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Abstract

Options with extendable features have many applications in finance which provides the
motivation for this study. The price of extendable options has appeared in the literature
when the underlying asset follows a geometric Brownian motion (GBM) with a constant
volatility. In this paper, we consider holder-extendable call options when the underlying
asset follows a mean-reverting stochastic volatility. The option price is expressed in
integral forms which have known closed-form characteristic functions. We price these
options using fast Fourier transform (FFT), finite difference method, and Monte Carlo
simulation, and determine the efficiency and accuracy of the Fourier method in pricing
holder-extendable call options for Heston parameters calibrated to the sub-prime crisis.
We show that the FFT reduces the computational time required to produce a range of
holder-extendable call option prices by at least an order of magnitude. Numerical results
also demonstrate that when the Heston correlation is negative, Black-Scholes under-
prices in-the-money and over-prices out-of-the-money holder-extendable call options
compared to the Heston model, which is analogous to the behaviour for vanilla calls.
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1. Introduction
As Longstaff [22] has described, “Any financial contract that could involve a
rescheduling of payments, a renegotiation of terms, an early call or exercise provision
or some similar type of flexibility over the timing of cash flows could be viewed
generally as including an option with an extendable maturity”. One such option is
the extendable option which can either be a holder-extendable option or a writer-
extendable option, other than being classified as calls and puts. At the initial maturity
time, the holder-extendable option can be extended to another maturity time for an
additional premium, whereas the writer-extendable option can be extended to another
maturity time if the option is out-of-the-money. The pricing for the writer-extendable
option is more straightforward than the holder-extendable option; hence is not included
in this study.

An extendible option is an example of a dual-expiry exotic option [4], and its
framework has been used in other financial contracts such as extendable warrants
[13, 16] and extendable bonds [25]. In addition, Longstaff [22] discusses other
applications of extendable options to real-estate and shared-equity mortgages. Hauser
and Lauterbach [13] suggest that investors are favorable of extendable call warrants
because they produce lower absolute pricing errors than the standard call warrants.
Extendable options are also used for commodity markets; for instance Dias and
Carlos Rocha [9] price extendable oil options. Neftci and Santos [25] note that
extendable bonds have stabilizing properties and “the embedded options work as a
cushion and replicate the trading gains from hedging long-term bonds with interest
rate derivatives.” Recently, Koussis et al. [21] consider the problem of product
development, which inherently contain extendable features, within the real option
framework that generalizes the results of Longstaff [22]. Indeed the application of
extendable features within the real option framework deserves further investigation.

The earliest work on financial derivatives that have this feature appears in
Ananthanarayanan and Schwartz [1] and Brennan and Schwart [3] which display
theoretical pricing for retractable and extendable bonds. Longstaff [22] discusses
extendable options extensively and provides a closed-form solution for extendable
options under the Black-Scholes model [2]. In recent years, Chung and Johnson [6]
extend the work of Longstaff [22] to a general case where the holder or the writer can
extend the option more than once, and derive a closed-form solution for n−extensions.
While these studies are within the Black-Scholes framework, Gukhal [12] provides
closed-form solutions for the extendable option with a jump feature based on the
Merton jump diffusion model [23], and demonstrates that a compound option is a
special case of the extendable option. Additionally, Peng and Peng [26] extend the
study of Chung and Johnson [6] by deriving a value for an n−time extendable option
with jumps, where the underlying asset price follows a fractional process, while
Shevchenko [30] derives the price for extendable option for the case of an underlying
asset that follows a geometric Brownian motion with time-dependent and volatility.

Given the underlying asset price S and the initial strike price K1, at a given initial
maturity time T1, the call option can be extended to time T2 for a new strike price K2
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by paying an additional premium A. The payoff of the holder-extendable call option
can be represented as follows:

max
[
0, S T1 − K1, C

(
S T1 , K2, T2 − T1

)
− A

]
, (1)

or similarly:

max
[
max(S T1 − K1, 0), max

[
C

(
S T1 , K2, T2 − T1

)
− A, 0

]]
, (2)

which indicates that at time T1, the holder has to compare two risky payoffs and choose
the largest payoff, where C(S , K, t) is the price of a vanilla call option.

The holder of a holder-extendable call option has the right, but not the obligation to
either let the option expire worthless; or to exercise the option; or to extend the option’s
maturity time. The choice region where the option is either exercised or extended is
determined by solving for the critical asset values s∗ and s∗∗ which may be obtained
from the following equations:

C (s∗, K2, T2 − T1) − A = 0, (3)
s∗∗ − K1 = C (s∗∗, K2, T2 − T1) − A. (4)

Equation (3) has a unique solution s∗ = L that is bounded by A ≤ L ≤ A + K2e−r(T2−T1 .
If L ≥ K1, then the call option is never extended; hence the holder receives
C(S T1 , K1, T1). If L < K1, then Equation (4) has a finite unique solution s∗∗ = H
when A > K1 − K2e−r(T2−T1), where the call option is extended when L < S T1 < H;
exercised when S T1 ≥ H; and worthless when S T1 ≤ L. This is the usual case for
a holder-extendable call option and is depicted in Figure 1, where the black line
represents the payoff of max(S T1 − K1, 0), and the red line represents the payoff of
C(S T1 , K2, T2 − T1) − A. However, when A ≤ K1 − K2e−r(T2−T1), Equation (4) has no
solution if L < K1 where the call option is extended when L < S T1 and worthless when
L ≥ S T1 .

1 Figure 2 illustrates this.
The fair price of an option whose price depends on its underlying asset price can be

determined under the risk-neutral probability measure Q, where the expected return on
the risky asset is same as that on a risk-free investment in cash. Therefore, at maturity
time T, the price of a holder-extendable call option EC is computed as the discounted
risk-neutral conditional expectation of its payoff (1) at a risk-free rate r defined as
follows:

EC = e−r(T1−t)EQ max
[
0, S T1 − K1, C

(
S T1 , K2, T2 − T1

)
− A

]
, (5)

where C is calculated in either the Black-Scholes framework [2], CBS , or the Heston
framework [14], CH .

2 Hence, the analytical pricing solution for a holder-extendable
call option in the Black-Scholes framework is given as follows [22, see]:
1 The analysis of these conditions are also given in [30, 12].
2 Note that the Heston vanilla call has a semi-analytic solution which is used in the Monte Carlo simulation
under the Heston framework.
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Figure 1. Holder-extendable call payoff at time T1 when H is finite and unique.

Figure 2. Holder-extendable call payoff at time T1 when H does not exist.
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Theorem 1. Given underlying asset price S , initial maturity date T1 and strike price
K1, the price of a holder-extendable call option whose maturity time may be extended
to T2 for an additional payment A with a new strike price K2, is as such:

ECBS (S t, K1, T1, K2, T2, A)
= CBS (S t, K1, T1)
+

[
S t M(2)(a1, b1, −∞, c1; ρ) − K2e−r(T2−t)M(2)(a2, b2, −∞, c2; ρ)

]
−

[
S t M(a1, d1) − K1e−r(T1−t)M(a2, d2)

]
− Ae−r(T1−t)M(a2, b2), (6)

where:

a1 =
ln

(
S t
H

)
+

(
r + 1

2σ
2
)

(T1 − t)

σ
√

T1 − t
, a2 = a1 − σ

√
T1 − t,

b1 =
ln

(
S t
L

)
+

(
r + 1

2σ
2
)

(T1 − t)

σ
√

T1 − t
, b2 = b1 − σ

√
T1 − t,

c1 =
ln

(
S t
K2

)
+

(
r + 1

2σ
2
)

(T2 − t)

σ
√

T2 − t
, c2 = c1 − σ

√
T2 − t,

d1 =
ln

(
S t
K1

)
+

(
r + 1

2σ
2
)

(T1 − t)

σ
√

T1 − t
, d2 = d1 − σ

√
T1 − t,

ρ =

√
T1 − t
T2 − t

,

and M(a, b) is the cumulative probability of the standard normal density in the interval
[a, b], while M(2)(a, b, c, d; ρ) is the cumulative probability of the standard bivariate
normal density with correlation ρ for the region [a, b] × [c, d].

The price of a holder-extendable call option (6) in Theorem 1 can be represented in
terms of fewer univariate normal distributions by using the following identities:

M(2)(a, b, c, d; ρ) = N(2)(b, d; ρ) − N(2)(a, d; ρ) − N(2)(b, c; ρ) + N(2)(a, c; ρ),

M(2)(a, b, −∞, d; ρ) = N(2)(b, d; ρ) − N(2)(a, d; ρ),
M(a, b) = N(b) − N(a),

where N(·) is the standard normal distribution and N(2)(·, ·; ρ) is the standard bivariate
normal distribution with correlation ρ, which yields the following corollary.

Corollary 1. The price of a holder-extendible call option with maturity T1 and strike
price K1, whose maturity may be extended to T2 with a new strike price K2 by making
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an additional payment A is:

ECBS (S t, K1, T1, K2, T2, A)
= CBS (S t, K1, T1) + S tN(2)(b1, c1; ρ) − K2e−r(T2−t)N(2)(b2, c2; ρ)
−

[
S tN(2)(a1, c1; ρ) − K2e−r(T2−t)N(2)(a2, c2; ρ)

]
−Ae−r(T1−t)[N(b2) − N(a2)], (7)

where a1, a2, b1, b2, c1, and c2 are as defined previously.

Equation (6) represents the price of a vanilla call option with strike price K1 plus
the non-negative value of the extension privilege. Hence, the holder-extendable call
option is worth at least as much as its corresponding vanilla call option, and the holder-
extendable call option is worthless when letting S = 0. Moreover, by letting L = 0 and
H =∞ reduces the holder-extendable call option to a vanilla call option that is always
extended which yields C(S t, K2, T2). Additionally, in Equation (3), by imposing A = 0
yields L = 0, and taking H = K1, reduces the holder-extendable call option pricing
formula (6) to a writer-extendable call option pricing formula.

In this study, we consider the problem of pricing holder-extendable call options
under the Heston model [14], which is characterized by the following dynamics:

dS t = rS tdt +
√

vtS tdWt,1, (8)
dvt = κ (θ − vt) dt + σ0

√
vtdWt,2, (9)

where < dWt,1, dWt,2 >= ρdt, κ ≥ 0 is the speed of mean reversion, θ ≥ 0 is the mean
level of variance, σ0 > 0 is the volatility of the volatility, and vt follows a mean-
reverting square-root process [8]. It is convenient to write the equations above in
terms of two independent Brownian motions

(
W̃t,1, W̃t,2

)
such that:

dS t = rS tdt +
√

vtS t

(√
1 − ρ2dW̃t,1 + ρdW̃t,2

)
(10)

dvt = κ (θ − vt) dt + σ0
√

vtdW̃t,2, (11)

or:

d
(

S t

vt

)
=

(
rS t

κ (θ − vt)

)
dt +

( √
vt

(
1 − ρ2)S t ρ

√
vtS t

0 σ0
√

vt

) (
dW̃t,1
dW̃t,2

)
, (12)

where E
[
dW̃t,1dW̃t,2

]
= 0, i.e. dW̃t,1 is uncorrelated with dW̃t,2. In order to compare

against the Black-Scholes formulation, the expected variance (given an initial variance
v0) over the life of an option of maturity T is required [14]. Under the Heston dynamics
this is given by Rouah [28]:

υ(T ) = EQ


T∫

0

vt dt

∣∣∣∣∣∣v0

 = (v0 − θ)
(
1 − e−κT

κ

)
+ θT. (13)
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According to Sophocleous et al. [31], the complexity of the model increases when
stochastic volatility is incorporated. Hence, a numerical technique is used to price
options with this additional feature. Numerical techniques may include Monte Carlo
simulation and finite difference methods [7, 10]. The FFT technique in option
pricing was introduced by Carr and Madan [5], and has since gained popularity in
option pricing because its algorithm offers computational efficiency by employing
the characteristic function of the log price which is known in closed-form for many
models discussed in the literature [17, 27, 32, 33, 34]. In Ibrahim et al. [19], the FFT
technique has been applied to price the holder-extendable call options in the Black-
Scholes environment, while in this study, we aim to apply the FFT technique to price
the holder-extendable call options under the Heston model [14].

The remainder of the paper is organized as follows. Section 2 provides
the characteristic functions and numerical solutions of extendable option by FFT
technique. The extendable option is expressed as expectations of indicator functions
and the inverse Fourier transform (iFT) is obtained for one- and two-dimensional FFT.
We employ known closed-form representation of characteristic functions to use in
the implementation of the FFT. The numerical results in Section 3 documents the
effectiveness and efficiency of the proposed model against two benchmarks: Monte
Carlo simulation (MCS) and finite difference methods (FDM). Section 4 concludes
the paper.

2. The Fast Fourier Transform (FFT)

In this section, we implement the FFT technique to price an extendable option by
expressing the payoff function as a difference of its expectations of indicator functions
[4]. The FFT approach utilizes the characteristic function of the underlying asset price
process. For the extendable option, the implementation involves a univariate and a
bivariate characteristic functions under the risk-neutral measure Q. The characteristic
function is defined as follows:

Definition 1. Given two stochastic processes Xt and Yt for 0 ≤ t ≤ T, with density
functions qT (XT ) and qT (YT ), the characteristic function is the Fourier transform of
its density function such that:

ϕ(u1) = EQ
(
eiu1XT

)
,

for a one-dimensional stochastic process, and:

ϕ(u1, u2) = EQ
(
eiu1XT + eiu2YT

)
,

for a two-dimensional stochastic process where u is the arbitraty real numbers and
i =
√
−1 is the imaginary unit.

The following lemmas present the univariate characteristic function as provided
in Heston [14], and the bivariate characteristic function that is obtained from the
arguments presented in Griebsch and Wystup [11], under the Heston model.
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Lemma 1. Under the Heston model, a univariate characteristic function is as follows:

ϕxT1
(u1) = exp

{
iu1

(
xt + r (T1 − t) +

ρ

σ0
[−v0 − κθ (T1 − t)]

)}
× exp [A (T1 − t, a (u1) , b (u1)) v0]
× exp [B (T1 − t, a (u1) , b (u1))] , (14)

where:

A(τ, a, b) =
da (u)

(
1 + e−dτ

)
− [κa (u) + 2b (u)]

[
1 − e−dτ

]
2de−dτ +

[
σ2

0a (u) − κ − d
] [

e−dτ − 1
] ,

B(τ, a, b) =
κθ

σ2
0

(κ − d) τ +
2κθ
σ2

0

ln

 2d

2de−dτ +
[
κ + d − σ2

0a (u)
] [

1 − e−dτ]
 ,

a (u) = iu
ρ

σ0
,

b (u) = iu
[
−

1
2

+ κ
ρ

σ0
+

1
2

iu
(
1 − ρ2

)]
,

d =

√
κ2 + 2σ2

0b (u).

Lemma 2. Under the Heston model, a bivariate characteristic function is as follows:

ϕxT1 ,xT2
(u1, u2)

= exp
{

iu1

(
xt + r (T1 − t) +

ρ

σ0
[−v0 − κθ (T1 − t)]

)}
× exp

{
iu2

(
xt + r (T2 − t) +

ρ

σ0
[−v0 − κθ (T2 − t)]

)}
× exp {B (T2 − T1, a(u2), b(u2)) + A (T1 − t,C(τ, a, b), b(u1 + u2)) v0}

× exp {B (T1 − t,C(τ, a, b), b(u1 + u2))} , (15)

where:
C(τ, a, b) = a(u1) + A(T2 − T1, a(u2), b(u2)),

and
A(τ, a, b), B(τ, a, b), a(u), b(u), d

are as defined in Lemma 1.

By the martingale property under the risk-neutral measure Q, the holder-extendible
call option as shown in Equation (5) can be valued at time t using expectations of
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indicator-functions as follows:

ECH (S t, K1, T1, K2, T2, A)
= e−r(T1−t) EQ

[(
exT1 − ek1

)
1{xT1>h}

]︸                         ︷︷                         ︸
I

+e−r(T2−t) EQ
[(

exT2 − ek2
)

1{xT1≥l,xT2≥k2}

]︸                                ︷︷                                ︸
II

−e−r(T2−t) EQ
[(

exT2 − ek2
)

1{xT1≥h,xT2≥k2}

]︸                                 ︷︷                                 ︸
III

−e−r(T1−t) EQ
[
ea1{xT1≥l} − ea1{xT1≥h}

]︸                             ︷︷                             ︸
IV

, (16)

where xt = ln S t, k1 = ln K1, k2 = ln K2, l = ln L, h = ln H and a = ln A. In integral
form, Equation (16) can be written as:

ECH (S t, K1, T1, K2, T2, A)

= e−r(T1−t)

∞∫
h

(
exT1 − ek1

)
q
(
xT1

)
dxT1︸                            ︷︷                            ︸

I

+e−r(T2−t)

∞∫
l

∞∫
k2

(
exT2 − ek2

)
q
(
xT1 , xT2

)
dxT2 dxT1︸                                             ︷︷                                             ︸

II

−e−r(T2−t)

∞∫
h

∞∫
k2

(
exT2 − ek2

)
q
(
xT1 , xT2

)
dxT2 dxT1︸                                             ︷︷                                             ︸

III

−e−r(T1−t)


ea

∞∫
l

q(xT1 )dxT1︸              ︷︷              ︸
IV

− ea

∞∫
h

q(xT1 )dxT1︸              ︷︷              ︸
V


, (17)

where q(·) is the conditional density function of the random value xT1 , and q(·, ·) is the
joint conditional density function of the random variable xT1 and xT2 for a given value
xt.

Employing a similar approach to Carr and Madan [5], we implement FFT on terms
I − V. To avoid repetition, we only consider term V for the univariate case, and term III
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for the bivariate case. First we multiply terms V and III by an exponentially decaying
term so that it is square-integrable, and we define the damped integral as follows:

VD(h) = eα1hV(h),

IIID(h, k2) = eα1h+α2k2 III (h, k2) ,

for α1, α2 > 0. Then we apply Fourier transform:

ψ(u1) =

∞∫
−∞

eiu1hVD(h)dh,

ψ(u1, u2) =

∞∫
−∞

∞∫
−∞

eiu1h+iu2k2 IIID (h, k2) dk2 dh,

where the Fourier transform ψ is available in closed-form in terms of the characteristic
function ϕ as follows:

ψ(u1) =
ϕxT1

(u1 − iα1)

iu1 + α1
,

ψ(u1, u2) =
ϕxT1 ,xT2

(u1 − iα1, u2 − i(α2 + 1))

(iu1 + α1)(iu2 + α2)(1 + iu2 + α2)
.

Using IFT, we recover terms V and III as such:

V(h) =
e−α1h

2π

∞∫
−∞

e−iu1hψ(u1) du1, (18)

III(h, k2) =
e−α1h−α2k2

(2π)2

∞∫
−∞

∞∫
−∞

e−iu1h−iu2k2ψ(u1, u2) du2 du1. (19)

The integrals in Equations (18) and (19) are evaluated by numerical approximation
using the trapezoidal rule and FFT given as follows:

V(h) ≈
e−α1h

2π

N−1∑
j=0

e−iu1, jhψ(u1, j)∆1,

III(h, k2) ≈
e−α1h−α2k2

(2π)2

N−1∑
j=0

N−1∑
m=0

e−iu1, jh−iu2,mk2ψ(u1, j, u2,m)∆2 ∆1,

where ∆1 and ∆2 denote the distance between the points of the integration grid,
and u1, j =

(
j − N

2

)
∆1, u2,m =

(
m − N

2

)
∆2, for j, m = 0, . . . , N − 1 (where N = 2n, n ∈

N). Then we define a grid of size N × N, by H2 =
{(

hu, k2,p

) ∣∣∣0 ≤ u, p ≤ N − 1
}
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with ω1, ω2 > 0 denoting the distance between the logarithmic critical prices and
the logarithmic strike prices, respectively, as follows: hu =

(
u − N

2

)
ω1, k2,p =(

p − N
2

)
ω2, and then evaluate by the following sum:

Z(h) =

N−1∑
j=0

e−iu1, jhψ(u1, j),

Z(h, k2) =

N−1∑
j=0

N−1∑
m=0

e−iu1, jh−iu2,mk2ψ
(
u1, j, u2,m

)
.

Choosing ω1 ∆1 = 2π
N and ω2 ∆2 = 2π

N , yields the following values of sum on H2 :

Z(hu) =

N−1∑
j=0

e−iu1, jhuψ(u1, j)

= (−1)u
N−1∑
j=0

e−i 2π
N ju

[
(−1) jψ(u1, j)

]
, (20)

Z(hu, k2,p) =

N−1∑
j=0

N−1∑
m=0

e−iu1, jhu−iu2,mk2,pψ(u1, j, u2,m)

= (−1)u+p
N−1∑
j=0

N−1∑
m=0

e−i 2π
N ju−i 2π

N mp
[
(−1) j+m ψ

(
u1, j, u2,m

)]
. (21)

On that account, Equations (20) and (21) are computed via FFT by taking the input
array, respectively, as follows:

X[ j] = (−1) jψ(u1, j),

X[ j, m] = (−1) j+mψ(u1, j, u2,m),

for j, m = 0, . . . , N − 1. Therefore, the result is an approximation of term V(h) at
N × 1 different logarithmic critical prices h, and term III (h, k2) at N × N different
logarithmic critical prices h and logarithmic strike prices k2, specified by the following:

V(hu) ≈
e−α1hu

2π
Z(hu)∆1,

III(hu, k2,p) ≈
e−α1hu−α2k2,p

(2π)2 Z(hu, k2,p)∆2 ∆1,

for 0 ≤ u, p ≤ N − 1. Following similar procedures as shown above, analogous results
are obtained for terms I and IV for the univariate case, and term II for the bivariate
case.
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3. Numerical example

In this section, we analyze the pricing of extendable options using the model from
Section 2. We first evaluate option prices using FFT. Then we compare the accuracy
and computational time of the pricing under the Heston model with two benchmark
prices determined via Monte Carlo simulation (MCS) and the finite difference method
(FDM). We adopt two commonly employed calibration errors, the absolute relative
error (ARE) and the root-mean-squared error (RMSE). The ARE is defined for each
initial stock price j, by:

ARE j =

∣∣∣∣∣∣∣
 ÊC j

EC j
− 1


∣∣∣∣∣∣∣ ,

and the RMSE is defined by:

RMS E =

√√√
1

nS

nS∑
j=1

∣∣∣∣ÊC j − EC j

∣∣∣∣2,
where the sum is over the number nS (= 5), of initial stock values, ÊC is the estimate
price obtained via FFT, and EC is the exact price determined by MCS or FDM.1 For the
implementation of the FFT technique it is convenient to allow the outer and the inner
sum of Equation (21) to have different N = N1 and N2 (< 212) respectively. The FFT
prices are sensitive to the choice of ∆1, ∆2, α1, α2, N1 and N2 [15]. Hence, adapting
the methodology employed by Hurd and Zhou [18], we determine an appropriate
choice of these parameters by minimizing the average of the absolute value of the
log price differences:

Err =
1

nS

nS∑
j=1

∣∣∣∣log(ÊC j) − log(EC j)
∣∣∣∣ .

A two step approach is taken to optimize the FFT parameters. First α1 and ∆1 are fixed
at 0.75 and 0.1 respectively, which are reasonable parameters [15]. The outputs for
α2 and ∆2 are then employed (together with α1 and ∆1), as initial inputs to minimize
Err. This is repeated for different N1 and N2. In all that follows, these parameters
are determined to be: N1 = 26, N2 = 24, ∆1 = 0.1637, ∆2 = 0.0166, α1 = 0.7496 and
α2 = 0.7502. In the MCS approach, we use 100, 000 simulations each of 1000 steps
(following Hurd and Zhou [18], no variance reduction was employed). Moreover, the
FDM is applied over a three-dimension grid, 50 × 50 × 7000 (stock price, variance and
time to maturity).

Table 1 lists the other parameter values used in the computation. The Heston
parameters, tabulated in Table 2, are sourced from Table 5 in Moyaert and Petitjean
[24] where these values are calibrated from the market prices of Eurostoxx 50 index
1 The computations were implemented in MATLAB and conducted on an Intel (R) Core(TM) i7-7700
CPU @ 3.60 GHz machine running under Windows 10 with 12GB RAM and 64-bit operating system.



[13] Pricing Holder-Extendable Call Options with Mean-Reverting Stochastic Volatility 13

Table 1. Inputs to price the extendable options

Input Value
initial stock prices, S 0.8, 0.85, 0.9, 0.95, 1.0
initial strike price, K1 0.9
initial expiration time, T1 1
extended strike price, K2 0.95
extended expiration time T2 2
risk-free rate, r 0.02
premium, A 0.03

Table 2. Heston parameters

Input Value
instantaneous volatility,

√
v 0.33

long run volatility,
√
θ 0.28

mean reversion rate, κ 3.15
volatility of variance, σ0 0.76
correlation parameter, ρ -0.81

options during the sub-prime crisis. With the parameter values from Tables 1 and 2,
we solve for the critical prices using a root-search algorithm such as the Newton-
Raphson method [20] and obtain L = 0.7946 and H = 1.0753. The comparison of
holder-extendable call prices are tabulated in Table 3. Our numerical examples
demonstrate that the computational time difference is significant as FFT takes 50.03s
to produce five holder-extendable call prices including optimizing the FFT parameters,
while MCS and FDM take 892.68s and 126.49s respectively, to produce five holder-
extendable call prices.

In Table 4, the ARE and the RMSE for the holder-extendable call option priced
using the FFT under the Heston model, compared to MCS and FDM, is presented.
Compared to the MCS and FDM, the ARE and the RMSE indicate better model
performance of the FFT, and the errors obtained for the FFT are generally close to
those for non-extendable options [15]. Finally in Table 5, we document the prices of
a vanilla call option and a holder-extendable call option under the Black-Scholes [2]
and Heston [14] models. The volatility input for the Black-Scholes is given by

√
ν(T )

in Equation (13) where for the vanilla call, T = T1, and for the holder-extendable
call, T = T2, leading to Black-Scholes annualized volatilities of 29.61% and 28.85%
respectively.

It can be seen that for out-of-the money options the Black-Scholes price is greater



14 S.N.I. Ibrahim, A. Diaz-Hernandez, J.G. O’Hara, N. Constantinou [14]

Table 3. Holder-extendable call option prices under Heston model: FFT, MCS and FDM

S FFT FDM MCS
(95% confidence interval)

0.8 0.0646 0.0648 0.0646
(0.0641, 0.0651)

0.85 0.0916 0.0910 0.0911
(0.0904, 0.0918)

0.9 0.1219 0.1208 0.1216
(0.1208, 0.1224)

0.95 0.1550 0.1545 0.1550
(0.1540, 0.1560)

1.0 0.1902 0.1909 0.1913
(0.1902, 0.1924)

Table 4. ARE and RMSE (in %) for pricing holder-extendable call option under Heston model: FFT vs
MCS and FDM

S MCS FDM
0.8 0.00 0.31

0.85 0.55 0.66
0.9 0.25 0.91

0.95 0.00 0.32
1.0 0.58 0.37

RMSE 0.05568 0.06856

than the Heston price, and vice versa for in-the-money options for both vanilla calls
and holder-extendable calls [2, 14]. This is well-known for vanilla calls when ρ < 0
[28] and it is also the case for holder-extendable calls (whether priced by FFT, MCS
or FDM) because the distribution of the logarithmic asset prices is negatively skewed
when ρ < 0, producing a heavier left tail of the distribution. Moreover, the Black-
Scholes implied volatility exhibit larger curvature than the Heston implied volatility.

From Table 5, the extension privilege is higher under the Heston model than under
the Black-Scholes model. Figures 3, 4 and 5 illustrate the changes in the values of the
extension privilege under the Heston model when v0, σ and T2 increases, respectively.
It can be observed that the extension privilege increases as the values of v0, σ and T2
increases.
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Table 5. Vanilla and holder-extendable call prices under Black-Scholes and Heston models

S
Black-Scholes Heston

Vanilla Holder-extendable Extension privilege Vanilla Holder-extendable Extension privilege
0.8 0.0632 0.0721 0.0089 0.0494 0.0656 0.0162
0.85 0.0866 0.0962 0.0096 0.0755 0.0918 0.0163
0.9 0.1140 0.1238 0.0098 0.1071 0.1216 0.0145
0.95 0.1451 0.1548 0.0097 0.1416 0.1545 0.0129
1.0 0.1794 0.1888 0.0094 0.1796 0.1908 0.0112

Figure 3. Extension privilege at time T1 with different v0.
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Figure 4. Extension privilege at time T1 with different σ.

Figure 5. Extension privilege at time T1 with different T2.



[17] Pricing Holder-Extendable Call Options with Mean-Reverting Stochastic Volatility 17

4. Conclusion

This paper considers the pricing of holder-extendable call options under the Heston
dynamics using FFT and compared with the MCS and FDM benchmarks. The FFT
pricing formula is expressible as a finite sum of expectations of indicator functions
where the partition employs the two critical values introduced by Longstaff [22]. The
evaluation of the expectations involve one-dimensional and two-dimensional Fourier
transforms via the corresponding univariate and bivariate characteristic functions.
Under the Heston model, there exist closed-form solutions of the characteristic
functions; hence with comparison to MCS and explicit FDM, the application of the
FFT yields significant computational savings, typically at least an order of magnitude.
We also observe that overall the Heston model performs better than the Black-Scholes
in pricing holder-extendable call options.

In addition to stochastic volatility, this study can be further developed by
incorporating jumps with stochastic volatility together with stochastic interest rates
in the spirit of Santa-Clara and Yan [29], and by implementing other optimization
strategy. Finally, the use of extendable options in problem involving real options may
lead to fruitful investigations.
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