data set, what

followed August 2010 observation was October 2010 observation, leading to the corresponding sampling

interval become 63 days and the sample size to be 96, which equals to 8-year monthly sample size. This

administrative data collection work started in 2004 and was discontinued in November 2012. More recent

(up-to-date) vacancy data could be found in the ONS website, however, these dataset firstly do not contain

inflows and outflows, and secondly do not provide precise count dates, which is inconvenient for correctly

measuring the irregular sampling intervals. These data from the Jobcentre Plus, even though have been

discontinued unfortunately, provide a set of vacancy stocks and flows with precise count dates, which is

appropriate for the models involved in this paper since they provide both stock and flow data and allow us

to observe the irregular intervals.

Given the available unequally spaced data, this section compares estimation results from the model that

accounts for the irregular sampling intervals to estimations results from the model that assumes data are

equally spaced (using the same data). Then the estimation was repeated based on simulated data in order to

examine the impact of correctly accounting for unequal sampling intervals.

4.2.1 The Exact Discrete Time Representation

Model I - Unequal Sampling Intervals

Let x(t) be an stochastic process generated by

dx(t) = ax(t) + ζ(dt), t > 0, (4.1)
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where a is a scalar and ζ(dt) is a random measure satisfying Assumption 4.1, such that:

E[ζ(dt)] = 0

E[ζ(dt)2] = σ2dt,

where σ is an unknown positive constant and

E[ζi(∆1)ζj(∆2)] = 0,

for i, j = 1, 2, · · · , n; i ∕= j; and ∆1 ∩∆2 = ∅.

In what follows, it is assumed that samples are observed at the discrete points ti (i = 0, . . . , T ) such that

0 < t1 < . . . < tT and ti = ti−1 + δi for some δi > 0 (i = 0, . . . , T ). In the case of a stock variable the

sequence of observations is of the form

x(t0), x(t1), · · · , x(tT ), (4.2)

and henceforth denote x(t0) by x(0) for convenience.

The system of a stock variable can be written as

x(ti) =

! ti

0

e(ti−r)a ζ(dr) + etiax(0), (4.3)

for i = 1, . . . , T , under the Boundary Condition that x(0) is observed.

Then under Assumption 4.1, subject to the above boundary condition, the exact discrete time representation

of (4.1) is obtained as

x(ti) = eaδix(ti−1) + η(ti), i = 1, . . . , T, (4.4)

where

η(ti) =

! ti

ti−1

ea(ti−r)ζ(dr)

E[η(ti)] = 0,

E[η(ti)
2] = σ2

! ti

ti−1

e2a(ti−r)ζ(dr)

=
σ2(e2aδi − 1)

2a

= σi
2,
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E[η(ti)η(tj)] = 0, for i ∕= j.

The exact discrete model has time-varying coefficient and serially uncorrelated heteroskedastic disturbances.

The Gaussian estimates of parameters of the continuous time model, â and σ̂2, can be obtained when the

Gaussian log-likelihood function of (4.4)

L(a,σ2) = −T

2
ln(2π)− 1

2

T9

i=1

lnσ2
i −

1

2

T9

i=1

[x(ti)− eaδix(ti−1)]
2

σ2
i

, i = 1, . . . , T. (4.5)

is maximized. Note that (4.5) is a function of the continuous time parameters a and σ2, (4.5) can be further

written as

L(a,σ2) = −T

2
ln(2π)− 1

2

T9

i=1

ln
:
σ2(e2aδi − 1)

2a

;
− 1

2

T9

i=1

2a[x(ti)− eaδix(ti−1)]
2

σ2(e2aδi − 1)
, i = 1, . . . , T.(4.6)

The maximum likelihood estimate (MLE) of a, denoted by â, is directly obtained when (4.6) is maximised.

We first obtained the MLE, σ̂, and the MLE, σ̂2, is obtained by squaring σ̂. This is to avoid getting any

negative values in σ̂2. Then its standard deviation is obtained based on the delta method.

Model II - Equal Sampling Intervals

Given that data are generated by (4.1), and based on the assumption that the sampling intervals are equally

spaced. Namely the samples are observed at discrete points t = 0, 1, . . . , T and the sampling interval δ =

t− (t− 1) = 1. A stock variable consists a sequence of observations of the form

x(0), x(1), . . . , x(T ), (4.7)

and the exact discrete time representation of such observations generated by (4.1) is obtained as

x(t) = φx(t− 1) + u(t), t = 1, . . . , T, (4.8)

where

φ = ea,

u(t) ∼ NID(0, σu
2),

σu
2 =

σ2(e2a − 1)

2a
,
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under Assumption 4.1 and subject to the Boundary Condition that x(0) is observed.

The Gaussian maximum likelihood estimates of parameters a and σ2 are obtained when the log-likelihood

function of (4.8)

L(a,σ2) = −T

2
ln(2π)− 1

2

T9

t=1

lnσ2
u − 1

2

T9

t=1

[x(t)− eax(t− 1)]2

σ2
u

, i = 1, . . . , T. (4.9)

is maximised. These are equivalent to the OLS estimates. The OLS estimate of φ is obtained as φ̂ =

!T
t=1 x(t−1)2!T

t=1 x(t−1)x(t)
. Then estimate of a can be obtained taking the logarithm of φ̂ as â = lnφ̂. Given the

estimate value of φ̂, the OLS estimate of σu
2 is obtained as σ̂u

2 = 1
T−1

#T
t=2[x(t) − φ̂x(t − 1)]2 and the

estimate of σ is then obtained as σ̂2 = 2âσ̂u
2

e2â−1
. The standard errors are calculated based on the delta method.

Estimation results from both models are presented in the next subsection.

4.2.2 Estimation Results

Parameter estimates and standard errors (in parenthesis) from both models are presented in Table 4.1. In the

data, sampling intervals are normalised by dividing by 30, leading to the intervals, δ, vary from 28/30 =

0.933 to 35/30 = 1.167, except for the observation in August 2010 whose interval is 63 days, which is the

maximum δmax = 63/30 = 2.1 in the sample. The sample size N = T + 1 = 96. Estimation results from

Model I (unequal sampling intervals) are presented as “MLE” while estimation results from Model II (equal

sampling intervals) are presented as “OLS” in the table.

Overall the estimated values of the continuous time parameters from both models are similar, while the

differences in σ̂2 are slightly larger than the differences in â. Specifically, the standard errors of the estimates

in Model I are significantly smaller than the standard errors in Model II. For instance, the standard error of

the MLE σ̂2 is 0.0377 while the standard error of the OLS estimate σ̂2 is 1.588, which is approximately five

times (more than one standard deviation) larger than the former. Accounting for sampling irregularities leads

to only very small change in the estimated drift parameter and a somewhat larger (yet also small) increase

in the estimated volatility parameter. However, the biggest gain from correctly accounting for the unequal

sampling intervals seems to be the significant reduction in standard errors, suggesting that all parameters
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may be more precisely estimated.

As discussed in Shimer (2005), one aspect in which the volatility of vacancies is important is that standard

versions of the DMP model imply much higher volatility of vacancies than observed in the data, which has

led several studies (e.g. Fujita, 2003) to introduce features to reduce the volatility of vacancies in the model.

Even though the estimated differences in volatility here are too small to account for the large differences

between model and data discussed by Shimer (2005), it is still clear that precise estimation of this volatility

parameter could be of significance for studies calibrating the DMP model.

The estimation results indicate small differences in parameter estimates and potentially better properties of

estimates from Model I, where the unequal sampling intervals are correctly accounted for, part of the reason

for such small differences could be the small sample size as well as relatively small variation in sampling

intervals. Still, there could be potential gains in the estimation, such as smaller estimation bias, which is

explored in the next section. In 4.2.3, a Monte Carlo simulation on repeating the above estimation process

is presented in order to examine the impact of correctly measuring the irregular sampling intervals.

Table 4.1: Estimation Results - Univariate Model

δmin = 0.933, δmax = 2.1, N = 96

â σ̂2

MLE (Model I) −0.0118 1.1426

(0.0778) (0.0377)

OLS (Model II) −0.0110 1.1002

(0.1741) (0.1588)

4.2.3 Monte Carlo Simulation

This section presents some simulation evidence on improvement in estimate properties when correctly ac-

counting for the unequal sampling intervals. Based on the estimated parameters, the simulated data are



92

monthly data with the sample sizeN range from 96 to 240. The lengths of the intervals range from 0.933 to

1.167, which is the same as the real data in the empirical estimation. The observations are generated by (4.1)

dx(t) = ax(t) + ζ(dt), ζ(dt) ∼ NID(o,σ2dt),

with σ2 = 1.1 and a = −0.011. Subject to the Boundary Condition the initial value taken is x0 = x(0) = 0

for t0 or t(0), estimate of a and σ2 are obtained by maximising the Gaussian log-likelihood function

L(a,σ2) = −T

2
ln(2π)− 1

2

T9

i=1

lnσ2
i −

1

2

T9

i=1

[x(ti)− eaδix(ti−1)]
2

σ2
i

, σi
2 =

σ2(e2aδi − 1)

2a
,

and the resulting estimates denoted as MLE from Model I (accounting for unequal sampling intervals) and

OLS from Model II (assuming equally spaced sampling intervals).

The results from 10,000 replications for each sample size (namely 96, 120 and 240) are presented in Table

4.2. Table 4.2 contains the estimated values, estimation bias and standard error (in parenthesis) for each

estimator. The estimation bias for a is negative for both MLE and OLS in all cases and is with a smaller

magnitude for MLE. The differences become smaller as the sample size gets smaller. The estimation bias

for σ2 is positive and is smaller for MLE, the differences are larger than the differences in estimates of a.

The standard errors are very similar but slightly smaller for MLE in all cases. As the sample size decreases,

both estimation bias and the standard errors increase for both estimators. Overall, these results indicate

some gains in the estimation of continuous time models, such as smaller estimation bias and standard errors,

when the variation in sampling intervals are correctly accounted for, even though the variation in observation

intervals is relatively small. With data observed at more irregular intervals (larger variation in intervals), the

advantages of using the correct discrete time representation could get larger, particularly for large sample

size. Even when such variation is limited, it is still beneficial to correctly account for the unequal sampling

intervals in estimation procedure.
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Table 4.2: Simulation Results

Simulation Results - Univariate Model

δmin = 0.933 , δmax = 1.167, N = 240, a = −0.011 σ̂2 = 1.1

â σ̂2

MLE (Model I) −0.0189 1.1069

bias −0.0079 0.0069

(0.0163) (0.1020)

OLS (Model II) −0.0191 1.1240

bias −0.0081 0.0240

(0.0164) (0.1042)

δmin = 0.933 , δmax = 1.167, N = 120, a = −0.011 σ̂2 = 1.1

â σ̂2

MLE (Model I) −0.0268 1.1100

bias −0.0158 0.0100

(0.0298) (0.1445)

OLS (Model II) −0.0271 1.1315

bias −0.0161 0.0315

(0.0300) (0.1480)

δmin = 0.933 , δmax = 1.167, N = 96, a = −0.011 σ̂2 = 1.1

â σ̂2

MLE (Model I) −0.0310 1.1148

bias −0.020 0.0148

(0.0314) (0.1646)

OLS (Model II) −0.0314 1.1388

bias −0.0204 0.0388

(0.0377) (0.1692)
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4.3 Estimation of Continuous Time Models with Unequally Spaced Flows

This section presents the empirical estimation which concerns a bivariate continuous time system with two

flow variables - vacancy inflows and outflows. The sample is from the same dataset as in the previous

section, which starts in April 2004 and finishes in April 2012, yielding 96 unequally spaced observations for

each variable. The normalised observation intervals vary from 0.933 to 1.167 except for the observation in

August 2010, which has the maximum interval δmax = 2.1.

4.3.1 The Exact Discrete Time Representation

Let x(t) be an n× 1 stochastic process generated by

dx(t) = Ax(t)dt+ ζ(dt), t > 0, (4.10)

where A is an n × n matrix, and ζ(dt) is an n × 1 vector of random measures satisfying Assumption 4.2,

such that

E[ζ(dt)] = 0,

E[ζ(dt)ζ(dt)′] = Σdt,

E[ζi(∆1)ζj(∆2)
′] = 0,

where Σ is an unknown symmetric positive definite matrix; i, j = 1, 2, ..., n; i ∕= j; and ∆1 ∩∆2 = ∅

When n = 2, (4.10) becomes a bivariate model given by
.

//0
dxI(t)

dxO(t)

1

223 =

.

//0
aII aIO

aOI aOO

1

223

.

//0
xI(t)

xO(t)

1

223 dt+

.

//0
ζI(t)

ζO(t)

1

223 , (4.11)

where xI(t) denotes vacancy inflows and xO(t) denotes vacancy outflows. [ζI(t), ζO(t)]′ satisfies Assump-

tion 4.2 with variance matrix Σdt such that

Σ =

.

//0
σ2
I σ2

IO

σ2
IO σ2

O

1

223 .

Model I: Unequal Sampling Intervals
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In the case of unequally spaced flow variables, the observations constitute a sequence of flow vectors of the

form

xti =

! ti

ti−1

x(r)dr =

! δi

0

x(ti − r)dr =

! δi

0

x(ti−1 + r)dr, i = 1, . . . , T. (4.12)

According to Theorem 3.1 in chapter 3, the exact discrete time representation of (4.1) observed as the se-

quence in (4.12) is obtained as

xt1 = G1x(0) + ξt1 ,

xti = Φixti−1 + ξti , i = 2, . . . , T,

(4.13)

where

eA =

∞9

j=0

1

j!
Aj ,

Fi = F (δi) = eAδi ,

Gi = G(δi) =

! δi

0

eAsds,

G1 =

! δ1

0

eAsds,

Φi = GiFi−1G
−1
i−1.

The disturbance vector in the exact discrete time model (4.13), ξti , is a heteroskedastic MA(1) process with

autocovariance matrices given by

Ω0,i = E[ξtiξ
′
ti ] =

(
))))*

))))+

! δ1

0

G(s)ΣG(s)′ds, i = 1,

! δi

0

G(s)ΣG(s)′ds+

! δi−1

0

Γi(s)ΣΓi(s)
′ds, i = 2, . . . , T,

Ω−1,i = E[ξtiξ
′
ti−1

] =

! δi−1

0

Γi(s)ΣG(s)′ds, i = 2, . . . , T,

Ω1,i = E[ξtiξ
′
ti+1

] =

! δi

0

G(s)ΣΓi+1(s)
′ds, i = 1, . . . , T − 1,

where

Γi(x) = GiF (x)− ΦiG(x).

The parameters to be estimated are θ = [A, Σ] = [aII , aIO, aOI , aOO, σ2
I , σIO, σ2

O]
′. The maximum

likelihood estimates of these parameters are obtained when the Gaussian likelihood function

L(θ) = −T

2
− 1

2
ln|ΩU |−

1

2
ξ′ΩUξ, ξ = [ξ′1, . . . , ξ

′
T ]

′ (4.14)
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is maximised. The covariance matrix

ΩU = E[ξξ′]

=

.

//////////////////0

Ω01 Ω1,1 0 0 · · · · · · 0

Ω−1,2 Ω0,2 Ω1,2 0 · · · · · · 0

0 Ω−1,3 Ω0,3 Ω1,3 · · · · · · 0

...
...

. . .
...

0 0 · · · · · · Ω−1,T−1 Ω0,T−1 Ω1,T−1

0 0 · · · · · · 0 Ω−1,T Ω0,T

1

2222222222222222223

,

where

Ω01 = Ψ(δ1),

Ω1,i = Λ(δi)G
′
i+1 −Ψ(δi)Φ

′
i+1,

Ω−1,i = GiΛ(δi−1)
′ − ΦiΨ(δi−1)

′,

Ω0,i = Ψ(δi) +GiL(δi−1)G
′
i −GiΛ(δi−1)

′Φ′
i − ΦiΛ(δi−1)G

′
i + ΦiΨ(δi−1)Φ

′
i,

Λ(δi) =

! δi

0

G(s)ΣF (s)′ds,

Ψ(δi) =

! δi

0

G(s)ΣG(s)′ds,

A(δi) =

! δi

0

F (s)ΣF (s)′ds.

In order to computeΩU it is necessary to compute thematrix exponentialFi and its integrals,Gi, L(δi), Λ(δi),

andΨ(δi). If the matrixA is non-singular, we can simply compute
" δi
0

eAsds = A−1(eδiA−I). Since we do

not restrictA to be non-singular, a more appropriate method to obtain the matrix exponential and its integrals

would be computing the exponential of an appropriate 4n× 4n matrix (8× 8 in this case).

Let C be the 8× 8 upper triangular matrix such that

C =

.

//////////0

−A I O O

O −A Σ O

O O A′ I

O O O O

1

22222222223

,
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then the exponential of C is computed as

P = eCδi = exp

(
))))))))))*

))))))))))+

δi

.

//////////0

−A I O O

O −A Σ O

O O A′ I

O O O O

1

22222222223

6
))))))))))7

))))))))))8

=

.

//////////0

F1(δi) G1(δi) H1(δi) K1(δi)

O F2(δi) G2(δi) H2(δi)

O O F3(δi) G3(δi)

O O O F4(δi)

1

22222222223

.

It can be shown that Fi = F3(δi)
′, Gi = G3(δi), L(δi) = F3(δi)

′G2(δi), Λ(δi) = F3(δi)
′H2(δi) and

Ψ(δi) = F3(δi)
′K1(δi) +K1(δi)

′F3(δi). Maximising the log-likelihood function (4.14) involves inverting

the covariance matrixΩU , which is computationally costly. It is convenient to find the Cholesky factorization

of ΩU then follow a recursive procedure as follows:

DenoteM by the real nT × nT lower triangular matrix with positive elements along the diagonal such that

MM ′ = ΩU . Therefore |ΩU | = |MM ′| = |M |2 and Ω−1
U = (M ′)−1M−1. Elements ofM are computed

as

M11M
′
11 = Ω01,

Mi,i−1 = Ω′
1,i−1(M

′
i−1,i−1)

−1,

Mi,iM
′
i,i = Ω0,i −Mi,i−1M

′
i,i−1, i = 2, . . . , T.

To compute ξ, it is necessary to define a nT×1 vector ε such thatMε = ξ, whereE[ε] = 0 andE[εε′] = InT .

Vector ξ can be computed recursively as

ξ1 = M11ε1,

ξi = Mi,i−1εi−1 +Mi,iεi, i = 2, . . . , T.

Since ξ = Mε, we have ξ′Ω−1
U ξ = ξ′(M ′)−1M−1ξ = ε′M ′(M ′)−1M−1Mε = ε′ε. Then the log-likelihood

function (4.14) can be written as

L(θ) =

nT9

i=1

(ε2i + 2lnmii), (4.15)

wheremii is the i-th diagonal element ofM . Then the Gaussian maximum likelihood estimate, θ is obtained

by maximising (4.15).
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Model II: Equal Sampling Intervals

In the case of equally spaced flow variables, the observations generated by (4.10) are in the form of

xt =

! t

t−1

x(r)dr, (4.16)

and the observation intervals δi = δ = t− (t− 1) = 1.

The exact discrete time representation is obtained as

x1 = Φx(0) + v1,

xt = Φxt−1 + vt, i = 2, . . . , T,

(4.17)

where

Φ = GFG−1,

v1 =

! 1

0

G(1− r)ζ(dr),

vt =

! t

t−1

G(t− r)ζ(dr) +

! t−1

t−2

Γ(t− 1− r)ζ(dr),

Γ(z) = GF (z)− ΦG(z).

The covariance matrix

Ω = E[v′v]

=

.

//////////////////0

Ω00 Ω1 0 · · · · · · 0 0

Ω−1 Ω0 Ω1 · · · · · · 0 0

0 Ω−1 Ω0 · · · · · · 0 0

...
...

. . .
...

...

0 0 · · · · · · Ω−1 Ω0 Ω−1

0 0 · · · · · · 0 Ω−1 Ω0

1

2222222222222222223

,



99

where

Ω00 =

! 1

0

G(s)ΣG(s)′ds,

Ω1 = ΛG′ − Ω00Φ
′,

Ω0 = Ω00 +GΨG′ −GΛ′Φ′ − ΦΛG′ + ΦΩ00Φ
′,

Ω−1 = Ω′
1,

Ψ =

! 1

0

eAsΣeA
′sds,

Λ =

! 1

0

! s

0

eArΣeA
′sdrds.

The maximum likelihood estimates of parameters θ are obtained by maximising the log-likelihood function

L(θ) = −T

2
− 1

2
ln|Ω|− 1

2
v′Ωv, v = [v′1, . . . , v

′]′. (4.18)

The estimation process is the same as in Model I. Section 4.3.2 presents estimation results from both models.

4.3.2 Estimation Results

Table 4.3 presents parameter estimates and standard errors (in parenthesis) from both models. All estimates

are statistically significant. Observation intervals of flow variables are at the same frequency as the stock

variable, namely the intervals vary from 0.933 to 1.167, while the observation in August 2010 has an interval

of 2.1, which is the maximum. Both inflows and outflows contain 96 observations, nI = nO = 96.

The results show some differences between the two approaches, particularly in estimates of σ. The estimated

values of parameters are slightly larger in Model II, while the standard errors in Model II are slightly smaller

except for σ̂I
2 and ˆσIO. In particular, the estimate of σ̂I

2 in Model I is 1.2115 with standard deviation of

0.1679, while the The estimate in Model II is 1.8724 with standard deviation of 0.2265, suggesting that the

volatility in vacancy inflows is much smaller than estimated without accounting for the unequal sampling

interval. The coefficient between inflows and outflows ˆσIO is positive in both models, 0.3623 and 0.5520

respectively, indicating that inflows and outflows are positively correlated. The differences in estimation

results of the two approaches are relatively small, which is possibly due to the relatively small variation in

observation intervals and small sample size. But still, these results suggest potential gains in the estimation
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procedure when the unequal sampling intervals are correctly accounted for.

Table 4.3: Estimation Results - Bivariate Model

δmin = 0.933, δmax = 2.1, nI = nO = 96

âII ˆaIO ˆaOI ˆaOO σ̂I
2 σ̂O

2 ˆσIO

Unequal (Model I) −0.8728 0.8814 0.8647 −0.9376 1.2115 1.0025 0.3623

(0.1711) (0.2088) (0.1667) (0.1905) (0.1679) (0.1366) (0.1364)

Equal (Model II) −0.8791 0.9253 0.8075 −0.9370 1.8724 1.0246 0.5520

(0.1561) (0.1969) (0.1680) (0.1829) (0.2265) (0.1295) (0.1433)

4.3.3 Monte Carlo Simulation

Given the estimation results, it is interesting to examine improvements in the performance of estimation

when the unequally spaced intervals are correctly measured. In the following Monte Carlo simulation, the

two models are (re-)estimated using simulated data based on the estimated parameters. The main purpose

of the simulation is to test if the estimation bias is reduced under the appropriate approach (Model I), and

possibly at what costs (eg. larger standard errors).

The data generated are two flow variables which consist of three sets of data with different size - 96 (same

as in the real data), 120 and 240. The lengths of intervals are also the same as in the real data, which vary

from 0.933 to 1.167. The observations are generated by (11)
.

//0
dxI(t)

dxO(t)

1

223 =

.

//0
aII aIO

aOI aOO

1

223

.

//0
xI(t)

xO(t)

1

223 dt+

.

//0
ζI(t)

ζO(t)

1

223 ,

with aII = −0.87, aIO = 0.88, aOI = 0.86, aOO = −0.94, σI
2 = 1.21, σO

2 = 1 and σIO = 0.36.

Subjected to the Boundary Condition on initial values, Estimates of these parameters are obtained when the

Gaussian likelihood function

L(A,Σ) = −T

2
− 1

2
ln|Ωi|−

1

2
ξ′Ωiξ
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is maximised.

The estimation procedure is replicated 10,000 times for each sample size, T . Simulation results are presented

in Table 4.4, which contains the estimated values, simulated bias and standard errors. Results from Model

I are presented as “Unequally Spaced” while results from Model II are presented as “Equally Spaced”. In

all cases, the estimation bias in Model I is smaller than that in Model II, which is consistent with histograms

and kernel graphs (see Apendix C); while the standard errors of coefficient estimates are very similar in both

models. In particular, the biases and standard errors for the estimates of variance, σ2
I , σ2

O and σIO, are

significantly larger in Model II. The estimates of all σs are approximately twice as much as the true values

in Model II. The estimation biases for aII and aOO are negative in both models; while the bias for σIO is

negative in Model I but positive in Model II. It seems both approaches turn to overestimate parameters with

positive estimate and underestimate those with negative estimate. As the sample size decreases, estimation

biases and standard errors increase in both models, except that the bias in σ's decreases in Model II. Interest-

ingly, with smaller sample size, estimates of σ turn to get closer to the true value. However, the advantage

of using Model I is still dominating.

Since there are relatively large differences in estimates of variances, it might be interesting to check how

close is the estimate to the true value. Figures 1 to 6 (in Appendix C) present comparisons of histograms

(Figures 1 to 3) and kernel graphs (Figures 4 to 6) of estimates in both models to the true values when the

sample size equals to 240, 120 and 96, respectively. In all cases, Model I provides better fit than Model II,

particularly for σ, where Model II seems to perform obviously worse than Model I. Overall, these results

are in favour of Model I, suggesting that the unequal spacing should be taken into account in the estimation

procedure.
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Table 4.4: Simulation Results - Bivariate Model

δmin = 0.933, δmax = 1.167, T = 240

aII aIO aOI aOO σI
2 σO

2 σIO

True Value −0.87 0.88 0.86 −0.94 1.21 1 0.36

Unequally Spaced (Model I) −0.8962 0.9008 0.8810 −0.9677 1.2252 1.0107 0.3471

Bias −0.0262 0.0208 0.0210 −0.0277 0.0152 0.0107 −0.0129

(0.1668) (0.1880) (0.1854) (0.1830) (0.1552) (0.1293) (0.1201)

Equally Spaced (Model II) −0.9386 0.9053 0.8873 −1.0114 2.0590 1.7926 1.1083

Bias −0.0686 0.0253 0.0273 −0.0714 0.8492 0.7926 0.7483

(0.1709) (0.1864) (0.1828) (0.1873) (0.4188) (0.3902) (0.3868)

δmin = 0.933 , δmax = 1.167, T = 120

aII aIO aOI aOO σI
2 σO

2 σIO

True Value −0.87 0.88 0.86 −0.94 1.21 1 0.36

Unequally Spaced (Model I) −0.9312 0.9297 0.9120 −1.0045 1.2503 1.0336 0.3269

Bias −0.0612 0.0497 0.0520 −0.0645 0.0403 0.0336 −0.0331

(0.2882) (0.3195) (0.3132) (0.3149) (0.2719) (0.2419) (0.2312)

Equally Spaced (Model II) −0.9733 0.9332 0.9152 −1.0478 2.0280 1.7646 1.0356

Bias −0.1033 0.0532 0.0552 −0.1078 0.8180 0.7646 0.6756

(0.2878) (0.3113) (0.3060) (0.3150) (0.5667) (0.5293) (0.5246)

δmin = 0.933 , δmax = 1.167, T = 96

aII aIO aOI aOO σI
2 σO

2 σIO

True Value −0.87 0.88 0.86 −0.94 1.21 1 0.36

Unequally Spaced (Model I) −0.9492 0.9470 0.9272 −1.0245 1.2651 1.0466 0.3147

Bias −0.0792 0.0670 0.0672 −0.0845 0.0551 0.0466 −0.0453

(0.3407) (0.3811) (0.3686) (0.3762) (0.3340) (0.2965) (0.2881)

Equally Spaced (Model II) −0.9902 0.9470 0.9286 −1.0657 2.0128 1.7516 0.9983

Bias −0.1202 0.0670 0.0686 −0.1257 0.8028 0.7516 0.6383

(0.3348) (0.3627) (0.3556) (0.3674) (0.6063) (0.5733) (0.5582)
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4.4 Conclusion

This chapter has presented two applications on estimating continuous time models with unequally spaced

data based on the exact discrete time representation method. The first case considers the estimation of a uni-

variate continuous time model with a labour market vacancy stock variable; while the second case presents

estimation of a bivariate continuous time model with vacancy inflows and outflows. Both the stock variable

and flow variables are observed at irregular intervals at the same frequency.

When taking the unequally spaced intervals into account, the exact discrete time representation exhibit differ-

ent characteristics such as time-varying parameters and heteroskedasticity compared to the approach which

assumes data are equally spaced, as shown in the theoretical model. By applying real-life data that are ob-

served at irregular intervals, estimation from the two different approaches (one accounts for the unequally

spaced intervals and the other treats them as equally spaced) present different results in both cases. Even

with relatively small variation in sampling intervals and a small sample size (of 96 observations), there are

differences in parameter estimates, which indicate possible potential gains in estimation when the unequal

sampling intervals are correctly accounted for.

In order to examine the impact (possibly improved estimation results) of correctly measuring unequal sam-

pling intervals on the estimated parameters of continuous time models, the estimation procedures were repli-

cated using simulated data (based on estimated parameters). Simulation evidences show that the estimation

bias is reduced when the unequal sampling intervals are accounted for in both cases. With flow variables,

estimation biases are significantly larger (especially for variances and covariance) when the unequal sam-

pling intervals are treated as equally spaced, which is consistent with the histograms and kernel graphs. With

larger sized samples, the advantage of using the correct approach (Model I) for estimating the continuous time

models become more obvious. In conclusion, simulation evidences support the argument that the unequal

spacing intervals should be taken into account in estimating continuous time models, even with relatively

small variation in the intervals.

This chapter provides some simple examples of empirical applications of estimating continuous time models

with unequally spaced data based on the exact discrete time representation method. The work can be ex-
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tended in a number of directions. For example, the multivariate continuous time model adopted in 4.3 is a

bivariate model with two flow variables, which would face the identification (aliasing) problem, therefore

one obvious extension would be providing an approach that solves (or at least limits) the aliasing problem.

The methods presented in McCrorie's (2009) Appendix for illustrating the identification problem can be used

to address this issue, which would potentially increase the applicability of the results of this thesis. Another

extension can be made on exploring the comparisons between the estimation bias and discretization bias in

estimation in multivariate continuous time models with discrete data. For instance, Wang, Phillips and Yu

(2011) compared the performance of Euler and trapezoidal approximations relative to the exact maximum

likelihood in terms of estimation bias and discretization bias. Their results suggest that the discretization bias

and estimation bias have the opposite signs, and the bias in the two approximation method is smaller than

the exact maximum likelihood estimator, suggesting the possibility that the estimator based on approxima-

tion may outperform the exact maximum likelihood estimator. Wang, Phillips and Yu's (2011) study assumes

equally spaced sampling intervals, it might be interesting to exploring this problem by allowing for unequally

spaced sampling intervals in future research.
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Figure 1. Histograms of Estimates T=240

4.5 Appendix C - Histograms and Kernel Graphs
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Figure 2. Histograms of Estimates T=120
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Figure 3. Histograms of Estimates T=96
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Figure 4. Kernel Graphs of Estimates T=240
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Figure 6. Kernel Graphs of Estimates T=96
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5 Concluding Commends

This thesis presents a theoretical exact discrete approach for estimating parameters of continuous timemodels

based on unequally spaced discrete data. Exact discrete time representations are provided for the three main

cases of interest - where the variables are purely stocks (observed at discrete points), purely flows (observed

over discrete intervals), or a mixture of stocks and flows. In all cases the exact discrete time models exhibit

time-varying parameters and heteroskedasticity, while the underlying continuous time model is time invari-

ant. The time variation in the discrete time parameters and variances arise systematically, which are entirely

due to the unequal sampling intervals, indicating that such time variation may merely be a manifestation of

the unequally spaced data rather than any inherent time variation in the discrete time model itself. The results

of someMonte Carlo simulation studies are reported for assessing the extent that correctly accounting for the

irregular intervals can have on the parameter estimation outcome (measured by estimation bias). Overall, the

results are broadly favouring the approach that correctly accounts for the unequal sampling intervals, sug-

gesting that there are improvements (such as smaller estimation bias) to be made in the estimation procedures

when the sampling intervals are properly measured.

Chapter 2 provides an approach to obtain the exact discretization subject to the assumption that the original

coefficient matrix to be nonsingular, which is unattractive as it rules out many important cases involving

unit roots and cointegration. Chapter 3 extends the previous work to the non-stationary case by providing an

alternative approach that does not depend on the original coefficient matrix being non-singular. With mixed

data, the result imposes a weak assumption that a sub-matrix to be non-singular, which rules out conitegra-

tion in stock variables, but still represents a significant advance on the work. Following the theoretical work,

Chapter 4 provides two applications of the methods in the previous chapters, where a univariate case with

labour market job vacancy stock variable and a bivariate model with vacancy inflow and outflow variables.

This thesis provides an important alternative to the Kalman filter method for estimation based on unequally

spaced data. In the continuous time econometrics literature, the Kalman filter is usually used to deal with

unequally spaced data in the context of continuous time modelling, which has been regarded as an advantage

over the exact discrete approach. However, in this thesis, we show that the exact discrete approach can be
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used to deal with unequally spaced data as well. This could be particularly attractive when the exact discrete

time model is required for other reasons. In addition to this, this thesis provides a theoretical frame work of

discretization of first-order multivariate continuous time systems with unequally spaced data based on the

exact discrete method. The results offers the possibility of wide applications in both finance and economics.

The approach (based on the exact discretization) provided in this thesis imposes some limitations. First and

foremost, the aliasing problem could arise when the original coefficient matrix is not well identified and

many different matrices could share the same exponential of the original matrix, which is fundamental to

(multivariate) continuous time systems. Another problem for the exact discrete approach is the controlla-

bility problem, where the discrete time covariance matrix may not be guaranteed to be positive definite.

Moreover, it is technically more difficult to derive the asymptotic sampling properties of estimators from

continuous time models than from discrete time models (see McCrorie, 2009 for discussions on probelms

with the exact discrete approach). As discussed in 4.4, there is possibly a trade-off between the estimation

bias and discretization bias in the estimation of continuous time models, which indicate that the estimator

based on approximation may outperform the exact maximum likelihood estimator. Furthermore, in the mixed

sample case, the approach can be applied to non-stationary processes, but still imposes a weak assumption,

which rules out some interesting applications such as cointegration in stock variables.

Results of this thesis can be extended in a number of directions in future work. For example, the model can

be extended to deal with high-frequency data, which has wide applications in financial econometric analysis.

It is also possible to extend the model to estimate mixed frequency data, which would be complex but inter-

esting. The model can be also applied to estimate multivariate cointegrated systems as discussed in Chapter

3. Another possible extension would be providing an approach that addresses the aliasing problem (which is

a main limitation of the thesis) in estimation based on unequally spaced discrete data. Considering another

limitation of this thesis, it might be interesting to explore the comparisons between the estimation bias and

discretization bias in future work. In addition, it would be interesting to explore any alternative method that

does not rely on assumption 3.2 in the future research. Last but not the least, the approach can be applied

in macroeconomic or labour economic analysis. One example would be estimating a (VAR) model of joint



113

dynamics of vacancies and unemployment stocks; and another example would be estimating a model of a

mixture of (job) vacancy inflow, outflow and stock variables.
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