
Research Article

On the simplex, interior-point and
objective space approaches to
multiobjective linear programming
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Abstract

Most Multiple Objective Linear Programming (MOLP) algorithms working in the decision variable space, are based on

the simplex algorithm or interior-point method of Linear Programming. However, objective space based methods are

becoming more and more prominent. This paper investigates three algorithms namely the Extended Multiobjective

Simplex Algorithm (EMSA), Arbel’s Affine Scaling Interior-point (ASIMOLP) algorithm and Benson’s objective space

Outer Approximation (BOA) algorithm. An extensive review of these algorithms is also included. Numerical results on

non-trivial MOLP problems show that EMSA and BOA are at par and superior in terms of the quality of a most preferred

nondominated point to ASIMOLP. However, ASIMOLP more than holds its own in terms of computing efficiency.
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Introduction

MOLP is a branch of Multiple Criteria Decision

Making (MCDM) that seeks to optimize two or more

linear objective functions subject to a set of linear con-

straints. MOLP has been an active area of research

since the 1960s because of its relevance in practice.

Indeed, many decision making problems that arise in

the real world involve more than one objective func-

tion. Consequently, it has been widely applied in many

fields and has become a useful tool in decision making.

Formally, it can be written as

min cT1 x ¼ f1

..

.

cTq x ¼ fq

subject to x 2 X ¼ x 2 Rn : Ax ¼ b; b 2 Rm; x � 0f g
(1)

where c1; . . . ; cq are n-vectors containing the coeffi-

cients of the multiple objective functions, A is an

m� n constraint matrix and b is the right hand side
vector.

In practice, MOLP is typically solved by the
Decision Maker (DM) with the support of the analyst
looking for a most preferred (best) solution in the fea-
sible region X. This is because optimizing all the objec-
tive functions simultaneously is not possible due to
their conflicting nature. Consequently, the concept of
optimality is replaced with that of efficiency. The pur-
pose of MOLP is to obtain either all the efficient or
nondominated extreme points or a subset of either, or a
most preferred point depending on the purpose for
which it is needed.

In the last few decades a number of algorithms have
been suggested for MOLP. Most are based on the sim-
plex and interior-point algorithms for Linear
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Programming which work in the decision space.
However, Benson1 argued that since the number of
objectives in an MOLP is often much smaller than
the number of decision variables and typically many
efficient extreme points in the decision space map to
a single point in the objective space, generating the set
of nondominated points in the objective space would
require less computation. He then suggested an outer-
approximation algorithm for computing all the nondo-
minated points in the objective space of the problem.

In this paper, we will extend the Multi-objective
Simplex Algorithm (MSA) of Evans and Steuer2 and
compare it with the primal variant of BOA1 as well as
with a variant of the Interior-Point Method (IPM)
developed by Arbel3 known as ASIMOLP. These algo-
rithms will be compared comprehensively on a series of
existing test problems and the results will be reported
and discussed.

This comparison may sound not possible given that
the three algorithms are based on three different phi-
losophies and compute different things: MSA works in
the decision space and finds the set of all efficient
extreme points; ASIMOLP also works in the decision
space but finds a most preferred efficient point and also
returns the corresponding most preferred nondomi-
nated point; BOA, on the other hand, works in the
objective space to find the set of all nondominated
points of the problem.

To achieve this comparison, we will extend the MSA
of Evans and Steuer2 whose explicit form is given in
Ehrgott4 and which computes all efficient extreme
points, to also generate the set of all nondominated
points of the problem. It has been shown that, in prac-
tice, the DM prefers basing his or her choice of a most
preferred (best) solution in the nondominated points,
Benson.1 We shall then act as the DM and choose a
Most Preferred Nondominated Point (MPNP) whose
components are as close as possible to an unattainable
ideal objective point from the nondominated set
returned by the extended MSA and BOA to compare
with a MPNP returned by ASIMOLP.

To the best of our knowledge, no comparison of the
computing efficiency and the quality of MPNP chosen
from the nondominated set returned by BOA and
EMSA with that returned by ASIMOLP has been car-
ried out before. We intend to fill this gap here.

This paper is organized as follows. The next section
introduces MOLP and basic notation. The literature
review section is a brief review of the relevant literature.
We present MSA, its extended version EMSA,
ASIMOLP and BOA in the Multiobjective simplex
algorithm, The extended multiobjective simplex algo-
rithm, The affine scaling interior point algorithm and
Benson’s outer approximation algorithm sections,
respectively. The Selection of the most preferred

nondominated point section discusses the selection of
a MPNP and the Experimental results section presents
numerical results obtained with the different algo-
rithms. Finally, a conclusion is presented in the last
section.

Notation and definitions

An alternative and compact formulation of (1) is as
follows

min Cx

subject to Ax ¼ b

x � 0

(2)

where C is a q� n criterion matrix consisting of the
rows cTk ; k ¼ 1; 2; . . . ; q, A and b are as described ear-
lier. The feasible set in the decision space is X ¼
x 2 Rn : Ax ¼ b; x � 0f g and in the objective space it
is Y ¼ Cx : x 2 Xf g: The set Y is also referred to as the
image of X.

A nondominated point in the objective space is the
image of an efficient solution in the decision space;
nondominated points form the nondominated set.

An efficient solution of an MOLP problem is a solu-
tion that cannot improve any of the objective functions
without deteriorating at least one of the other objec-
tives. A weakly efficient solution is one that cannot
improve all the objective functions simultaneously.
Mathematically, let x̂ 2 X be a feasible solution of (2)
and let ŷ ¼ Cx̂:

• x̂ is called efficient if there is no x 2 X such that
Cx � Cx̂ and Cx 6¼ Cx̂; correspondingly, ŷ ¼ Cx̂
is called nondominated.

• x̂ is called weakly efficient if there is no x 2 X such
that Cx < Cx̂; and ŷ ¼ Cx̂ is called weakly nondo-
minated, Ehrgott.4

The set of all efficient solutions and the set of all
weakly efficient solutions of (2) are denoted by XE and
XWE respectively, Benson.5 YN ¼ fCx : x 2 XEg and
YWN ¼ fCx : x 2 XWEg are the nondominated and
weakly nondominated sets in the objective space of
(2), respectively.

The nondominated faces in the objective space of a
given problem constitutes the nondominated frontier
and the efficient faces in the decision space of the prob-
lem constitutes the efficient frontier.

The ideal objective point y� is the minimum criterion
values over the efficient set XE. The ideal objective
values are easy to obtain by simply minimizing each
objective function individually over the feasible
region X, Alves and Costa.6
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Illustration

We consider the following MOLP adapted from Junior

and Lins.7

min f1 ¼ �x1
min f2 ¼ � x2

Subject to

6x1 þ 10x2 � 60

x1 � 7

x2 � 5

x1; x2 � 0

(3)

The feasible region in the decision space is shown in

Figure 1, where x1 ¼ ð7:0; 1:8ÞT; x2 ¼ ð1:6; 5:0ÞT 2 XE.
The nondominated points in the objective space are

shown in Figure 2, where f1 ¼ ð�1:6; � 5:0ÞT, and

f2 ¼ ð�7:0; � 1:8ÞT 2 YN.

Literature review

Decision space methods

As stated earlier, a number of approaches have been

suggested for generating either the entire efficient deci-

sion set XE or the nondominated set YN or a subset

thereof, or a most preferred solution to the problem.
Eiselt and Sandblom8 note that, Evans and Steuer,2

Philip9 and Zeleny10 derived generalized versions of the

simplex method known as MSA. That of Philip9 first

determines if an extreme point is efficient and subse-

quently checks if it is the only one that exists. If not, the

algorithm finds them all. This MSA approach, howev-

er, may fail at a degenerate vertex. In Philip,11 it was

modified to overcome this difficulty.
The MSA of Evans and Steuer2 also generates all the

efficient extreme points and unbounded efficient edges

of MOLPs; see also Algorithm 7.1, on page 178 of

Ehrgott.4 The algorithm first establishes that the prob-

lem is feasible and has efficient solutions. Thereafter, it

generates them all. An LP test problem is solved to

determine the pivots that lead to efficient vertices.

The algorithm is implemented as a software called

ADBASE in Steuer.12

The MSA variant of Zeleny10 also uses an LP test

problem to determine the efficiency of extreme points.

But, here, vertices are tested for efficiency after they

have been obtained unlike in Evans and Steuer2

where the test problem determines pivots leading to

efficient vertices.
Yu and Zeleny13,14 used the approach in Zeleny10 to

generate the set of all efficient solutions and presented

a formal procedure for testing the efficiency of extreme

points. The efficient extreme points are derived from
the efficient faces, in a top-to-down search strategy.
Numerical illustrations with three objectives were
used to demonstrate the effectiveness of the method.
In a similar paper, Yu and Zeleny15 applied their
approach expanded in Yu and Zeleny14 to parametric
linear programming. Two basic forms of the problem
and two computational procedures for computing the
efficient set were presented: the direct decomposition of
the parametric space into subspaces associated with
extreme points and the indirect algebraic method.
From a numerical experience point of view, the indirect

Figure 2. The edge joining the two nondominated points in the
objective space.

Figure 1. Edge connecting the two efficient points in the deci-
sion space.
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algebraic method outperforms the direct
decomposition.

Isermann16 proposed a variant of the MSA of Evans
and Steuer2 that solves fewer LPs when determining the
entering variables. The algorithm first establishes
whether an efficient solution for the problem exists,
and solves a test problem to determine pivots leading
to efficient vertices. It was implemented as a software
called EFFACET in Isermann and Naujoks.17

The MSA of Gal18 generates the set of all efficient
vertices and higher-dimensional faces. This approach is
meant to address the problem of determining efficient
faces and higher dimensional faces not resolved in
Evans and Steuer2 and Philip.9 Here, efficient extreme
points are generated using a test problem. The algo-
rithm also determines higher-dimensional efficient
faces for degenerate problems which were only dis-
cussed in Isermann16 and Zeleny10 but not solved.
The efficient faces are generated in a bottom-to-top
search strategy unlike what was suggested in Yu and
Zeleny.13,14

Steuer19 applied the MSA of Evans and Steuer2 to
parametric and non-parametric MOLP. Different
methods for obtaining an initial efficient extreme
point as well as different LP test problems were also
presented. Efficient extreme points are generated
through the decomposition of the weight space into
finite subsets that provide optimal weights correspond-
ing to extreme point solutions.

Ehrgott4 applied the MSA of Evans and Steuer2 to
solve MOLP problem instances with two and three
objective functions. Ecker and Kouada20 also proposed
a variation on the MSA of Evans and Steuer.2 They
noted that algorithms usually started from an initial
efficient extreme point and moved to an adjacent one
following the solution of an LP problem. The proposed
method does not require the solution of any LP prob-
lem to test for the efficiency of extreme points and the
feasible region needs not be bounded. The algorithm
enumerates all efficient extreme points and appears to
have computational advantage over other methods.

In a different paper, Ecker, Hegner and Kouada21

presented yet another variant of MSA. The algorithm
first determines the maximal efficient faces incident to a
given efficient vertex (i.e. containing the efficient
vertex) and ensures that previously generated efficient
faces are not regenerated. This is done following a
bottom-to-top search strategy as in Gal,18 which dra-
matically improves computation time. The proposed
approach was illustrated with a degenerate example
given in Yu and Zeleny,14 to demonstrate its applica-
bility. It was computationally more efficient than the
method in Yu and Zeleny.14

The MSA of Arman and Malivert22 determines the
set of efficient extreme points even for degenerate

MOLPs. The approach follows a bottom-to-top
search strategy and utilizes a lexicographic selection
rule to choose the leaving variables which proves effec-
tive when solving degenerate problems. It was tested
successfully on a number of degenerate problems. A
numerical example with five objectives and eight con-
straints which was solved in Yu and Zeleny14 was also
used to demonstrate its effectiveness. The proposed
MSA was superior to that in Yu and Zeleny.14

Rudloff, Ulus and Vanderbei23 suggested a paramet-
ric MSA which works for bounded and unbounded
problems, but does not find all the efficient solutions
unlike the algorithm of Evans and Steuer.2 Instead, it
finds a subset of efficient solutions based on the idea of
L€ohne.24 That is, a subset of efficient extreme points
and directions that allows to generate the whole effi-
cient frontier. The algorithm performs pivoting for
only one leaving variable among the set of all possible
leaving variables. It was compared with that in Benson1

which is an objective space based algorithm, and that
of Evans and Steuer.2 Numerical experiments show
that the proposed algorithm outperforms Benson’s
algorithm for non-degenerate problems. However,
Benson’s algorithm is better for highly degenerate
ones. The parametric MSA was also found to be com-
putationally more efficient than that of Evans and
Steuer.2 Of all these variants, it was noted in
Schechter and Evans25 that, the algorithm of Evans
and Steuer2 is the most popular and successful for com-
puting all efficient extreme points of the problem.

MSA and its variants make explicit use of the verti-
ces of the feasible region. Interior-point approaches,
however, generate iterates in the interior of the feasible
region. Various such approaches have been suggested.
The difference between them depends on the method-
ology employed to assess the suitability of points used
to derive a combined search direction along which one
heads towards the next iterate.

The first to adapt a variant of Karmarkar26 interior-
point algorithm, to solve MOLP appears to be
Abhyankar, Morin and Trafalis.27 It relies on the
method of centers. It uses a parameterization of ellip-
soids in the n-dimensional space to approximate the
efficient frontier of the problem in polynomial time.

Arbel28 also modified and adapted a variant of
Karmarkar26 algorithm resulting in the so called
Affine Scaling Interior MOLP (ASIMOLP) algorithm.
He used the convex combination of individual direc-
tions to derive a combined direction along which to
step toward the next iterate. Specifically, the algorithm
generates step direction vectors based on the objectives
of the problem. The relative preference of these direc-
tions is then assessed using a utility (or preference)
function to obtain the points used in combining them
into a single direction vector that moves the current
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iterate to a new one. The process is repeated until the
algorithm converges to a most preferred efficient solu-
tion after meeting some termination conditions.

Arbel3 proposed another ASIMOLP algorithm.
This approach offers another means of assessing pref-
erence information to establish a combined search
direction rather than using the DM’s utility function.
The Analytic Hierarchy Process (AHP) developed in
Saaty29 was applied to obtain the relative preference
of points used to derive a combined direction along
which the next step is taken. It is based on the assessed
preferences to weigh the step direction vectors for each
of the objectives in order to derive a combined step
direction vector. This process continues to generate
search directions and new feasible points at each itera-
tion, until the algorithm converges to a most preferred
point on the efficient frontier.

In Arbel,30 another ASIMOLP algorithm based on
the AHP has been suggested. The derived preference
information is applied to the projected gradients in
order to obtain anchoring points and cones used in
searching for a most preferred solution. The bound-
aries of the constraints polytope are constantly
probed to make more directions available, which ena-
bles one to arrive at a most preferred solution.

Wen and Weng31 modified the ASIMOLP algorithm
in Arbel28 to resolve zigzagging issues. The modified
algorithm, however, may not yield a most preferred
efficient solution.

Lin, Chen and Chen32 also proposed a modification
of the ASIMOLP of Arbel.28 They adopted the utility
function trade-off method to weigh the objective func-
tions involved and compared the modified algorithm
with that in Wen and Weng31 and the simplex
method. Numerical experiments show that their algo-
rithm is superior. On computing efficiency, the interior
point based algorithms outperform the simplex-based
ones on large scale problems.

Weng and Wen33 presented an ASIMOLP based
algorithm. It computes a weighted sum of the different
search directions involved using a utility function.
These search directions are then normalized with the
weights to obtain a combined direction that moves the
current solution to an anchor point. Computational
experiments show that the proposed algorithm is suit-
able for solving large scale instances.

Objective space methods

Due to the various difficulties arising from solving
MOLP problems in the decision space (such as
having different efficient solutions that map onto the
same point in the objective space), efforts were made to
look at the possibility of solving them in the objective
space.

Benson,1 who presented a detailed account of deci-
sion space approaches, proposed an algorithm for gen-
erating the set of all nondominated points in the
objective space. This is the so called BOA. According
to him, this algorithm is the first of its kind.
Computational results suggest that the objective space
based approach is better than the decision space based
one. A further analysis of the objective space based
algorithm for the problem was presented in Benson.34

This outer approximation algorithm also generates the
set of all weakly nondominated points, thereby enhanc-
ing the usefulness of the algorithm as a decision aid.

Another of Bensonen5 suggestions is a hybrid
approach for solving the problem in the objective
space. The approach partitions the objective space
into simplices that lie in each face so as to generate
the set of nondominated points. This idea was earlier
presented in Ban.35 The algorithm is quite similar to
that in Benson.1 The difference between them is in the
manner in which the nondominated vertices are found.
While a vertex enumeration procedure is employed in
Benson,1 a simplicial partitioning technique is used in
the latter.

In Shao and Ehrgott36 a modification of the algo-
rithm of Benson1 was presented. While in Benson,1 a
bisection method that requires the solution of many
LPs in one step is required, here, solving one LP
achieves the desired effect and in the process improves
computation time. In Shao and Ehrgott37 was pro-
posed an approximate dual variant of the algorithm
of Benson1 for obtaining approximate nondominated
points to the problem. The proposed algorithm was
applied to the beam intensity optimization problem
of radio therapy treatment planning for which approx-
imate nondominated points were obtained. Numerical
testing shows that the approach is faster than solving
the primal directly.

The explicit form of the algorithm of Benson1 as
modified by Shao and Ehrgott36 is presented in
L€ohne.24 This version solves two LPs in each iteration
during the process of obtaining the nondominated
extreme points. L€ohne38 presented a Matlab implemen-
tation of this algorithm called BENSOLVE-1.2, for
computing all the nondominated points and directions
(unbounded nondominated edges) of the problem.

Csirmaz39 presented an improved version of the
algorithm in Benson1 that solves one LP and a vertex
enumeration problem in each iteration. While in
Benson,1 solving two LPs to determine a unique
boundary point and a supporting hyperplane of the
image is required in two steps, here, the two steps are
merged and solving only one LP does both tasks and
improves computation time. The algorithm was used to
generate all the nondominated vertices of the polytope
defined by a set of Shannon inequalities on four
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random variables so as to map their entropy region.

Numerical testing shows the applicability of the

approach to medium and large instances.
Hamel and L€ohne40 introduced new versions and

extensions of the algorithm in Benson.1 The primal

and dual variants of the algorithm solve only one LP

problem in each iteration. Tests reveal a reduction in

computation time.
Similarly, L€ohne, Rudloff and Ulus41 extended the

primal and dual variants of the algorithm in Benson1 to

approximately solve convex vector optimization prob-

lems in the objective space.
Based on our extensive review of the topic, it was

observed that no comparison of the computing efficien-

cy and quality of a MPNP chosen from the nondomi-

nated set returned by BOA and extended MSA with the

MPNP returned by ASIMOLP has been carried out.

We intend to fill this gap here.

Multiobjective simplex algorithm

A typical multiple objective simplex algorithm is that of

Evans and Steuer.2 The version described here can be

found in Ehrgott,4 page 178. We consider this algo-

rithm because of its popularity (see Schechter and

Steuer25) and because most of the MSA algorithms

discussed earlier are either based on or are variants of

it. It works in the decision space and finds the set of all
efficient extreme points.

The algorithm is initialized by solving two auxiliary
LPs to determine whether the problem is feasible and
to verify that it has efficient solutions. If the feasible
region X is not empty and the set of efficient extreme
points XE exists, a weighted sum LP is solved to deter-
mine an initial efficient basis B. Its implementation
stores a list of efficient bases L1 to be processed, a
list L2 of efficient bases for output, and a list of efficient
nonbasic variables NE. An LP test problem is solved to
determine pivots that lead to efficient bases. The algo-
rithm pivots from an initial efficient basis to an adja-
cent efficient basis until the list L1 to be processed is
empty. The algorithm stops and returns list L2 from
where all efficient extreme points are computed.
Before we describe MSA in pseudo-code form, we
first explain the used notation.

Notation: A, b, C form the problem data; L1 and L2

as above; eT ¼ ð1; . . . ; 1Þ 2 Rq; I is the identity matrix
of proper order; X is the feasible set; XE, the set of
efficient solutions; B, the efficient basis; NE, a list of
efficient nonbasic variables; N, the set of nonbasic var-
iables; B0, the new basis; �A, and �b are updated con-
straint matrix and RHS vector; R is the nonbasic part
of the reduced cost matrix and rj is a column of R
corresponding to a nonbasic variable being tested for
efficiency.

Algorithm 1: Multiobjective Simplex Algorithm, Ehrgott4

0: Input:A; b;C : Problem data
1: Initialize: Set L1  1; L2  1; Phase I : Solve the LPminfeTz : Axþ Iz ¼ b; x; z � 0g: If the optimal value

of this LP is nonzero; STOP; X ¼1;
Otherwise x0 is a basic feasible solution ofMOLP

Phase II : Solve theLPminfuTbþ wTCx0 : uTAþ wTC � 0;w � eg: If it
is infeasible; STOP; XE ¼1;
Otherwise ðû; ŵÞ is an optimal solution;
Find an optimal basisBof theLPminfŵTCx : Ax ¼ b; x � 0g;
SetL1  fBg; L2  1:;

2: while L1 6¼1
3: ChooseB 2 L1; L1  L1nfBg;L2  L2[fBg;
4: Compute ~A; ~b; andR according to B;
5: NE  N;
6: for all j 2 N
7: Solve theLPmaxfeTv : Ry� rjrþ Iv ¼ 0; y; r; v � 0g.
8: If this LP is unboundedNE  NEnfjg;
9: for all j 2 NE

10: for all i 2 B
11: if B0  ðBnfigÞ[fjg is feasible ;B0 62 L1[L2 then;
12: L1  L1[B0;
13: endif;
14: endfor;
15: endfor;
16: endfor;
17: endwhile.
18: Output: L2 : List of efficient bases:
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Illustration of MSA

Consider MOLP (3) of the Illustration section. We

solve this problem using a Matlab implementation of

Algorithm 1 provided by Rudloff, Ulus and

Vanderbei.23 The efficient extreme points found are

x1 ¼ ð7:0; 1:8ÞT; x2 ¼ ð1:6; 5:0ÞT; x3 ¼ ð1:6; 5:0ÞT;
x4 ¼ ð7:0; 1:8ÞT. Where x1 ¼ ðx11; x12ÞT, herx4 ¼
ðx41; x42ÞT 2 XE. The algorithm is prone to generating

more efficient extreme points due to the way it operates

and due to the fact that it may find the same efficient

extreme point in more than one iteration, as in this

case; x1 ¼ x4 and x2 ¼ x3 are repetitive of what has

already been found. The feasible region in the decision

space is the same as in Figure 1.

The extended multiobjective simplex

algorithm

As part of the initialization step (line 1 of Algorithn 2),

we have included the set of efficient extreme points XE

and that of nondominated points YN. In the second

phase, as the algorithm finds an initial efficient basis

B by solving a weighted sum LP, the algorithm also

finds a corresponding efficient basic feasible solution
and appends it to the set of efficient extreme points
(XE  f�xg). The first nondominated point is also com-
puted from CT�x and appended to the nondominated
set (YN  fCT�xg).

As the algorithm iterates, a new efficient basis B0 is
obtained after each pivot and the corresponding effi-
cient basic feasible solution �x0 (line 11 of Algorithm 2)
is found and added to the set of efficient extreme points
XE (line 13). Likewise, the corresponding nondomi-
nated points are also found at each iteration and
added to the nondominated set YN (line 14). This con-
tinues until the set of efficient bases L1 to be processed
is empty. The algorithm returns the set of all efficient
extreme points and the corresponding nondominated
points (line 20).

Before we present Algorithm 2 as the extended MSA
in pseudo-code form, we first state here that the struc-
ture of the algorithm and the used notation remain the
same as that in Algorithm 1. The additional compo-
nents are �x; �x0, XE and YN which stand for the efficient
basic feasible solution, the new efficient basic feasible
solution, the set of efficient extreme points and the
corresponding set of nondominated points for output.

Algorithm 2: Extended Multiobjective Simplex Algorithm
0: Input: A; b;C ðdata of MOLP problemÞ
1: Initialize: Set L1  1; L2  1 ; XE  1; YN  1;

Phase I : Solve theLPminfeTz : Axþ Iz ¼ b; x; z � 0g: If the optimal value
of LP is not zero; STOP; X ¼1;

Otherwise x0 is a basic feasible solution ofMOLP
Phase II : Solve theLPminfuTbþ wTCx0 : uTAþ wTC � 0;w � eg: If
it is infeasible; STOP; XE ¼1: Otherwise ðû; ŵÞ is an

optimal solution: Find optimal basisB and
basic feasible solution �x of LPminfŵTCx : Ax ¼ b; x � 0g;
SetL1  fBg; L2  1; XE  f�xg; YN  fCT�xg;

2: while L1 6¼1 do
3: ChooseB 2 L1; L1  L1nfBg;L2  L2 [ fBg;
4: Compute ~A; ~b; andR according to B;
5: NE  N;
6: for all j 2 N
7: Solve theLPmaxfeTv : Rz� rjrþ Iv ¼ 0; z; r; v � 0g.
8: If this LP is unboundedNE  NEnfjg;
9: for all j 2 NE

10: for all i 2 B
11: if B0  ðBnfigÞ [ fjg is feasible ;B0 62 L1 [ L2; let �x

0 be its basic solution then;
12: L1  L1 [ B0;
13: XE  XE [ f�x0g;
14: YN  YN [ fCT�x0g;
15: endif
16: endfor
17: endfor
18: endfor
19: endwhile
20: Output: XE : The efficient set
YN : The nondominated set:

Nyiam and Salhi 7



Illustration of the extended MSA

We modified and extended the Matlab implementation
of Algorithm 1 provided by Rudloff, Ulus and
Vanderbei23 and used it to solve problem (3) of the
Illustration section. The efficient extreme points
found are x1 ¼ ð7:0; 1:8ÞT; x2 ¼ ð1:6; 5:0ÞT, and the
corresponding nondominated points are f1 ¼
ð�7:0; � 1:8ÞT and f2 ¼ ð�1:6; � 5:0ÞT respectively.
Where x1 ¼ ðx11; x12ÞT; x2 ¼ ðx21; x22ÞT 2 XE and
f1 ¼ ðf11; f12ÞT; f2 ¼ ðf21; f22ÞT 2 YN. Notice here that, the
efficient extreme points x1, x2 and the corresponding
nondominated points f1 and f2 returned are devoid of
redundant points. The algorithm is designed to avoid
returning redundant efficient and nondominated points
unlike the original version. The feasible region in the
decision space is also the same as in Figure 1.

The affine scaling interior point algorithm

ASIMOLP whose general form can be found in Arbel,3

works in the decision space and returns only one effi-
cient extreme point of the problem, or at most, an effi-
cient face of the feasible region. It also returns the
corresponding nondominated point. The algorithm is
initialized with a feasible and interior starting solution
vector x0 and generates q interior step direction vectors
dxi (1 � i � q). AHP is then used to derive the relative
priority or preference vector p for these directions by
filling a pairwise comparison matrix, which is then nor-
malized and the rows are averaged to obtain the prior-
ity vector. The components of the derived priority
vector p are then used as coefficients of a convex com-
bination of the q interior step directions that yields a
combined step direction vector dx that moves toward a
new feasible point. This process continues until the
algorithm converges to a most preferred efficient
extreme point after meeting some termination condi-
tions. Before we present the pseudo-code form of
ASIMOLP, the used notation is described.

Notation: A, b, C form the problem data; x0 is the
initial interior feasible solution vector; ai is the step size
(1 � i � q); r is a stopping tolerance; q is the step size
factor; D is the diagonal and scaling matrix; yi is an
estimate of the dual vector (1 � i � q); dxi is the ith
interior step direction vector (1 � i � q); pi is the
derived priority vector (1 � i � q); xnew is the new
feasible point; fnew is a vector containing the new objec-
tive values; xend is the most preferred efficient extreme
point at the boundary of the feasible region at termi-
nation and fend is a vector containing the corresponding
objective values at termination.

Algorithm 3: Affine Scaling Interior MOLP
Algorithm

0: Input: A; b;C : Problem data
1: Initialize: Choose x0 > 0, Stopping tolerance
r ð0 < r < 1Þ, Step size factor q ð0 < q < 1Þ,
Converged¼ 0, k 0;

2: while Converged 6¼ 1 do
3: k kþ 1
4: D diagðx0Þ
5: yiðkÞ  ðAD2ATÞ�1AD2ci; 1 � i � q
6: dxiðkÞ  D2ðcTi � ATyiðkÞÞ; 1 � i � q
7: if dxiðkÞ � 0; 1 � i � q, stop
8: else
9: ai  min½ �xidxiðkÞ ; 8dxiðkÞ < 0�; 1 � i � q
10: xiðkþ 1Þ  xðkÞ þ qaidxiðkÞ; 1 � i � q
11: dx 

Xq

i¼1 piaidxi
12: xðkþ 1Þ  xðkÞ þ qdxðkÞ
13: xnew  xðkÞ þ dxðkÞ
14: fnew  CTxnew
15: dxend  xend � xðkÞ
16: if k> 1, do
17: dx 

Xq

i¼1 piaidxi þ penddxend
18: xnew  xðkÞ þ qdxðkÞ
19: fnew  CTxnew
20: xend  xðkÞ þ dxðkÞ
21: fend  CTxend
22: dxend  xend � xnew
23: else
24: if jjdxendjj � r, stop
25: else
26: x0  xnew
27: Go to step 4
28: endif
29: endif
30: endif
31: endwhile
32 Output: xend : Most preferred efficient extreme point
fend : Values of the objective functions

Illustration of ASIMOLP

We developed the pseudo-code of this algorithm,
implemented it in Matlab and used it to solve
Problem (3) of the Illustration section. The most pre-
ferred efficient extreme point found using our Matlab
implementation is x1 ¼ ð3:6418; 3:7913ÞT, and the
values of the objective functions are
f1 ¼ ð�3:6418; � 3:7913ÞT. The search path as gener-
ated by Algorithm 3 is shown in Figure 3.

Determination of the priority vector used in
ASIMOLP

From Arbel,28 one can either use a utility function if it
is available (as was done in Arbel42) to assess prefer-
ence information needed to establish a combined step

8 Journal of Algorithms & Computational Technology



direction instead of interacting with the DM or use the

AHP methodology, but in most cases, the utility func-

tion is not known, as stated in Arbel.3 In this paper, we

have used AHP as was done in Arbel3,30 to derive the

relative preference or priority vector p whose compo-

nents are used as coefficients of a convex combination

of the q interior step directions that yields a combined

step direction that moves the current iterate to a new

one.
The procedure involves a pairwise comparison of the

q interior step directions and construction of a q� q

comparison matrix for comparing the interior step

directions. A complete pairwise comparison matrix A

can be expressed as

A ¼

d1

d2

..

.

dq

d1 d2 . . . dq

w1

w1

w1

w2
. . .

w1

wq

w2

w1

w2

w2
. . .

w2

wq

..

. ..
. . .

. ..
.

wq

w1

wq

w2
. . .

wq

wq

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

1 a12 . . . a1q

a21 1 . . . a2q

..

. ..
. . .

. ..
.

aq1 aq2 . . . 1

0
BBBBB@

1
CCCCCA

where the entry aij indicates the strength of the step

direction di when compared with the step direction dj.

These entries are obtained from the well-established

comparison scale used by AHP in Saaty,29 Saaty and

Vargas.43 Such a scale is shown in Table 1.
We note that the above comparison matrix is a

reciprocal matrix, where aij ¼ 1=aij, aij> 0 and aij¼ 1

for i¼ j. After filling out and obtaining the comparison

matrix, the matrix is then normalized. The normalized

principal eigen-vector herein referred to as the prefer-

ence or priority vector, p, is obtained by averaging

across the rows of the matrix. The components of the

priority vector are then used as coefficients of a convex

combination of the q interior directions that yields a

combined direction that enables one to move from the
current iterate to the next, (more details can be seen in

Saaty,29 Saaty and Vargas.43

Benson’s outer approximation algorithm

We present here the version of BOA due to Shao and

Ehrgott.36 This version can be found in L€ohne.24 It

works in the objective space of the problem and returns

the set of all nondominated points and extreme direc-
tions. The algorithm can be regarded as a primal-dual

method because it also solves the dual problem. But

here, we are only concerned with the solution of the

primal. The algorithm first constructs an initial sur-

rounding polytope Y0 containing the image Y in the
objective space and an interior point p̂ of the image is

determined. At each iteration, a bounding polytope Yk

is maintained and its vertices as well as inequality rep-

resentation (facets) are stored. Then for each vertex v of

the polytope, the algorithm checks if the vertex is on
the boundary of Y. If all the vertices are on the bound-

ary of Y, the problem is solved. The external vertices of

Y are among the vertices of Yk. Otherwise, for any

vertex v of Yk that is not on the boundary of Y, the

algorithm connects this vertex to the interior point p̂
and finds the intersection y of this line with the bound-

ary of Y by solving LP P2ðvÞ. Then a supporting hyper-

plane adjacent to y is constructed by solving LP D2ðyÞ.
This hyperplane is added to Yk to provide a smaller

polytope. The algorithm is repeated in the same way
until the vertices of Yk coincide with the boundary of

Y. The algorithm returns the set of vertices on the

boundary of Y as the nondominated set �Y and direc-

tions �Yh of the problem. Consider the notation used in

the pseudo-code of Bensony untter Approximation
Algorithm.

Notation: A, b, C are the problem data; Ph is the

homogeneous problem; D�h is the homogeneous dual

Figure 3. ASIMOLP search path showing convergence to the
efficient frontier.

Table 1. Graduation scale for comparing alternatives.

Numerical value Interpretation

1 requirement i and j are of

equal value

3 requirement i has a slightly

higher value than j

5 requirement i has a strongly

higher value than j

7 requirement i has a very strongly

higher value than j

9 requirement i has a an absolutely

higher value than j

2,4,6,8 intermediate values bewteen two

adjacent judgments

Nyiam and Salhi 9



problem; �T
h
is the solution of the homogeneous dual

problem; p̂ is an interior point; �T is a set of solutions of

the dual problem; Yd
k is the inequality representation of

the current polytope; k is the iteration counter; Y
p
k is

the representation by vertices; ðŷ; zÞ is an optimal solu-
tion to P2ðvÞ; dð0 < d < 1Þ is a unique value that

determines the intersection or boundary point y; R(v)

is the LP that finds the unique value d; the command

solveðÞ solves an LP; vertðÞ returns the vertices of a

polytope Y; �Y is the set of nondominated vertices;

ð �YhÞ is the set of extreme directions.

Algorithm 4: Benson’s Outer Approximation

Algorithm, L€ohne24

0: Input: A; b;C : Problem data a solution ðf0g; �YhÞ
to Ph;

a solution �T
h
to D�h;

1: Initialize: p̂  PðsolveðP1ð0ÞÞÞ þ e;
2: �T  fðsolveðD1ðwÞÞ;wÞjðu;wÞ 2 �T

hg;
3: while z ¼ 0 do
4: Yd

k  fD�ðu;wÞjðu;wÞ 2 �Tg;
5: Yp

k  vertðYdÞ;
6: �Y  1;
7: for i ¼ 1 to jYpj do
8: v Yp

k½i�;
9: ðŷ; zÞ  solveðP2ðvÞÞ;
10: �Y  �Y [ fŷg;
11: if z 6¼ 0 then
12: ðx; dÞ  solveðRðvÞÞ; ð0 < d < 1Þ;
13: y dv þ ð1� dÞp̂;
14: ðu;wÞ  solveðD2ðyÞÞ;
15: �T  �T [ fðu;wÞg;
16: endif;
17: endfor;
18: endwhile
19 Output: ð �Y; �YhÞ : Nondominated set and directions;
�T : a solution to dual:

Illustration of BOA

For continuity, we consider again problem (3) of the

Illustration section. The nondominated points found
using an existing Matlab implementation of

Algorithm 4, namely Bensolve-1.2 of L€ohne,38 are f1 ¼
ð�7:0; � 1:8ÞT and f2 ¼ ð�1:6; � 5:0ÞT where f1 and

f2 2 YN. These nondominated points are as shown in

Figure 2.

Selection of the most preferred

nondominated point

To determine the Most Preferred Nondominated Point

(MPNP), we employ the technique of compromise pro-

gramming and compute the ideal objective point which

would serve as a reference point in each case.

Compromise programming is a mathematical program-

ming method that is based on the notion of distance of

a most preferred solution from the ideal point y�,
Zeleny.44 Ehrgott45 note that the ideal point is an essen-

tial component of compromise programming, and the

idea is to find a nondominated point which is as close

as possible to it. This is a point in the objective space

whose components are the optimal values of the objec-

tive functions when they are individually optimized

Alves, Antunes and Climaco.46 It was also noted in

Zeleny44 that the ideal point serves as a rationale

directing and facilitating human choice and decision

making. To find the ideal point, we simply solve q

single objective problems

min cTk x; k ¼ 1; 2; . . . ; q

subject to x 2 X:
(4)

We note here that, the ideal point itself is not an

element of the nondominated set ðy� 62 YNÞ.
Otherwise, this would mean that the objective functions

are not conflicting, but it always exists in the objective

space. Its corresponding point in the decision space

may not exist Alves, Antunes and Climaco.46

For our numerical illustration above (problem 3 of

the Illustration section), solving each of the objective

function individually over the feasible region X yields

the ideal objective point y� ¼ ð�7:0;�5:0ÞT. Clearly

y� 62YN where YN ¼ fð�7:0; � 1:8ÞT; ð�1:6; � 5:0ÞTg.
Having computed the ideal objective point y�, we

now determine the minimum distance of each nondo-

minated point ŷ from it by finding

min fjjŷ1 � y�jj; jjŷ2 � y�jj; . . . ; jjŷn � y�jjg

where ŷi 2 YN has already been found either by BOA

or EMSA, jj :jj is the Euclidean norm on Rq and y� is
the ideal objective point.Using the nondominated

points f1 and f2 returned by BOA and EMSA for prob-

lem (3) yields

jjf1 � y�jj ¼ 3:2 and jjf2 � y�jj ¼ 5:4:

Since, the relative distance of f1 from the ideal point

y� is 3.2 which is the smallest of the two, it therefore

means that f1 ¼ ð�7:0; � 1:80ÞT is the closest of the

two nondominated points to the ideal point

y� ¼ ð�7:0;�5:0ÞT. Hence, f1is selected as the DM’s

most preferred nondominated point.
Next, we measure the distance of the nondominated

point f1 ¼ ð�3:6418� 3:7913ÞT returned by ASIMOLP

in the Illustration of ASIMOLP section for the same

10 Journal of Algorithms & Computational Technology



numerical illustration (Problem 3 of the Illustration

section) from the ideal point y� ¼ ð�7:0;�5:0ÞT, as

was done with those returned by BOA and EMSA

for the same example. It turned out that, the distance

jjf1 � y�jj ¼ 3:5691

is bigger than 3.2 which was the closest when measuring

the points returned by BOA and EMSA, thereby making

the nondominated points returned by BOA and EMSA

closer to the ideal point and of higher quality.
The following more substantial illustrative MOLP

adapted from Zeleny44 with three objectives makes

the point.

minf1 ¼ �x1 � 2x2 þ x3 � 3x4 � 2x5 � x7

minf2 ¼ � x2 � x3 � 2x4 � 3x5 � x6

minf3 ¼ �x1 � x3 þ x4 þ x6 þ x7

Subject to

x1 þ 2x2 þ x3 þ x4 þ 2x5 þ x6 þ 2x7 � 16

� 2x1 � x2 þ x4 þ 2x5 þ x7 � 16

� x1 þ x3 þ 2x5 � 2x7 � 16

x2 þ 2x3 � x4 þ x5 � 2x6 � x7 � 16

x1; x2; x3; x4; x5; x6; x7 � 0:

(5)

Again, optimizing each of the objective functions

individually over the feasible region yields the ideal

objective point y� ¼ ð�48:0;�32:0;�16:0ÞT. Solving

(5) with BOA and EMSA, the set of nondominated

points found is YN ¼ fð�48:0;�32:0; 16:0ÞT;
nnð�16:0; 0:0;�16:0ÞT; ð0:0;�8:0;�16:0ÞT; ð�5:33;
�21:33;�5:33ÞT; ð�16:0;�24:0; 0:0ÞTg with y� 62 YN.

By determining the minimum distance of each of

these nondominated points from the ideal point y�, it
was found that the point ð�48:0;�32:0; 16:0ÞT is the

closest. Its distance from it is 32. It is selected as the

DMoi MPNP.
For problem (5), the MPNP returned by ASIMOLP

is f1 ¼ ð�7:65� 13:80� 7:75ÞT as shown in Table 2,

Problem 10. Again, we measure its distance from the

ideal point y� ¼ ð�48:0;�32:0;�16:0ÞT. It was found

that the distance of the point ð�7:65� 13:80� 7:75ÞT
from y� ¼ ð�48:0;�32:0;�16:0ÞT is 45.0269, which is

also larger than the corresponding values of BOA and

EMSA, thereby making the MPNPs returned by BOA

and EMSA to be of higher quality.
We have used this method to choose the MPNP

from the nondominated sets returned by BOA and

EMSA for comparison. There is no selection of a

MPNP in ASIMOLP as the algorithm computes a

most preferred efficient solution and also returns the

corresponding most preferred nondominated point.

To determine the quality of the MPNP returned by
ASIMOLP, we simply measure its distance from the
ideal point in each case and compare with the distances
of those returned by BOA and EMSA in order to deter-
mine that which is the closest to the ideal point and of
higher quality. The way the preference or priority
vector p needed in AHP is derived, is explained in the
Determination of the priority vector used in ASIMOLP
section.

Experimental results

In this section, we provide numerical results to com-
pare the quality of a Most Preferred Nondominated
Point (MPNP) and the efficiency of Algorithms 2, 3
and 4. Table 2 shows the numerical results for a collec-
tion of 60 existing problems ranging from small to
medium and realistic MOLP instances. Problem 1 is
taken from Ehrgott,4 and Problems 2 to 10 are from
Zeleny.44 Problems 11 to 20 are test problems from the
interactive MOLP explorer (iMOLPe) of Alves,
Antunes and Climaco.46 Problems 21 to 46 are taken
from Steuer.19 Problem 47 is a test problem in
Bensolve-1.2 of L€ohne,38 while problems 48 and 52
are test problems in Bensolve-2.0 of L€ohne and
Weißing.47 Problems 49 to 51 are obtained using a
script in Bensolve-2.0 of L€ohne and Weißing47 that
was also used to generate problem 52 with the same
number of variables and constraints. Finally, problems
53 to 60 are from MOPLIB which stands for Multi-
Objective Problem Library and is maintained by L€ohne
and Schenker.48

Problem 47 is such that the constraint matrix is
sparse while the criterion matrix is dense. The RHS
vector is such that all the components are ones except
for 200 at the end as the largest entry. Problem 48 has a
dense constraint matrix with an identity matrix of
order n as its criterion matrix where n is the number
of variables in the problem. The RHS vector is such
that all the components are zeros except for a one (1) at
the begining as the only none zero element. Problems
49 to 52 have dense criterion matrices with identity
matrices of order n as their constraint matrices where
n is also the number of variables in the respective prob-
lem. All the elements in the RHS vectors are ones.
Problem 53 is highly degenerate, its structure is such
that, the constraint and criterion matrices are sparse
while all the components of the RHS vector are zeros
except for a one (1) as the only non-zero entry. Problem
54 has dense RHS vector while the constraint and cri-
terion matrices are sparse. In Problems 55 and 58, the
constraint matrices are sparse, the criterion matrices
are dense and all the elements in the RHS vectors are
ones. Problems 56 and 57 have sparse constraints and
criterion matrices with dense RHS vectors. Problem 59
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has dense RHS vector while the constraint and criteri-
on matrices are sparse. Finally, Problem 60 is such that
the constraint and criterion matrices are sparse while
the components of the RHS vector are all zeros except
for a ninety (90) at the end as the only non-zero entry.

We modified and extended Algorithm 1 of Evans
and Steuer2 into Algorithm 2 or EMSA the Extended
Multiobjective Simplex Algorithm. We have imple-
mented it in Matlab in the same way as in Rudloff,
Ulus and Vanderbei23 and experimented with it on a
set of MOLP in Matlab in the same wain tAlgorithm 3
in Matlab and used an existing Matlab implementation
of Algorithm 4, known as Bensolve-1.2 of L€ohne.38

The current version, Bensolve-2.0 of L€ohne and
Weißing47 is implemented in the C programming lan-
guage. We employed Bensolve-1.2 of L€ohne38 which is
implemented in Matlab to test the algorithms with the
same tools and for more meaningful comparisons. In
all tests, m is the number of constraints, n the number
of variables and q the number of objectives. Algorithm
3 is ASIMOLP of Arbel3 and Algorithm 4 is BOA of
Benson1 as presented in Shao and Ehrgott.36 All algo-
rithms were executed on an Intel Core i5-2500 CPU at
3.30GHz with 16.0GB RAM.

We recorded the CPU times (in seconds) for each
problem and acted as the DM by choosing a most pre-
ferred (best) nondominated point (whose components
are as close as possible to the ideal objective point as
explained in the Selection of the most preferred non-
dominated point section) from the nondominated set
YN ¼ fCx : x 2 XEg returned by BOA to compare with
the MPNP returned by EMSA and with that returned
by ASIMOLP.

As can be seen from Table 2, the CPU times for all
algorithms increase as the problem sizes increase. It
was observed that ASIMOLP returns a CPU time of
less than a second for most of the test problems it
solves, thereby making it computationally more effi-
cient than BOA and EMSA. However, BOA was
found to be computationally more efficient than
EMSA for all the test problems considered. We noticed
that ASIMOLP did not solve problems 53 as there
exists no initial and strictly positive starting solution
(x0 > 0 such that Ax0 ¼ b) due to singularity issues
which indicates that either the initial solution does
not exist or it is not unique. We suspect that the diffi-
culty this problem pose to ASIMOLP is due to its
matrix structure and the way Interior Point methods
work. A diagonal matrix whose diagonal elements are
the elements of an initial positive starting solution is
required. Once the diagonal elements are not strictly
positive (x0 > 0), ASIMOLP exhibits this difficulty.
We even employed a decomposition approach which
did not yield the required initial positive starting
solution.

In terms of the quality of a MPNP returned by the

algorithms, it was observed that EMSA and BOA

return the same MPNPs for all test problems consid-

ered. This makes these two algorithm comparable and

the nondominated points they returned are of higher

quality than those returned by ASIMOLP in all cases.

We also observed in Table 2 that EMSA and BOA

could not produce results for some of the test problems

considered despite the long running time allowed

(3 days); they were aborted. The fact that some prob-

lems were aborted after 3 days of running time does not

necessarily mean that the algorithms cannot solve these

problems; if allowed to run further they would poten-

tially return a huge number of nondominated points or

run out of memory which would indicate that the total

number of nondominated points has exceeded the

Matlab solution capacity of the machine used. We

note here that, some of these problems most especially

from problem 47 to 60 are numerically ill-posed and

highly challenging MOLP instances with difficult

structures.

Conclusion

We have reviewed the extensive literature on three

iconic algorithms namely MSA, ASIMOLP and

BOA. We have extended MSA to find the set of non-

dominated points and presented the algorithms as well

as illustrated them on small MOLP instances. We then

proceeded to investigate their computational efficiency

and compare the quality of a most preferred nondomi-

nated point they returned on a collection of 60 existing

problems ranging from small to moderate and large

MOLP instances. It was observed that Benson’s BOA

and EMSA, introduced here, are superior to

ASIMOLP in terms of the quality of the most preferred

nondominated point they returned. The measure of

quality used is the distance to the ideal point as

explained in the Selection of the most preferred non-

dominated point section. ASIMOLP, however, outper-

forms them in terms of computing efficiency.

Moreover, on the test problems considered, BOA was

also found to be computationally superior to EMSA.
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