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The purpose of affective computing is to develop reliable and intelligent models that 

computers can use to interact more naturally with humans. The critical requirements 

for such models are that they enable computers to recognise, understand and interpret 

the emotional states expressed by humans. The emotion recognition has been a research 

topic of interest for decades, not only in relation to developments in the affective 

computing field but also due to its other potential applications. 

A particularly challenging problem that has emerged from this body of work, 

however, is the task of recognising facial expressions and emotions from still images 

or videos in real-time. This thesis aimed to solve this challenging problem by 

developing new techniques involving computer vision, machine learning and different 

levels of information fusion. 

Firstly, an efficient and effective algorithm was developed to improve the 

performance of the Viola-Jones algorithm. The proposed method achieved significantly 

higher detection accuracy (95%) than the standard Viola-Jones method (90%) in face 

detection from thermal images, while also doubling the detection speed. Secondly, an 

automatic subsystem for detecting eyeglasses, Shallow-GlassNet, was proposed to 

address the facial occlusion problem by designing a shallow convolutional neural 

network capable of detecting eyeglasses rapidly and accurately. Thirdly, a novel neural 

network model for decision fusion was proposed in order to make use of multiple 

classifier systems, which can increase the classification accuracy by up to 10%. Finally, 

a high-speed approach to emotion recognition from videos, called One-Shot Only 

(OSO), was developed based on a novel spatio-temporal data fusion method for 

representing video frames. The OSO method tackled video classification as a single 

image classification problem, which not only made it extremely fast but also reduced 

the overfitting problem.
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Chapter 1  

Introduction 

 

1.1. Problem Statement and Motivation  

Modern computer technology has certainly revolutionised and enriched our world, 

underpinning the creation of amazing tools that have been utilised across almost all 

areas of our lives. The increasing extent to which this technology has permeated our 

daily lives, however—whether in smart home and personal health devices or in multi-

functional personal devices such as smartphones and smartwatches—has heightened 

the need for more natural interactions with their users. Affective computing aims to 

assist these natural interactions between computers and humans by creating reliable 

and intelligent models enabling computers to detect, recognise, understand and 

interpret the emotional states expressed by humans. Furthermore, since emotions have 

a substantial influence on a range of human cognitive processes, like learning, problem-

solving, perception and memory, the incorporation of such models in computerised 

devices offers potential benefits in many areas, including in healthcare, education, 

social interaction and behavioural science, etc. This thesis, therefore, aims to develop 

novel methods to recognise emotion by using computer vision and machine learning 

techniques.  

Previous work in this area has identified a number of significant challenges. 

Fundamentally, the development of an accurate and reliable emotion recognition 
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system is challenging because human beings may experience a combination of 

emotions or different emotions in different strengths at the same time. Currently-

developed human emotion recognition systems neglect this fact and attempt to find 

only the strongest emotion at any one time [1]. In addition, the variable nature of the 

human emotional experience makes it challenging for computer systems to identify 

emotions reliably across a population. For example:  

• Human emotions are not steady, and they occur to different degrees.  

• The patterns of emotional change depend to some extent on people’s cultural 

and linguistic background [1].  

• The dominance of human emotions is based on a person’s psychological 

type.  

Another set of challenges arises from the fact that the performances of emotion 

recognition systems is highly dependent on the accuracy of their databases of emotions. 

Currently, however, these databases struggle to categorise emotions accurately, for the 

following reasons: 

• Emotional interference: This is considered to be one of the major obstacles 

facing both image and video-based emotion recognition systems and has a 

significant impact on recognition accuracy. 

• Intra-class and inter-class variations: The intra-class variation problem 

arises when samples (images/videos) of the same class (of objects, etc.) can 

have significantly different appearances. In the inter-class ambiguity 

problem, meanwhile, samples of different classes can show similar visual 

characteristics. In these circumstances, samples of the same class can be 

challenging to identify, and samples of different classes might also be easily 
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misclassified due to lack of clear distinction between features belonging to 

different classes.  

• Data reliability: One of the main challenges facing most of the research into 

emotion recognition systems is the reliability of the available real-world 

datasets, which have generally been collected from the Internet or from 

films. Since these datasets contain images or videos that have been captured 

in relation to real-life scenarios, they often present complex or even 

ambiguous emotions rather than prototypical or simple ones. This adds some 

difficulty and uncertainty to the annotation and labelling process. Also, due 

to the subjectivity and varied expertise of the labellers, there is sometimes 

disagreement among annotators, and this can lead to inconsistency in the 

dataset’s labelling. This inconsistency demonstrates how difficult the task of 

distinguishing emotions is even for humans. 

• Real-world conditions: Most early facial expression datasets do not 

represent real-world conditions because they were captured in a lab-

controlled environment where the subjects were controlled and some of the 

other significant factors were simplified, eliminated or managed: i.e., 

illumination, lighting conditions, restrictions on clothing, eyeglasses, etc. 

• Insufficient annotation of data: Most recent studies that have focused on 

image and video-based recognition systems have embedded deep-learning 

models in their designs since these appear to exhibit the most efficient and 

promising results. To achieve this high accuracy, however, these models 

usually require an enormous number of annotated images/videos for training. 

The existing still-image datasets usually contain a very high number of 
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images compared to the number of videos in the video datasets constructed 

in relation to the same field (of recognition). 

Finally, developing a system able to recognise general human emotions in real-

time and with sufficiently high performance to meet the needs of the intended affective 

applications is considered an extremely challenging task. In short, in a complete human 

emotion recognition system, the difficulties in categorising emotions that have been 

summarised above have to sit alongside the regular challenges facing any automatic 

facial recognition system, such as illumination, face pose variation, face tracking and 

misalignment problems. When these two sets of challenges are put together, delivering 

reliable emotion recognition in real-time becomes very difficult. That is why the state-

of-the-art algorithms which currently implement vision-based recognition system still 

fall far short of the requirements of real-time applications due to several kinds of 

challenges such as: dealing with the nature of human emotions.  

To achieve the highest levels of accuracy and reliability, human emotion 

recognition systems, therefore, need to consider the above problems. Accordingly, this 

thesis focuses on developing methods for real-time emotion recognition, in which both 

the model performance and model complexity are taken into account. 
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1.2. Research Objectives 

The primary objective of the proposed research is to build a human emotion recognition 

system which can capture and recognise facial expressions and emotions from still 

images or videos in real-time by developing new techniques involving computer vision, 

machine learning and different levels of information fusion. Specifically, it subsumes 

the following objectives: 

➢ To improve the robustness of the face detection method for thermal images that 

can be utilised for real-time emotion recognition applications. 

➢ To address the facial occlusion problem in facial analysing systems by 

developing an effective and efficient methods for eyeglasses detecting. 

➢ To increase the classification accuracy by developing new decision fusion 

methods in order to make use of multiple classifier systems. 

➢ To develop novel methods for spatio-temporal data fusion that can be utilised 

for video-base recognition systems. For example, temporal features extracted 

from videos can be very useful for emotion recognition because they 

characterise the dynamic properties of emotional development. 

➢ To meet the needs of real-time applications from the perspective of both the 

computational complexity and accuracy when designing each method of the 

framework of the emotion recognition system. 

Psychologists describe the emotional state in terms of discrete categories, which 

include happiness, sadness, fear, anger, disgust and surprise. Most of the current 

automatic affect recognition studies focus on recognising these basic emotions, which 

may be expressed through a range of signals, including facial,  gestural, postural, voice, 

and bio-potential signals. The existing research on the automatic recognition of 
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emotions  attempts to determine the emotional state of a subject from the manifestation 

of emotions by using images and video clips.  

1.3. Thesis Structure  

Chapter 2: Literature Review. 

This chapter presents a comprehensive and up-to-date review of computer vision-

based approaches to recognising facial emotions and includes a detailed critical 

analysis of the frameworks designed to support image-based and video-based 

classification based on deep learning. The chapter also presents a survey of the 

available visual and thermal facial expression databases and compares the spontaneous 

and posed facial expressions databases. Some important challenges are highlighted in 

this chapter that inform the following chapters of the thesis. 

Chapter 3: Accuracy Enhancement of the Viola-Jones Algorithm for Thermal Face 

Detection.  

This chapter presents a method [2] for enhancing the Viola-Jones algorithm [3] for 

face detection by improving its performance in the thermal spectrum, allowing the 

detection of emotions in faces with or without eyeglasses. A performance comparison 

is undertaken of three different features, HOG, LBP and Haar-like, to find the most 

suitable one for face detection from thermal images. Additionally, to accelerate the 

detection speed, a pre-processing stage is added in both the training and detecting 

phases. Two pre-processing methods as tested and compared, together with the three 

features. The proposed enhancement process reduces the detection time of the Viola-

Jones algorithm by roughly a factor of two while retaining high detection accuracy.
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Chapter 4: Shallow Convolutional Neural Network for Eyeglasses Detection. 

To improve the robustness of facial analysis systems and cope with real-world 

applications, this chapter [4] designs a rapid and highly accurate method for detecting 

eyeglasses, based on extracting deep features from a well-designed shallow 

convolutional neural network (CNN), called Shallow-GlassNet. To address the two 

essential challenges of CNN (the size of the training dataset required and the depth of 

the network architecture), we initialise the learning parameters of the shallow CNN by 

the parameters of a deep CNN which is fine-tuned on a small dataset. The depth of the 

neural network is then decreased by removing some convolutional layers after testing 

its performance on the validation dataset. Evaluation experiments are conducted on two 

large unconstrained facial image databases, LFW [5] and Celeb Faces[6]. The results 

demonstrate the superior performance of the proposed model for the detection of 

eyeglasses, both in terms of speed and accuracy. 

Chapter 5: A Neural Network Approach to Decision Score Fusion for Emotion 

Recognition 

This chapter  presents an effective facial emotion recognition system [7] that 

classifies facial images to one of the six universal emotions (Anger, Disgust, Fear, 

Happiness, Sad & Surprise) and Neutral. The proposed system  uses convolutional 

neural networks (GoogleNet-CNN) to detect eyeglasses and extract features, followed 

by a novel score fusion model. Nine different sets of emotional features are extracted 

from faces with and without eyeglasses by convolutional neural networks and classified 

by support vector machines (SVMs). Then, two neural network models are used and 

tested to accomplish decision fusion. The USTC-NVIE (NVIE) [8]  database is used to 

evaluate the performance of the proposed system. Experimental results show that the 
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proposed facial emotion recognition system achieves a higher classification rate when 

using the eyeglass detector, while the multiple classifiers system increases the 

classification rates of the system. 

Chapter 6: One-Shot Only Real-Time Video Classification: A Case Study in Facial 

Emotion Recognition 

Previous work on video classification uses repeated evaluations of a CNN in order 

either to classify each frame separately or to combine several frames to be classified 

by means of a complex 3D-CNN. In this chapter [9], we present a new method called 

One-Shot Only (OSO), a novel approach to real-time video classification. The OSO 

method tackles video classification as a single image classification problem, spatially 

rearranging timeframes so as to form a simple storyboard and associate class 

probabilities to this. The method uses a single CNN which predicts the class 

probabilities directly in one evaluation from one full image which presents the 

complete sequence of the video frames. Since the whole classification pipeline is a 

single network, it can be optimised end-to-end directly as far as recognition 

performance is concerned. The proposed architectures are extremely fast, in terms of 

evaluation times, and this is appropriate to the real-time situation. Processing just this 

visual information, OSO still achieves superior or comparable classification accuracies 

(compared to repeated-evaluation based methods) on both image and video datasets, 

AffectNet [10], RAF-DB [11] and AFEW  [12]. 

Chapter 7: Conclusions and Future Work 

Finally, the contributions of my PhD work are summarised in this chapter, 

followed by a discussion of the limitations and some suggestions about potential 

directions for future research. 
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Chapter 2  

Literature Review  

2.1. Introduction 

“Emotion represents the psychological state of the human mind and thought processes” 

[13]. Emotions are accompanied by internal and external bodily manifestations. 

External manifestations of emotions include facial expressions, body gestures and 

perturbations in verbal communications and even handwriting, while internal 

manifestations include changes in heart rate and body temperature. A number of 

researchers from several different domains have sought to study these manifestations 

of emotions, and a variety of innovative instruments have been developed for the 

purpose of measuring them accurately across differing modalities. For example, 

thermal infrared cameras have been used to measure the changes in thermal distribution 

occurring across blood vessels and the variations in facial skin temperature caused by 

a variety of emotions  [14, 15]. Electroencephalograms (EEGs) can provide accurate 

measurements of the temporal changes which occur during emotional arousal [14, 16, 

17]. 

 As well as these sophisticated instruments, the kind of video-cameras which are 

now widely used in everyday life, due to the proliferation of function-rich mobile 

devices, can be utilised for such measurements. Their use has been further accelerated 

by the hitherto almost inconceivable increases in storage space and Internet bandwidth 

which have taken place; changes that have elevated images and videos to become an 
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Figure 2-1: Basic stages of facial emotion recognition. 

indispensable part of today’s big data. These circumstances have provided an 

abundance of data, and this abundance has encouraged computer vision researchers to 

develop advanced techniques for a wide range of applications to interpret and 

understand video data, including in respect to the recognition of facial manifestations 

of emotions.  

The typical approach of contemporary studies on recognising facial expressions 

and emotions based on visible-light and thermal images generally comprises three 

components: pre-processing, facial feature extraction and image classification (see 

Figure 2-1). Given an input image or image sequence, pre-processing is performed on 

it by detecting the area representing the face itself, then conducting normalisation, 

facial features localisation and face alignment. The second step, facial feature 

extraction, finds the relevant, strongly differentiated features from the various regions 

of the detected face. The final step is the machine classification of facial expressions. 

While most of the existing approaches have these components in common, they differ 

in terms of the exact methods used within each component. 

In this chapter, we review the common models used for describing emotions and 

their expression and the state-of-the-art methods for identifying the different levels of 

facial expressions. We break down facial expression/emotion recognition systems into 

their basic components. We review the contemporary and state-of-the-art research 

regarding each component as this relates to dealing with the challenges of facial 
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analysis systems. Finally, we analyse the existing thermal and visible-light facial 

databases in detail, discussing their advantages and limitations.  

Emotion explanations: The emotions we experience at any given moment have an 

influence on the actions we take, the choices we make and the perceptions we have. 

Therefore, it is important to have some ideas of what emotions are. Psychologists have 

attempted this, generally, by applying one of two different approaches: the discrete 

categorical model and the dimensional model.  

Emotions as discrete categorical models: Discrete emotion theory attempts to 

characterise human emotions by defining an innate set of basic emotions that are cross-

culturally recognisable. A plethora of published studies in computer vision describes 

emotions as discrete categories. During the 1970s, psychologist Paul Ekman [1] 

suggested that people across all human cultures experience these basic emotions and 

that these are distinct and strong enough to be recognised or identified by an 

individual’s facial expression and/or other biological processes. Ekman suggested that 

people across all human cultures experience a number of basic emotions (anger, 

disgust, fear, happy, sad and surprise) and that these are distinct. Each of these emotions 

associates with particular characteristics, allowing them to be expressed in varying 

degrees which are proportional to the strength of the emotion. Latterly, he made 

additions to his initial list of basic emotions, such as pride, excitement, shame and 

embarrassment. Another psychologist, Plutchik [18], further suggested that basic 

emotions are like colours and may be combined to create other shades/emotions. 

According to this theory, mixed emotions are something like a building which is 

created from different blocks of basic emotions.  
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Figure 2-2: Examples of six basic emotions and twelve compound emotions from 

RAF-DB database [11]. 

A limitation of this categorical model of emotions is that mixed or complex 

emotions cannot always be appropriately described using a restricted set of basic 

emotions. To overcome this, some researchers have defined multiple compound 

categories of emotion, such as happily-surprised, fearfully-angry [11, 19]. Nonetheless, 

such compound emotion sets remain limited, and the intensity of an emotion cannot be 

described at all using the categorical model. Figure 2-2 shows samples of basic 

emotions and compound emotions taken from the Real-World Expression Database 

(RAF-DB) dataset [11].  

Emotions as dimensional models: Dimensional models attempt to explain human 

emotions in terms of where each specific emotion lies within a two- or three-

dimensional conceptual space. In 1912, Wilhelm Wundt described emotions in terms 

of his proposed three-dimensional model, the conceptual dimensions being: 

(pleasurable-unpleasurable), (strain- relaxation) and (arousing-subduing) [20]. In 1954, 

meanwhile, Harold Schlosberg concluded that facial expressions and body changes 

complement each other in showing us dimensions along which emotions may vary. He 

named three dimensions: (pleasantness–unpleasantness), (attention–rejection) and 

(level of activation) [21].  
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Figure 2-3: Examples of valence and arousal in the circumplex model [10]. 

Several dimensional models of emotion have been proposed, such as the vector 

model, the circumplex model and the positive activation – negative activation model 

[22]. In contrast to categorical models, dimensional models can encode small changes 

in the intensity of each emotion and distinguish between slightly different displays of 

emotions on a continuous scale. Most dimensional models include valence and arousal 

or intensity dimensions. A valence scale reflects how positive or negative an event is, 

whereas arousal shows whether an event is exciting or calming, as shown in Figure 2-3. 

Descriptions of facial emotion: The most common modality of emotion 

recognition is that of facial expression analysis. State-of-the-art studies on the 

automatic analysis of facial expressions generally follow one of two main approaches 

to the description of different levels of facial expression: the message approach and the 



                                                                                           Literature Review 

 15 | P a g e  

 

sign judgement approach. The message approach attempts to derive the meaning 

conveyed by a facial display directly, whereas the sign approach attempts to study 

indirect expressions of emotion, such as a physical gesture (or sign) [1]. The Facial 

Action Coding System (FACS) [23] is a sign approach defined by Ekman and Friesen 

in 1978. FACS encodes the movements of specific facial muscles called Action Units 

(AUs), and these movements are taken to reflect distinct momentary changes in facial 

appearance [24]. The authors defined 32 AUs: with the upper face hosting nine; the 

lower face, eighteen; and a further five that could not be exclusively attributed to either 

the upper or lower face. Figure 2-4 shows examples of the AUs involved with the 

expression of some basic and some combined emotions. In addition, FACS encodes 

fourteen descriptors of various actions, such as those entailed in head pose and eye gaze 

direction, and for miscellaneous actions. This system, therefore, categorises every 

possible facial movement based on the changes manifested by that movement.  

It is important to note that since FACS encodes facial actions without necessarily 

inferring the emotional state of the subject, it can be utilised to encode ambiguous and 

subtle facial expressions which result from emotions that cannot be easily categorised 

into one of the universal emotions. Furthermore, Del Giudice and Colle [25] 

demonstrated that the sensitivity of FACS to subtle differences in expression makes it 

capable of distinguishing between genuine and fake smiles. The system provides 

precise information concerning the actual facial movements made and has the 

advantage of high reliability [1, 19].  Despite the advantages of FACS in relation to the 

systematic analysis of facial expressions, however, it has a major limitation: since 

operators must be extensively trained, its application is time consuming and prone to 

bias due to subjectivity. All of this makes investigations of large samples difficult. 
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Figure 2-4: Examples of Action Units for some basic and combined emotions [19]. 

 

2.2. Methods for Image Pre-Processing  

Pre-processing takes place using operations on images at the lowest level of 

abstraction: both input and output are intensity images. The man purpose of pre-

processing is to provide improved image data (in terms of its subsequent processing) 

that has had unwanted distortions removed, and some image features enhanced. In this 

section, we briefly summarise the advances which have been made and noted in the 

literature as regards the pre-processing methods which are commonly utilised in face 

analysis applications such as facial recognition, facial orientations, head pose analysis 

and facial expression/emotion classification. 

2.2.1. Face Detection 

To build fully-automated systems that analyse the information contained in images of 

faces, robust and efficient face detection algorithms are required. Yang [26] gives a 

definition of face detection: “Given an arbitrary image, the goal of face detection is to 

determine whether or not there are any faces in the image and, if present, return the 

image location and extent of each face”. Most face analysis applications, whether 
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applied to videos or to still images, start with face detection as the first step of their 

pre-processing stage. According to Yang’s definition, the goal of face detection is to 

determine all image regions which contain a face regardless of their position, 

orientation and the lighting conditions. Because face detection plays such an important 

role in automated face analysis systems, it has been studied intensively in computer 

vision research, and numerous techniques have been developed to detect the faces 

which exist in a single image. The most popular methods are those of Viola-Jones [3], 

Lienhart and Maydt [27] and Farfade et al [28].  

The pioneering work of Viola-Jones [3] achieves high detection accuracy while 

minimizing the computation time. Their method is 15 times faster than previous 

algorithms at the time of publication with a 95% accuracy rate. The Viola-Jones 

approach is based on the quick evaluation of basic Haar-like features by using a new 

image representation. It produces a huge collection of features based on the integral 

image idea then utilises the cascade boosting technique AdaBoost to minimise the 

features set. The detector scans the grayscale images by using various sizes of the 

scanned windows to evaluate the Haar-like features quickly using a new image 

representation . The AdaBoost learning algorithm selects a set of critical features from 

a large set of evaluated features. This framework for face detection is capable of 

processing images incredibly quickly while maintaining a high detection rate. 

Lienhart and Maydt [27] extends the Viola-Jones face detector by introducing a 

novel set of rotated Haar-like features and a new post optimization technique for a 

given boosted cascade classifier. Their efficient set of 45" rotated features add further 

domain-knowledge to the leaning framework which shows off on average a 10% lower 

false alarm rate. Their post optimization procedure adds additional improvement to the 
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average false alarm rate further by 12.5%. 

Farfade et al. [28] proposed a face detector method, called Deep Dense Face 

Detector (DDFD),  that is based on a single deep learning model. Unlike Viola-Jones 

face detector, their method can detect faces in a wide range of orientations and does 

not require pose or landmark annotation. Similar to AlexNet [29], their model consists 

of 5 convolutional layers followed by 3 fully-connected layers. The complexity of the 

proposed method is low as it does not require additional processes such as 

segmentation, bounding-box regression, or SVM classifiers.  

While face detection has attracted considerable attention in relation to dealing with 

visible-light images, this challenge remains unsolved in terms of thermal images [30]. 

The current thermal face detection algorithms operate on the basis of several critical 

conditions which must be fulfilled for the face detection process to take place. Section 

3.2 describes these conditions. 

2.2.2. Facial Features Localisation and Tracking  

After determining the region of the image in which the face is represented, further 

localisation of facial components is required for other pre-processing steps such as face 

alignment. Although the facial features localisation step is optional, it yields rich 

geometric information which is important in relation to facilitating face registration and 

the selection of a region of interest (ROI) where the feature extraction step is 

performed. Facial landmarks, also known as facial feature points, are mainly located 

around facial components such as eyes, mouth, nose and chin.  

Facial landmark detection usually begins from the start-point of a rectangular 

bounding box returned by a face detector. This bounding box is used to establish the 
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positions of facial feature points. The number of facial feature points labelled depends 

on the application, which is to use these points; 17-point models, 29-point models and 

68-point models have all been used depending on the specific situation. What unites 

the models, however, is that the points labelled must cover the areas that carry the most 

important information present for both discriminative and generative purposes—the 

most commonly-labelled areas are the eyes, the nose and the mouth. The more points 

that are labelled, the richer is the information available; on the other hand, the more 

points there are, the more time-consuming is the process of detecting them [31, 32].  

To localise and track ‘landmarks’, a deformable-face model is usually used, 

whereby a pre-trained face model is matched to the target face. The probability of 

aligning the target face’s appearance with the underlying conceptual model is 

maximised by deforming the target using a pre-trained statistical model of face 

deformations. A number of proposals for deformable face models are well known: e.g., 

the Active Shape Model [33, 34], the Active Appearance Model [35] and the 

Constrained Local Model [36]. Recently, however, a number of more sophisticated 

models have been proposed: Zhou et al. [37] and Sun et al. [38] constructed a set of 

deep convolutional networks in a cascade manner for the purpose of detecting facial 

points. In addition, the facial landmarks can be used with classifiers such as SVMs [39] 

and/or Restricted Boltzmann Machines (RBMs) [40] in order to detect facial actions or 

recognize expression directly [41, 42].  

Kotsia et al. [43], meanwhile, constructed a grid adaptation system by utilising 

deformable models [44] to extract geometrical information regarding the face from the 

first video frame; this information was then used for tracking through the rest of the 

video. For this, a grid-tracking algorithm was applied to produce a deformed facial grid 
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which could then be used to detect facial actions which were, in turn, used by a multi-

class SVM to classify the corresponding facial expression—which appeared by the last 

frame of the video. In addition, Wang et al. [45] classified various different facial 

expressions presented by a near frontal face by tracking 26 facial feature points using 

a priori face shape models constructed based on RBM. Although the above approaches 

are successful at tracking facial expression, emotion recognition systems require more 

sophisticated methods of feature extraction and classification since, in real-world 

scenarios, facial actions often change both facial texture and geometry [23]. 

2.2.3. Region of Interest Selection 

Turning to facial features localisation and region of interest selection from thermal 

images,  most research focuses on either statistical temperature parameters (i.e. 

minimum, maximum, standard deviation, and mean) of regions of interest [46],  or those 

same imaging features that are commonly used in the visible spectrum field for 

representing images [47]. The current research techniques [13, 48] have used two main 

methods for selecting regions of interest: holistic approaches in which the ROI is 

defined to be the entire face, and modular or facial feature-based approaches, where 

information is extracted from specific ROIs. Some researchers have located the facial 

features manually [49, 50] while others have automated the process using both special 

operators.  

Standard feature extraction techniques include Principal Component Analysis 

(PCA) [51]. L. Trujillo et al., in [52], proposed Eigen-image representation, based on 

PCA, for each of the recognised facial regions. The construction of Eigen-images is a 

local and global automatic feature localisation procedure. In the Eigen-image 

representation, PCA is used to reduce the dimension and interest point clustering in 
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order to facilitate the estimating of feature facial localisation. Jarlier et al. [53], 

meanwhile, used a spatial pattern detection procedure, also based on PCA, to extract 

the features from the representative temperature maps of nine AUs. Yoshitomi [54] 

transformed the greyscale values of each block of the facial area of an image into 

frequency components; these were then used to create feature vectors, via a two-

dimensional Discrete Cosine Transformation (2D-DCT), and this, in turn, was used to 

recognise the expressions. Wang et al. [47] employed statistical parameters (minimum, 

maximum, standard deviation and mean) held in three special matrices — the 

horizontal, vertical and sequential difference grid-feature matrices — to compute the 

statistical differences between the onset expression and the apex expression of the same 

subject. According to Wang et al. [47], however, there are currently few features that 

have been specifically designed for use with thermal images. 

Researchers have focused particularly on four regions of interest where 

temperatures increase or decrease significantly when the emotion being expressed/felt 

changes (the forehead, the two eyeholes, and the cheekbone) [46, 55]. Wang et al. and 

Nakanishi et al. [56, 57] constructed a system which automatically locates four points 

— the centres of the eyes (two points), the tip of the jaw and the tip of the nose — in 

thermal images. Based on these points, the facial region is divided into a number of 

grids, all with the same size. Asada et al. and Yoshitomi et al. [58-60] defined the 

horizontal and vertical centrelines of the face region and used them to estimate the 

deviation of the facial image from the standard frontal view. Sugimoto et al. [61], 

meanwhile, define regions of interest corresponding to the areas surrounding the nose, 

mouth, cheek and eye regions of the face by using template matching for appropriate 

localisation.  
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In order to specify the sections of the face that represent regions of interest, Trujillo 

et al. [52] apply automatic procedures to localise a local-global feature found in a 

thermal image by using interest point clustering to estimate facial feature localisation. 

Hernández et al. [48] proposed a visual learning technique based on evolutionary 

computation (EC) in order simultaneously to select the region of interest and extract 

features. The Grey-Level Co-occurrence Matrix was then used to compute region 

descriptors as well as to select the best subsets of descriptors. 

Since each facial expression generates  specific  facial muscle contractions which 

produce fluctuations in facial temperature patterns, some researchers have studied and 

analysed the facial heat patterns concomitant with a particular expression.  Khan et al. 

[62]  sought to identify sets of particular Facial Thermal Feature Points (FTFPs) on 

human faces. The FTFPs were mapped onto the underlying facial muscles, which 

fluctuate in temperature during a change in expression. These FTFPs were then used 

as reference points for comparisons between  the normal face and the intentional 

expression.  Jarlier et al. [53] used the Facial Action Coding System (FACS), which 

utilises all visible facial movements to describe facial activity in terms of muscle action 

units (AUs). They discriminated according to the contraction of particular muscles 

related to the production of muscle AUs, or combinations of (AUs) that determine a 

specific expression. 

2.2.4. Face Alignment / Registration 

Face alignment is a specific topic of image registration which is considered to be an 

important component in a typical automatic face recognition system. Image registration 

is the process of adjusting differing images so that they can fit into the same coordinate 

system. In image processing, this is an essential task which is used to reduce subject 
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variation, such as the differences in facial configuration. The goal of the face alignment 

step is to account for variations in head pose, and for inter-subject differences [63].  

Face analysis applications use differing registration methods on  the detected face 

to remove rigid motions such as translation, head rotations, and differences in scale. 

Several facial alignment methods bypass exact localisation of facial landmarks and use 

only the midpoints of the eyes and mouth to roughly align the faces, while other 

methods depend on accurate landmark locations. In general, facial alignment 

techniques can be classified into one of two main approaches: 2D and 3D. One of the 

2D methods used is coarse registration.  In this method, the distances between the inner 

facial components such as that between the eyes,  are set to be equal in all faces, so as 

to remove the differences due to translation and scales. The drawback of this simple 

approach is that it is still sensitive to head rotation and subject variation [64]. To 

address this problem, another approach uses dense facial points around the eyes and 

other facial landmarks to register each face with a reference face. The facial points 

which are not affected by facial expressions are used to learn the transformation. Then 

the transformation is applied to all the facial points [65].  

2.2.5. Face Normalisation  

The goal of face normalisation is to remove the gross differences between images or to 

reduce computational complexity. Normalisation takes place via processes such as 

rotation [58], resizing [46], and cropping into predefined sizes [57]. The most typical 

face normalization methods are illumination Since the illumination can vary in 

different images even in consecutive video frames, especially in real-world 

environments, this uncontrolled illumination conditions can cause large intraclass 

variances. Several normalisation algorithms have been used for illumination 
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normalization such as isotropic diffusion , difference of Gaussian, discrete cosine 

transform [66] and homomorphic filtering-based normalization [67].  

Several normalisation methods have been used specifically in relation to thermal 

images. Wang et al. [47] removed  the baseline temperature, i.e. the one with the highest 

frequency in the histogram, in order to minimise the influence of temperature 

differences across the environment and the temperature shift exhibited by the thermal 

infrared cameras. Wang et al. [47] used four methods to normalise the grey-level values 

of the images: histogram equalisation, regional histogram equalisation, gamma 

transformation and regional gamma transformation. 

2.3. Methods for Feature Extraction and Classification 

Most existing methods to recognise facial emotions can be generally categorised into 

two approaches: the handcrafted feature approach and the deep learning approach. In 

the handcrafted feature approach, expert knowledge is used to develop a manually-

predefined algorithm to extract features from images. Traditional facial emotion 

recognition systems rely on many such handcrafted features to recognise both 

individual features and parts of the face. In contrast, in the deep learning approach, the 

features are derived from a training image dataset using deep learning methods which 

effectively use the feedback information to investigate the suitability of the extracted 

features. Most of the facial emotion recognition methods that are being used currently 

rely on the deep learning approach, with convolutional neural networks being one 

example of deep neural networks that can be used to learn deep features. The sub-

sections below consider both handcrafted and deep learning-based feature extraction 

methods in more detail. 
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Figure 2-5 : Haar-like rectangle features defined by Viola-Jones: A and B are two-

rectangle features, C is a three-rectangle feature, and D is a four-rectangle feature [3]. 

 

2.3.1. Handcrafted Feature Extraction  

In order to understand what have been done in the literature to recognize facial emotion, 

a set of well-known handcrafted feature descriptors are briefly described in this section. 

These descriptors are mainly designed to extract the characteristics of the images  such 

as texture, gradient magnitudes and orientations. 

2.3.1.1. Haar-like Features 

The basic idea of Haar-like features is to make use of the differences between the 

summed pixel intensities of rectangular image regions. A rectangle with white and grey 
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areas is moved over the original image, and the difference between the sum of the pixel 

values within the grey area and the sum of the pixel values in the white area is 

calculated. Features from rectangles that have one white area and one grey area are 

called two-rectangle features. Viola-Jones [3] defined three-rectangle features and 

four-rectangle features, as shown in Figure 2-5. The Haar-like features indicate certain 

characteristics of a particular area of the image, such as the existence or absence of 

edges or changes in texture. 

 

2.3.1.2. Local Binary Patterns (LBP) Features 

Local Binary Patterns (LBP) was first proposed as a grey level invariant texture 

primitive [68]. LBP features describe each pixel by its level of greyness relative to its 

adjacent pixels. Each centre pixel is represented as a binary string, and its grey value is 

compared with the grey values of its eight neighbourhood pixels. If the value of the 

centre pixel is greater than all its neighbours’ values, then the value of the centre pixel 

is set to zero, otherwise to one. The combination of the ones and zeros of the eight 

neighbouring values are represented as an 8-bit binary number, resulting in there being 

28 distinct values for the binary pattern.  

Local Binary Patterns from Three Orthogonal Planes (LBP-TOP) [69] is an 

extension of the LBP which is created by concatenating local binary patterns on three 

orthogonal planes: XY, XT and YT. The XY plane represents the spatial texture 

information, while the XT and YT planes represent information about the space-time 

transitions. Widely used in ordinary texture analysis, LBP-TOP offers efficient 

representations of dynamic image texture, which is an extension of texture to the 

sequential domain. Both LBP and LBP-TOP have been successfully applied to facial 

expression recognition [70-72].  
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Sun et al. [71] divided the sequences of face images into 4×4 blocks and extracted 

the LBP features from each block, then concatenated them into an enhanced feature 

vector which represents the appearance and motion of the facial expression sequence.  

2.3.1.3. Local Phase Quantisation (LPQ) Descriptor 

The Local Phase Quantisation LPQ [73] descriptor is a texture analysis method based 

on the Fourier transformation and using phase information computed locally for a 

window in every image position. The phases of the four low-frequency coefficients are 

represented in an eight-dimensional space. A histogram of the resulting code is 

generated and utilised as a feature in texture classification. Since only phase 

information is used, the method is robust to image blurring and invariant to uniform 

illumination changes. 

Local Phase Quantisation from Three Orthogonal Planes (LPQ-TOP) [74] is an 

extension to the LPQ operator used for spatial texture analysis. LPQ-TOP is based on 

the binary encoding of the phase information of the local Fourier transform at low-

frequency points. As with the LBP-TOP feature of Sun et al. [71], the sequences of face 

images are divided into 16 blocks of volumes, then the LPQ-TOP features on each 

block are extracted and concatenated together. 

2.3.1.4. Histograms of Oriented Gradient (HOG) Descriptors 

In the context of the detection of human figures/faces, Dalal and Triggs [75] proposed 

image descriptors that describe a local object’s appearance and shape by computing a 

dense grid of histograms of oriented gradients. Their method divides an image into 

blocks of various sizes, where each block consists of a number of cells. A local 1-D 

cantered orientation histogram of gradients is calculated from the gradient orientations 
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of sample pixels from within each cell. Depending on the values found in the gradient, 

each pixel within the cell casts a weighted vote into the orientation histogram. Each 

histogram splits the gradient angle range into a pre-defined number of bins. 

Histogram of Oriented Gradients from Three Orthogonal Planes (HOG_TOP) [76] 

is an extension to the (HOG) to represent the dynamic spatial-temporal features of 

image sequences. Like LBP-TOP, each location in a sequence has a 3-D (XY, XT and 

YT). HOG_TOP description is obtained by calculating the gradients along with the 3-

D. Then the histograms obtained from the planes (XY, XT and YT)  are concatenated 

to form a global description. 

Pyramid of Histograms of Orientation Gradients (PHOG) [77] is a spatial shape 

descriptor which consists of a HOG over each image subregion at deferent resolution 

levels. The histograms (vectors) for all levels are concatenated to represent the final 

PHOG vector. 

Bag-of-Words (BoW) Model 

The BoW model treats an image as a document by representing image features as words 

and counting the sparse histogram over the words (local image features). As with 

document classification, a bag of words is a sparse vector of occurrence counts of 

words. The BoW model is the most commonly-used of the handcrafted feature 

extraction methods, both for object recognition [78, 79] and facial expression 

recognition [80, 81]. It usually comprises three modules: feature extraction, feature 

encoding and feature pooling. In feature extraction, local features, such as SIFT, HOG 

and SURF, are used to characterise the local regions. Next, feature encoding is used to 

make image representation more robust, such as Locality-constrained Linear Coding 
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(LLC) [82]. To summarise the results of feature encoding, feature pooling reduces the 

image representation to the common variances. The commonly-used functions for 

feature pooling are average and maximum pooling.  

2.3.2. Deep Learning and Convolutional Neural Networks 

Most early methods of object  and scene recognition started by applying some well -

engineered  features to describe the image and then   combined these features to produce 

a feature vector  which was subsequently fed into a general-purpose classifier. These 

methods relied significantly on the researchers being able to design   good feature 

descriptors and ways to combine them. In contrast, given  a large amount of image data, 

deep learning methods learn better feature descriptors and better ways of  combining 

them. Deep learning methods attempt to  learn features automatically at multiple levels  

of abstraction, allowing a system to map the  input to the output directly from the data, 

without depending completely  on features designed by the researchers [83, 84].  The 

most well-known algorithm among various deep learning models is the convolutional 

neural network (CNN) due to its tremendous success in computer vision applications. 

CNNs have a powerful learning ability due to the use of multiple feature extraction 

phases that automatically and adaptively learn the spatial hierarchies of features from 

the raw data through a backpropagation algorithm.  
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Figure 2-6: The general convolutional neural network architecture pipeline [85]. 

 

A CNN is a special model of neural network that uses a mathematical operation 

called convolution, which is a specialised kind of linear operation. In a traditional 

neural network, the matrix multiplication operation is applied between the network 

layers, a matrix of parameters, and separate parameters. This means that there is an 

interaction between every output unit and every input unit. In contrast, convolutional 

networks typically have sparse interactions by making the sparse connectivity, called a 

kernel, smaller than the input. This leveraged the CNN with three important ideas that 

improved the machine learning system: sparse interactions, parameter sharing and 

equivariant representations. Moreover, convolution can work with inputs of variable 

size [86-88]. A CNN architecture comprises three main types of neural layers: 

convolutional layers, pooling layers and fully connected layers. Each type of layer 

plays a different role. Figure 2-6 illustrates the three main layers and general CNN 

architecture pipeline. 
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Figure 2-7: How the convolutional layer operates [85]. 

In convolutional layers, a CNN convolves the whole image or the intermediate 

feature maps by utilising a set of convolutional kernels, or filters, to generate various 

feature maps, as shown in Figure 2-7. Convolutional kernel operation divides the image 

into small parts, known as receptive fields. The kernel has a specific set of weights 

which are multiplied with the corresponding elements of the receptive field to extract 

its feature patterns [89]. Every convolution layer is followed by an activation function, 

which is a mathematical equation used to determine whether the output should be 

activated or not. This process helps normalise the output to a range between (1 and 0) 

or ( -1 and 1). There are several activation functions in the literature, such as sigmoid, 

tanh, maxout, SWISH and ReLU. The most widely-used function, however, is ReLU, 

together with its variants (leaky ReLU, ELU and PReLU), because these are better at 

overcoming the vanishing gradient problem [90, 91]. 
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Figure 2-8: How the max-pooling layer operates [85]. 

In the pooling layer subsampling or down sampling operations are performed in 

order to reduce the spatial dimensions (width × height) of the input for the next 

convolutional layer without affecting the depth dimension of the volume. Figure 2-8 

shows an example of a max-pooling layer which reduces the size of the output map. 

While this leads to a loss of information, it remains beneficial for the network overall 

since the decrease in size minimises the computational overhead for the next layers of 

the network, while also reducing overfitting. The most frequently-used pooling 

strategies in CNNs are max-pooling and average-pooling [85, 89].  

Finally, fully connected layers are an essential component of CNNs, performing 

the high-level reasoning in the neural network. While convolution and pooling layers 

impart the image into features and analyse them independently, after several iterations 

of the convolutional and pooling layers, fully connected layers are responsible for the  
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Figure 2-9: How the fully connected layer operates [85]. 

final classification decision. Fully connected layers eventually convert the two-

dimensional feature maps of the previous layer into a one-dimensional feature vector, 

as seen in Figure 2-9. As their name implies, every neuron in a fully connected layer 

has full connections to all activations in the previous layer [86, 87]. CNN models are 

commonly used in computer vision algorithms as both feature extractor and 

classification mechanisms. CNNs can be utilised as a very effective feature extractor 

by converting the features map resulting from convolution or pooling layers to a 

flattened features vector. There are many well-known CNN models which have been 

key in building computer vision algorithms. The following sub-sections give brief 

descriptions of the core architecture of those models that we use in our experiments: 

GoogLeNet, VGGNet and ResNet. 

Inception Architecture and GoogLeNet: In the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) 2014 [92], GoogLeNet [93], also known as 

Inception-V, was the winner, achieving a 6.67% error rate, which was close to human  
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Figure 2-10: The GoogLeNet and its inception block architectures [93]. 

performance. The GoogleNet model achieved not only high accuracy but also reduced 

computational cost. Its architecture combines a novel element which is dubbed an 

inception block. The conception of the inception block is to capture spatial information 

at different scales by combining filters of different sizes (1x1, 3x3 and 5x5). These 

multi-scale convolutional layers apply split, transform and merge concepts to overcome 

problems related to the variations in the resolutions of images present in the same 

category. In the GoogleNet architecture, not all output feature-maps have a connection 

to all input feature-maps, hence omitting redundant information and reducing the 

computational cost. This leads to a drastic reduction in the feature space of the next 

layer, however, and thus may cause loss of useful information [87, 89]. Figure 2-10 

illustrates the architecture of the GoogLeNet and the inception block.  

VGGNet: The second place in the 2014-ILSVRC competition was taken by the 

VGG [94] models proposed by Simonyan and Zisserman. The central concepts of VGG 

architecture are an increase in the network depth to 16–19 weight layers and the use of 

very small (3×3) convolution filters. These small size filters significantly improve the  
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Figure 2-11: The VGG16 architecture [94]. 

performance of the CNN and reduce the computational complexity. Simonyan and 

Zisserman experimentally demonstrated that replacing large size filters (11x11 and 

5x5) with a stack of small size filters (3x3) could induce the same effect. These findings 

initiated a new trend in CNN architecture towards smaller size filters. The main 

drawback of VGG models, however, is the large number of parameters (138 million), 

which make it difficult to deploy in systems with limited resources [85, 89]. Figure 

2-11 shows the VGG architecture. 

ResNet: Kaiming He et al. [95] proposed the Residual Neural Network (ResNet), 

which in fact beat human-level performance by achieving a top-5 error rate of 3.57% 

at the ILSVRC 2015. They proposed a novel architecture, called shortcut connections, 

and devised an efficient methodology for the training of deep networks. With 152 

layers, ResNet is eight times deeper than VGG while still having lower complexity. 

Figure 2-12 shows the gated units or gated recurrent units, which are also known as 

shortcut connections.  
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Figure 2-12: Residual learning: a building block [95]. 

2.4. Methods for Pattern Classification  

Once features have been extracted, they can be used as the input to the classification 

process of a facial expression recognition system. A number of different methods have 

been proposed for the classification of both visible and thermal images in relation to 

facial expression recognition. Vyas et al. [96] divided facial expression classification 

methods into frame-based (image-based) and sequence-based (video-based) methods, 

depending on how the classification was performed. 

Image-based methods generally employ static multi-class classifiers to classify 

emotions into six basic categories; these methods include Artificial Neural Network 

(ANN), SVM [97], K-nearest Neighbours (KNN)  [50, 53] and Linear Discriminate 

Analysis  (LDA) [62, 98]. Image-based methods are mostly utilised to classify spatial 

features, which refer to the data features extracted from one frame at a time and neglect 

the temporal features, where the data correlates with a specific time. Video-based 

methods, on the other hand, usually classify both temporal and spatial features from 

several consecutive frames at a time, such as with Recurrent Neural Network (RNN) 

[99], Long short-term memory (LSTM) [100], Bidirectional LSTM [101] and 3D-CNN 

[102, 103]. 
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Zhang et al. [104] propose a deep learning framework called spatial-temporal 

recurrent neural network (STRNN) to recognise facial emotion. They employed CNN 

to extract spatial information from frames, and multidirectional RNN to classify the 

discriminative features characterising the temporal dependencies of the sequences. To 

extract facial features from temporal sequences, Zhang et al. [105] utilised the Part-

based Hierarchical Bidirectional Recurrent Neural Network (PHRNN), which they fed 

by extracting facial landmarks from four parts based on the facial physical structure. 

The frameworks of the image-based and video-based recognition systems are described 

in Section 2.6. 

2.5. Facial Expression Databases 

A facial expression database is the most important component of facial emotion 

recognition systems, and a close relationship exists between the advances in emotion 

recognition algorithms and the availability of facial expression databases which 

comprehensively represent, in a controlled manner, the varying factors which affect the 

expression of emotions. Most researchers currently construct their datasets by asking 

subjects to demonstrate a series of emotional expressions in front of the camera and 

within tightly controlled environments. Within these limited environments, their 

recognition systems have attained near-perfect performance but this very lack of 

diverse subjects and conditions, in fact, hinders the progress of emotion recognition 

capable of operating ‘in the wild’. Recently, a number of publicly available databases 

have elicited images and videos encapsulating emotions from the web in order to 

provide a more comprehensive dataset. Due to the nature of facially-expressed 

emotion, however, many of these publicly available databases are severely limited [10, 

11]. Specifically: 
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• They provide a limited number of facial images/sequences/videos labelled with 

accurate expression information such as SFEW 2.0 and AFEW [12].  

• Unlike the simple and prototypical emotions labelled in posed emotion databases, 

the emotions captured in real-life images/videos often present compound, 

complex [11] or even ambiguous emotions [10]. This is why most of the current 

emotion databases include only seven very general categories: the six basic 

emotions (surprise, fear, disgust, happiness, sadness and anger) and neutral. 

• The number of labellers available to work on these databases is too small, which 

reduces the reliability and validity of the emotion labels [12].  

The following section focuses on discussing two important dimensions of the 

existing databases: posed vs spontaneous expressions, and the lab-controlled 

environment. Then it presents a review of the existing thermal and visible-light facial 

databases — listed in Table 2-1 and Table 2-2, respectively. 

2.5.1. Spontaneous vs Posed Facial Expressions 

Although the automatic recognition of emotions in posed, controlled audio-visual 

displays can  achieve reasonably high levels of accuracy, detecting  emotions via 

expressions  in less controlled settings is still a very challenging  problem because the 

intentional performance of an emotion (as in the posed settings) differs from 

spontaneous behaviour in  terms of visual appearance, audio profile and timing. 

Accordingly, the main criticism of the existing facial expression recognition systems 

is that the methods depend on posed data. Many facial expression databases have used 

hired “actors” or “portrayers”, instructed to express single-label emotions, sometimes 

using scripts or restricted scenarios [106]. This inevitably means that the resulting 

posed facial expressions are exaggerated compared to those that would typically occur 
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in real life, as there is a lot of variation around the neutral in terms of emotions as they 

are actually expressed. In short, posed expressions typically operate via exaggerated 

changes where only slight changes in facial expression would be more natural.  

For the above reasons, most of the facial expression recognition systems that utilise 

databases fail in real-life applications. As a result, researchers have come to realise that, 

when designing a system for the automated recognition of facial expressions in the real 

world, the differentiation between spontaneous and posed facial expressions is an issue 

that must be taken account of. Accordingly, the research in the field started to focus on 

the automatic  analysis of spontaneously occurring behaviour [107, 108]. Furthermore, 

state-of-the-art research has shown that spontaneous facial expressions provide 

valuable information from such things as general appearance, timing, head movements 

and other bodily gestures. Specifically, research is now demonstrating that the temporal 

information related to how an expression makes its appearance, and the geometric 

features of some facial regions, those produced by facial action units, can all be applied 

to discriminate expressions [64, 109, 110]. 

2.5.2. Lab-Controlled Environment Databases 

Most early  facial expression  databases do not represent real-world conditions as they 

were captured in a lab-controlled environment where the subjects were controlled, and 

some important other factors were simplified, eliminated or managed: i.e., illumination, 

lighting conditions, restrictions on clothing, eyeglasses, etc.  

• The number of samples and subjects in such databases is limited. The diversity 

is also limited, so the samples have low levels of variation in face shape, texture, 

colour. Also, it must be remembered that facial and scalp hair varies with sex, 

ethnic background and age. Consequently, most of these databases are unsuitable 
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for use with deep learning models which need a huge amount of training data.  

• Moreover, due to the limited number of subjects, the database might have several 

samples generated by one particular subject who sequentially acted/posed the 

same expression. When this sample-similarity is found in training data, the deep 

learning models are more likely to face overfitting problems. Also, when both 

the training and testing datasets have this sample-similarity, there is more 

potential for bias to influence test accuracy. 

• Relatively little attention has been paid to the problem of pose invariance in 

relation to the lab-controlled environment databases. In contrast, in real-world 

situations, large variations in head position and facial orientation are common 

and often accompany changes in expression. These natural movements make 

facial expression recognition systems based on lab-controlled environment 

databases more difficult to use for real-world applications. 

• Another restriction/condition that most lab-controlled environment databases 

apply is scene simplicity. Static backgrounds are usually de-rigour and/or the use 

of a consistent pattern and the requirement that only a single person is present. 

This can influence the accuracy of face detection, tracking, and expression 

recognition. In natural environments, many people may be present together and 

interacting with each other. This variation should be represented in training data 

so to develop and test algorithms that are robust to such variation. 

From all of the above, it is evident that lab-controlled environment databases do 

not represent the wide variety of real-world conditions. To address these issues, 

researchers have recently started paying attention to databases constructed from images 

from ‘the wild’ [11] [10, 111]. 
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2.5.3. Thermal Facial Expression Databases 

Table 2-1 lists current thermal facial expression databases along with information 

regarding the name, the number of subjects, and the expression description and 

elicitation method related to this.  

The first two, the NIST Equinox [112] and IRIS [113] Thermal/Visible Face Database 

include posed thermal expression images which have been captured by asking subjects 

to perform a sequence of emotional expressions in front of a camera. Thirdly, the 

USTC-NVIE [8] database has been used in many types of research focused on thermal 

images. It is a visible-light, and infrared facial expression database which includes good 

posed and also spontaneous thermal images. 

Table 2-1: Thermal facial expression databases. 

 

Database Size Education Expr. Descript. Elicitation Method 

NIST Equinox[112]  600 subjects 

1919 IR images 

Posed Smiling, Frowning, 

Surprise 

asking the subjects to 

perform expressions  

IRIS [113] 30 subjects, 4228 

pairs of thermal 

and visible images 

Posed Surprise, Laughter, 

Anger 

asking the subjects to 

perform expressions  

USTC-NVIE  [8] 215 subjects Posed and 

spontaneous 

(30 visible-25 

infrared frames  

per second) 

Six basic 

emotions plus 

neutral 

spontaneous expressions 

induced by film clips 

posed images obtained by 

asking the subjects to 

perform expressions 

Naturalistic 

Database of 

Thermal Emotional 

Facial 

Expressions[114] 

49 subjects  

120,000 images 

from each camera 

(both the visual and 

thermal one) 

Spontaneous  

snapshot (one 

frame per second) 

Sadness, Disgust, 

Happiness, 

Surprise and 

Neutral 

expressions induced by 

watching movies with 

strong emotional content 

and by playing a memory 

game 

Multimodal 

Databases for 

Emotion Analysis 

[115] 

36 Posed and 

spontaneous 

(180 visible-60 

infrared frames   

per second) 

Neutral, Anger, 

Amusement, 

Disgust Fear, 

Sadness 

expressions induced by 

watching movies with 

strong emotional content, 

pictures interviewed 

KTFE (A Kotani 

Thermal Facial 

Emotion) [116]. 

26 subjects Posed and 

spontaneous  

(5 frames per 

second) 

Six basic 

emotions plus 

neutral 

watching movies with 

strong emotional content 
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On the other hand, this database embeds inaccuracies due to the procedure used to 

induce emotions during the data acquisition. Only two-minute gaps were allowed 

between each emotion clip, and this is too short a time for subjects to re-establish a 

neutral emotional status before producing the next non-neutral expression. Moreover, 

changes in skin temperature occur subsequently to changes in emotion, which increases 

the potential for interaction with the different emotions shown by the other emotional 

video clips [8].  

Fourth, the Naturalistic Database of Thermal Emotional Facial Expressions [56] is 

very useful for expression  recognition, particularly because it captures one visible and 

one thermal image per second for each subject. Fifth, the Multimodal Databases [115]  

provide a corpus of emotional responses whereby researchers can discover the internal 

emotional states of subjects. This database can be used by different types of 

professionals because it is composed of eight different, but synchronised, kinds of 

recording: videos (four cameras are used to record the motions of the face, the full body 

and the temperatures of shoulders and face) pressure sensor, audio signal and 

photosensor. The gaps between each clip  are only three seconds long, however. Sixth, 

the researchers who proposed the Kotani Thermal Facial recognition approach (KTFE) 

[116] analysed a visual and a thermal database together in order to enable the 

concurrent recording of both expression information and thermal information and thus 

better recognition of emotions. 

2.5.4. Visible Facial Expression Databases 

A summary of the existing visible image databases is given in Table 2-2; this shows 

the main reference, the number of samples, the age range, the collection environment, 

the expression distribution, the annotation method and additional information.  
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Table 2-2: Visible facial expression databases. 

Database 
Samples Subject Expression 

Annotation Method 
Image Seq Env NO El Ba Com Coll 

AR FACE [117] 4000  Lab 116 P 4  Acted By subject 

JAFFE [118] 
219  Lab 92 P 7   Semantic ratings over 60 

subjects 

MMI [119] 1500 169 Lab 19 P 7   2 Coders FACS coded  

GEMEP [106]  7K Lab 10 P 18  Acted 28- 30 

CK+ [120]  327 Lab 123 P & S 7*  Acted 2 Coders 

RaFD [121] 8040  Lab 49 P 8  Acted 276 Percentage of 

agreement on emotion 

categorization 

Multi-PIE [122, 123] 755370  Lab 337 P 6  Acted  

FER-2013 [124] 35887  Web  S 7  Search  Image 

EmotionNet [125] 
1M  Web  P & S 7 17  10% manually  

 90% automatically 

AffectNet [10] 450K   Web  P & S 8   1 L/I 

RAF-DB [11] 
29672  Web  P & S 7   Distribution values from 

about labellers per image 

iSAFE [126] 
395  video  44 P 7    Professional and 

unprofessional annotator  

SFEW 2.0 [12] 1635  Movie 330 P & S 7   2 L/I 

AFEW [12]  1,426 Movie 330 P & S 7 -   

Seq=Sequences, Env=Environment, NO=number, El=Elicit, Ba=Basic, Com=Compound, Coll=Collection Method, P=posed and 

S=spontaneous. 7 basic expressions (6 basic expression + Neutral) --- 8 basic expressions (6 basic expression + Neutral + 

Contempt) *(6 basic expression + Contempt) 

For the AR Face Database [117], the illumination conditions, and the distance from 

the camera to the subject, were strictly controlled throughout the whole image capturing 

process. The AR database has 4000 images; a total of 116 participants, 63 of whom 

were males and 53 females. Its images have a resolution of 768 × 576 pixels, and each 

pixel has 24 bits of depth. 

One of the earliest static  facial expressions datasets was the JAFFE Database [118], 

which has been extensively used in  expression  research. Each subject used for this was 

asked to tie her hair away from her face in order to expose all the expressive zones of 

the face. Moreover, the researchers positioned Tungsten lights so as to create even 

illumination on the face and to reduce back-reflection; a box enclosed the region 
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between the camera and a plastic sheet. The database contains 219 images of ten 

Japanese females. The subjects posed for six expressions each (anger, disgust, fear, 

happy, sad and surprise) and for the neutral expression.  

The subjects used in the MMI Facial Expression Database [119] were instructed 

by an expert (a FACS coder) on how to display the required facial expressions. They 

were asked to display 79 series of expressions, which each included either a single AU 

or a combination of AUs. The subjects had to display the required expressions while 

minimising out-of-plane head motions. To allow easy access and ease of search, the 

MMI has a web-based direct-manipulation application. It contains more than 1500 

samples, both static images and sequences of images, all of frontal or profile view faces, 

of 19 male and female subjects expressing various emotions facially.  

The Geneva Multimodal Emotion Portrayal (GEMEP) [106] consists of more than 

7,000 audio-video emotion portrayals, representing 18 emotions (including some 

rarely-studied subtle emotions). The subjects were professional theatre actors who were 

coached by a professional director. Ten actors were recruited for the scenarios and had 

the help of a director who supervised the acting during the recordings.  Each emotion 

was represented through audio-only, video-only and audio-video portrayals, and 90 

labellers  were randomly assigned across these types of portrayal (31, 31, 28, 

respectively in the three categories).  

The Extended Cohn-Kanade (CK+) Database [120, 127] includes 327 sequences, 

which were captured in a lab-controlled environment from 123 subjects. These were of 

varying ethnic backgrounds: 81%, Euro-American, 13% Afro-American and 6% other; 

their ages ranged from 18 to 50. They were instructed by an experimenter to perform a 

series of 23 different facial expressions, which included single AU expressions and 
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expressions which required combinations of AUs. The image sequences in CK+ vary 

in duration (i.e., from 10 to 60 frames), size (640 × 490 or 640 × 480 pixel arrays with 

8-bit grayscale or 24-bit colour values) and views (frontal and 30-degree). These 

sequences started from the neutral expression and ended with a peak expression, which 

was one of the six basic expressions, plus contempt. 

The Radboud Faces Database (RaFD) [121] contains portrait images of 49 

subjects: 39 adults and ten children. The portrait images show eight facial expressions 

with three gaze directions; all of the portrayed facial expressions were based on 

prototypes from the FACS. Varying poses and illuminations were used, and the images 

were captured simultaneously from five different camera angles; three flashes provided 

the illumination. The images were captured in a highly controlled environment, and all 

were aligned, cropped and resized to 1024 × 681 pixels. For the validation, all images 

were rated by 315 labellers of nine randomly chosen subjects from the database. For 

each image, labellers rated the expression in terms of intensity, clarity, valence and the 

genuineness of the expression. Further, to select images from the dataset with a specific 

property, labellers were asked to rate the attractiveness of the neutral frontal gaze 

images for all nine models.  

CMU Multi-PIE Datasets [123] contains both temporal and static samples recorded 

in the laboratory over five sessions. To address some of the limitations of the lab-

controlled environment, the authors utilised a system of 15 cameras and 18 flashes 

connected to a set of PCs so as systematically to capture images of varying poses and 

illuminations across large numbers of subjects and samples. In total, the Multi-PIE 

database contains 755,370 images from 337 different subjects. The emotions portrayed 

were smiling, surprised, squinting, disgust, screaming and neutral.  
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Facial Expression Recognition FER-2013 [124] was introduced at ICML 2013 for 

the Facial Expression Recognition Challenge; it was designed to assist in the 

classification of the emotions expressed in photographs of the human face. FER-2013 

contains 35,887 images collected and automatically labelled by the Google image 

search API. Using a set of 184 emotion-related keywords, such as “blissful”, “enraged,” 

etc, the API searched for images of faces that matched with these keywords. After the 

faces were automatically cropped from each image, labellers checked the image labels, 

corrected the cropping if required, and removed duplications. The approved images 

were then resized to 48 × 48 pixels and converted to grayscale. Unfortunately, the 

images are difficult to register well, and most facial landmark detectors are unable to 

extract facial landmarks from them at the provided resolution and quality. The images 

in FER-2013 represent six basic emotions plus neutral and a small number of images 

portraying disgust (547 images). It does not provide information about facial landmark 

locations, and only the categorical model of emotion is provided.  

EmotioNet [125] is a large-scale facial emotion database employing a categorical 

model. It contains one million images that can be queried by specifying an AU, the 

AU’s intensity, the emotion category or an emotive keyword. The images were 

downloaded from the Internet by searching for images associated with texts which 

contained any of the words which can be derived from the word “feeling” via WordNet 

[128]. The authors presented a novel AU and AU intensity detection algorithm and 

used it to automatically construct and annotate 90% of the collected images of facial 

emotion. The remaining samples (100,000 images) were manually annotated with AUs 

by experienced coders, so as to assist in recognition of AUs and AU intensities in 

images of faces. EmotioNet uses six basic emotions plus neutral and 17 compound 

emotions. The accuracy of the automatically-annotated AUs has been estimated at 
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about 81% in relation to the manually-annotated selected group of 3000 images. 

EmotioNet is considered a novel source of FACS models found in the wild with a large 

number of samples and significant subject variation. The authors did not describe in 

detail the manual annotation procedure employed for the 10%, i.e., 100K, a subset of 

facial expression images, however, or the number of labellers/coders who were 

engaged in this. Also, the emotion categories are judged based on the AU label and not 

directly manually annotated; this reduces the reliability and validity of the emotion 

labels. 

Another large-scale facial emotion database is AffectNet [10], which also applies 

categorical and dimensional models. This database contains more than one million 

images obtained from the Internet by querying three search engines (Google, Bing and 

Yahoo) and specifying emotion-related keywords in six different languages: English, 

Spanish, Portuguese, German, Arabic and Farsi. A total of 450,000 images were 

annotated by twelve expert annotators in order to label the face in the images using 

both discrete categorical and continuous dimensional (valence and arousal) models.  

The rest of the images were automatically annotated by a software application 

developed for the purpose, again using both the categorical and dimensional models of 

effect. Furthermore, alongside the six basic emotions plus neutral, four other discrete 

categories were defined for the categorical model: Contempt, None, Uncertain and 

Non-face. The Non-category encompassed types of emotion not provided with a 

specific category, such as sleepy, bored, tired, seducing, confused, ashamed, focused, 

etc. The Non-face category was assigned to images which either do not contain a face, 

but instead a drawing, animation or painting, or which contain a face obscured by a 

watermark. An image was also tagged as Non-face if the face was distorted beyond 
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what would be considered a natural or normal shape for a face, or if the face detection 

algorithm otherwise failed to detect the face boundaries, even if an expression could be 

inferred from it. The Uncertain category was assigned to images where the annotators 

were completely uncertain about all of the facial expressions shown in it. Each image 

was labelled by only one annotator, however, due to time and budget constraints, and 

compound expressions were not included. Moreover, the class distribution of the 

training dataset was heavily imbalanced; that is, most of the images are in the majority 

classes (Happy 146198, Neutral 80276) and relatively few images are in minority 

classes (Disgust 5264, Fear 8191).  

The Real-World Expression Database RAF-DB [11] contains 29,672 real-world 

images which were automatically downloaded from the Internet by an optimised 

algorithm and picked out using emotion-related keywords. To assure the reliability of 

the labelling of the collected images, sufficient well-trained labellers (315 annotators) 

were engaged to annotate each image independently about 40 times, utilising a website 

developed for the purpose. The images are divided into two different subsets: basic 

emotions and twelve classes of compound emotions and labelled with different 

expressions, age ranges, genders and posture features. Subjects in the RAF-DB 

database ranged in age from 0 to 70 years old, 52% of them were female, 43% male, 

and in 5% of cases, the gender was unclear. In terms of racial distribution, there were 

77% Caucasian, 8% African American, and 15% Asian. The data are provided with 

precise locations and the size of the face region, as well as five manually-located 

landmark points on the face and 37 landmarks, the latter having been automatically 

annotated. Furthermore, the database includes four features of each image for training 

and testing sets: HOG [75], Gabor [129], base DCNN [11] and DLP-CNN [11] features. 

Even though the number of samples is fairly small compared to the number in the other 
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web-based facial expression databases, such as AffectNet and EmotioNet, with its 

valuable and reliable metadata, the RAF-DB database is considered to be a useful 

benchmark resource for facial emotion/expression analysis researchers. 

The Indian Semi-Acted Facial Expression (iSAFE) [126] dataset contains 395 

video clips of 44 subjects aged 17 to 22 years. These subjects were of two ethnic 

backgrounds; Indo-Aryan and Dravidian (Asian). The video clips were captured in a 

lab-controlled environment, but the subjects were not instructed to act. To capture the 

spontaneous facial expressions of the subjects, they were asked to watch a few 

stimulant videos and label their emotions with seven basic expressions plus uncertain. 

Then their video clips were annotated by a professional annotator, who was a 

psychologist trained in assessing the human emotions, as well as by an unprofessional 

annotator. iSAFE is very small in size, however, with a limit number of annotators. 

 Dhall et al. [12] released Acted Facial Expressions in the Wild (AFEW) and Static 

Facial Expression in the Wild (SFEW 2.0). AFEW is a dynamic, temporal facial-

expression database comprising short video clips of facial expressions in close to real-

life environments, whereas SFEW is a static subset which was created by selecting 

some of the frames from AFEW. Both databases were introduced for the EmotiW 2015 

Challenge [111] and form the basis of two facial expression recognition sub-challenge 

solutions, focused on audio-video based and static image-based emotion recognition.  

The source of these databases were 54 selected movies. To annotate these movies 

quickly, a video clip recommender system based on subtitle parsing was utilised to scan 

a full movie and recommend short clips, all of which were said to have a high 

probability of showing a subject manifesting a meaningful expression. Then the 

suggested video clips were annotated with six basic expressions plus neutral by two 
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independent labellers. The chosen movies covered a large number of actors, although 

many of these appear in multiple movies in the AFEW dataset — to enable researchers 

to study how their expressions changed over time. The clips contain varied scenes with 

indoor, night-time and natural outdoor illumination. Although movies filmed in studios 

have controlled illumination conditions, even for outdoor settings, they are still closer 

to real-life than videos made in lab-controlled conditions. AFEW/ SFEW contain 1,426 

video clips/ 1635 images of 330 subjects aged 1-77 years. The databases cover 

unconstrained facial expressions, varied head poses, occlusions and differing 

resolutions of faces. The number of samples in the training dataset of AFEW/ SFEW 

is quite small, however, and also the class distribution is imbalanced. 

2.6. Image-Based vs Video-Based Emotion Recognition 

With the advances in GPUs and machine learning techniques, the robustness of image-

based recognition systems has been significantly boosted. On the other hand, what such 

video-based recognition systems can achieve today is still greatly inferior to human 

perception. Human subjects are able to look at a video and instantly know what actions 

are being performed and/or what emotions are being portrayed in it and are able to 

detect the ways in which these emotions change. Due to their fast and accurate visual 

system, human subjects can perform complex tasks, such as interactions with many 

people at the same time or driving, with little conscious thought. Fast, accurate 

algorithms for recognition systems would allow computers to, for instance, be able to 

explain scene information in real-time to human users and so reduce the need for 

specialised sensors for complex tasks such as driving cars and would also unlock the 

potential for general purpose use. 
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Current studies treat video's temporal information by splitting a whole video 

either into groups [102, 103] or individual frames [42] and consequently process these 

portions multiple times. The next process utilises several models to aggregate the 

processed parts to implicitly infer the whole temporal information. Based on the 

number of frames processed at a time, the current state-of-the-art models for video-

based recognition fall into four categories: Single-Frame, Set-of-Frames, All-Frames 

and Key-Frames, as illustrated in Figure 2-13. 

Single-Frame processing approaches: Here, the features of each frame are 

individually extracted and classified by utilizing handcrafted feature methods or/and 

2D-CNNs models, then appropriate aggregation methods- decision fusion- are applied 

directly on the classifications of these frames. Otherwise, the extracted features of 

frames are combined by using features fusion methods [42], then classified, as 

illustrated in Figure 2-13 (a).  

Set-of-Frames processing approach: The video frames are divided into sets, 

then a suitable model, such as 3D-CNN, is used to extract, and then classified according 

to the features of each set. To predict the final classification, a decision fusion method 

is applied by employing a classification of the sequence of all sets. 3D-CNN models 

have been used widely for this [103]— to learn both the spatial and the temporal 

information simultaneously, as illustrated in Figure 2-13 (b). 

All-Frames processing approach: The sequence of all video frames are used 

directly in one model, such as 3D-CNN [130] or optical flow[131] to predict the final 

classification In this approach, no decision fusion method is needed, as illustrated in 

Figure 2-13 (c). 
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Figure 2-13: Categorization of video-based recognition approaches based on the 

number of frames processed at a time. 

Key-Frames processing approach: A small number of frames are selected to be 

key-frames and represent the video as one set. Then a suitable model, such as 3D-CNN 

or 2D-CNN [9], is used to obtain the final decision directly, as illustrated in Figure 

2-13(d). 

The fusion of  spatio-temporal information is classified into three levels: Feature-

level fusion combines the extracted features through specific approaches before 

classification, depending on whether the extracted feature is a feature vector or a 

descriptor. Decision-level fusion uses the scores generated from multiple classifiers to 

obtain the final decision by using multiple layers through a rule-based scheme such as 

AND, OR, MAX, and majority voting, or in a pattern classification sense, in which the 

scores are used as new features [179]. Data-level fusion combines the original data 

before using any feature extraction approaches. 

 The fusion level is selected dependent on the characteristics of the data and the 

requirements of the application problem. Single-Frame processing approaches use the 

feature-level and/or decision-level fusion models. Set-of-Frames processing approach 

may combine data-level fusion with feature-level and/or decision-level fusion models. 
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In contrast, All-Frames and Key-Frames processing approaches depend on data-level 

fusion to directly fuse and classify the spatio-temporal information by utilizing a single 

model such as 3D-CNN.   

2.7. Emotion Recognition Algorithms 

Shan et al. [132] proposed a Boosted-LBP feature extractor combined with an SVM 

for classification. Boosted-LBP features are the most discriminative LBP features 

obtained by adopting AdaBoost to learn from a large LBP feature pool. Liu et al. [77] 

proposed a Boosted Deep Belief Network (BDBN) to perform feature learning, feature 

selection and classifier construction for emotion recognition. Different DBN models 

for unsupervised learning of features in audio-visual emotion recognition have been 

compared to the work done by Kim et al. [133]. Li et al.[42] used CNNs on images 

collected from the web. They compared the performance of these CNNs on the CK+ 

dataset to the state-of-the-art methods to prove the effectiveness of CNNs. Many 

interesting approaches have also been proposed for audio-video based emotion 

classification challenges (EmotiW).  

To solve the emotion recognition problem in video analysis, Kahou et al. [81] 

combined multiple deep neural network architectures, each based on a different data 

source. For frame-based classification, they used an architecture similar to the AlexNet 

model to classify aligned images of faces, and a shallow network to extract features of 

the mouth, which were then used as input to an SVM emotion classifier. For the audio 

information, they developed a deep belief net (DBN) to classify the audio signal 

available with the video clips. For the spatio-temporal information within the entire 

scene, they used a deep autoencoder-based classifier to model the spatio-temporal 

properties of human activity. They used an SVM for combination across frame 
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predictions, and a multilayer perceptron (MLP) trained on sequence-level features to 

provide the final video classification. Their architectures accuracy was 41.03% on the 

test set, the highest accuracy in the EmotiW 2013 [134] challenge.  

Sikka et al. [72] followed a feature fusion approach based on MKL which was 

employed to find an optimal combination of audio and eleven visual features for input 

into a non-linear SVM classifier. They utilised four different models to extract ten 

handcrafted visual features: HOG with four and eight bins, PHOG with four bins, BoW 

on the extracted faces with dictionary sizes of 200, 400 and 600, BoW computed on 

the entire image, LPQ-TOP with block sizes of 5, 7, and 9. Their classification accuracy 

was 37.08 on the validation dataset. 

Liu et al. [135] represented all frames of a video clip as an image set and modelled 

it as a linear subspace to be embedded in Grassmannian manifold. After the features 

were extracted from each video frame using CNN, Class-specific One-to-Rest Partial 

Least Squares (PLS) was employed to learn on video and audio features separately so 

as ultimately to distinguish between classes. Then, to find the optimal fusion of 

classifiers from both modalities (video and audio), a linear fusion was conducted at 

decision level by introducing a weighted term λ. The final accuracy achieved on the 

validation and test set was 35.85% and 34.61%, respectively. 

The EmotiW 2014 challenge organisers provided aligned face images which were 

extracted from a selection of video clip frames. Liu et al. [136] applied three kinds of 

feature-extracting methods on these images: HOG, Dense SIFT and DCNN. They 

utilised a frame-feature fusion approach which combined the extracted features from 

successive image frames as a feature vector. Then, the combined feature vectors of the 

video sequences were represented by three types of image set models: linear subspace, 
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covariance matrix and Gaussian distribution. Then, different Riemannian kernels were 

utilised on these models correspondingly for similarity/ distance measurement. Three 

types of classifiers, kernel SVM, logistic regression and partial least squares, were 

investigated for comparison. Finally, a score-level fusion of classifiers learned based 

on different kernel methods, and different modalities (i.e. video and audio) was 

conducted in order to improve the performance further. Their pipeline achieved a 

50.4% classification accuracy on AFEW 4.0 test dataset. 

In order to improve training efficiency, Sun et al. [71] applied a PCA model to 

automatically select a better set of facial images which were extracted from the video's 

frames. Several visual features (SIFT, LBP-TOP, PHOG and LPQ-TOP) were 

extracted from the selected image set. The primer classifications of SVMs which were 

trained on the audio and visual features were hierarchically combined to provide the 

final classification. In their second submission, they applied the feature-level fusion 

MKL method with BoW and Audio features. Their methods achieved 47.17% on 

AFEW 4.0 test dataset. 

Chen et al. [76] proposed a feature descriptor called (HOG_TOP) to extract the 

dynamic visual features from video sequences, and further adopted MKL to find an 

optimal combination of the visual and audio features. An SVM with multiple kernels 

was trained for classification. Their methods achieved overall classification accuracies 

on AFEW 4.0 validation and test datasets of 40.21% and 45.21%, respectively.  

Yao et al. ]137[ proposed a novel pair-wise learning strategy to discriminate two 

particular emotion categories. The method automatically seeks a set of facial image 

patches using an undirected graph  structure, which takes learnt facial patches as 

individual vertices to encode feature relations between any two learnt facial patches. 
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Then a robust emotion representation was constructed by  concatenating all task-

specific graph-structured facial  feature relations sequentially. In their highest accuracy 

submission, they used the average of three linear SVMs trained with AU-aware facial 

feature relations (two face scales), audio model and CNN model. Without using an 

additional database, their method achieved  competitive results on SFEW 2.0 and 

AFEW 5.0 test datasets for both sub-challenges: the image-based static facial  

recognition accuracy was 55.38%, compared to 53.80% for the  audio-video based  

expression recognition. They did not specify the performance of their CNN and the 

accuracy of each model separately, however.  

Fan et al. [103] won the EmotiW 2016 challenge by proposing a hybrid network 

that combines three models cascaded 2D-CNN with LSTMs, 3D-CNNs with RNN and 

an audio module. Their recognition accuracy is 59.02%, and the accuracy of the fused 

two visual models (CNN-RNN and C3D) can be reached 48.30%. Without audio 

information, the accuracy of the best single CNN-RNN model was 45.43%, while, the 

accuracy of the single C3D can reach only 39.69%. 

To capture spatio-temporal information, Ouyang et al.[138] employed CNNs for 

feature extraction and directly contacted the nodes in lower CNN layers with LSTMs. 

They utilised three different models: VGG-LSTM, ResNet-LSTM and C3D Network. 

Deep neural network (DNN) was applied for emotion recognition of audio signals. 

Their overall accuracy was 57.2% on the test dataset and 54.2% on the validation 

dataset. The accuracy of their visual models, VGG-LSTM, ResNet-LSTM and C3D 

Network, were 47.4%, 46.7% and 35.2%, respectively, on AFEW 7.0 validation 

dataset. Likewise, Ouyang et al.[138], Vielzeuf et al.[139] proposed VGG-LSTM and 

C3D model, but, they utilized C3D model as features extractors for a set of consecutive 
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frames and LSTM was utilized to classify the combined features of all sets to gather. 

Then, they combined the scores for the visual models with the audio model to give the 

final classification. The reported accuracy for VGG-LSTM was 48.6% and C3D-LSTM 

was 43.2% on AFEW 7.0 validation set where the overall accuracy was 58.8 % on the 

test dataset. 

2.8. Summary 

This chapter has surveyed the important work and recent research on computer vision-

based emotion recognition, encompassing both image-based and video-based 

classification design. Starting with the types of emotion explanation which the studies 

in computer vision use to describe the emotions, this chapter is organised by following 

the general design of image and video classification systems: Pre-Processing→(Feature 

Extracting and Deep learning and Convolutional neural network)→Classification. As 

the database is considered to be the most important component of any recognition 

system, an intensive survey was presented of the available visual and thermal facial 

expression databases, along with a comparison between the databases of spontaneous 

and posed facial expressions. The chapter also discussed the major disadvantages of a 

lab-controlled environment database which prevent them from representing the wide 

variety of real-world conditions. 

An overview of the important differences between image-based and video-based 

recognition systems and the challenging problems faces these systems were also 

offered, followed by a review of the recent state-of-art algorithms and their 

performance in different databases. Some important challenges highlighted in this 

chapter will form the basis for the work in the following chapters of this thesis.  
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Chapter 3   

3. Accuracy Enhancement of the Viola-Jones 

Algorithm for Thermal Face Detection  
 

3.1. Introduction 

Human facial analysis is an active research area due to its wide variety of potential 

applications, such as face recognition, emotion recognition and human-computer 

interaction. While standard visible spectrum cameras are regularly used as the sensors 

in these applications, there has recently been an increased interest in facial analysis 

applications in the thermal infrared spectrum, since these can combat some drawbacks 

of the visible spectrum and provide a higher level of liveness detection such as face 

temperature, emotions and health state [140] [3].  

A necessary step towards an automated human facial analysis system, in any 

modality, is face detection. Considerable work has been done on developing face 

detection methods in the visible spectrum, whereas face detection in the thermal 

spectrum has received less attention. The current thermal face detection approaches do 

not suit real-time applications. To detect faces from thermal images, some related 

issues should be addressed. For example, detecting faces with eyeglasses is a 

challenging issue, and the presence of other heat-emitting objects may cause false 

positive face detections. Figure 3-1 shows Samples of the thermal facial images from 

the NVIE [8] database. 
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Figure 3-1: Samples of the thermal facial images from the NVIE database [8]. 

Reese et al. [140]  compared the Viola-Jones [3] algorithm with Gabor feature 

extraction and classification [141] and the non-training method, Projection Profile 

Analysis [140] in respect to face detection from both thermal and visible images on 

Alcorn State University (ASU), the University of Notre Dame (UND), and the FERET 

databases [142]. Reese et al.’s study concluded that the Viola-Jones algorithm achieved 

better performance, with an average accuracy of 74.8% on thermal images from the 

ASU  and UND databases (78.99% ASU, 70.62% UND ) and an average speed of 0.03 

seconds per image (0.05 ASU, 0.01 UND ). Moreover, they suggested that more work 

could be done to improve the accuracy of the Viola-Jones algorithm for face detection 

from thermal infrared images.  

In that context, we aim to create a thermal face detection that can meet the 

requirements of real-time applications described in Section 3.1. The main contribution 

of this chapter is an efficient and effective process to improve the performance of the 

Viola-Jones algorithm for face detection from thermal images, with or without 

eyeglasses. The enhancement process reduced the detection time of the Viola-Jones 
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algorithm by roughly a factor of two while retaining high detection accuracy [2]. The 

potential benefits of the process are also investigated. Firstly, the performance of two 

pre-processing methods, Otsu’s method [143] and Gradient Magnitude, are compared. 

Secondly, the performance of LBP features [144] and HOG descriptors [145] was 

compared with the performance of the Haar-like features that were originally utilised 

by the Viola-Jones algorithm. 

Some related work is reviewed in Section 3.2. The rest of this chapter is organised 

as follows. The proposed methods are introduced in Section 3.3. The experimental 

setup and databases used are described in Section 3.4. The experimental results are 

presented in Section 3.5 and followed by a discussion in Section 3.6. Section 3.7  draws 

conclusions. 

3.2. Related Work  

Since thermal cameras can capture facial skin temperature, many  algorithms for 

thermal facial analysis use different threshold values to  separate areas of interest from 

the background. Cheong et al. [144], Mekyska et al. [145],  and  Wang  et al. [47] convert 

a thermal image into a grey scale image, and binarise it using Otsu’s method [143], 

before identifying the location of the head region using the global minimum point from 

the horizontal projection of the image. Trujillo et al.[52] and Wong et al.[146], 

meanwhile, proposed a non-training face detection algorithm that utilises head curve 

geometry. The algorithm uses a threshold method on the red component extracted from 

the RGB image to generate a binary image and then performs a morphological closing 

on this. Reese et al. [140] used the projection profile analysis algorithm for thermal 

face detection. To separate areas of interest from the background, they used region 

growing segmentation, but this is slow and lowers the accuracy slightly.  
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Reese et al. [140]  compared three face detection algorithms for thermal and visible 

images: the Viola-Jones algorithm [3], Gabor feature extraction and classification [141] 

and non-training Projection Profile Analysis [140]. Reese et al.’s experiments [140] 

showed that learning-based methods (Viola-Jones and Gabor) are able to detect faces 

from both thermal and visible images, with the Viola-Jones algorithm being the best 

for face detection in the thermal spectrum. 

The current thermal face detection algorithms require critical three conditions to 

be fulfilled. For high performance, there should be only one person existing in the 

image,  and no other heat-emitting objects should be captured by the camera, such as 

the subject's hands. Moreover, the face should be full frontal to the camera, similar to 

those in a passport [140  ,146] . 

3.2.1. Viola-Jones Method 

Since Viola-Jones’ face detector [3] is the most popular and state-of-the-art method for 

face detection, it is adopted as the baseline method to detect faces from thermal images. 

Their contribution is three-fold. First, in order to achieve fast calculation with high 

accuracy, they developed a simple and efficient classifier that used the AdaBoost 

learning algorithm to choose a small number of critical visual features from a large set 

of potential features.  

Figure 3-2 shows the pseudocode for the AdaBoost algorithm adopted by [147]. 

Second, their method for combining classifiers in a cascade allows background regions 

of the image to be easily discarded while spending more computation time on 

promising face-like regions. Third, they introduced the concept of the “integral image”, 

which allows Haar-like features to be computed very quickly.  
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Figure 3-2: The pseudocode for the AdaBoost algorithm adopted by [3, 148]. 
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Figure 3-3: Training and detecting phases for thermal face detector. 

3.3. Methods 

This section describes the proposed process for face detection from thermal images. As 

shown in Figure 3-3, the proposed process consists of training and detecting phases, 

with each phase consisting of three stages. In the training phase, training images are 

divided into two groups to create positive and negative samples. A positive image 

contains a single face, whereas a negative image contains no face as shown in Figure 

3-4. In the first stage, both positive and negative samples are pre-processed by using 

gradient magnitude or Otsu’s methods [143]. The features are extracted from the pre-

processed samples in the second stage. Both positive and negative features are used to 

train the cascade face detectors in the final stage.  
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Figure 3-4: Sample of the positive and negative images used to train the thermal face 

detectors. 

In the detecting phase, testing images are pre-processed by using the same pre-

processing method as in the training phase. In the second stage, features are extracted 

from the testing image, which is scanned by creating sub-windows of different sizes to 

find the face. In the third stage, the features extracted from each scanned sub-window 

are evaluated by the cascade face detector. The detector rejects non-face sub-windows 

and detects sub-windows containing a face. If multiple sub-windows occur around each 

face in the scanned image, the detected sub-windows are combined to convert the 

overlapping detections into a single detection so as ultimately to return one detection 

per face. In the following, we explain the pre-processing, feature extraction and 

classification steps. 
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Figure 3-5: Samples of gradient magnitude images by using different colour maps. 

3.3.1. Pre-processing 

Due to the loss of facial feature properties and appearance features in thermal images, 

we propose using the gradient magnitude method to enhance the texture and the edges 

of the face in thermal images. We also suggest object extraction as a pre-processing 

step to increase detection accuracy.  

3.3.1.1. Gradient Magnitude  

Gradient magnitude is utilised to extract useful information from images, such as edges, 

by measuring the variation of intensity in a given direction. To compute the gradient 

magnitude of an image, the image is convolved with filters to identify gradients in the 

x and y directions. Then the gradient magnitude at each pixel is computed, using a 

variation of the distance equation to measure the steepness of the slope. The pixels with 

large gradient magnitude values become possible edge pixels, as shown in Figure 3-5. 

The Gradient magnitude can also be used for feature and texture matching.  
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Figure 3-6: Samples of extracted heated objects in thermal images by applying Otsu’s 

method. 

 

3.3.1.2. Object Extraction  

It is essential in image processing to select an adequate threshold grey level to enable 

objects to be distinguished from their background. Otsu [143] proposed a method for 

selecting an optimal threshold by utilising the discriminant criterion to maximise the 

separability of the grey level classes. Due to its efficiency, most state-of-the-art 

methods for thermal image processing use Otsu’s method for pre-processing. In order 

to extract heated objects from their background, the global threshold value is used to 

convert a thermal image into a binary image. Then, each pixel in the original image is 

multiplied by its correspondent pixel in the binary image, as shown in  Figure 3-6.  
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3.3.2. Feature Extraction and Classification 

Due to their efficiency, Haar-like features have been commonly used in face detection. 

Indeed, the Viola-Jones algorithm [3] utilises Haar-like features rather than the pixels 

directly. We propose using LBP features because they effectively describe the image 

texture features [149] and have an advantage on high-speed computation and rotation 

invariance, which facilitates broad usage in image segmentation, and retrieval, etc 

[150]. Additionally, LBP features show outstanding performance on several facial-

related tasks such as face alignment [151],  face recognition [152, 153],  and gender 

recognition [154].  

We also suggest using HOG features since they are useful for capturing the overall 

shape of an object. In the proposed process, Haar-like, LBP and HOG features are 

utilised in the training phase to form the cascade classifier and in the detecting phase 

to reject non-face areas. The Viola-Jones algorithm uses Adaboost training to select the 

most effective features. Since there are still a huge number of features to be calculated, 

the classifier is organised in the form of a cascade in order to avoid worthless 

calculation. As shown in Figure 3-3, the cascade classifier consists of several stages, in 

which multiple simple classifiers are used. If a sub-window fails on any weak classifier, 

it will be excluded as it contains no face. Only the sub-windows which have reached 

the final stage are considered to contain faces.  

3.4. Experiments 

In this section,  we first describe the  thermal facial image databases used in the training 

phase. Thereafter, we examine the  effect of different parameters on the face detection 

performance on the testing dataset. Finally, we compare the performance of different 

face detectors.  
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3.4.1. Dataset 

Two thermal facial image databases, NVIE [8] and I.Vi.T.E [114], were adopted in our 

experiments. The Natural Visible and Infrared facial Expression (NVIE) database 

contains both posed and spontaneous expressions of 215 subjects (157 males and 58 

females) with three different illumination directions: left, right and front. The subjects 

were required to pose with seven different expressions, wearing eyeglasses and without 

them. However, the exact number of participating subjects is varied between sections 

of the database because several participants were limited to two or fewer facial 

expressions, and some thermal and visual video recordings were lost. The numbers of 

subjects contributed to the spontaneous database are 105, 111 and 112  under the front, 

left and right illumination, respectively,  while 108 subjects presented to the posed 

database. To record infrared videos, an infrared camera capturing 25 frames per second, 

with resolution 320 × 240 and band wave 8–14 mm, was used. The camera was placed 

0.75 m in front of the subject.  

The naturalistic database of thermal emotion, which was named Italian Visible-

Thermal Emotion (I.Vi.T.E.), consists of spontaneous expressions (one image per 

second in .PNG format) of 40 subjects (Italian undergraduate students aged 22 to 28 

years). The thermal image resolution is 160 × 120 pixels. In order to create negative 

samples, 50 thermal videos were downloaded from YouTube and converted to 13,082 

frames of thermal images, of which 10,000 images were used to train all detectors 

whilst 3082 images were used for testing. Depending on the length of the downloaded 

videos, the training and testing images are selected. To create a large number of 

negative samples, the frames of the longer videos which have a higher number of 

frames are used in the training set of the negative samples and the frames of the shorter 
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videos are used in the testing set. This is to avoid using similar frames in the training 

and testing sets. 

3.4.2. Experiment Design 

A  dataset of 10,021 thermal infrared frontal face images from the NVIE database was 

constructed from posed images and the first frame of the spontaneous expression image 

sequences. The faces were manually extracted from images by using the Training 

Image Labeller app [155] in MATLAB. The app allows the user to interactively specify 

bounding boxes to define locations of ROIs which are used to train a classifier. To 

specify a face region, we placed the bounding box around each face just underneath the 

chin and about half-way between the hairline and the eyebrows. was used for extracting 

the faces from images. To help improve accuracy, we deliberately included extra visual 

information such as the contours of the chin and cheeks. No further alignment or 

resizing was done. 

To make it subject-independent throughout our experiments, the NVIE database 

was split into three subsets: training, validation and testing according to the subjects in 

the database where each subset has different subjects. The training and validation 

subsets, consisting of 3530 thermal images each, were used to conduct two-fold cross-

validation for parameter selection. The remaining 2961 thermal images from the NVIE 

database were used as the testing subset. To test the ability to detect more than one face 

in an image, a Twelve-In-One dataset was created from the NVIE database. This 

contained 180 images, which were selected from the thermal spontaneous expressions 

database. Each image comprised of twelve randomly selected faces. Samples of the 

Twelve-In-One dataset are shown in  Figure 3-7. 
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Figure 3-7: Two samples of the Twelve-In-One dataset, randomly selected from the 

NVIE database. 

 

The third dataset was the I.Vi.T.E. database. Since this contains video frames with 

spontaneous expressions of each subject, some frames are not suitable for testing 

because a large part of the face is covered or the whole face is missing, as shown in 

Figure 3-8. The number of images were screened out on this basis was 3583. The 

number of images was screened out on this basis was 3583. The rectangular regions of 

interest were specified semi-manually for 31217 images. First, the initial regions of 

interest were determined by using three trained detectors. Then the three determined 

regions were combined to specify the bounding box. Finally, the regions of the box 

have been manually checked for all images. We have created a particular application, 

called ROI-Bounding Box, to assist us in setting and testing the region of interest for 

these images, whereas the Training Image Labeller app [155] in MATLAB was used 

for misdirecting faces in 624 images. Figure 3-9 shows the ROI-Bounding Box 

application. 
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Figure 3-8: Samples of separated thermal images from the I.Vi.T.E. database where 

the face does not fully appear. 

  

Figure 3-9: ROI-Bounding Box application created to set and test the region of interest 

Bounding Box for thermal images. 
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3.4.3. Criteria for Calculating True/False Positive Rate  

Motivated by the work of Wang et al. [156], the face detection rate was used to measure 

the effectiveness of each detector by calculating the displacement from the 

automatically located rectangular of the target face from the true (manually annotated) 

rectangles, defined as the overlap ratio between them. To compute the ratio, the area of 

intersection between rectangle A and rectangle B was divided by the area of the union 

of the two, as shown in Figure 3-10. The value of the overlap ratio can be 

between 0 and 1, where 1 implies a perfect overlap and 0 implies no overlap.  

As in other object detection challenges, the accepted degree of the overlap between 

the annotated and the detected regions is above 50% [157, 158]. Thus, for true positive 

cases, the minimum acceptance value of the overlap ratio was set to 0.5, whereas the 

cases were regarded as false positives if the overlap ratio was less than 0.5. 

 

Figure 3-10: The overlap ratio between rectangle A and rectangle B. 
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3.5. Results  

In order to demonstrate the performance of the proposed methods, Haar-like features 

were compared with LBP and HOG features for face detection. Before starting the 

comparisons, the holdout cross-validation was adopted to find the optimal values for 

the parameters of each pre-processing and feature selection method. There is a trade-

off between the training parameters: the number of cascade stages, the false positive 

and true positive rates had to be set at each stage. In order to find optimal values for 

these parameters, several detectors were trained on different combinations of the 

parameters. The detectors with the highest mean accuracy on the validation datasets 

were selected for final testing.  

Figure 3-11,  Figure 3-12 and Figure 3-13 give the ROC curves comparing the 

performances of nine detectors tested on the NVIE testing dataset. To create the ROC 

curve, the threshold value for merging detected boxes around a face was adjusted from 

7 to 1. This value was used to perform the merging operation where there were multiple 

detections around a face. In this case, the detections were grouped and then merged to 

produce one bounding box around the face, provided they met the merging threshold 

value. If the merging threshold were to be set to 0, all detections would be returned 

separately without performing thresholding or merging operation; this would serve to 

increase both detection and false positive rates. Adjusting the merging threshold value 

to ∞, meanwhile, would yield a detection rate of 0 and a false positive rate of 0. To 

compute the true positive and false positive rates, the number of true positive detections 

should be divided by the total number of all faces in all the images, while for calculating 

false positive rate the number of false positive detections should be divided by the total 

number of sub-windows scanned in all the images [3]. 
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Figure 3-11: ROC curves comparing the performance of the Viola-Jones algorithm on 

thermal images when using different features (HOG, LBP and Haar-like), without pre-

processing. 

Figure 3-11 illustrates the Viola-Jones method’s performance when using Haar-

like, HOG and LBP features, respectively, without any pre-processing phase.  Figure 

3-12 and Figure 3-13, meanwhile, provide similar comparisons, but with the proposed 

pre-processing phase.  Figure 3-12 and Figure 3-13 also show the performance of the 

three types of features when using the gradient magnitude method and Otsu’s method 

respectively, in the pre-processing phase.    
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 Figure 3-12: ROC curves comparing the performance of the Viola-Jones algorithm on 

thermal images when using different features (HOG, LBP and Haar-like) and applying 

the Gradient Magnitude (GM) method for pre-processing. 

For a statistical evaluation of the Viola-Jones algorithm using LBP features for 

detecting faces from thermal images with or without eyeglasses, the McNemar’s 

statistical test was used to determine the significance of the results, which is a 

statistically sound way of comparing the performance of two algorithms applied to the 

same dataset [159]. The null hypothesis assumes that there is no statistical difference 

in the performance of the Viola-Jones method when using LBP or Haar-like features. 

Based on the calculation of the McNemar’s statistic using Equation (3-1), the null 

hypothesis can be rejected with an error probability of 0.05 if |Z|>1.96, which indicates 

that the differences in the performance are statistically significant. 

𝑍 =
|N𝑠𝑓−N𝑓𝑠|−1

√𝑁𝑠𝑓+𝑁𝑓𝑠
                                      (3-1) 
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Figure 3-13: ROC curves comparing the performance of the Viola-Jones algorithm 

on thermal images when using different features (HOG, LBP, and Haar-like) and 

applying Otsu’s method for pre-processing. 

In Equation (3-1), 𝑁𝑠𝑓 is the number of occurrences when the first algorithm succeeds, 

and the second algorithm fails, while 𝑁𝑓𝑠 is the opposite. If 𝑁𝑠𝑓 + 𝑁𝑓𝑠 > 20, the statistic 

is reliable [159]. 

The Z-value and the related parameters (𝑁𝑠s, 𝑁𝑠𝑓, 𝑁𝑓𝑠, 𝑁𝑓𝑓) for the NVIE database 

as well as the I.Vi.T.E. database are shown in Table 3-1 and Table 3-2, respectively. 

The tables are split into three parts. The first part shows the results of McNemar’s test 

for LBP features without a pre-processing phase versus HOG and Haar-like features, 

without a pre-processing  phase in the first column and with pre-processing  phases 

(Gradient Magnitude-GM, Otsu’s method) in the second and third columns, 

respectively. Like the first part, the second and third parts show the results of 
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McNemar’s test for LBP features with pre-processing  phases (GM and Otsu) versus 

other features. The last column displays the comparison of McNemar’s test results for 

the different pre-processing phases with LBP features. The Haar-like features without 

pre-processing phase represents the standard Viola-Jones algorithm trained to detect 

faces from thermal images. 

Table 3-1: Comparison of the Z-value and the related parameters for LBP features with 

HOG and Haar-like features on the NVIE database. 

LBP  VS HOG 

Haar-

like HOG GM 

Haar-

like GM 

HOG 

Otsu’s 

Haar-like 

Otsu’s 

LBP-

GM 

 𝑁𝑠𝑠  2531 2636 2189 2210 2436 2621 2545 

 𝑁s𝑓 200 95 542 521 295 110 186 

𝑁𝑓𝑠  4 13 17 2 2 7 22 

𝑁𝑓𝑓 226 217 213 228 228 223 208 

Z-value 13.65 7.79 22.16 22.65 16.94 9.42 11.30 

         

LBP-GM 

VS HOG 

Haar-

like HOG GM 

Haar-

like GM 

HOG 

Otsu’s 

Haar-like 

Otsu’s 

LBP 

Otsu's 

 𝑁𝑠𝑠  2445 2527 2114 2193 2377 2464 2545 

 𝑁s𝑓 122 40 453 374 190 103 22 

𝑁𝑓𝑠  90 122 92 19 61 164 188 

𝑁𝑓𝑓 304 272 302 375 333 230 206 

Z-value 2.13 6.36 15.42 17.86 8.08 3.67 11.39 

         

LBP-

Otsu's VS HOG 

Haar-

like HOG GM 

Haar-

like GM 

HOG 

Otsu’s 

Haar-like 

Otsu’s LBP 

 𝑁𝑠𝑠  2532 2639 2191 2208 2437 2623 2719 

 𝑁s𝑓 201 94 542 525 296 110 14 

𝑁𝑓𝑠  3 10 15 4 1 5 12 

𝑁𝑓𝑓 225 218 213 224 227 223 216 

Z-value 13.79 8.14 22.29 22.61 17.06 9.700  0.20 
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Table 3-2: Comparison of the Z-value and the related parameters for LBP features with 

HOG and Haar-like features on the I.Vi.T.E. database. 

LBP  VS HOG 

Haar-

like HOG GM 

Haar-

like GM 

HOG 

Otsu’s 

Haar-like 

Otsu’s 

LBP-

GM 

 𝑁𝑠𝑠  28306 27488 24244 23762 26023 26177 25509 

 𝑁s𝑓 1567 2385 5629 6111 3850 3696 4364 

𝑁𝑓𝑠  484 579 649 388 378 444 400 

𝑁𝑓𝑓 860 765 695 956 966 900 944 

Z-value 23.89 33.15 62.84 70.98 53.38 50.53 57.42 

         

LBP-GM 

VS HOG 

Haar-

like HOG GM 

Haar-

like GM 

HOG 

Otsu’s 

Haar-like 

Otsu's 

LBP 

Otsu’s 

 𝑁𝑠𝑠  25180 24146 21203 22260 23595 23630 25422 

 𝑁s𝑓 729 1763 4706 3649 2314 2279 487 

𝑁𝑓𝑠  3610 3921 3690 1890 2806 2991 4075 

𝑁𝑓𝑓 1698 1387 1618 3418 2502 2317 1233 

Z-value 43.72 28.61 11.08 23.62 6.86 9.79 53.11 

         

LBP-

Otsu's VS HOG 

Haar-

like HOG GM 

Haar-

like GM 

HOG- 

Otsu's 

Haar-like 

Otsu’s LBP 

 𝑁𝑠𝑠  28023 27204 23958 23682 25873 25999 29007 

 𝑁s𝑓 1474 2293 5539 5815 3624 3498 490 

𝑁𝑓𝑠  767 863 935 468 528 622 866 

𝑁𝑓𝑓 953 857 785 1252 1192 1098 854 

Z-value 14.91 25.44 57.21 67.44 48.03 44.79 10.18 

 

3.6. Discussion 

The results indicate that the Viola-Jones method using LBP features achieved higher 

accuracy than when Haar-like or HOG features were used to detect faces from thermal 

images. In addition, using Otsu’s method in the pre-processing phase reduced the false 

positive rate. On the other hand, using HOG features reduced the accuracy with or 

without pre-processing. 
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Table 3-3: Comparisons of LBP, HOG and Haar-like features with the two pre-

processing methods on the NVIE, I.Vi.T.E and Twelve-In-One databases.  

 NVIE   I.Vi.T.E.   12-In-One  Speed 

TP rate FP rate TP rate FP rate TP rate FP rate S/Image 

HOG 0.86 4.17E-06 0.92 4.42E-05 0.90 4.98E-07 0.0283 

LBP 0.92 3.50E-06 0.96 7.59E-05 0.97 1.07E-06 0.0132 

Haar-like 0.89 1.31E-06 0.90 9.13E-05 0.93 1.09E-06 0.0190 

HOG-GM 0.75 6.64E-05 0.80 1.05E-03 0.70 2.55E-05 0.0313 

LBP-GM 0.87 1.64E-05 0.83 1.94E-04 0.93 2.84E-06 0.0093 

Haar-like-GM 0.75 6.87E-06 0.77 1.20E-04 0.87 8.26E-07 0.0101 

HOG-Otsu's 0.82 1.80E-06 0.85 4.87E-05 0.80 7.39E-08 0.0271 

LBP-Otsu's 0.92 2.34E-06 0.94 8.34E-05 0.98 5.50E-07 0.0088 

Haar-like-Otsu's 0.89 9.90E-07 0.85 4.53E-05 0.92 3.39E-07 0.0096 

 

 

Figure 3-11 and Figure 3-13 show that there is little difference in the accuracy of 

the Viola-Jones method when using LBP features, with or without a pre-processing 

phase. On the other hand, the pre-processing phase (Otsu's method) nearly halves the 

detection time. This is because the speed of the detector is related to the number of 

features evaluated per scanned sub-window and Otsu's method serves to exclude most 

of the features in non-heat-emitting regions. Thus, the first stage of the detection 

process discards a vast majority of the sub-windows, so that they are not evaluated in 

subsequent stages. This increases the detection speed and reduces the false positive rate 

at the same time. 

According to McNemar’s test, LBP features outperformed other features in all 

cases except when using the Gradient Magnitude method in the pre-processing phase. 

Since some geometrical and appearance features are lost in thermal images, HOG 

features have lower accuracy than LBP and Haar-like features with respect to face 

detection from thermal images. Also, the differences between the grey values of pixels 

in the same heated area, such as the face, are quite small in the thermal image. Each 
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LBP feature represents the exact differences of each pixel with the eight neighbouring 

pixels, whereas each Haar-like feature represents differences in the value of white and 

grey rectangles which combine more than one pixel. This means that LBP features give 

a more accurate representation of the heated areas in the thermal image than Haar-like 

features. The performance of the Viola-Jones algorithm using LBP features is 

significantly better than when using Haar-like features for face detection in thermal 

images. The Z-value of LBP vs LBP-Otsu's in Table 3-1 (0.20) indicates that there is 

no significant difference between the two algorithms on the NVIE database, while the 

Z-value (10.18) of LBP vs LBP-Otsu's in  Table 3-2 shows that the difference between 

them is significant on the I.Vi.T.E. database. Table 3-3 shows the speed of the 

detectors. It can be seen that the LBP-Otsu’s detector has the highest speed in 

comparison with other detectors; it can process an image in about 0.0088 seconds on a 

2.70 GHz Intel® i7 processor. 

3.7. Conclusion  

This chapter presents an efficient and effective process to improve the performance of 

the Viola-Jones algorithm for face detection from thermal images, with or without 

eyeglasses. McNemar's test was employed to test whether the difference in 

performance between the proposed process and the standard Viola-Jones algorithm is 

statistically significant. The results of the test demonstrate that the LBP features 

outperformed other features significantly in most cases and that applying Otsu’s 

method in the pre-processing phase reduced the false positive rate in face detection 

from thermal images. The proposed enhancement process reduced the detection time 

of the Viola-Jones algorithm by roughly a factor of two while retaining high detection 

accuracy. 
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Chapter 4    

4. Shallow Convolutional Neural Network 

for Eyeglasses Detection  
 

4.1. Introduction  

The challenges related to human facial analysis systems can be attributed to many 

appearance and technical factors. Appearance factors are related to the subject's face, 

such as pose and facial expression, whereas technical factors are related to the clarity 

and quality of images, such as variations in illumination, shadows, image resolution, 

and the presence of intervening components such as eyeglasses and hands. Eyeglasses 

are considered to be a particular confounding factor for human facial analysis systems 

due to reflection and frame occlusion which cover the most crucial part of the face over 

the ocular region. Moreover, the presence of eyeglasses may cause inaccurate 

classification, especially when the facial analysis system utilises convolutional neural 

networks in its models [160-162]. To increase accuracy in such circumstances, several 

human facial analysis systems have included an eyeglasses and non-eyeglasses image 

classification phase in their frameworks [6, 163], but this has the drawback of increased 

memory consumption and computation time. If these systems are to be robust enough 

to cope with real-world applications, a highly accurate and rapid eyeglasses detector is 

needed.  

Most of the existing approaches for detecting eyeglasses utilise handcrafted feature 

extraction methods [160, 164]. Several pattern recognition projects [161, 165], 

however, have demonstrated that deep learning features may provide valuable 
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information about the relationships between raw data and learned features. The 

convolutional neural network (CNN) has become the most widely used approach in 

computer vision in recent years, and a number of recent studies indicate that the features 

extracted from the convolutional neural networks are compelling [32, 166]. This 

chapter presents an effective and efficient method for detection of eyeglasses in facial 

images based on extracting deep features from a well-designed shallow convolutional 

neural network. The proposed shallow CNN contains fewer complex structures and 

thus can be utilised in different facial analysis system frameworks without consuming 

their resources while still achieving high accuracy in real time. The proposed shallow 

CNN, called Shallow-GlassesNet, consists of just six layers: three convolution layers, 

two max-pooling layers, and one fully-connected layer.  

The main contribution of this chapter is to address two essential aspects of CNN 

for eyeglasses detection: (1) the size of the training dataset required and (2) the depth 

of the network architecture. To this end, we initialise the learning parameters of the 

shallow CNN using the parameters of a deep CNN which is fine-tuned on a small 

dataset. The depth of the neural network is then decreased by removing some 

convolutional layers after testing its performance on the validation dataset [4]. 

The rest of this chapter is organised as follows. Some related work is reviewed in 

Section 4.2. The proposed framework and the structure of the Shallow-GlassesNet are 

introduced in Section 4.3. The fine-tuning and training process for Shallow-GlassesNet 

are explained in Section 4.4. The experimental setup and databases used are described 

in Section 4.5. Experimental results are presented in Section 4.6 and followed by a 

discussion in Section 4.7. Section 4.8 draws conclusions. 
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4.2. Related Work  

The existing methods for detecting eyeglasses can be categorised into two approaches: 

handcrafted feature approach and deep learning approach. Jing [167] developed an 

eyeglasses detection and extraction algorithm in which detection is realised using edge 

information within a small area defined between the eyes, whilst extraction is achieved 

with a deformable contour, combining edge features and geometrical features. They 

obtained two false alarms in their test, by falsely detecting the presence of eyeglasses 

in facial images. With the facial database used in their experiment, 50% of eyeglasses 

were accurately extracted, 30% of eyeglasses were extracted with satisfactory results, 

and the remaining 20% were obtained with fair results. Their experimental 

investigation, which was conducted on their own images rather than a public database, 

showed an overall detection accuracy of 95.5%. 

Bo et al. [168] presented a novel method for detecting eyeglasses in which 

detectors are trained by boosting simple wavelet feature based weak LUT (look-up-

table) classifiers. They investigated the performance of their proposed method using 

Haar and Gabor features by utilising AdaBoost and SVM. Remarkable performance 

was achieved when Gabor features was combined with AdaBoost on the public FERET 

database [142], with a detection rate of 98.9% being reported. Experimental results 

show that the boosting methods have better performance than SVM. 

 Fernandez et al. [164] used Robust Local Binary Pattern and SVM for detection 

of eyeglasses. The proposed method was tested on the LFW database [5], 

demonstrating an accuracy rate of 98.65%. Du et al. [162] proposed a new set of Haar-

like features to detect eyeglasses more robustly. Using the AdaBoost algorithm, their 

method achieved a detection rate of 95.11% on the face database CAS-PEAL [169]. 
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Shao et al. [161] proposed a deep convolutional neural network called GlassesNet 

(GNet). They first pre-trained it for face identification and then fine-tuned it as an 

eyeglasses detection network. They evaluated their method on different databases, 

achieving accuracies ranging from 95% to 99.4 %. Their experiments on the Multi-PIE 

database show that the proposed method is highly robust to various challenging 

conditions.  

Fernández et al. [163] proposed a real-time Big Data architecture in order to 

collect, maintain and analyse massive volumes of images related to the problem of 

automatic eyeglasses detection. This architecture can be used for automatic image 

tagging related to the detection of eyeglasses in facial images. Their innovative 

algorithm is based on Robust Local Binary Pattern and robust alignment. Experimental 

results demonstrate that a simple, yet efficient algorithm can obtain impressive 

classification accuracy, achieving 98.65% recognition rate on the LFW [5] database. 

This algorithm was also tested on the FERET database [142], achieving a 99.89% 

recognition rate. Experimental results also show that the proposed algorithm is robust 

under a wide range of lighting conditions and different poses, and can deal with 

occlusion, which is very common with sunglasses. 

Mohammad et al. [160] proposed two schemes for the detection of prescription 

eyeglasses. The first proposed scheme is not learning based, and uses the Viola-Jones 

algorithm to detect regions of interest, followed by eyeglasses detection, yielding an 

overall accuracy of 99.0% on the FERET database and 97.9% on the VISOB database 

[170]. The second scheme is learning-based, which obtained a best overall accuracy of 

99.3% on the FERET database and 100% on the VISOB database. Du et al. [162], 

meanwhile, proposed an accurate eyeglasses detection algorithm for in-plane rotated  
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Figure 4-1: The shallow GlassesNet architecture.  

 

faces by using a new set of Haar-like features which represent the features of rotated 

faces. Reese [140] proposed a face detection algorithm using projection profile analysis 

and an eyeglasses detection algorithm using block/region processing plus prior 

knowledge. Both algorithms were tested with the ASUIR database [171] (142 thermal 

face images from 71 subjects) in which the ground truths for both face region and 

eyeglasses region were established manually. All faces were successfully detected by 

their algorithms and the averaged overlapping ratio with the ground truths was 0.8998. 

The eyeglasses detection algorithm detected 22 of 23 eyeglasses, and the averaged 

overlapping ratio with the ground truths was 0.7986.  

4.3. Methods 

In this section, we describe in detail the architecture of the Shallow-GlassesNet and the 

proposed pipeline for eyeglasses and non-eyeglasses image classification. The pre-

training and fine-tuning processes for the Shallow-GlassesNet are also introduced.  

4.3.1. Shallow-GlassesNet Architecture 

Inspired by GoogleNet [93] architectures, the proposed Shallow-GlassesNet, as shown 

in  Figure 4-1, contains six layers: three convolutional layers and two max-pooling 

layers, followed by a fully-connected layer. The kernel size and stride of Conv1, Conv2 

and Conv3 layers are set as 7×7 (2), 1×1 (1), and 3×3 (1), and their outputs are feature 
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Figure 4-2: The proposed eyeglasses detection pipelines. 

maps of sizes 64, 64 and 192 respectively. Each of these layers has similar 

corresponding layers in the GoogleNet. The three convolutional layers are followed by 

Rectified Linear Unit (ReLU), which is several times faster than other equivalents with 

tanh units [93]. Max-pooling is performed over a 3×3 pixel window, with stride 1. 

4.3.2.  Designing Shallow-GlassesNet 

When designing a CNN, the initialisation of the network weights is critical since bad 

initialisation can cause gradient instability which could stop learning [94]. To avoid 

this problem, a GoogleNet was first fine-tuned with a small facial database. Then, each 

pooling layer was examined by training SVM on the features extracted from this layer. 

According to its performance, the layer achieving the highest accuracy was selected. 

Next, the convolutional layers of the Sallow-GlassesNet were initialised with the 

corresponding layers of the fine-tuned GoogleNet. Since the fully-connected layer is 

not used for feature extraction, it was initialised randomly. The initialised weights of 

Sallow-GlassesNet were kept fixed, which means no fine-tuning was performed for the 

convolutional layers. The following steps are followed to design and build the Shallow-

GlassesNet (1) and (2):  
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Designing the Shallow-GlassesNet (1) and (2) steps: 

 
  

(1) Split the database into three sets: training T ={t1, t2, t3… tN}, validation V={v1, 

v2,  v3… vM}, testing S={s1, s2,… sQ}. Where N= 70%, M=15% and Q=15% of 

the total number of images in the database. 
 

 

(2) Fine-tuned the selected CNN model, CNNsm, using T dataset. 

 

 

Denote the set of pooling layers in the fine-tuned CNNsm as PL={pl1, pl2,…. 

PlK}, where K number of pooling layers in the CNNsm.  

(3) For each layer in PL do: 

(4) For each image in T do: 

(5) Extracts the features vector 𝑓i of ti from  Plj   

(6) Add the extracted features to the feature’s vectors 𝑓�̂�j= 𝑓�̂�j+ 𝑓i 

(7) Go for step (3) for the next plj 
 

Denote the set of features vectors as 𝐹�̂� = {𝑓�̂�1, 𝑓�̂�2, 𝑓𝑡3… 𝑓�̂�𝐾} of T dataset 

and the set of SVM as  SVM = {SVM1, SVM2, SVM3, …SVMK, }. 

(8) Training SVMj  on 𝑓�̂�j 
 

(9) Do steps (3) to (7) for all images in V 

Denote the set of features vectors as 𝐹�̂� = {𝑓𝑣1, 𝑓𝑣2, 𝑓𝑣3… 𝑓𝑣𝐾} of V dataset.  

(10) Testing SVMj  by using 𝑓�̂�j   

(11) Select the SVMHA which achieve the highest accuracy on V dataset and its 

corresponding pooling layer, plHA. 

 
 

(12) Design the shallow CNN with a similar structure to the selected CNNsm model, 

starting from the input layer to the plHA. 

(13) Add the fully connected layer to the designed shallow CNN. 

(14) Initialised the convolutional layers of the sallow CNN model with the 

corresponding layers of the fine-tuned CNN model. 

 
 

(15) To use the sallow CNN model for features extraction, Shallow-GlassesNet (1): 

Extract the features from the plHA in the sallow CNN model and use its SVMHA 

for classification. 
 

(16) To use the sallow CNN model for classification, Shallow-GlassesNet (2): Train 

the fully-connected layer of the sallow CNN model using T dataset. Hint: keep 

the initialised weights of the convolutional layers fixed during the training 

process. 
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The differences between the two pipelines are as follows: 

- When utilising Sallow-GlassesNet (1) as feature extractor, the resulting image 

features were normalised and fed into a linear SVM classifier which was trained 

on another visible image database of face images with or without eyeglasses.  

- When utilising Sallow-GlassesNet (2) as an end-to-end shallow CNN model, it 

is trained on another image database by freezing the learning weights of all 

kernels except the fully-connected layer. 

4.3.3. Eyeglasses Detection Pipelines 

As shown in Figure 4-2, the proposed pipelines for eyeglasses detection consist of three 

parts: face detection, features extraction by Shallow-GlassesNet, and classification 

/detection by SVM. To prepare training data, we used the face detection approach of 

Viola- Jones [3] and Joint-Face-Detection [172] face detectors. After obtaining and 

cropping the frontal face region from the visible image, the cropped face image is re-

sized to match the input size of the Shallow-GlassesNet (224 × 224), while the mean 

RGB value, computed on the training set, is subtracted from each pixel.  

In the first pipeline, the facial image features were extracted from the last max-pooling 

layer of the Shallow-GlassesNet (1). Then a Linear SVM classifier was trained on the 

extracted features to classify facial images with or without eyeglasses.  

In the second pipeline, the facial image features were extracted and classified by 

the Shallow-GlassesNet (2) without any additional component. In other words, 

Shallow-GlassesNet (1) was utilised as a feature extractor in the first pipeline, Shallow-

GlassesNet (2) was used to classify the facial images directly in the second pipeline. 
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Figure 4-3: Samples from with-glasses-dataset and without-glasses-dataset from the 

NVIE posed database for the seven different facial expressions. 

4.4.  Fine-Tuning and Training Process 

A CNN is an end-to-end model, a "black box", which receives the raw input data and 

gives the final classification results without any auxiliary process. Handling large 

training samples, the CNN automatically learns the features from the sample and 

classify these features by the neural networks. Conceptually, the complex CNN process 

can be divided into two sub-processes: a convolutional feature extractor and a neural 

network classifier. By separating these processes, we can construct a shallow CNN 

which can be utilised as a "black box" or as a feature extractor model. The performance 

of these models is equivalent or superior to the performance achieved by the original 

CNN and is accomplished with significantly lower network complexity.  

When designing a CNN, the initialisation of the network weights is critical since 

bad initialisation can cause gradient instability which could stop learning [94]. To avoid 

this problem, a GoogleNet was first fine-tuned with a small facial database. Then, each 

pooling layer was examined by training SVM on the features extracted from this layer. 

According to its performance, the layer achieving the highest accuracy was selected. 
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Next, the convolutional layers of the Sallow-GlassesNet were initialised with the 

corresponding layers of the fine-tuned GoogleNet. Since the fully-connected layer is 

not used for feature extraction, it was initialised randomly. The initialised weights of 

Sallow-GlassesNet were kept fixed, which means no fine-tuning was performed for the 

convolutional layers.  

4.5. Experiments 

4.5.1. Experiment Design  

The USTC-NVIE [8] (NVIE) database was adopted to fine-tune the GoogleNet, train 

the SVM, and test the proposed pipelines. It contains both posed and spontaneous facial 

expressions of 215 subjects, with illumination for three different directions. The posed 

database contains the apex expressional images with and without eyeglasses. As 

explained in Section 3.4.1, the number of participated subjects varied between the 

NVIE database sections. We used images of 101 subjects under the three illuminations 

in our experiments. 

The database is divided into two parts: The With-Glasses-Dataset and the 

Without-Glasses-Dataset. Figure 4-3 shows some sample images from the posed 

database of seven different facial expressions. The database is small for training the 

SVM or the Shallow-GlassesNet (2). To deal with the over-fitting problem, we 

artificially enlarge the dataset by using techniques such as horizontal rotation. The 

original dataset was randomly partitioned into five almost equal-sized subsets, 

excluding overlapped subject images. Of the five subsets, one was retained for testing, 

and the remaining four were used for fine-tuning, training and validation. Table 4-1 

illustrates the number of subjects and images in the training, validation, and testing 

datasets respectively.  
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Figure 4-4: Samples from the Celebrity database (Celeba) [6]. 

Figure 4-5: Samples from the Labelled Faces in-the-Wild (LFW)  database [5]. 

 

To evaluate the performance of the proposed methods for eyeglasses detection, we 

adopted two large facial databases which were created for studying the unconstrained 

face recognition problem: (1) Labelled Faces in-the-Wild (LFW) [5], and (2) Celeb 

Faces (Celeba) [6]. The LFW database contains 13,233 face images of 5,749 different 

people collected from the web, with 1,244 images having eyeglasses. The Celeba 

database contains 202,599 face images of 10,177 different celebrities. Some samples 
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from the Celeba and LFW databases are shown in Figure 4-4 and Figure 4-5, 

respectively, from which it can be seen that eyeglasses detection is a challenging 

problem. 

Table 4-1: The number of subjects and images in the training, validation and testing 

datasets. 

 

  

 

 

4.5.2. Neural Network Setup 

We applied the Caffe toolkit [173] on NVIDIA GeForce GTX 980 GPU  to  fine-tune 

the pre-trained GoogleNet Deep CNN model [93] using the NVIE dataset. GoogleNet 

was fine-tuned using the stochastic gradient descent with a batch size of 50. The hyper-

parameters of the applied training algorithm were as follows: momentum=0.9, weight 

decay=0.0002, initial learning rate=0.001.  

4.6. Results  

Before starting the testing, four-fold cross-validation was adopted to find the optimal 

extracted features which have the best average accuracy on the validation datasets. To 

analyse the efficiency of Shallow-GlassesNet (1) and Shallow-GlassesNet (2), we 

conducted two comparative evaluations to compare the accuracy and speed of the 

Shallow-GlassesNet and GoogleNet. Table 4-2 shows the accuracy with which 

eyeglasses were detected by GoogleNet, Shallow-GlassesNet (1), and Shallow-

GlassesNet (2), respectively on the validation and testing datasets from the NVIE 

database. To calculate the accuracy of the proposed pipeline, we applied the following 

NVIE 

Datasets 

Without-Eyeglasses With-Eyeglasses 

Subject Image Subject Image 

Train 61 8946 61 8959 

Val 20 641 20 675 

Test 20 673 20 717 



                     Shallow Convolutional Neural Network for Eyeglasses Detection  

 95 | P a g e  

 

Equation (4-1), which was defined by [159], where TP is the number of true positive 

detections, TN is the number of true negative detections, and N represents the number 

of face images tested. 

(𝑇𝑃 +  𝑇𝑁)/𝑁                                                (4-1) 

 

Table 4-2: Comparison among GoogleNet, Shallow-GlassesNet (1) and (2) in terms of 

accuracy and speed on the validation and testing datasets from the NVIE database.  

 Accuracy Speed S/ Image 

Val Test CNN Pipeline 

GoogleNet 89.97 92.09 0.1110 0.1560 

Shallow-GlassesNet (1) 99.24 99.42 0.0297 0.0782 

Shallow-GlassesNet (2) 96.96 97.63 0.0297 0.0550 

     

Table 4-3: Confusion matrix and average accuracy of Shallow-GlassesNet (1) for 

eyeglasses detection on the LFW database and Celeba database. 

 LFW Celeba 

Without With Without With 

Without 0.9869 0.0131 0.9604 0.0396 

With 0.0273 0.9727 0.0235 0.9765 

Accuracy 98% 97% 

   

Table 4-4: Confusion matrix and average accuracy of Shallow-GlassesNet (2) for 

eyeglasses detection on the LFW database and Celeba database. 

 LFW Celeba 

Without With Without With 

Without 0.9553 0.0404 0.9412 0.0533 

With 0.0456 0.9587 0.0623 0.9432 

Accuracy 96% 94% 

   



Chapter 4                                                                

P a g e  | 96 

 

 

To demonstrate the generalisation ability of the Shallow-GlassesNet models, 

cross-database validation experiments were conducted on the LFW [5] database and 

Celeba database[6]. Table 4-3 and Table 4-4 show the confusion matrix and average 

accuracy of the Shallow-GlassesNet models.  

To conduct a statistical evaluation of Shallow-GlassesNet (1) and Shallow-

GlassesNet (2) in comparison with GoogleNet, the McNemar’s statistical test was used 

to determine the statistical significance of the results. The null hypothesis assumes that 

there is no statistical difference in the performance of Shallow-GlassesNet (1), 

Shallow-GlassesNet (2), and GoogleNet.  The Z-value and the related parameters (𝑁𝑠s, 

𝑁𝑠𝑓, 𝑁𝑓𝑠, 𝑁f𝑓) on the NVIE, LFW and Celeba databases are shown in Table 4-5, 

respectively. The table is split into three parts where each part shows the results of the 

McNemar’s test on each database. The first column shows the comparison between 

Shallow-GlassesNet (1) and Shallow-GlassesNet (2), the second column the 

comparison between Shallow-GlassesNet (1) and GoogleNet, and the last column the 

comparison between Shallow-GlassesNet (2) and GoogleNet.  

For a fair comparison, our methods should be compared with the methods that 

used the same data sets we used for training and testing. However, the NVIE database, 

which we used to train our methods, is commonly used for emotion/expression 

recognition from visual and thermal images and  has not been employed before to train 

eyeglasses detection models in the literature to the best of our knowledge. Therefore, 

we compared the generalization ability of our methods with the state-of-art methods 

that use the Celeba and/or LFW databases. Table 4-6 provides this comparison.  
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Table 4-5: Comparison of the Z-value and the related parameters for Shallow-

GlassesNet (1) and Shallow-GlassesNet (2) with GoogleNet on the NVIE, LFW and 

Celeba databases. 

VS 
Shallow-GlassesNet (1) Shallow-GlassesNet (1) Shallow-GlassesNet (2) 

Shallow-GlassesNet (2) GoogleNet GoogleNet 

 𝑁𝑠𝑠  1352 1280 1270 

N
V

IE
  𝑁s𝑓 30 102 87 

𝑁𝑓𝑠  5 0 10 

𝑁𝑓𝑓 3 8 23 

Z-value 4.06 10.0 7.72 
 

    

 𝑁𝑠𝑠  12455 11455 11055 

L
F

W
  𝑁s𝑓 511 1511 1609 

𝑁𝑓𝑠  209 89 489 

𝑁𝑓𝑓 58 178 80 

Z-value 11.2 35.5 24.4 

 
    

 𝑁𝑠𝑠  184586 169586 159576 

C
el

eb
a 

 

𝑁s𝑓 11621 26621 31312 

𝑁𝑓𝑠  6302 1652 11662 

𝑁𝑓𝑓 90 4740 49 

Z-value 39.7 148.49 94.78 

4.7. Discussion 

Compared to the GoogleNet model, Shallow-GlassesNet (1) and Shallow-GlassesNet 

(2) performed better in the NVIE database and achieved accuracies of (99.24%, 

99.42%) and (96.96%, 97.63%) in the validation and testing datasets, respectively. 

When SVM was used, the accuracy of Shallow-GlassesNet (1) increased slightly ( by 

2.28% - 1.79%).  Table 4-2 also reports the speed of the Shallow-GlassesNet in 

comparison with GoogleNet, showing that Shallow-GlassesNet (1) and Shallow-

GlassesNet (2) are much faster than GoogleNet. The results in Table 4-3 and Table 4-4 

show that the proposed shallow CNNs have achieved very high accuracy. It can be 

clearly seen from the results that the proposed method is highly robust to various 

challenging conditions. 
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Table 4-6: Comparison of generalization ability between the state-of-the-art results 

on the LFW and Celeba databases. 

* The method is trained and tested by Liu et al. [177] with the same data sets,  and the results 
are reported in [177]. The underlined results show the cross-database testing performance. 

 

According to the McNemar’s test, Shallow-GlassesNet (1) outperformed other 

models in all databases. The Z-values of Shallow-GlassesNet (1) vs. Shallow-

GlassesNet (2) in the first column (4.06, 11.2, 39.7) and those of Shallow-GlassesNet 

(1) vs. GoogleNet in the second column (10, 35.5, 148.49) indicate that the differences 

between them are significant on all databases. The performance of Shallow-GlassesNet 

(2) is significantly better than GoogleNet based on the Z-values in the last column 

(7.72, 24.4, 94.78). The statistic results are reliable because 𝑁𝑠𝑓 + 𝑁𝑓𝑠 >20 in all cases. 

Therefore, the null hypothesis can be rejected as |Z|>1.96, which indicates that the 

differences in performance are statistically significant. 

Methods 
Training 

Dataset 

Testing Dataset 

Celeba LFW 

FaceTracer: HOG & colour histograms + SVM [174]* Celeba   

+ LFW 

 

98 90 

PANDA-w: Multiple CNNs features + SVM [175]* 94 84 

PANDA-l:  Multiple CNNs features + SVM [175]* 98 89 

Face detector[176] + ANet [177] 96 88 

LNets + ANet(w/o)  [177] 96 92 

LNets + ANet [177] 99 95 

Multi-Task CNN-AUX [178] Celeba   99.63 --- 

PS-MCNN-LC [179]  99.85 92.78 

LBP + SVM [164] LFW 

 

--- 98.65 

Multi-Task CNN-AUX [178] --- 91.3 

CTS-CNN [180] WebFace [181] 99 91 

Shallow-GlassesNet (1) [4] NVIE 97 98 

Shallow-GlassesNet (2) [4] 94 96 
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Note that Celeba, LFW and WebFace databases represent the real-world 

environment with significant variations in expressions, poses, races, illumination, 

background, etc. The WebFace database is a large-scale database containing about 

10,000 subjects and 500,000 facial images collected from the Internet. However, unlike 

other methods reported in Table 4-6, our proposed mothers are trained on the lab-

controlled environment NVIE database but tested on the real-world environment 

databases, Celeba and LFW.  Shallow-GlassesNet (1) achieved 97%, which is 2% less 

accuracy, than those achieved by the methods applying the real-world environment 

databases in their training stage. 

As shown in Table 4-6, the cross-database testing performance for Shallow-

GlassesNet (1) and Shallow-GlassesNet (2) when tested on the LFW database achieved 

98% and 96%, much superior to PS-MCNN-LC [179] and CTS-CNN [180], achieved 

92.78% and 91% respectively. Furthermore, they lead to equivalent or superior 

performance to almost all approaches that use the LFW database for testing and 

training.  

4.8. Conclusion 

This chapter presents an efficient and effective eyeglasses detection framework based 

on a well-designed shallow CNN, called Shallow-GlassesNet. First, the pre-trained 

GoogleNet was fine-tuned with images containing eyeglasses and images that did not 

contain eyeglasses. Then the learned weights of the GoogleNet were copied to the 

corresponding layers in Shallow-GlassesNet (1) and Shallow-GlassesNet (2), which 

were used as a feature extractor. A linear SVM was trained on the extracted features to 

detect eyeglasses. The proposed Shallow-GlassesNet architecture reduced the detection 

time by roughly a factor of two while retaining high detection accuracy. The main 
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contribution of this work lies in designing a shallow CNN model for detection of 

eyeglasses. Unlike most CNN designs, this shallow network architecture design is 

characterised by its combination of high precision and high speed, making it ideal for 

use in real-time applications.  
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Chapter 5  

5. A Neural Network Approach to Decision 

Score Fusion for Emotion Recognition 
 

5.1. Introduction 

Emotion recognition has been an interesting research topic due to its potential 

applications in behaviour science, education and human-computer interaction, among 

others, and various facial emotion recognition approaches have been proposed in recent 

years [8, 49, 182-185]. However, the variety of human expressions and emotions 

among different subjects continue to make automatic emotion recognition a very 

challenging problem. 

Beside the challenges related to any facial detection or classification systems, as 

described in Section 4.1, facial emotion recognition system faces additional challenges 

which are related to the human emotion complexity. Whereas it is widely believed that 

emotions are universally recognised in facial expressions, there are different levels of 

intensity of expression which cause interference between different emotions that appear 

in facial expressions, thus compounding the challenges in developing emotion 

recognition systems in particular. 

According to Wang et al. [47], deep learning models have been used to solve some 

challenges in computer vision tasks and could achieve better performance than other 

state-of-the-art representations. Due to the advances in deep learning, CNNs have 

recently become the most widely used approach in computer vision. Instead of using a  



                   A Neural Network Approach to Score Fusion  

103 | P a g e  

 

Figure 5-1: The inception layer in GoogleNet. 

CNN to classify facial images directly, the system proposed in this chapter utilises a 

CNN as a feature extractor to extract facial features for other powerful classifiers. 

According to the GoogleNet design, the inception layer features may convey more 

useful information because the output of an inception layer is built up of the 

concatenated features from all the large convolutions. Thus, it could be considered as 

a feature fusion layer, as shown in Figure 5-1. We suggested utilising these layers as a 

feature provider in the proposed system. 

Decision fusion strategies to combine multiple classifiers can produce more 

reliable and robust recognition than the application of a single classifier. Many studies 

have also proved that a single feature set with a single classifier which has a unique 

generalised classification approach often does not deal effectively with the high degree 

of variability and complexity encountered in many applications in the domain of 

computer vision. To deal with many complex applications such as emotion recognition, 

multiple classifiers can be utilised by acquiring information through multiple features 

extracted from multiple processes and then applying a decision fusion process to 
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combine them. The design of the multiple classifier system depends on the type of 

classifier outputs. Abstract classifiers produce only a label without any other 

information. Rank classifiers give an ensemble of possible classes ranked. Confidence 

or measurement classifiers give a vector of scores, each associated to a possible class 

[186]. 

The decision score fusion (score level fusion) refers to the combination of 

matching scores provided by the measurement classifier in the system. This is also 

known as fusion at the confidence level or measurement level. It is the most commonly 

used decision fusion approach, as evidenced by the experts in the field [187, 188]. To 

enhance the accuracy, multiple score fusion approaches have been developed by using 

the most common measurement classifier, i.e. SVM [189, 190]. The main contributions 

of this chapter [7] are as follows: 

•   An effective facial emotion recognition system is proposed to estimate the 

emotion from visible images by classifying them to one of the six universal 

emotions (Anger, Disgust, Fear, Happiness, Sad & Surprise) and Neutral. The 

proposed system designed special multi-layer perceptron neural network modes 

to fuse SVMs scores. 

• A novel neural network model for decision fusion was proposed, which increase 

the classification accuracy by up to 10%.  

The rest of this chapter is organised as follows. Related work is reviewed in Section 

5.2. The proposed system is introduced in Section 5.3. The experimental setup and 

databases used are described in Section 5.4. Preliminary results and discussion are 

presented in Section 5.5 and Section 5.6 respectively.  Section 5.7 draws conclusions. 
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5.2. Related Work  

5.2.1. Facial Expression Recognition 

Most existing facial emotion recognition methods can be generally categorised into two 

approaches: handcrafted feature approach and deep learning approach. With 

handcrafted feature approach expert knowledge is used to extract features from images 

according to a certain manually predefined algorithm. Traditional facial emotion 

recognition systems rely on many handcrafted features to recognise the features and 

parts of the face individually. On the other hand, Aleksic [191] proposed an automatic 

facial expression recognition system that uses multi-stream Hidden Markov Models 

(HMMs). They used Facial Animation Parameters (FAPs) which control the movement 

of the outer lips and eyebrows and used them for classification as visible features.  

Contrary to the handcrafted features, deep learning features are derived from a 

training image dataset by using deep learning methods which effectively use the 

feedback information to investigate the suitability of the extracted features. In recent 

years, most existing facial emotion recognition methods rely on the deep learning 

approach [192-194]. CNNs are examples of deep neural networks which can be used 

to learn deep features.  

5.2.2. Score Level Fusion  

In a complex pattern recognition environment such as emotion recognition, multiple 

classifiers with decision combination can help alleviate many computer vision 

problems. Score-level fusion approaches can be broadly classified into two categories: 

(a) not-trainable (fixed fusion rules) and (b) trainable. The not-trainable method 

combines the outputs of the classifiers in simple ranking techniques such as voting, 
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sum, mean, median, product, min and max. The trainable method uses the scores as 

input features for a new pattern-classification problem such as  Neural Networks, SVM 

[139].  

Luis et al. [187] used a number of score fusion approaches (Neural Networks, 

SVM, Weighted Sum, and so on) with three independent monomodal biometric 

systems. They compared the behaviour of score normalisation techniques (z-norm, 

MAD, tanh, and so on), and proposed a new score normalisation procedure. They 

concluded that the improvement depends upon the normalisation algorithms as well as 

the case in consideration. R. Dzati et al. [195] enhanced their system performance by 

using SVM for score fusion. They created a score vector by appending the scores from 

multiple correlation filter outputs and used SVM to obtain the final decision. 

Nandakumar et al. [196] proposed a framework for the optimal combination of 

multimodal match scores which depend on the likelihood ratio test. He et al. [197] 

examined the performance of two score level fusion approaches: sum rule-based and 

SVM-based. They proposed a new robust normalisation scheme (Reduction of High-

scores Effect normalisation) using three biometric traits: face, fingerprint and vein 

pattern, and demonstrated that their normalisation scheme with simple sum rule-based 

fusion could attain a better performance than ratio-based fusion [196]. 

5.3. Methods  

A schematic diagram of the proposed score fusion based facial emotion recognition 

system is shown in Figure 5-2. The system can be divided into three modules: 

eyeglasses detection [4], deep feature extraction and classification, and decision fusion. 

The proposed system starts by detecting the face from the image; then, it is classified 

using the eyeglasses detector. Next, the fine-tuned CNNs are utilized to extract the  
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Figure 5-2: The proposed facial emotion recognition system. 

features which SVMs use to predict the scores for the seven emotions.  Finally, the 

proposed score fusion models classify the emotion of the image by using the collected 

scores from the SVMs. The details are provided in the following subsections. 

5.3.1. Pre-processing and Eyeglasses Detection 

We first used the Viola-Jones face detection approach [3]. After obtaining and cropping 

the frontal face region from the visible image, the cropped face image was re-sized to 

match the input size (224×224) of the CNN (GoogleNet). To enhance the system 

accuracy, the eyeglasses detector proposed in Chapter 4 was utilised to detect images 

of eyeglasses, which achieved a mean accuracy of 99.73% [4]. Appropriate CNNs were 

then selected to extract features, according to the eyeglasses detector result.  
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Figure 5-3: The multi-layer perceptron (MLP) neural network used for decision score 

fusion. 

 

5.3.2. CNN-based Learning of Deep Features 

Instead of using CNN to classify the images directly, CNNs were utilised as feature 

extractors to extract features for SVM classifiers. This was because we believed that 

the inception layer features may convey more useful information because the output of 

an inception layer is a big feature map which is built up from the concatenated features 

from all the large convolutions. Since GoogleNet CNN architectures consist of nine 

inception layers, we extracted a feature set from each inception layer. The nine feature 

sets which were extracted from the CNN trained on visible images were fed to SVM 

classifiers to predict scores for the seven emotions. The proposed framework consists 

of 18 classifiers: nine classifiers were used when eyeglasses were detected and the other 

nine when no eyeglasses were detected.  
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Figure 5-4: The neural network with Subnetworks in Input Layers (SIL) used for 

decision score fusion. 

5.3.3. Decision Score Fusion 

The output scores from nine SVM classifiers for the seven emotions were used by three 

not-trainable decision fusion methods and two trained neural network fusion models, 

as shown in Figure 5-3 and Figure 5-4, to evaluate the performance of the proposed 

methods. The first not-trainable fusion rule was majority voting, where each classifier 

gave its own vote and the class with more votes was chosen as the final result. The 

second not-trainable fusion rule was average voting, where the average score of each 

class was calculated and the final result given to the class with the highest average. The 
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last not-trainable fusion rule was maximum score, where the class with the maximum 

score was chosen. 

The first trained fusion model, which is depicted in Figure 5-3, was a multi-layer 

perceptron (MLP) neural network. The input of this network came from the scores 

contributed by the nine SVMs. Each score was connected to all neurons in the input 

layer.  The second trainable fusion model, as shown in Figure 5-4, was a neural network 

with Subnetworks in Input Layers (SIL), which consisted of an ensemble of seven 

subnetworks, each representing a single emotion. Each subnetwork had nine input 

scores contributed by the nine SVMs and nine hidden neurons. The input of each 

subnetwork were the scores for individual emotions collected from the nine SVMs. The 

SIL neural network had seven subnetworks to represent the seven emotions. The 

difference between the MLP and SIL neural networks lay in the input layer. In the MLP 

neural network, each score was connected to all neurons, whereas in the SIL neural 

network, scores of each emotion were connected to the subset of neurons which 

represented this specific emotion.  
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The process of training Subnetworks in Input Layers (SIL) network with one hidden 

layer. 

The input scores are 63 =(𝐸 𝑥 𝑀), where  𝐸 = 7 is the number of emotion classes and  

𝑀=9 is the number of SVMs. Denote the set of scores 𝑆 = {𝑠1, 𝑠2, 𝑠3, … 𝑠𝐸} weights 

W= (0 - 1) is and the connections between the layers. 

(1) The output value of each neuron in input layer is calculated by using the 

weighted summation of the 9 input scores. The following equation (5-1) is 

used to calculate:  

∀𝑺 ∈ {𝟏, 𝟐, … , 𝒎}, 𝒉𝒍 = ∑ 𝑾𝒊𝒍
𝑯𝑺𝒊

𝑬

𝒊=𝟏
+ 𝜷𝒍

𝑯
              (5-1) 

where 𝐸 is the total number of, 𝑊𝑖𝑙
𝐻 is the connection weight between 𝑖 input 

neuron and the hidden neuron 𝑙, 𝑆𝑖 is the input score 𝑖, and 𝛽𝑙
𝐻 is the bias of 

the 𝑙𝑡ℎ hidden neuron.  

(2) The following sigmoid activation function (5-2) is used to map the weighted 

summation to the hidden layer 

∀𝒍 ∈ {𝟏, 𝟐, … , 𝒋}, 𝑯𝒍 = 𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝒉𝒍) =
𝟏

𝟏+ 𝒆−𝒉𝒍
          (5-2) 

(3)  The output of the network is calculated using the following equations (5-3), 

(5-4):  

∀𝒑 ∈ {𝟏, 𝟐, … , 𝒏}, 𝑶𝒑 = ∑ 𝑾𝒍𝒑
𝑶 𝑯𝒍

𝒋

𝑰=𝟏
+ 𝜷𝒑

𝑶                    (5-3) 

∀𝒌 ∈ {𝟏, 𝟐, … , 𝒏}, 𝑶𝒑 = 𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝑶𝒌) =
𝟏

𝟏+ 𝒆−𝒐𝒑
         (5-4) 

 

Where 𝑊𝑙𝑝
𝑂 is the weight between the 𝑙𝑡ℎ hidden neuron and the 𝑃𝑡ℎ output neuron 

which is equal to 7. 𝛽𝑝
𝑂 is the bias of the 𝑃𝑡ℎoutput neuron. 
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5.4. Experiments 

5.4.1. CNN Architecture Setup  

The Caffe toolkit [173] on an NVIDIA GeForce GTX 980 GPU was applied to fine-

tune the pre-trained GoogleNet Deep CNN model [93] using the NVIE dataset. The 

NVIE training dataset was used for fine-tuning by scaling the cropped facial image data 

to 224×224×3 so as to fit the CNN model input requirement. Four-fold cross-validation 

was adopted to find the optimal values for the parameters of each CNN. Two deep 

CNNs were trained using the stochastic gradient descent with a batch size of 50. The 

hyper-parameters of the applied training algorithm were as follows: momentum=0.9, 

weight decay=0.0002, initial learning rate=0.001. 

5.4.2. Experiment Design 

In this section, we first describe the image databases used in the training phase. 

Thereafter, we examine the effect of using the eyeglasses detector on the SVM’s 

performance on the validation dataset. Finally, we compare the performance of 

common decision fusion methods against the proposed neural network model in respect 

to the validation and testing datasets.  

The USTC-NVIE [8] (NVIE) database was adopted in the experiments. A detailed 

description of the NVIE’s partitions and the enlargement techniques is explained in 

Section 4.5.1. Table 5-1 illustrates the numbers of samples for each emotion class in 

the training, validation and testing datasets. 
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Table 5-1: The number of visible samples for different emotions in the training, 

validation and testing sets on the NVIE database. 

 

To make it subject-independent throughout our experiments, the scores of 

classified images in the four-fold validation datasets were collected in order to create a 

new score dataset, which was then partitioned into two sets: training and validation 

score sets, on which the MLP and SIL neural networks were trained and validated. We 

tested these two models on the score testing dataset which was created from the 

collected scores of classified images in the four-fold testing datasets. 

5.5. Results  

To demonstrate the performance of the proposed approach, several SVMs were trained 

on features extracted from nine different inception layers, with and without using the 

eyeglasses detector. Before starting the comparisons between the trained SVMs, four-

fold cross-validation was adopted to find the average accuracy among them.  

 
 

 Without-Eyeglass With-Eyeglass 

Train Val Test Train Val Test 

Anger 1281 57 63 1287 63 67 

Disgust 1253 57 62 1267 63 67 

Fear 1281 57 63 1288 63 67 

Happy 1281 57 62 1288 63 67 

Neutral 1300 299 298 1300 297 315 

Sad 1279 57 63 1279 63 67 

Surprise 1271 57 62 1271 63 67 

No. Subjects 61 20 20 61 20 20 

No. Images 8946 641 673 8959 675 717 
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Table 5-2: Average accuracy of four-fold cross-validation with GoogleNet inception 

layers, with and without the eyeglasses detector.  

 

The last column in Table 5-2 (Accuracy Increase) reports the difference between the 

previous two columns (With Glasses Detection and Without Glasses Detection) to 

demonstrate that the accuracy increased in all the layers when using the eyeglasses 

detector. To demonstrate the performance of the proposed neural network model for 

score fusion, comparisons of different decision score fusion approaches were done, as 

illustrated in Table 5-3. To conduct a statistical evaluation of the SIL and ML Neural 

Networks, the McNemar’s statistical test was utilized to determine the significance of 

the results. The null hypothesis assumes that there is no statistical difference in the 

performance between the SIL and ML Neural Networks and the commonly used 

decision fusion strategies. The Z-value and the related parameters (𝑁𝑠s, 𝑁𝑠𝑓, 𝑁𝑓𝑠, 

𝑁𝑓𝑓) for SIL and ML Neural Networks on the NVIE database are shown in Table 5-4 

and Table 5-5, respectively.  

 

Classifiers GoogleNet 

Layer-Name 

Number 

of 

Features 

Without 

Glasses 

Detection 

With Glasses 

Detection 

Accuracy 

Increase 

1 Inception_3a 200704 41.7 48.5 6.8 

2 Inception_3b 376320 38.3 45.6 7.3 

3 Inception_4a 100352 38.4 45.2 6.8 

4 Inception_4b 100352 35.2 40.2 5.0 

5 Inception_4c 100352 35.0 43.7 8.7 

6 Inception_4d 103488 30.4 40.4 10.1 

7 Inception_4e 163072 31.4 37.6 6.3 

8 Inception_5a 40768 30.3 35.1 4.8 

9 Inception_5b 50176 24.8 33.0 8.2 

Softmax 1024 26.5 29.5 3.0 
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Table 5-3: Comparison of the ML and  SIL Neural Network with other decision 

fusion strategies (Average, Max, Majority voting and ML Neural Network) on the 

NVIE database. 

 

 

  

 

 

 

Table 5-4: Comparison of the Z-value and the related parameters for the SIL Neural 

Network with other decision fusion strategies (Average, Max, Majority voting and ML 

Neural Network) on the NVIE database. 

 

 

 

Table 5-5: Comparison of the Z-value and the related parameters for the ML Neural 

Network with commonly used decision fusion strategies (Average, Max and Majority 

voting) on the NVIE database. 

ML Neural Network 

VS  

 

Average Max Majority Voting  

 𝑁𝑠𝑠  740 680 658 

N
V

IE
  𝑁s𝑓 19 79 101 

𝑁𝑓𝑠  5 20 10 

𝑁𝑓𝑓 626 611 621 

Z-value 2.7 5.8 8.5 

 

Decision Fusion 

Methods 

With Glasses Detection 

Val Test 

Average 53.95 53.60 

Max 53.04 50.36 

Majority Voting 46.73 48.06 

ML Neural Network 59.27 54.60 

SIL Neural Network 64.13 61.15 

SIL Neural Network 

VS 

 

Average Max Majority Voting ML Neural Network 

 𝑁𝑠𝑠  740 684 605 609 

N
V

IE
  𝑁s𝑓 110 166 245 241 

𝑁𝑓𝑠  5 16 63 150 

𝑁𝑓𝑓 535 524 477 390 

Z-value 9.7 11.0 10.3 4.6 
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Among seven given expressions in the NVIE database, only three expressions, 

including happiness, disgust, and fear, were successfully induced by most subjects [1]. 

Thus, many state-of-the-art methods used these three expressions in their experiments, 

such as Wang et al. [8] and Lee et al. [198]. However, to develop a technique for 

recognising the facial expressions and emotions in real-time, it should classify most 

emotions and expressions that would typically occur in real life. Therefore, we 

conducted experiments for all seven expression classes involving the other expressions 

that most subjects did not successfully induce. This would significantly increase inter-

class similarity cases and thus affect the classification accuracy of the proposed 

methods. This should be kept in mind when comparing against state-of-the-art 

methods.  

Another critical factor that directly affects the performance of the comparison 

methods is the type of evaluation.  Some state-of-the-art methods were evaluated by 

using cross-validation according to the images in the NVIE database. As a result, the 

training and testing datasets contain many similar images for the same subject 

performing the same expressions. Therefore, these state-of-the-art methods would 

achieve remarkably high accuracy. For example, the framework proposed in [199] 

achieved 93.63% of its average accuracy for recognizing five facial expressions on the 

NVIE database. Table 5-6 presents comparisons between the proposed methods and 

the reported results of recently state-of-the-art methods on the NVIE database. For a 

fair comparison, Table 5-6 includes only the state-of-the-art methods which evaluate 

their performance using cross-validation according to the subjects. 
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Table 5-6: Comparison with the state-of-the-art results on the NVIE dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.6. Discussion 

Table 5-2 also shows that higher accuracy was obtained from lower layers which 

compound a larger number of features. Since the number of features decreases in higher 

layers, Softmax has the lowest accuracy compared with when the SVM was trained on 

the deep features. In other words, the most discriminatory features could be lost as we 

go deeper through the CNN network. Thus, the proposed system uses CNN to extract 

the features instead of using CNN directly for recognition. The comparisons of different 

decision score fusion approaches indicates that the performance of the system using 

our neural network model was significantly better than the other score fusion 

approaches, as illustrated in Table 5-3. 

 

Methods No 

Emotions 

Accuracy 

N
V

IE
 b

as
el

in
e 

[8
] PCA+LDA  3 58.47 

PCA+LDA+KNN  3 65.25 

AAM+KNN  3 67.80 

AAM+LDA+KNN  3 61.86 

LBP + SRC [200] 3 59.5 

LPQ + SRC [201] 3 62.17 

Gabor + SRC [202] 3 65.00 

LBP-TOP [69]+SRC  3 65.67 

LPQ-TOP [107,203] + SRC  3 66.17 

ML Neural Network [7] 7 54.60 

SIL Neural Network [7] 7 61.15 
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According to the McNemar’s test results shown in Table 5-4, the SIL Neural 

Network significantly outperformed the commonly used decision fusion strategies 

(Average, Max and Majority Voting) and the ML Neural Network because the Z values 

are greater than 1.96 in all cases. Table 5-5 shows that the ML Neural Network 

significantly outperformed the commonly used decision fusion strategies. All the 

statistic results are reliable because 𝑁𝑠𝑓 + 𝑁𝑓𝑠 > 20 in all cases. The null hypothesis is 

rejected with an error probability of 0.05, which indicates that the differences in 

performance are statistically significant. 

The classification rates of the proposed system using the SIL Neural Network 

model achieves a recognition rate of 61.15%, which is higher than the recognition rates 

of the PCA+LDA baseline method. Moreover, it performs a competitive result of about 

0.71–6% less than the other methods that classify three expressions compared to seven 

expressions to the proposed system. 

5.7. Conclusion 

This chapter shows that when the accuracy of individual classifiers is low, a neural 

network could be used as a useful decision fusion approach which learns from classifier 

mistakes and gives a more accurate decision. We proposed a novel neural network 

model for score fusion to improve the emotion recognition performance. Nine different 

sets of emotional features were extracted from faces by using inception layers in 

GoogleNet to train individual SVMs. According to the examination of the system 

accuracy for each individual feature set, classification rates increased by up to 7-15% 

when the eyeglasses detector was used. The classification rates of the system increased 

by about 10% when using the SIL neural network approach in the multiple classifier 

system for score fusion.   
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Chapter 6  

6.  One-Shot Only Real-Time Video 

Classification: A Case Study in Facial 

Emotion Recognition 

 
6.1. Introduction 

Nowadays, watching videos is considered to be a critical means for people to satisfy 

their entertainment and information needs. Due to the widespread use of videos, there 

is no doubt that analysing and recognising video content has become a staggeringly 

popular research area in the computer vision field. Indeed, the rapid advances in video 

technology has only served to increase the need for real-time applications for video 

analysis. Thus, video recognition systems have wide demand across many real-world 

applications, such as in visual surveillance, human-robot interaction and autonomous 

driving vehicles, etc.  

This study designs two novel methods for real-time video classification and 

applies them to recognise emotion from videos. The proposed methods classify the 

video clips to one of the six universal emotions (Anger, Disgust, Fear, Happiness, Sad 

& Surprise). Inspired by the You Only Look Once (YOLO) system for real-time object 

detection [204], this chapter proposes a general model called One-Shot Only (OSO) [9] 

for video classification, which converts a video-based problem to an image-based one 

by using frame selection or clustering strategies to form a simple representative 

storyboard for spatio-temporal video information fusion. The work in this chapter is 
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different from that of Jing et al. [130] (Video You Only Look Once for Action 

Recognition), which uses complex 3D-CNNs to learn the appearance and temporal 

information from the whole video and classify the actions it contains in a single process 

by designing a total of eight types of 3D-CNN to handle different lengths of video clips. 

Using 2D-CNNs without losing the temporal information due to the use of the 

storyboard representation of videos, the OSO methods proposed in this chapter [9] can 

not only meet the requirements for real-time video analysis but also produce 

competitive video classification accuracy by combatting the overfitting problem 

existing in other commonly used 2D-CNN architectures for video classification. The 

main contributions of this chapter are as follows: 

• A novel spatio-temporal data fusion approach to video representation is 

proposed, which speeds up video classification while delivering competitive 

accuracy to meet the requirements of real-time applications.  

• Frame selection and clustering strategies are proposed to handle videos of 

different lengths, as well as the redundancy in consecutive video frames, 

leading to two OSO methods for effective video representation. The OSO 

methods reorganise video frames hierarchically as a single image, from which 

common 2D-CNN models can predict the video class probabilities. 

• The OSO methods are evaluated using three sizes of storyboard for video 

representation and seven common 2D-CNN models for video classification. It 

is demonstrated that the OSO methods can be used to classify both images and 

videos and are able to improve the recognition accuracy when classifying 

emotion from images as well as videos. 

The remainder of this chapter is organised as follows: Section 6.2 gives some 

insight into the challenges in developing video emotion recognition systems. Section 
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6.3 reviews the existing emotion recognition approaches and their advantages and 

disadvantages, according to their evaluation in both lab-controlled and real-world 

environments. Section 6.4 gives a review of the related work. Section 6.5 explains the 

methodology of the proposed systems. The experiments are described in Section 6.6. 

In Section 6.7, the results of the proposed approaches are analysed and discussed in 

Section 6.8. Finally, this study is concluded in Section 6.9. 

6.2. Video Emotion Recognition Challenges  

The state-of-the-art algorithms which currently implement video-based recognition still 

fall far short of the requirements of real-time applications due to a number of significant 

challenges such as: 

Intra-class and inter-class variations: This kind of confusion is often met in 

relation to real-world image datasets, and is even more significant in relation to real-

world video datasets — especially when a video sample is treated as a stack of images 

[205, 206]. A significant number of intra-class variation and inter-class similarity cases 

confuse many of the existing action recognition algorithms and thus affect their 

classification accuracy. 

Emotions interference: In order to tackle this naturally-occurring problem, some 

real-world datasets have defined multiple compound emotion categories such as 

happily-surprised, fearfully-angry [11, 19]. For example, RAF-DB [11] has categorised 

the affective faces using two types of classes: basic and compound emotions. The basic 

type classes are surprise, fear, disgust, happiness, sadness and anger (the six basic 

emotions), plus neutral, whereas there are twelve compound emotion classes. Another 

way to address this problem is that there is an uncertain category, such as in AffectNet 
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[10] and RAF-DB [11]. The image is tagged as uncertain when the annotator is 

uncertain about any of the facial expressions exhibited in it. However, this is a 

challenging obstacle facing the video-based emotion recognition systems as the 

dynamic properties of emotional development of the subject in the video clip would 

increase the emotional interference problem in each frame, which significantly impacts 

recognition accuracy.  

Data reliability:  AffectNet [10] uses its uncertain category only where the 

annotators are completely uncertain about all of the facial expressions shown in the 

associated image. In their study, it was shown that the rate of agreement between two 

annotators in terms of their annotations of a randomly selected set of 36,000 images 

was 60.7%. Moreover, it is more difficult and less precise to label specific emotions 

from videos or reality shows, since the start and endpoints of the expression of an 

emotion is not always easily detectable. This may affect the performance of emotion 

recognition algorithms that do not have tolerance of inaccurate labelling. Due to budget 

and time constraints, however, the number of labellers used for most of the existing 

datasets can be considered too small, and often each image or video was classified by 

only one labeller (e.g., this is the case with AffectNet [10]).  

Real-world conditions: Although the state-of-the-art results from a number of 

existing video-based recognition approaches have achieved impressive accuracies of 

around 96-97% [207, 208] on lab-controlled environment datasets (CK+ dataset [120]), 

the technical problems involved with transposing such approaches from the lab to real-

world applications result in much lower accuracies, achieving 41~47% only on the 

AFEW dataset, for example [209]. It is a substantial challenge to generalise these 

approaches so that they can work adequately in the context of real-world applications 
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with extreme and “wild” environments, mostly due to the fact that, in relation to such 

environments, these approaches cannot be trained on large-scale datasets.  

Insufficient annotated video data: The RAF-DB [11] and the large-scale facial 

emotion datasets in AffectNet [10] each contain more than a million images, whereas 

the existing video datasets, such as AFEW [12] and CK+ [120], contain only thousands 

of samples. To collect and annotate a large number of samples in AFEW, a video clip 

recommender system was utilized to automatically search in a movie for clips with a 

subject showing a meaningful expression. Then two annotators revised only the 

suggested video clips rather than manually scan the full movie. However, the samples 

in the video datasets are still insufficient for the purpose of training deep neural 

networks with millions of free parameters. Additionally, the number of annotators in 

this database is small, which affects the data reliability. 

In general, recognising and knowing what is happening in a video is a very 

challenging task, and dealing with the temporal dimension in videos remains a vivid 

research issue as it has a direct impact on the efficiency of the system in terms of speed 

and accuracy.  

6.3. Video Recognition Approaches  

In order to explain what have been done in the literature to address these challenges, 

the frameworks of current video recognition systems are briefly described in this 

section and the main reasons for their weaknesses are clarified since these need to be 

clearly understood before applying them in reality. 
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Figure 6-1: General pipelines of image-based and video-based classification systems.  

 

As illustrated in Figure 6-1 (A), the general frameworks of image-based 

classification follow an old-fashioned pipeline which consists of four basic operations: 

pre-processing and region-of-interest extraction, features extraction, classification and 

decision fusion. The state-of-the-art methods regularly utilise CNNs either as an end-

to-end model or as a feature extraction model. In both cases, CNNs achieve superior 

performance compared to handcrafted features and have had some notable successes at 

image-based recognition problems, elevating them to become an essential component 

in the current pipelines of image-based recognition frameworks [210]. 

Recently, numerous approaches have been proposed applying CNNs for video 

classification tasks such as action recognition and emotion recognition. Many of the 

state-of-the-art approaches follow a single-frame processing approach called the naïve 

approach, which treats video frames as still images and applies classifiers or CNNs to 
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classify each frame before fusing the predictions to get the final decision at the video 

level [42, 133, 211, 212], as illustrated in Figure 6-1 (B). 

In the naïve approach, the classifiers, or a bunch of CNN models, are trained 

separately, before a decision rule, such as the sum rule or majority voting, combines 

their outputs. In this naïve approach, the order of frames is not very important and there 

are no relations between the successive frames so that the videos can be seen as 

unordered sets of frames. However, because a video is not just a stack of frames, but 

every single frame draws a small portion of the video’s story, the single-frame approach 

without using temporal information has many drawbacks. To address this issue, it is 

natural to attempt to take advantage of temporal information in order to have a better 

performance. Indeed, some existing models [213-216] apply feature fusion approaches 

to aggregate the partial temporal information from individual frames or short clips.  

6.3.1. Drawbacks of Single-Frame Processing Approaches 

Misleading frames: A video might contain frames that are irrelevant or 

misleading in respect to the emotion or action of interest. This means that this approach 

could easily become confused and misclassify the video, especially when temporal 

components are not used and if there are many contaminant frames.  

Overfitting: The training data is generally a set of images extracted from training 

videos frames. Most of the consecutive video frames are very similar, and some frames 

can be almost identical. This redundancy in the training data causes an overfitting 

problem, especially when training CNN models. Several frames are extracted from 

each video and the similarity of regions of interest in successive frames usually goes 

hand-in-hand with an overlapping problem, which reduces intra-class variation. This 
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in turn creates an overfitting problem in the training process. For example, in the facial-

emotion recognition system, the region of interest is the subject’s face, which is 

detected and extracted from each video frame. This inevitably results in numerous 

images containing the same subject’s face with little variance. Thus, when the CNN is 

trained on these very similar images of a specific subject, it will learn the subject’s face 

instead of his/her emotion and end up trying to find the similarities between the learned 

face and the tested faces. This considerably reduces the system accuracy. In addition, 

if the training dataset contains many videos of the same subject performing different 

emotions, this produces many similar images belonging to different classes which 

results in a reduced inter-class variation that makes the CNN hard to train.  

Inconsistency: Another problem is the inconsistency between some of the 

extracted frames and the ground truth of the video clip, especially in respect to the 

emotion recognition system. As the complexity and intensity of the preformed emotion 

varies in video frames, not all extracted frames reflect the same category of the video. 

So even in a reliable database, these frames have a misleading ground truth which will 

add confusion in the learning and testing process. 

To address the problems of the single-frame baseline approach for video-based 

classification, On the other hand, three-dimensional convolutional neural network 

models (3D-CNN) have made significant improvements in various video analysis 

tasks. Recently, various studies have utilised 3D-CNN models [103, 130, 217] to learn 

spatial-temporal features, as shown in Figure 6-1 (c). They are just like standard CNNs 

(2D-CNN), but applying additional spatio-temporal filters to represent spatio-temporal 

data. Since 3D-CNN models have many more parameters than 2D-CNN models, they 

are more complex and harder to train. 
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To summarise, compared to image-based methods, video-based methods are 

more complex and have three major problems in the process of constructing real-time 

recognition systems: overfitting, slow and hard to train or optimise.  

6.4. Related Work 

Video-based recognition is an essential branch among the studies of both computer 

vision systems and human perception. Numerous researchers have made intensive 

efforts to improve audio-visual emotion recognition based on images and videos [218]. 

This review of related work will focus on visual emotion recognition based on videos 

and what has been done to improve the classification performance by utilising spatio-

temporal information.  

Current studies deal with the temporal information in videos by splitting a whole 

video into either groups or individual frames and consequently processing these 

portions multiple times. Several models are usually utilised to aggregate the processed 

parts to implicitly infer the whole temporal information. Based on the number of frames 

processed at a time, the current state-of-the-art models for video-based recognition fall 

into four categories: Single-Frame, Set-of-Frames, All-Frames and Key-Frames, as 

illustrated in Figure 2-13. 

6.4.1. Methods for Video Classification 

Many methods for video classification for emotion recognition have been 

proposed in response to the Emotion Recognition in the Wild Challenge (EmotiW). 

Section 2.7 presents a comprehensive review of the video-based approaches proposed 

in EmotiW. 
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6.4.2. Key-Frame Selection Strategies 

Since a short-length video clip of 2-3 seconds could contain 70-90 frames, processing 

each frame separately, even in a short-length video, is time-consuming and would 

usually affect the system accuracy. While many studies have proposed for key-frame 

selection strategies to handle this problem [219, 220], these  strategies are either 

complicated and computationally expensive or do not work effectively. Some of the 

common key-frame selection strategies are as follows:  

(1) Predefined-frames strategy. This takes specific frames depending on their position 

in the video, such as the middle and boundary frames [221, 222]. Although this 

strategy is straightforward and fast, it depends on some knowledge of the dataset 

[222]. In addition, predefined frames are usually not stable and do not detain most 

of the visual content. 

(2) Motion-analysis strategy. This computes the optical flow for each frame in order 

to evaluate the changes in the facial expression [19, 223, 224], using specific points 

such as the left and inner eyebrow or the corners of the mouth.  

(3) Visual-content strategy. This computes similarities between frames represented by 

colour histograms or other features [225]. The first frame is chosen as the first key-

frame, then the similarity between adjacent frames is computed and the frame 

which has a significant change in content is selected as the next key-frame.  

(4) Clustering strategy. This clusters similar frames by assigning each frame to a 

corresponding group and then selects the centroid frame of each group as key-

frames [225, 226]. Although clustering methods can achieve good results in 

general, noise and motion can easily affect their performance. In addition, the key-

frames selected may be only from the dominant clusters. 
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Figure 6-2: OSO video-based classification pipelines for emotion recognition. 

 

6.5. Proposed Methods for One-Shot Only Real-Time Video 

Classification  

Two OSO methods for facial emotion recognition based on video classification are 

proposed in this chapter, named Frame Selecting Approach and Frame Clustering 

Approach, which benefit from the hierarchical representation of spatio-temporal 

information in video frames. The structures of the proposed OSO approaches are shown 

in Figure 6-2 (A, B). Both approaches apply three pre-processing steps that detect and 

track faces across the video frames, and then extract the ROI of the detected faces. Then 

the facial landmark points are used to align the faces of the frames chosen by frame 

selection or clustering strategies. The pre-processed facial images are combined to 

create a storyboard in the form of a single image, in which spatio-temporal information 
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fusion is conducted at the raw data level, i.e., at ROIs of the selected video frames. 

In the frame selecting approach, as shown in Figure 6-2 (A), the storyboard is 

created from selected frames and is used as the input to a 2D-CNN which predicts the 

emotion class of the video directly. Video clips have different lengths or different 

number of frames. Also, the period of the same emotion may vary when performed by 

different subjects or by the same subject at different times. When selecting only a small 

number of frames from a video clip showing the emotion, it is critical to select the 

frames which are most different from the average frame of the whole original video.  

In the frame clustering approach, as shown in Figure 6-2 (B), the video frames 

are clustered into groups of frames with certain similarity, and a storyboard is then 

created for each group respectively. In a video clip, the subject might start by showing 

one emotion and end up by presenting quite another. In other words, the clip may  

contain several consecutive emotions: pre-emotion, post-emotion and the main one. 

For example, the “surprised” emotion may be followed by one of the post-emotions, 

perhaps “happy” or “fear”. By modelling the temporal relationships between 

consecutive emotions, we can distinguish between the compound and the individual 

ones. Based on this idea, we propose to produce pre-prediction of class for each 

storyboard using 2D CNNs, and the sequence of these class pre-predictions are sent to 

a LSTM network to obtain the final class prediction of the whole video.  
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Figure 6-3: The three dimensions used in presenting the storyboard for video-based 

classification. 

 

6.5.1. Spatio-Temporal Information Fusion (Storyboard Creating) 

The facial emotion of a subject in a video generates space-time images within a 

3Dspace, which encode both spatial and temporal information related to the subject’s 

emotion. Instead of creating a 3D volume for the space-time information, this chapter 

proposes a storyboard creation technique that conflates video frames into one image 

based on keyframe selection or clustering. Figure 6-3 shows the three dimensions used 

in presenting the storyboard for video-based classification. Before constructing the 

storyboard, the selected frames (ROIs) are resized to a fixed size of 224 × 224 in order 

to reduce the interference caused by the images’ boundaries. Then these frames are 

concatenated to build one image, as illustrated in Figure 6-3 . After that, the constructed 

storyboard is resized to 224 × 224 pixels because this size fits most 2D-CNN models.  
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6.5.2. Key-frame Selection and Clustering Strategies 

The purpose of keyframe selection is to find a set of representative frames from an 

image sequence, while the purpose of frame clustering is to segment the set of 

sequential frames into subsets based on similarity matching.  

In this chapter, a clustering-based strategy is used to achieve automatic keyframe 

selection and frame clustering. The proposed clustering-based strategy works, 

fundamentally, by measuring the dissimilarity or distance between frames 𝑑𝑡  using the 

Euclidean distance:  

  𝑑𝑡 = √∑ (𝑓𝑡(𝑗) −  𝑓𝑡+1(𝑗))
2𝐿

𝑗=1
                   (6-1) 

where 𝑓𝑡 denotes a frame feature vector at a specific time and L is the length of the 

vector. The following steps are followed to assign frames to the most similar cluster:  

(1) Normalise the ROIs which are extracted from successive frames by resizing them 

to 224 × 224 and converting them to grey images. 

(2) Represent every frame as a feature vector 𝑓. 

(3) Compare adjacent frames with each other using Equation (6-1) to determine how 

dissimilar they are. Denote the set of frames vectors as �̂� = {𝑓1, 𝑓2, 𝑓3… 𝑓𝑁}, 

where N is the number of frames in the video clip, and the difference between 

these frames as Dif = {d1, d2, d3 ... dN-1}. 

(4) Determine a boundary-threshold value Ψ by calculating the mean value of the Dif 

set. 

(5) Use the threshold Ψ to determine the borders of each cluster — where a 

dissimilarity value higher than Ψ indicates the start or end of a frame cluster. 
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Denote the set of clusters as C = {c1, c2, c3… cM}, where M is the number of 

clusters that consist of similar frames. 

(6) For the keyframe selection strategy:  

a) If the number of clusters M is smaller than the preset storyboard size (9, 16 

or 25), decrease the value of Ψ. Alternatively, increase it when M is larger. 

Then go back to step 5.  

b) If M is equal to the preset storyboard size (9, 16 or 25), select the mid-frame 

of each as a keyframe. 

Or for the frame clustering strategy, preset a cluster-threshold value γ as the maximum 

number of clusters to be generated (it is set to 3 in this work):  

a) If the number of clusters M is larger than γ, decrease the value for Ψ, 

Alternatively, increase it when M is smaller. Then go back to step 5.  

b) If M is equal to γ, use all the frames in each cluster to build a storyboard. 

(i). If the number of frames in a cluster Q is larger than the preset 

storyboard size (9, 16 or 25), choose the middle frames of the cluster.  

(ii). If Q is smaller than the preset storyboard size (9, 16 or 25), duplicate 

the middle frames of the cluster to compensate.  
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Figure 6-4: Frame selection strategy. 

 

Figure 6-5: Frame cluster strategy. 

 

In addition, since the video clips in the training database are short, varying from 3 

to 5.4 seconds [111], we set γ, the cluster-threshold value (representing the maximum 

number of clusters), to 3. Figure 6-4 illustrates the frame selection strategy and Figure 

6-5 illustrates the frame cluster strategy. 
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 Figure 6-6: Samples from the AFEW [12], CK+ [120], AffectNet [10] and RAF-DB 

[11] databases.  

6.6. Experiments 

In this section, the facial emotion datasets used in the experiments are briefly described 

first, and the details about the implementation of the proposed methods are explained, 

including the pre-processing and the settings of the CNNs. 

6.6.1. Databases  

In order to evaluate our approaches, we conducted experiments on four facial emotion 

databases: AFEW [12], CK+ [120], AffectNet [10] and RAF-DB [11]. The first two 

are videos and the last two are still images. Some samples from these databases are 

shown in  Figure 6-6. 

Acted Facial Expressions in the Wild (AFEW) is a dynamic, temporal facial-

expression dataset consisting of short video clips of facial expressions in close to real-
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life environments. The number of samples in the training dataset of AFEW 7.0 is quite 

small, (training 773, validation 373 and test 653), and the class distribution is 

imbalanced. As the ground truth of the test dataset was kept hidden from the 

competitors, we tested our models on the validation dataset instead of the test dataset.  

The Extended Cohn-Kanade (CK+) Database [120, 127] is a commonly used 

dataset, which includes 327 image sequences captured in a lab-controlled environment. 

These sequences start from the neutral expression and end with a peak expression, 

which is one of the six basic expressions, plus neutral and contempt. 

The large-scale facial emotion dataset, AffectNet, was used for training the seven 

CNN models.  In order to test the generalisation ability of our models, the RAF-DB 

[11] was used for testing. Section 2.5.4 provides a comprehensive description for  

AFEW, CK+,  AffectNet and RAF-DB databases. 

6.6.2. Implementation Details 

6.6.2.1. Pre-processing 

The chosen databases were produced in close to real-life environments and have 

variations in pose, illumination, occlusions and background. This high level of 

variation makes face detection and alignment challenging. The most common real-time 

face detection algorithm proposed by Viola-Jones [3] is useful for front views of faces 

but it is not robust enough to deal with the faces in videos where the subject moves 

without restrictions.  

As the videos in the AFEW 7.0 dataset might be taken from more than one 

subject, we used the MATLAB “Face Detection and Tracking (FDT)” to track the main 

subject’s face in the videos automatically. The FDT uses the Kanade-Lucas-Tomasi 
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(KLT) algorithm to keep track of the face, even when the subject freely moves his or 

her face. Instead of applying Viola-Jones to detect the face across the video frames, 

which is a computationally expensive process, the FDT detects the face from the first 

frame. Then a set of feature points in the detected facial region were identified by using 

the standard of "good features to track" process [227] and tracked using the KLT 

algorithm across the video frames. 

For facial landmark detection and face alignment, we utilised the algorithm 

proposed by Zhang et al. [172]. The generated landmarks (two eyes, nose and mouth 

corners) were then used to determine the inner area of the face as a ROI. For 

normalisation, the face is cropped to a 224 × 224 RGB image. The pre-processing steps 

were applied on all images in two databases AffectNet and RAF-DB. A preset number 

(9, 16, or 25) of cropped facial images were used to create the storyboard image by 

concatenating them. The storyboard image was then resized to 224 × 224 to fit the CNN 

input size. For training and testing purposes, three storyboard datasets of three different 

sizes (3 ×3, 4 ×4, 5 ×5) were created from these two still image datasets (AffectNet, 

RAF-DB). 

After extracting the tracked faces from each video clip in the AFEW training, 

validation and test datasets, we applied the pre-processing steps on them and then 

followed the frame selection and cluster strategies to build the storyboard images for 

each strategy with the three storyboard sizes. As a result, six datasets were created in 

total, with different sizes and frame selection strategies. Some examples of the 

storyboard images built from the RAF-DB and AFEW training datasets are shown in 

Figure 6-7. 
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Figure 6-7: Samples of storyboard images of three sizes (3×3, 4×4, 5×5), built from 

RAF-DB and AFEW training dataset. 

 

6.6.2.2. Training the 2D-CNN and LSTM Models 

In order to increase the generalisation ability of the CNN models and to tackle the 

overfitting problem, seven well-known pre-trained 2D-CNNs (GoogleNet [93], 

VGG16, VGG19 [94], ResNet18, ResNet50, ResNet101[95], Inceptionv3 [228]) were 

utilised in our experiments and a large number of still images in the AffectNet dataset 

were used to fine-tune these models via two-fold cross-validation. To find the 

appropriate size for the storyboard, these models were fine-tuned on three different 

sizes, 3×3, 4×4 and 5×5. This resulted in 28 fine-tuned models that were able to classify 

emotional images.  
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We used the Caffe [173] toolkit on NVIDIA GPU to fine-tune the seven CNN 

models. These models were fine-tuned with a batch size of 16 on two GPUs (TitanX) 

and GeForce GTX 1080 using the stochastic gradient descent. The other parameters of 

the applied training algorithm were as follows: momentum=0.9, weight decay=0.0002. 

To train the frame clustering OSO model for video classification, each video in 

the AFEW training dataset was clustered into three groups of frames and classified by 

the fine-tuned 2D CNNs, producing three emotion-words. Then the produced series of 

emotion-words were used to train the LSTM whose output is the final classification for 

each video. The AFEW validation dataset was used to evaluate the trained models. 

6.7. Results  

The major challenge in training a CNN model is to improve its generalisation ability 

and prevent overfitting, especially when training it on the extracted frames from the 

video clips since redundant identical frames reduce the intra-class variation. The 

proposed OSO methods address this challenge by training the CNN models on the 

storyboard images instead of the video frames. Figure 6-8 shows the training processes 

of the different 2D-CNN models when training them on video frames (1×1) and on the 

storyboard images with different sizes taken from the training and validation datasets 

of AFEW. As shown in Figure 6-8 (A), the four CNN models, GoogleNet, VGG16, 

ResNet50 and Inceptionv3, have experienced the overfitting problem when training on 

images extracted from video frames. The extremely low training loss and high 

validation loss indicate that these models perform well on the training dataset but fail 

to do so on the hold out samples in the validation dataset. Due to the high similarity 

between the consecutive frames, the CNN models memorise the training samples, 

which make it difficult to recognise the new one. 
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On the other hand, as shown in Figure 6-8 (B), the same four CNN models were 

trained on the storyboard images which were created by utilising frame selecting or 

frame clustering approaches. When comparing the training processes of these models, 

we can immediately notice that the gaps between training loss and validation loss are 

small in all four models, indicating that these models can overcome the overfitting 

problem and improve generalisation by using the storyboard.  

Table 6-1: Accuracy of the seven common 2D-CNN models when training using 

single frame images and storyboard images of different sizes using the validation 

datasets and testing datasets of AffectNet and RAF-DB. 

 
Accuracy 

AffectNet  RAF-DB 

 1x1 3x3 4x4 5x5  1x1 3x3 4x4 5x5 

C
N

N
 

GoogleNet 50.1 40.5 46.7 43.3  71.5 67.4 69.4 68.2 

VGG16 53.7 53.6 48.6 48.0  73.3 75.3 71.3 71.4 

VGG19 53.5 53.8 53.7 49.0  72.8 75.9 74.1 69.0 

ResNet50 54.1 50.7 51.5 50.3  72.5 74.3 72.0 70.5 

ResNet101 54.3 52.9 53.8 50.7  74.2 73.8 70.7 71.3 

ResNet18 53.2 52.7 52.5 50.9  74.9 75.2 72.2 71.4 

 Inceptionv3 56.1 53.3 53.1 53.5  70.6 71.6 72.7 68.7 

 Average 53.6 51.1 51.4 49.4  72.8 73.4 71.8 70.1 

 

In order to demonstrate the performance of the storyboard method for data fusion 

for image classification, cross-database validation experiments were conducted on the 

RAF-DB database. Table 6-1 shows the comparison among the seven CNN models 

when classifying emotions by using individual frame images and storyboard images 

with different sizes. The average validation results on AffectNet dataset are reported in 

the left section of the table and the results on RAF-DB database are illustrated in the 

right section of the table. 

 



Chapter 6                                                                

 

P a g e  | 142 

 

Figure 6-8: A comparison of the training process among four different 2D-CNN  

models using frames extracted from videos and the storyboard images created from 

frames from the video clips of the training and validation datasets of AFEW. 

(A) 2D CNN models trained and tested on 

frames extracted from the video clips of 

training and validation datasets of AFEW 

(B) 2D CNN models trained and tested on 

storyboard images created from frames of the 

video clips of training and validation 

datasets of AFEW 
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In our experiments, the proposed OSO video classification pipelines for emotion 

recognition using the frame selecting approach and frame clustering approach 

respectively (as shown in Figure 6-2), were evaluated based on three storyboard sizes 

(3×3, 4×4, 5×5), with their performance compared to those of the two single-frame 

processing (1×1) methods. In the first baseline method, a decision level fusion method 

based on majority voting was used to combine the CNN emotion predictions of all the 

frames in a video. The second baseline method followed a feature fusion approach, 

where an LSTM model was trained to classify videos using the fused features of all the 

frames extracted by the 2D-CNNs. Table 6-2 and Table 6-3 show the results on the 

AFEW dataset in terms of validation accuracy and the runtime of the OSO methods 

using seven 2D CNNs respectively, in comparison with the baseline methods. 

 

Table 6-2: Validation accuracy of the OSO methods using 2D CNNs for video 

classification on the AFEW dataset, in comparison with single frame baseline (1×1) 

approaches. 

 

Accuracy 

1x1 3x3 4x4 5x5 

 Decision 

Fusion 

Feature 

Fusion 

Selecting  Clustering Selecting  Clustering Selecting  Clustering 

C
N

N
 

GoogleNet 33.8 35.1 46.4 48.7 49.0 46.7 41.9 45.0 

VGG16 39.3 34.6 51.1 55.3 47.7 55.6 47.7 50.1 

VGG19 37.7 30.1 49.8 53.8 47.7 51.0 46.7 47.8 

ResNet50 33.8 41.1 50.0 54.9 50.6 53.8 43.0 47.3 

ResNet101 36.9 37.2 48.7 52.8 46.7 51.1 44.6 48.0 

ResNet18 34.5 30.1 46.9 51.1 45.1 46.3 46.9 40.9 

Inceptionv3 36.1 34.8 50.8 54.6 48.0 51.3 41.7 45.7 

 Average 36.0 34.71 49.1 53.03 47.83 50.83 44.64 46.4 
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Table 6-3: Comparison of validation time on the AFEW dataset between the OSO 

methods using 2D-CNNs and the single frame baseline (1×1) approaches for video 

classification. 

 

Speed 

S/Video 

1x1 3x3 4x4 5x5 

 Decision 

Fusion 

Feature 

Fusion 

Selecting  Clustering Selecting  Clustering Selecting  Clustering 

C
N

N
 

GoogleNet 0.31 0.33 0.038 0.047 0.055 0.061 0.074 0.091 

VGG16 0.60 0.63 0.037 0.046 0.056 0.059 0.073 0.090 

VGG19 0.69 0.71 0.039 0.047 0.056 0.061 0.075 0.092 

ResNet50 0.40 0.43 0.038 0.047 0.056 0.061 0.075 0.091 

ResNet101 0.52 0.56 0.046 0.050 0.062 0.064 0.078 0.099 

ResNet18 0.23 0.27 0.035 0.047 0.053 0.061 0.075 0.088 

Inceptionv3 0.59 0.62 0.045 0.052 0.063 0.064 0.077 0.099 

 Average 0.48 0.51 0.040 0.048 0.057 0.062 0.075 0.093 

 

 

Most winners of the EmotiW Challenge (2017-2019) utilised both audio and 

visual information in their approaches in order to increase the overall accuracy. To 

further evaluate the proposed OSO methods, we compared their performance with the 

EmotiW baseline performance as well as with those of the winning methods reported 

in the literature that used visual information only. Table 6-4 shows the comparison 

results on the AFEW dataset. To demonstrate the generalisation ability of the OSO 

methods, cross-database validation experiments were conducted on one of the lab-

controlled environment databases, the CK+ dataset. We tested the models on all the 

image sequences in the CK+ dataset, and the results are shown in Table 6-5.  
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Table 6-4: Comparison with the state-of-the-art results on the AFEW 7.0 dataset. 

 

Since each image sequence in the CK+ dataset starts from the onset, neutral, 

expression in the first frame, to peak expression in the last frame, various state-of-the-

art methods have utilised predefined frame/s to classify the image sequences, for 

example, by selecting the last frame [67, 231], the last three frames [232-237], etc. For 

a fair comparison, the OSO methods were therefore compared with the state-of-the-art 

methods which do not determine certain frames for training and testing.  

 

 

 Methods Val Test 

EmotiW baseline [111]  LBP-TOP-SVM 36.08 39.33 

3
D

 C
N

N
 

Ouyang et al. [138] 3D CNN  35.20  

Lu et al. [214] 3D CNN 39.36  

Fan et al. [103] 3D CNN 39.69  

Vielzeuf et al. [139]  3D CNN+LSTM 43.20  

D
ec

is
io

n
 /

 F
ea

tu
re

 F
u

si
o

n
 

Yan et al. [41] Trajectory + SVM 37.37 
 

Fan et al. [229] MRE-CNN (AlexNet) 40.11  

Yan et al. [41] VGG-BRNN  44.46  

Ding et al. [230] AlexNet 44.47  

Fan et al. [103] VGG16 + LSTM 45.43  

Ouyang et al. [138] ResNet + LSTM  46.70  

Ouyang et al. [138] VGG + LSTM  47.40  

Fan et al. [229] MRE-CNN (VGG16) 47.43  

Vielzeuf et al. [139] VGG16 + LSTM 48.60  

 

Proposed OSO 1 [9] FrameSelecting-VGG16-3x3 51.10 51.15 

 Proposed OSO 2 [9] FrameClustering-VGG16-4x4+LSTM 55.60 52.37 
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Table 6-5: Accuracy of the OSO methods using 2D-CNNs for video classification on 

the CK+ dataset, in comparison with single frame (1×1) baseline approaches. 

 

 

 

Table 6-6: Comparison with the state-of-the-art results on the CK+ dataset. 

 

 

 

Accuracy 

1x1 3x3 4x4 5x5 

 Decision 

Fusion 

Feature 

Fusion 

Selecting  Clustering Selecting  Clustering Selecting  Clustering 

C
N

N
 

GoogleNet 68.6 68.9 67.7 69.6 69.9 68.4 65.8 48.4 

VGG16 74.1 71.2 95.9 85.0 82.8 69.9 80.5 80.5 

VGG19 73.8 68.0 86.9 83.2 80.9 80.1 76.0 70.3 

ResNet50 80.6 76.7 90.0 81.3 73.3 74.8 60.5 69.2 

ResNet101 82.8 77.0 94.5 81.3 73.7 75.6 66.5 55.2 

ResNet18 81.2 65.7 90.3 87.3 80.5 69.2 77.5 67.3 

Inceptionv3 81.9 77.3 80.5 82.8 71.8 70.3 61.6 67.3 

 
Average 77.6 72.1 86.5 81.5 77.4 74.4 69.8 65.5 

  Methods  

CK+ baseline [120] Active Appearance Models (AAMs)+SVM 82.3 

Liu et al. [238] 3DCNN 85.9 

Jung et al. [239] Deep Temporal Appearance Network (DTAN)  91.4 

Sanin et al.[240] Cov3D 92.3 

Liu et al. [238]  3DCNN-DAP (Deformable Action Parts) 92.4 

Liu et al. [241]  Spatio-Temporal Manifold (STM)-ExpLet 94.2 

Sikka et al. [242] Latent ordinal model (LOMo) 95.1  

Zhang et al.[104] 
Spatial–Temporal Recurrent Neural Network 

(STRNN) 
95.4 

Proposed OSO 1 FrameSelecting-VGG16-3×3 95.9 

Proposed OSO 2 FrameClustering-VGG16-3×3+LSTM 87.3 
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6.8. Discussion 

Compared to using single frame images, the storyboard method performs better in most 

models, achieving an accuracy of 75.9% when the size of the storyboard is (3×3), and 

74.1% when the size of the storyboard is (4×4) by using VGG19. The accuracy 

decreases to 69.0% when using the (5×5) storyboard, however. This implies that 

increasing the number of the combined images in the storyboard will reduce the 

classification accuracy. Overall, the results show that our proposed data fusion methods 

(storyboard) can work well compared with the image classification method used in 

most of the 2D-CNN models.  

We found that storyboard sizes do not relate consistently to performance across 

different datasets. For example, the average accuracies of different storyboard sizes 

(3×3, 4×4 and 5×5) are 73.4%, 71.8% and 70.1%, respectively, on the RAF-DB test 

dataset, which is much higher than the average accuracies achieved by the same 

storyboard sizes on the AffectNet dataset (51.1%, 51.4% and 49.4%). This is due to the 

different database categories. RAF-DB, for example, has defined multiple compound 

emotion categories, which reduces the emotion interference contained in each dataset. 

As shown in Table 6-2, the OSO approaches outperformed both baseline methods 

in terms of validation accuracy by 10% to 17%. The frame clustering approach 

outperformed the frame selecting approach in almost all cases by 1.1% (VGG19, 5×5) 

to 7.9% (VGG16, 4×4) and on average by 3.93%, 3.0% and 1.76%, corresponding to 

storyboard sizes 3×3, 4×4 and 5×5, respectively. The highest accuracy was achieved 

by the OSO method using frame clustering and VGG16 with a storyboard size of 4×4. 

On average, the OSO method using frame clustering with a storyboard size of 3×3 

achieved the highest accuracy of 53.03%. It can be observed that, among the seven 2D 
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CNNs, VGG16 achieved the highest accuracy in almost all cases. 

One key advantage of the OSO approaches is their efficiency. To show this, we 

compared the runtime of the OSO approaches with that of the two baseline methods on 

the AFEW validation dataset, using a single NVIDIA TITAN X GPU. As Table 6-3 

clearly demonstrates, the OSO approaches are about ten times faster than the single 

frame baseline methods. The proposed OSO methods using frame selecting and frame 

clustering approaches with the best 2D-CNN and storyboard size achieved validation 

accuracies of 51.10% and 55.60%, respectively, and test accuracies of 51.15% and 

52.37%, respectively, much superior to the competition baseline performance as well 

as those other methods reported in the literature that used 2D- or 3D-CNNs for video-

based emotion recognition without using audio information.  

Table 6-5 reveals that the OSO approaches outperformed both baseline methods 

again, by 13.1% to 18.6%. Furthermore, the frame selecting approach with VGG16 and 

a storyboard size of 3×3 achieved the highest accuracy of 95.9%. It can be noticed that 

the frame selecting strategy with the storyboard size of 3×3 achieved better results than 

other storyboard sizes and the frame cluster strategy. Unlike the results in Table 6-2, 

the frame selecting approach outperformed the frame clustering approach in almost all 

cases by 0.8% (VGG19, 4×4) to 17.4% (GoogleNet, 5×5), and on average by 5.0 %, 

3.0% and 4.3%, corresponding to storyboard sizes 3×3, 4×4 and 5×5, respectively. That 

is because this database consists of image sequences instead of video clips. Due to the 

small number of images in a sequence the storyboard of size 3×3 fits perfectly. 

Moreover, the differences between these images are high; thus, it does not suit the 

clustering strategy, which groups similar frames (images). 

Table 6-6 shows the comparison of our methods and other state-of-the-arts on the 
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CK+ dataset. The proposed OSO methods using frame selecting approach with the best 

2D-CNN and storyboard size achieved 95.9% accuracy, much superior to the CK+ 

baseline performance and those achieved by the methods applying 3D-CNNs reported 

in the literature. 

6.9. Conclusion 

This chapter proposes fast OSO methods for video-based facial emotion recognition to 

meet the requirements of real-time applications. In contrast to other approaches that 

aggregate temporal information from video frames, the proposed methods take 

advantage of spatio-temporal data fusion based on novel frame selection and clustering 

strategies and use 2D-CNN models to predict emotional categories from videos with 

facial expressions. The experimental results show that the proposed OSO methods are 

not only fast but also capable of achieving competitive accuracy in video classification. 
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Chapter 7  

7. Conclusions and Future Work 

 

7.1. Conclusions 

Affective computing aims to bridge the gap between computational technology and 

humans in emotion recognition by developing new ways to understand, interpret, 

communicate and respond to human emotion. Emotion recognition is a broad and 

growing research area with tremendously significant applications across many areas, 

such as healthcare, education, the understanding of social interaction and behavioural 

science, etc., particularly in relation to developing reliable and intelligent models for 

real-time affective computing applications. 

The distinguishability of human emotions within still images or videos captured 

from real-world situations is generally poor, due to the variations in the environment. 

In addition to the major difficulties that any facial recognition system may face, such 

as variable illumination, head pose, and facial occlusion, there are many other 

significant challenges that arise specifically from the nature of human emotions, and 

these have a considerable impact on recognition accuracy. These challenges include 

the variety of expressions and emotions as expressed by differing subjects (humans can 

express differing emotions with differing strengths), and interference between 

competing emotions. With these in mind, many researchers have attempted to combine 

several complex models to improve emotion recognition accuracy. This complexity, 

however, leads to the requirement for massive computing and storage resources, and 
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brings with it new problems relating to excessive resource consumption for data 

processing.  

The methods developed in this thesis are the result of a radical rethink and are 

designed to minimise computational complexity while retaining high accuracy. 

Furthermore, these methods not only possess the capability to address the common 

challenges in developing facial emotion recognition systems but are also the basis for 

proposing several techniques for tackling other challenges, such as real-time video 

classification. This section summarises the contributions of the work presented in this 

thesis. Summary of the contributions will be discussed in Section 7.2, followed by 

limitations and some potential future research directions in Section 7.3. 

 

7.2. Summary of the Contributions 

This research has suggested that the requirements of real-time applications should be 

considered when designing each element of the framework of an emotion recognition 

system. The major contributions of this thesis work can be summarised as follows. 

Firstly, an efficient and effective algorithm was developed to improve the 

performance of the Viola-Jones algorithm, widely used for face detection, in respect to 

the recognition of emotions from thermal images. Experimental results showed that the 

proposed method achieved significantly higher detection accuracy (95%) than the 

standard Viola-Jones method (90%) in face detection from thermal images, while also 

doubling the detection speed, as explained in detail in Chapter 3. 

Secondly, to improve the robustness of the face detection method and to cope with 

real-world applications, an automatic subsystem for detecting eyeglasses, Shallow-

GlassNet, was proposed to address the facial occlusion problem in face detection. This 

was done by designing a shallow convolutional neural network capable of detecting 
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eyeglasses rapidly and accurately. By training a convolutional neural network on a 

small dataset and decreasing its depth to just three convolutional layers, Shallow-

GlassNet significantly reduced the computational complexity whilst retaining a high 

level of accuracy, as explained in detail in Chapter 4. 

Thirdly, a novel neural network model for decision fusion was proposed in order 

to make use of multiple classifier systems, which can increase the classification 

accuracy by up to 10%. In this approach, convolutional neural networks were used to 

extract nine different sets of emotional features from faces, which were then classified 

by SVM. The proposed neural network model for decision fusion was then trained 

based on the output scores from the nine SVM classifiers, as explained in detail in 

Chapter 5.  

Finally, in order to reduce the computational cost without sacrificing recognition 

accuracy, a high-speed approach to emotion recognition from videos, called One-Shot 

Only (OSO), was developed based on a novel spatio-temporal data fusion method for 

representing video frames, as explained in detail in  Chapter 6. To cope with real-time 

applications, the OSO method tackled video classification as a single image 

classification problem, which not only made it extremely fast but also reduced the 

overfitting problem known to occur when training deep neural networks. More 

specifically, the contributions related to the proposed OSO methods are as follows: 

• A novel spatio-temporal data fusion approach is proposed for video representation. 

A strong advantage of this approach is that a single convolution neural network 

can be used to predict the whole video’s class probabilities directly. This speed up 

the classification rate to the extent that the system is competent to perform in real-

time. Another significant advantage of this approach is that it prevents the 

occurrence of the overfitting problem, which is often considered to be the most 
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difficult challenge in the use of CNNs when they are trained on nearly identical 

frames extracted from a single video.  

• Frame selection and clustering strategies are proposed to handle videos of different 

lengths, as well as the redundancy in consecutive video frames, leading to two 

OSO methods for effective video representation. The OSO methods reorganise 

video frames hierarchically as a single image, from which common 2D-CNN 

models can predict the video class probabilities. The OSO methods are evaluated 

using three sizes of storyboard for video representation and seven common 2D-

CNN models for video classification. It is demonstrated that the OSO methods can 

be used to classify both images and videos and are able to improve the 

recognition accuracy when classifying emotion from images as well as videos. 

• In order to handle compound emotions, with transitions from one emotion to 

another, the OSO method with clustering-based video representation transposes 

the video classification task from the vision domain to the multi-class text 

classification domain to some extent, hence mimicking some operations of the 

human mind. In this approach, each video is translated into a sentence of a few 

words, in which form it can be addressed using a LSTM network. Using the 

clustering strategy, similar consecutive video frames are combined into one 

storyboard image which is classified to a single emotion using a CNN model.  

 

7.3. Limitations and Future Work  

Whilst several achievements have been made with regard to the theoretical and 

practical aspects of emotion recognition in this research, some interesting new issues 

relating to these have also been encountered. Some of these relate to improving the 

capabilities of emotion recognition techniques, such as the use of video-based 
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emotional databases, but mostly represent subsidiary topics which could not be 

considered or investigated here due to the limited time available. This section discusses 

these limitations and related issues. 

The performance of an emotion recognition system depends to quite a large 

extent on the amount and diversity of the annotated samples provided for training 

purposes. Although several large-scale facial emotion focused databases, such as 

AffectNet and RAF-DB, were used in this research, existing video-based databases are 

still quite small and were created using a limited number of annotators, affecting their 

reliability. Therefore, a large-scale and reliable emotion database with a large number 

of variations extracted from ‘the wild’ is needed. Moreover, as described in  Chapter 4 

and Chapter 5, the presence of eyeglasses may cause inaccurate classification, this 

database should also have a large number of video clips with and without eyeglasses.  

Human emotion recognition systems have mostly attempted to sense emotions 

by using facial expressions as representing the inner state of the human. While 

significant progress has been made in the field of facial expression recognition with 

respect to the visible spectrum [243], the performance of existing methods is vulnerable 

to illumination changes, darkness or excessive light. This is because illumination 

changes can significantly influence the appearance of visible images. On the other 

hand, thermal infrared images record temperature distributions and are not usually 

affected by illumination conditions. In addition, the detection of skin temperature 

changes can be helpful to classify emotions [13] and facial expressions. In recent years, 

facial expression recognition via the thermal infrared spectrum, which can represent 

the internal state of the human's emotions, has attracted greater attention [4]. In this 

thesis, we have tried to employ thermal images by first detecting faces (and this is 

where our contribution to this specific area mainly lies). This was achieved by 
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improving the Viola-Jones algorithm as used to detect the face from thermal images, 

and by utilising two thermal facial image databases, NVIE [8] and I.Vi.T.E [114]. 

These databases were collected in laboratory-controlled environments and thus do not 

adequately represent the real-world environment. This prevented us from using these 

databases in the remaining experiments undertaken in this thesis. To the best of our 

knowledge, currently, there is no real-world environment emotion database which 

combines both visible and thermal spectrum. There is a significant need for such a 

database.  

The One-Shot Only (OSO) methods developed in this thesis for real-time 

emotion recognition have the potential to be extended and applied to other video-based 

classification tasks, such as human action recognition, video activity recognition, 

vehicle detection, etc. The proposed OSO framework provides starting points for 

several such relevant models and approaches.  

Spatio-temporal data fusion is currently an active research topic, and techniques 

for achieving this are useful for integrating appearance and motion information for 

video-based classification processing. The storyboard which is utilised in the OSO 

models has shown good performance when used in a number of different scenarios. 

The selection strategy experiments, however, revealed that the number of frames in the 

storyboard has a significant influence on the classification performance. When the 

width and height of the storyboard image were fixed, but the number of frames was 

varied from 9 to 25, it was discovered that the accuracy decreased as the number of 

frames increased. Hence, how to choose the appropriate number of frames per 

storyboard when considering the length of a video has not been answered well in this 

thesis. 
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Since the proposed keyframe selection and keyframe clustering methods depend 

on measuring the similarity of consecutive frames, it should be taken into consideration 

that the candidate frames are not always the best among the frames available, when 

considering issues such as clarity, illumination, head pose and facial occlusion. Thus, 

these strategies should take into consideration such essential criteria when choosing the 

frames to be employed in creating the storyboard. 

New fundamental components and possible improvements to the current methods 

would shed light on future works. Some suggested points are listed in the following: 

• Creating a large-scale and reliable emotion database that contains a large number 

of video clip samples and reflects the characteristics of the real world with 

variations extracted from 'the wild' is needed. This database should be annotated 

to the dimensional and categorical models that include multiple compound 

categories of emotion, such as happily-surprised, fearfully-angry. 

• Another large-scale and reliable emotion database is necessary to meet the need 

for studies of internal manifestations, including changes in the face and body 

temperature. This database should be created in a real-world environment and 

combine both visible and thermal spectrums by simultaneously capturing visual 

and thermal images and video clips. 

• Resolving the above problems and finding answers to the related questions will 

significantly improve not only the OSO methods presented in this thesis, but also 

most video-based classification models and facial emotion recognition systems. 

These issues should be given adequate attention in future research. 
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