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Abstract: Involvement of macrophages in the SARS-CoV-2-associated cytokine storm, the excessive 
secretion of inflammatory/anti-viral factors leading to the acute respiratory distress syndrome 
(ARDS) in COVID-19 patients, is unclear. In this study, we sought to characterize the interplay be-
tween the virus and primary human monocyte-derived macrophages (MDM). MDM were stimu-
lated with recombinant IFN-α and/or infected with either live or UV-inactivated SARS-CoV-2 or 
with two reassortant influenza viruses containing external genes from the H1N1 PR8 strain and 
heterologous internal genes from a highly pathogenic avian H5N1 or a low pathogenic human sea-
sonal H1N1 strain. Virus replication was monitored by qRT-PCR for the E viral gene for SARS-CoV-
2 or M gene for influenza and TCID50 or plaque assay, and cytokine levels were assessed semiquan-
titatively with qRT-PCR and a proteome cytokine array. We report that MDM are not susceptible to 
SARS-CoV-2 whereas both influenza viruses replicated in MDM, albeit abortively. We observed a 
modest cytokine response in SARS-CoV-2 exposed MDM with notable absence of IFN-β induction, 
which was instead strongly induced by the influenza viruses. Pre-treatment of MDM with IFN-α 
enhanced proinflammatory cytokine expression upon exposure to virus. Together, the findings con-
cur that the hyperinflammation observed in SARS-CoV-2 infection is not driven by macrophages. 
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1. Introduction 
The ongoing COVID-19 pandemic has generated many urgent questions on the di-

verse clinical manifestations of the causative agent severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). SARS-CoV-2 requires the binding of its spike surface protein 
to a cellular receptor, the angiotensin-converting enzyme 2 (ACE2), to gain entry into host 
cells and activation by a host cell proteases TMPRSS2 [1–3]. The variable expression of 
ACE2 in different tissues across individuals and polymorphisms in both ACE2 and 
TMPRSS2 genes contribute to COVID-19 severity/fatality variations [4–7]. However, the 
severity of the disease outcome is widely believed to be associated with a derangement of 
the immune system such as a delayed type I/III interferon response and underlying co-
morbidities in infected patients [8,9]. One of the perplexing hallmarks of SARS-CoV-2 in-
fection is the exacerbated inflammatory response in severe COVID-19 patients resulting 
in excessive release of pro-inflammatory cytokines known as “cytokine storm”, leading 
in turn to detrimental alveolar damage and fibrosis, progressive respiratory failure and 
multiple organ dysfunction [10]. A similar excessive inflammatory reaction has been ob-
served in other zoonotic respiratory viruses such as SARS and MERS coronaviruses as 
well as human infections with avian influenza viruses such as H5N1 [11–13] whereas 
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seasonal influenza induces a less severe response [14]. The prototypical influenza virus-
induced cytokine storm has been described to originate from several cell types such as 
tissue macrophages, mast, endothelial, and epithelial cells [15]. These cells upon virus 
stimulation release initially TNF-α and IL-1ß, which in turn stimulate the release of other 
cytokines mainly IL-1, IL-6, IL-8 and macrophage inflammatory protein-1α (MIP-1α) 
[13,15,16]. Although both influenza and COVID-19 are associated with hyperinflamma-
tion, there are marked differences between the two conditions in respect of origin, bio-
chemical abnormalities and pathophysiology [17]. Nonetheless, numerous studies have 
positively correlated the elevated plasma levels of key proinflammatory cytokines in pa-
tients with disease severity and mortality for both COVID-19 and highly pathogenic in-
fluenza [13–15,18,19]. 

Understanding the precise drivers of SARS-CoV-2-induced hyperinflammation and 
their correlation to disease outcome is crucial to guide targeted therapeutic interventions. 
The degree to which SARS-CoV-2 targets the diverse cytokine-producing cells (i.e., mac-
rophages, B and T lymphocytes, mast cells, endothelial cells, fibroblasts and various stro-
mal cells) has not yet been fully elucidated; hence, their individual role in initiating, con-
tributing, and/or sustaining the cytokine storm remains unclear. A transcriptomic study 
reported that SARS-CoV-2 sequencing reads were detected in COVID-19 patients’ periph-
eral blood mononuclear cells [20], suggesting that SARS-CoV-2 may be able to replicate in 
specific immune cell subsets. Infection of these cell subsets may explain the persistence of 
the virus after pneumonia is resolved in some COVID-19 patients [21]. Macrophages, in 
particular, are critical for activation and resolution of systemic inflammation and are rapid 
producers of both proinflammatory and regulatory cytokines in response to local inflam-
mation and pathogen infection [22]. Post-mortem analyses and sequencing approaches 
have revealed that the lungs of COVID-19 patients with severe disease are infiltrated with 
macrophages suggesting they play a key role in COVID-19 pathophysiology [23–25]. Ear-
lier reports suggested that alveolar macrophages are infected by SARS-CoV-2 [24–26] and 
that the diverse expression of ACE2 on macrophages among individuals might govern 
the severity of SARS-CoV-2 infection [27]. Since then, several studies have demonstrated 
that macrophages are not permissive to SARS-CoV-2 infection [28–31]. Conversely, some 
reports argue that macrophages orchestrate the cytokine storm [21,24,25,30,32] while oth-
ers propose that macrophages play a secondary role in the virus-associated inflammation 
[29,31]. 

Here, we report that primary macrophages are refractory to SARS-CoV-2 and induce 
modest levels of pro-inflammatory cytokines upon SARS-CoV-2 infection compared to 
two influenza strains. Pre-exposure of macrophages to exogenous IFN-α exacerbated the 
virus-induced inflammatory response. These results concur with the findings of previous 
reports that macrophages are not the original source of pro-inflammatory cytokines early 
during infection. 

2. Materials and Methods 
2.1. Cells and Viruses 

Human macrophages were purchased from Lonza Group AG (Basel, Switzerland) 
and were generated in the presence of human macrophage colony-stimulating factor (hM-
CSF) from CD14+ human monocytes. The monocytes derived from a 54-year-old, HBV-, 
HCV- and HIV-negative, African American male. The macrophages were seeded 5 × 105 
(0.5 mL) per well, in 24-well plates, with X-Vivo 15 media (Lonza Group AG), 25 ng/μL of 
hM-CSF (Gibco, NY, USA), and 10% foetal bovine serum (Gibco, Glasgow, UK). African 
green monkey kidney cells (Vero E6; ATCC CRL-1586) were maintained in DMEM, 10% 
FCS, 1% non-essential amino acids (NEAA) and 1% penicillin/streptomycin (P/S). Human 
epithelial colorectal adenocarcinoma cells (Caco-2; ATCC HTB-37) and human lung can-
cer cells (Calu-3; ATCC HTB-55) were maintained in DMEM, 20% FCS, 1% NEAA and 1% 
P/S. All cell cultures in this study were maintained at 37 °C and 5% CO2. 
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The viral strain used in this study was the lineage B.1 SARS-CoV-2/Eng-
land/IC19/2020 (IC19) isolate (EPI_ISL_475572) [33]. All work involving the use of SARS-
CoV-2 was performed in a Biosafety Level 3 (BSL-3) laboratory at St Mary’s Campus of 
Imperial College London. For these studies, a SARS-CoV-2 inactivated virus was gener-
ated with ultraviolet radiation (260–285 nm) for 2 min. Loss of infectivity was confirmed 
by the TCID50 test assay in Vero E6 cells. The influenza viruses (6:2 Tky/05 and 6:2 Eng/09) 
used in this work were rescued by reverse genetics as previously described [34]. The 6 
internal genes of 6:2 Tky/05 and 6:2 Eng/09 were from avian highly pathogenic H5N1 in-
fluenza A/turkey/Turkey/1//2005 virus (Tky/05), and low pathogenic seasonal 6:2 Eng195 
H1N1pdm09 (Eng/09), respectively, combined with haemagglutinin (HA) and neuramini-
dase (NA) genes from A/Puerto Rico/8/34 (PR8). Briefly, plasmids, encoding internal virus 
segments from indicated viruses and PR8 HA and NA, were co-transfected into 293-T cells 
alongside pCAGGs vectors expressing the polymerase and NP proteins were then co-cul-
tured with MDCK cells. Virus stocks were grown on MDCK cells using serum free DMEM 
supplemented with 1 μg/mL of TPCK trypsin. Viruses were stored in −80 °C and titrated 
on MDCK cells by plaque assay. 

2.2. Treatments 
The viruses were diluted in serum-free DMEM (supplemented with 1% NEAA and 

P/S) to a multiplicity of infection of 0.01 or 1. The inoculum was added to macrophages, 
Calu-3, Caco-2, or Vero E3 cells and incubated at 37 °C for 1 h. The inoculum was then 
removed and cells maintained as described above. Six, 24 or 72 h post infection (hpi), the 
culture supernatants were collected and quantified by TCID50 assay on Vero E6 cells by 
the Spearman–Karber method [35] or qPCR for the SARS-CoV-2 Envelope gene (E). For 
the IFN-α experiment, macrophages were pre-treated with 1000 U/mL IFN-α (Invivogen, 
Nottingham, UK) for 24 h before SARS-CoV-2 infection. For treatment with lipopolysac-
charide (LPS), cells were treated with 10 μg/mL LPS (Invivogen) for 6h. 

2.3. Real-Time Quantitative Reverse Transcription PCR (qPCR) 
For SARS-CoV-2 envelope (E) and influenza matrix (M) gene qPCR, RNA was ex-

tracted from virus supernatants using the QIAmp Viral RNA kit (Qiagen, Crawley, UK) 
as described by the manufacturer (Qiagen, UK). qPCR was performed using the AgPath 
RT-PCR (Life Technologies, Paisley, UK) kit on a QuantStudio 7 Flex Real-Time PCR sys-
tem (Applied Biosystems) with the following primers for the E gene: forward: 5′-
ACAGGTACGTTAATAGTTAATAGCGT-3′, reverse: 5′-ATATTGCAGCAGTAC-
GCACACA-3′, probe:FAM-ACACTAGCCATCCTTACTGCGCTTCG-BBQ. For M vRNA 
and mRNA analysis, primers and procedures were described previously [34]. A standard 
curve was also generated using viral RNA dilutions of known copy number to allow ab-
solute quantification of E and M gene copies from Ct values. 

Cell RNA isolation and RT–qPCR was performed using procedures described previ-
ously [36] using the 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, 
CA, USA). Primers for GAPDH, TNF-α, IP-10, IL-6, IL-8, HLA-DR, IFN-α, IFN-β, and 
ACE2 have been described elsewhere [37–39]. The output Ct values and dissociation 
curves were analysed using SDS v2.3 and RQ Manager v1.2 (Applied Biosystems). Gene 
expression data were normalized against the housekeeping gene GAPDH and compared 
with the mock controls using the comparative CT method (also referred to as the 2−ΔΔCT-

method [40]. All samples were loaded in triplicate. 

2.4. Chemokine and Cytokine Detection 
To assess the expression of cytokines in SARS-CoV-2-infected, uninfected and LPS-

stimulated macrophages, we used a Proteome Profiler™ Human XL Cytokine Array Kit 
(R&D Systems, Minneapolis, MN, USA) which contained 102 different capture antibodies 
that were spotted on a nitrocellulose membrane, according to the manufacturer’s protocol. 
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Immunospots were imaged with the Azure c600 Gel Imaging System (Azure Biosystems, 
USA) and data (Figure S1) were analysed as spot intensities using Image J (Laboratory for 
Optical and Computational Instrumentation, WI, USA). For each protein, the average sig-
nal of duplicate spots was calculated, corrected for background signals, and normalized 
to the average signal of the membrane reference spots (relative pixel intensity). 

2.5. Statistical Analyses 
To determine the significance of differences between experimental groups, one-way 

ANOVA analysis followed by Tukey’s multiple comparisons test were carried out. p-val-
ues were set at 0.05 (p ≤ 0.05) unless indicated otherwise. Error bars represent standard 
deviation (SD). All data analyses and preparation of graphs were carried out with 
GraphPad Prism version 8.01 (GraphPad Software, San Diego, CA, USA). 

3. Results and Discussions 
3.1. Macrophages Are Refractory to SARS-CoV-2 Infection 

Severe infections of SARS-CoV-2 are associated with a cytokine storm characterised 
by high levels of IL-6 and TNF-α in patients [41]. The original source of this hyperinflam-
mation has not yet been elucidated. Macrophages play a critical role in immune defence 
against virus infections and are critical for activation and resolution of systemic inflam-
mation [42–44]. The degree to which macrophages contribute to SARS-CoV-2 propagation 
within the host and host immune responses to the infection is not yet clear. 

We initially investigated the ability of human macrophages to support SARS-CoV-2 
replication. We infected monolayers of primary human monocyte-derived macrophages 
(MDM) with a SARS-CoV-2 B.1 lineage strain and two recombinant influenza isolates (6:2 
Tky/05 and 6:2 Eng/09) at a multiplicity of infection (MOI) of 0.01 or 1. The engineered vi-
ruses have an identical ability to bind and enter cells because they encode the same HA/NA 
pairing (PR8), but differ in their interaction with factors inside the infected cells depending 
on the human (H1N1 6:2 Eng/09) or avian (H5N1 6:2 Tky/05) virus origin of the segments 
encoding the internal genes and induce distinct innate immune responses [34].  

We assessed productive replication of SARS-CoV-2 by titrating infectious virus in the 
cell supernatant at 24 and 72 h post-infection (hpi) with a standard TCID50 assay on Vero 
E6 cells, and compared virus yields with those from Calu-3, Vero E6 and Caco-2. We also 
extracted RNA from the supernatants and the infected cells at 6 hpi and conducted qRT-
PCR for the viral transcripts (E for SARS-CoV-2 and M for influenza viruses). We observed 
no cytopathic effect, no E gene RT-PCR signal (data not shown) and no infectious yield 
(Figure 1A) in the cell lysate or the cell-free supernatant of macrophages, respectively, 
during infection with SARS-CoV-2. In contrast Caco-2, Vero E6 and Calu-3 cell lines pro-
duced high viral loads (4 × 105- 5.5 × 105 TCID50/mL) (Figure 1A). Together these findings 
indicate that macrophages do not support SARS-CoV-2 replication in line with other re-
ports [28–31]. In contrast, the influenza M gene was detected in cell lysates at 6 hpi, more 
so in 6:2 Eng/09 infected macrophages (Figure S2). However, no significant increase in the 
M gene was detected in the cell culture supernatant infected by either influenza virus at 
24 or 72 hpi and no infectious virus was measured by a plaque assay. Thus, the replication 
of these viruses in MDM is abortive, consistent with a report that only a small subset of 
influenza strains can productively replicate in primary human macrophages [45]. 
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Figure 1. Primary macrophages are refractory to SARS-CoV-2 infection and demonstrate moderate 
induction of proinflammatory cytokines upon exposure. (A) SARS-CoV-2 titres in MDM, Calu3, 
Vero E6 and Caco-2 at 72 hpi (MOI: 0.01) as determined by TCID50 assay. (B–F) The bar graphs 
depict the relative gene expression fold change of (B) IP-10, (C) IFN-β, (D) TNF-α, (E) IL-6 and (F) 
IL-8 mRNAs in MDM exposed to SARS-CoV-2 (MOI: 1), influenza strains: 6:2 Tky/05 or 6:2 Eng/09 
and MDM stimulated with LPS (10 μg/μL) compared with non-exposed/untreated control. Total 
RNA was isolated from cells at 6 and 24 hpi. The genes were quantified by qRT-PCR. Results are 
presented relative to the control non-exposed/untreated cell levels (2−ΔΔCT). (G) (Left) The differential 
expression shown as mean relative pixel density and SD of 18 cytokines associated with COVID-19 
screened out by the Proteome Profiler Human XL Cytokine Array kit (spotted with 102 different 
cytokine antibodies). The cytokine array was performed according to the manufacturer instructions 
using supernatant from mock, LPS-stimulated and SARS-CoV-2 exposed MDM at 6 and 24 hpi 
(samples derived from the same assays with Figure 1B–F). (Right) Dots corresponding to MIP-1α/-
1β. Statistical analysis was performed by using a one-way analysis of variance (ANOVA) followed 
by Tukey’s test. ****, p < 0.0001 ***, p < 0.001; **, p < 0.01 *, p < 0.05. Data derived from at least two 
independent experiments (shown as dots); means and SD are shown. 
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3.2. Macrophages Exhibit Modest Pro-Inflammatory Responses during SARS-CoV-2 Infection 
Having established that MDM did not support productive replication of either SARS-

CoV-2 or influenza, we then examined the extent to which exposure of MDM to SARS-
CoV-2 and influenza viruses can lead to activation and production of pro-inflammatory 
cytokines early in infection (6 hpi). We assessed the mRNA induction of innate antiviral 
and proinflammatory cytokines TNF-α, IP-10, IFN-α, IFN-β, IL-6, and IL-8 in exposed or 
lipopolysaccharide (LPS)-activated MDM. Cell response following exposure to UV-inac-
tivated, replication-deficient SARS-CoV-2 virus was also assessed. Results are shown as 
expression fold change against mock MDM (Figure 1B–F). The results demonstrate that 
SARS-CoV-2 exposure induced significantly lower expression of IP-10, TNF-α, IL-6 
mRNA compared to exposure to influenza viruses or stimulation with LPS at 6 hpi. Nu-
merically higher but still modest levels of these cytokines were detected in SARS-CoV-2 
infected MDM at 24 hpi. The UV-inactivated virus retained the ability to induce IL-6 and 
IL-8 production (180- and 95-fold, respectively). The 6:2 Eng/09 strain induced signifi-
cantly more (2.5-fold) the expression of TNF-α compared to 6:2 Tky/05. Expression of IFN-
α was below detectable levels in all conditions tested (data not shown). 

Next, we determined semiquantitatively the cytokine protein levels in the superna-
tants of mock (6 hpi), SARS-CoV-2-exposed (6 and 24 hpi) and LPS-stimulated (hpi) MDM 
with a Proteome Profiler Human XL Cytokine Array. The array contains four membranes, 
each spotted in duplicate with 102 different cytokine antibodies. A densitometric evalua-
tion revealed that the proinflammatory cytokines TNF-α, IP-10, IFN-γ, IL-6 and IL-8 cy-
tokines were minimally detected in SARS-CoV-2-exposed MDM compared to mock MDM 
in line with the qRT-PCR results (Figure 1G). Instead, we noticed a significant induction 
of the macrophage inflammatory protein (MIP-) 1α and 1β. MIP-1α/-1β are monocyte cy-
tokines with inflammatory and chemotactic properties, which interact with CCR1, CCR4, 
and CCR5 [46] and have been found to be elevated in blood levels of COVID-19 patients 
(notably those admitted to intensive care units) [47]. Interestingly, the expression of three 
other cytokines was significantly reduced by SARS-CoV-2 (Figure 1G): monocyte chemo-
attractant protein 1 (MCP1), osteopontin (OPN), and chitinase 3-like 1 (CHI3L1). MCP-1 
is a chemokine that attracts monocytes and basophils, but not neutrophils or eosinophils 
[48]. OPN is an integrin-binding glyco-phosphoprotein involved in the modulation of leu-
kocyte activation [49] and CHI3L1 is a critical regulator of inflammation and innate im-
munity and a stimulator of ACE2 [50]. The levels of these cytokines are elevated in blood 
levels of COVID-19 patients and are associated with increased severity of disease. Our 
findings suggest that secretion of these cytokines is not associated with macrophages at 
least early in infection. 

3.3. Priming Macrophages with IFNα Boosts Transcription of Proinflammatory Cytokines but 
Does Not Allow Productive Replication 

During virus infections, the majority of immune and epithelial cells produce type I 
interferons (IFNs: IFN-α, -β and -ω) upon sensing a virus. The IFNs do not directly kill 
the virus. They orchestrate a coordinated antiviral program via the Janus kinase (JAK)–
signal transducers, the activators of the transcription (STAT) signalling pathway and the 
expression of interferon-stimulated genes (ISGs), whose protein products directly inhibit 
virus infection [51]. SARS-CoV-2 has been reported to antagonise type I IFN responses in 
primary cells [52] and severe COVID-19 patients display impaired IFN-α production [53]. 
We explored whether pre-treatment of MDM with IFN-α can trigger an inflammatory re-
sponse. MDM were pre-treated overnight with exogenous recombinant IFN-α and ex-
posed to SARS-CoV-2 for 24h as previously. Results show significantly higher expression 
levels of TNF-α, IL-6, IL-8 and the macrophage activation marker HLA-DR in IFN-α 
treated cells compared to the untreated ones (Figure 2A–D) while levels of IFN-β (Figure 
2E) and IP-10 (not presented) were below the detection limit. 
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Figure 2. Proinflammatory response is enhanced by pretreatment with IFN-α in primary macro-
phages exposed to SARS-CoV-2 (A–E). Relative fold induction of gene expression ((A) TNF-α, (B) 
IL-6, (C) IL-8, (D) HLA-DR and (E) IFN-β and (F) ACE2) in MDM in response to overnight pre-
treatment with IFN-α (1000 IU/mL) and infection with SARS-CoV-2 for 24h (MOI:1). (G) Quantifi-
cation of subgenomic E RNA (qRT-PCR) in MDM exposed to SARS-CoV-2 and/or pre-treated with 
IFN-α. Results are presented relative to the control cell levels (2−ΔΔCT). Statistical analysis was per-
formed by using a paired t-test. ** p < 0.01. Data derived from at least two independent experiments 
(shown as dots); means and SD are shown. 

This finding suggests that exogenous stimuli such as secreted interferons from in-
fected epithelial or immune cells, i.e., dendritic cells, may paradoxically exacerbate the 
inflammatory response of macrophages in line with other reports on SARS-CoV and 
SARS-CoV-2 [54,55]. We suspect that the cells we worked with here may reflect a more 
dominant M2 macrophage population and the observed phenotypes may differ in tissue-
resident macrophages. In this study, we examined gene expression during the critical 
early time points (6 and 24 hpi) following exposure of MDM to the virus. It is possible that 
a more extended exposure (72 hpi or more) might result in more significant cytokine re-
sponses. Arguably, ex vivo cultures of primary macrophages, albeit valuable, have a lim-
ited lifespan which can affect cell polarization and transcriptional responses after ex-
tended periods of culture. Nevertheless, our findings are aligned with reports that mac-
rophages are unlikely to drive the initial wave of pro-inflammatory cytokines upon SARS-
CoV-2 infection [29,31]. In addition, the substantial increase in induction of proinflamma-
tory cytokines upon IFN- stimulation suggests that macrophages may participate in sec-
ondary or ensuing waves of inflammatory responses leading to ARDS in severe COVID-
19 patients. 

Interestingly, we found a significant increase of the subgenomic E gene in the cell 
lysate of IFN-treated MDM but infection was still abortive as we found no new infectious 
particles in the supernatant (by TCID50 assay and qPCR for the E gene; Figure 2G). Like 
others [56], we found that pre-treatment of MDM with IFN-α resulted in the induction of 
ACE2 mRNA (Figure 2F). ACE2 is the receptor that SARS-CoV-2 uses to infect epithelial 
cells of lung alveoli and also an ISG [57]. However, a previous report that the ACE2 iso-
form upregulated by interferon is non-functional for SARS-CoV-2 entry [57], so our results 
might be explained by other changes to the cells that render them more infectable by the 
virus. 

4. Conclusions 
Conflicting reports surround the role of macrophages in SARS-CoV-2 immunopath-

ogenesis and in particular in triggering the cytokine storm that mediates the severity of 
ARDS in COVID-19 patients’ lungs. This study provides further evidence that macro-
phages are refractory to SARS-CoV-2. We report that SARS-CoV-2 failed to trigger exces-
sive production of cytokines in macrophages at the transcription and protein level, com-
pared to two influenza viruses. We found no evidence for pro-inflammatory cytokine re-
sponses upon SARS-CoV-2 exposure. We argue that limited viral internalization or a low 
replication of SARS-CoV-2 in macrophages may explain the low levels of cytokines 
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induced upon exposure compared with influenza viruses. Mirroring other reports, we 
demonstrate that pre-treatment of macrophages with IFN-α promoted the induction of 
several pro-inflammatory cytokines but did not render them vulnerable to the virus de-
spite the increased transcription of ACE2. In conclusion, macrophages are unlikely to 
drive the early wave of pro-inflammatory factors observed in COVID-19 patients with 
severe disease, but they may exacerbate immune responses later in infection. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/article/10.3390/v14020441/s1, Figure S1: Differential cytokine/chemokine produc-
tion levels modulated by SARS-CoV-2 in MDM. Human XL Cytokine array of secreted factors in the 
cell supernatant of (A) mock-infected, (B) 24 h post LPS stimulation, (C) 6 hpi (MOI:1) and (D) 24 
hpi (MOI:1) MDM. Figure S2: Replication of 6:2 Eng/09 and 6:2 Tky/05 influenza strains in MDM is 
abortive. Quantification of M gene expression levels in cell lysates (red) and supernatants (blue) of 
MDM infected with recombinant 6:2 Eng/09 (A) or 6:2 Tky/05 (B) influenza strains (MOI:1) at 6 and 
24 hpi by qRT-PCR. Bars represent Mean � SD. 
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