
IEEE NETWORK MAGAZINE 1

AI Driven Heterogeneous MEC System with UAV
Assistance for Dynamic Environment - Challenges

and Solutions
Feibo Jiang, Kezhi Wang, Li Dong, Cunhua Pan, Wei Xu, and Kun Yang.

Abstract—By taking full advantage of Computing, Commu-
nication and Caching (3C) resources at the network edge,
Mobile Edge Computing (MEC) is envisioned as one of the
key enablers for the next generation networks. However, current
fixed-location MEC architecture may not be able to make real-
time decision in dynamic environment, especially in large-scale
scenarios. To address this issue, in this paper, a Heterogeneous
MEC (H-MEC) architecture is proposed, which is composed
of fixed unit, i.e., Ground Stations (GSs) as well as moving
nodes, i.e., Ground Vehicles (GVs) and Unmanned Aerial Vehicles
(UAVs), all with 3C resource enabled. The key challenges in
H-MEC, i.e., mobile edge node management, real-time decision
making, user association and resource allocation along with the
possible Artificial Intelligence (AI)-based solutions are discussed.
In addition, the AI-based joint Resource schEduling (ARE)
framework with two different AI-based mechanisms, i.e., Deep
neural network (DNN)-based and deep reinforcement learning
(DRL)-based architectures are proposed. DNN-based solution
with online incremental learning applies the global optimizer
and therefore has better performance than the DRL-based
architecture with online policy updating, but requires longer
training time. The simulation results are given to verify the
efficiency of our proposed ARE framework.

Index Terms—Heterogeneous mobile edge computing, artificial
intelligence, deep neural network, deep reinforcement learning,
dynamic environment.

I. INTRODUCTION

Recently, with the increasing popularity of new resource-
intensive applications, e.g., automatic driving, online gaming,
health monitoring, and Virtual Reality (VR) services, the
quality of our life is expected to be improved significantly.
In addition, there is a growing trend to execute the above
attractive applications in our User Equipments (UEs), e.g.,
mobile phones or handheld devices. However, this contradicts
to the sizes and the battery capacities of the UEs.

Feibo Jiang (jiangfb@hunnu.edu.cn) is with Hunan Provincial
Key Laboratory of Intelligent Computing and Language Information
Processing, Hunan Normal University, Changsha, China, Kezhi Wang
(kezhi.wang@northumbria.ac.uk) is with the department of Computer
and Information Sciences, Northumbria University, UK, Li Dong
(Dlj2017@hunnu.edu.cn) is with Key Laboratory of Hunan Province
for New Retail Virtual Reality Technology, Hunan University of Commerce,
Changsha, China, Cunhua Pan (Email: c.pan@qmul.ac.uk) is with School of
Electronic Engineering and Computer Science, Queen Mary University of
London, London, E1 4NS, UK, Wei Xu (wxu@seu.edu.cn) is with NCRL,
Southeast University, Nanjing, China, Kun Yang (kunyang@essex.ac.uk) is
with the School of Computer Sciences and Electrical Engineering, University
of Essex, CO4 3SQ, Colchester, UK and also with University of Electronic
Science and Technology of China, Chengdu, China

(Corresponding authors: Kezhi Wang; Li Dong.)

Fortunately, Mobile Edge Computing (MEC) [1] has been
proposed by taking full advantage of cooperation between
Communication, Computation and Caching (3C) resources at
the network edge. Specifically, MEC can enable UEs with
computational-intensive tasks to offload them to the edge cloud
and is envisioned as one of the key enabling technologies for
the next generation mobile networks [2].

The traditional MEC system is not flexible and may suffer
from high deployment cost, due to its fixed architecture.
However, the future networks are expected not only to ac-
commodate an unprecedented dynamic and heterogeneous
environment, but also should be able to support on-demand
hotspot areas and temporary activities, in a fast and highly
reliable manner. In other words, in the future, we envision
more flexible user patterns and services, i.e., the number,
the locations and the service requirements of the mobile
users may be constantly changing. Hence, the current MEC
system cannot be applied in future networks due to its fixed
architecture.

To address the above-mentioned problem, in this paper,
we propose a Heterogeneous MEC (H-MEC) system, which
is composed of fixed Ground Stations (GSs), mobile Un-
manned Aerial Vehicles (UAVs) and Ground Vehicles (GVs),
all equipped with 3C resources. The fixed MEC node, such as
GS, can be charged from the power grid and cooled by the air
conditioner, whereas the mobile nodes, such as GV and UAV
can be charged from the charging pile on the roadside and roof
respectively. H-MEC is more flexible than the traditional MEC
system and is more suitable in the dynamic environment, as
UAVs and GSs can be deployed on demand. In addition, UAV
and GV can move close to the user to improve the connectivity.
However, various research challenges arise when applying H-
MEC in dynamic environment, such as mobile edge node
management, real-time decision making, fast user association
and resource allocation.

Fortunately, these challenges fall into the the research of ar-
tificial intelligence (AI), which is considered to be a promising
technique to address such problems by adaptive modelling and
intelligent learning. Different from the traditional optimization
methods (e.g., convex optimization, dynamic programming
and game theory), AI based solution has continuous learning
ability for the dynamic environment and can make the real-
time inference with low computational complexity.

In this paper, we summarize the key challenges in deploying
H-MEC in dynamic environment and propose AI-based solu-
tions to tackle these issues. The contributions of this paper are



IEEE NETWORK MAGAZINE 2

summarized as follows:
(1) We first discuss the AI driven H-MEC architecture and

then summarize the typical applications of this architecture.
(2) Next, we show the key challenges of H-MEC applied in

dynamic environment, i.e., in the scenarios where the number,
the locations and the requirement of the UEs are constantly
changing. Moreover, we show possible AI-based solutions to
address the above challenges.

(3) Finally, we propose the AI-based joint Resource
schEduling (ARE) framework, which includes two strategies,
i.e., Deep neural network (DNN)-based and deep reinforce-
ment learning (DRL)-based architectures. DNN-based solution
with online incremental learning applies the global optimizer
and therefore may have better performance than DRL-based
architecture with online policy updating, but requires longer
training time. Simulation results are also provided to verify
the effectiveness of our proposed framework.

II. AI DRIVEN H-MEC ARCHITECTURE

In this section, we show the AI driven H-MEC architecture
in Fig. 1 (a), where the central cloud can not only provide
3C capacities for signal processing related tasks (e.g., fast
Fourier transformation, encoding and decoding), but also pro-
vide computing resource for service related tasks (e.g., AI
model training), due to its powerful accumulated processing
capacities. In addition, we assume there are several distributed
edge systems served by both fixed nodes (i.e., GSs) and mobile
nodes (i.e., UAVs and GVs). Similar to the central cloud, the
GSs, UAVs and GVs are all equipped with 3C resources.
UAVs and GVs, due to their nature of flexibility, can be
deployed swiftly on demand. In general, UAV moves much
faster than the GV, but with less 3C resources. GV moves
slower but holds more resource and also it normally has more
energy on board, compared to UAV. GS has the most available
resource but it is a fixed architecture. In addition, as UAVs
can fly close to the user and therefore they can provide low-
latency communication and services. Due to 3C resources
available in H-MEC, AI based models can be trained in cloud
platforms with different accuracy and abilities, depending on
their available resource. Some complex model can be trained
in the place with more resources, e.g., central cloud and
then downloaded to the places with less resource, e.g., UAVs.
Additionally, inference can be made in edge nodes, depending
on the latency requirement of the applications or users. The
features of different H-MEC components are summarised in
Table I.

Next, we give the data flow of one particular use case of the
H-MEC, as shown in Fig. 1 (b), where the central cloud can
collect the environment information (e.g., the number of UE
and the channel state information) as well as task information
(e.g., data size of the task and required computing resource of
the task) from the UEs. Then, the central cloud can update the
AI model, performing the online training and making decisions
of the user association and resource allocation for each UE.
Based on the decision received from the central cloud, each
UE can offload the task to the nearby edge nodes, and then
receive the results accordingly. Additionally, the central cloud

TABLE I: Comparison for different H-MEC components.

Components Central
Cloud

GS GV UAV

3C Resource Very
Large

Large Small Very
Small

Mobility None None Slow Fast

Serving Time Unlimited Unlimited Long Short

Deployment Fixed Fixed 2D and re-
stricted

3D

Response Time Long Long Short Short

AI Model Very
Complex

Complex Simple Simple

AI Model Train-
ing

Offline Incremental Incremental None

Data Collection No Yes Yes Yes

Data Type Global Local Local Local

also holds the information of the edge nodes (e.g., the available
resource and location), in order to make the global resource
allocation.

The proposed H-MEC architecture is particularly useful in
the following scenarios:

(1) Temporary application: For instance, in a public event
or a football match where there are a large number of people
gathered, they may be interested in recording and exchanging
high quality video contents. In these scenarios, it is very likely
to have a large amount of traffic generated, particularly during
the intervals of main events in the stadium.

(2) Unexpected application: For example, in the traffic jam,
users inside the cars or buses would like to have data services
using their mobile devices. Moreover, the traffic coordination
centre may also need to communicate with the road units and
cars so as to restore the traffic. This may create a large amount
of data traffic, which may need the assistance of MECs.

(3) Critical application: For instance, in an emergency
situation or natural disaster where an earthquake occurs, and
people try to contact their relatives, which incurs a large
amount of data traffic. Moreover, the rescue crews may need
VR device to guide them to the place where needed. Those
VR devices may need a large amount of computing resource.
Therefore, the mobile edge nodes can be deployed to provide
3C resources.

III. RESEARCH CHALLENGES

Although H-MEC architecture has many benefits to be
applied in dynamic scenarios as discussed before, the mobility
of mobile nodes, e.g. UEs and MECs make the network
topology highly unstable, which bring significant challenges
as follows:

(1) Mobile edge node deployment: It is difficult to determine
where to deploy the mobile edge nodes in dynamic environ-
ment, as the new edge servers joining the networks may lead to
user offloading the tasks to them and then generate interference
to the existing environment. Also, the mobile nodes, e.g.,
UAVs that are normally resource constrained may be difficult



IEEE NETWORK MAGAZINE 3

Critical applications, 
e.g., earthquake

Unexpected applications, 
e.g., traffic jam

Temporary application,
e.g., football match

!

GS UAV GV UE 3C resource AI model

 Task contents offloading

 Environment & Task info

UE

Local data
Edge node

Global data
Central Cloud

(a)

(b)

Central cloud

 User association & Resource allocation info

 Task Results

Location & Available resource

Fig. 1: AI driven H-MEC system: (a) system architecture; (b) data flow.

to meet the requirement of applications or users if lack of
proper predictions. Dynamic programming [3] can be used to
calculate the optimal mobile edge node deployment. However,
this method can only provide a snapshot of the optimal or sub-
optimal solutions but fail to consider the correlation between
different users in continuous time.

(2) Real-time decision making: The diverse requirements of
different applications, time-varying content request, and the
mobility of UEs make real-time decision a very challenging
task. It is time-consuming for traditional convex optimization
based methods, e.g., coordinate descent method [4] to address
this problem, as convex optimization based methods often
require considerable number of iterations to reach a satisfac-
torily locally optimal solution. Moreover, convex optimization
based methods may not be suitable for dynamic environment,
as the optimization problem needs to be re-solved once the
requirements or user patterns vary.

(3) Large-scale user associations: The typical use case of H-
MEC, such as stadium or open air festival, may need to support
massive UEs and applications. This problem normally includes
integer variables and is NP-hard. Traditional solution was to
apply the convex-based solutions or evolutionary algorithms.
However, these solutions suffer from high complexity and are
time-consuming. Moreover, branch and bound algorithm [5]
may be applied here but the search space of this method
increases exponentially with the number of users and are
computationally prohibitive.

(4) Resource management under specific constraints: In H-
MEC, edge nodes can be served by mobile units, e.g., GVs

and UAVs and they are normally resource-constrained. The
coverage of mobile nodes, e.g., UAV may also be limited,
as the communications links can be blocked by buildings. In
addition, battery capacities could limit the capacity of mobile
edge nodes as well. Therefore, all the above constraints need to
be tackled jointly and properly, which create big challenges.
Several AI based solutions, such as neural networks based
methods are recently proposed by researchers but they are
generally not suitable for dealing with the constraints.

(5) Caching deployment optimization: Caching has been
identified as an important aspect by bringing storage func-
tionality to edge servers. Deciding where/how/what to cache
appropriate content have a profound effect on Quality of
Service (QoS) requirement of UEs. Different from static
MEC architecture, mobile edge nodes can be deployed on
demand via tracking the mobility pattern of users and avoiding
frequently updating the content from the core network. How
to predict mobility patterns and content request information of
users remains the main challenges.

(6) Security and privacy issues: This is critical for H-MEC
systems, as the mobile edge nodes might not be able to
detect an attack due to the lack of global information of the
whole networks. Moreover, classical attack detection meth-
ods normally need manual feature engineering (e.g., feature
design, selection and extraction) and therefore is hard to be
implemented in dynamic environment. Thus, new approaches
are highly required.



IEEE NETWORK MAGAZINE 4

IV. AI-BASED SOLUTIONS IN H-MEC

To address the above-mentioned challenges, in this section,
we first discuss the AI-based solutions, which are well-known
for its excellent modelling and prediction abilities. Then, we
will give some tips in applying these solutions.

A. AI-based solutions

(1) To deploy mobile edge nodes effectively and automati-
cally, an unsupervised learning algorithm (e.g., the clustering
algorithm) may be applied to analyse the locations, behaviours
and preferences of UEs. Fuzzy C-Means (FCM) clustering [7]
is an improvement of common clustering algorithm, which
adopts a soft fuzzy partition instead of the traditional rigid
data classification, and thus could be applied to determine
the dynamic deployment of mobile edge nodes. Another idea
of deploying edge node could be to use the deep rein-
forcement learning (DRL) method (e.g., Deep Deterministic
Policy Gradient, DDPG), which can learn optimal placement
policies by considering the coverage, energy consumption and
connectivity of edge nodes in the reward function, and place
the mobile nodes intelligently [8].

(2) To address the real-time decision-making problem, Deep
Neural Networks (DNN) could be applied as the real-time
decision-making model due to the fact that once the training
of DNN is completed, decisions can be made very fast by
applying only a few simple algebra calculations. Moreover,
by increasing the diversity of samples, DNN model is not
sensitive to the dynamic environment. In addition, Recurrent
Neural Networks (RNN) could be applied as well, due to its
outstanding prediction and reasoning capabilities in real time.
The Gated Recurrent Unit (GRU) network [9], which is a novel
RNN, can make each recurrent unit to adaptively capture de-
pendencies of different time scales. Also, the GRU simplifies
the structure of RNNs by introducing reset and update gates,
which can exploit the semantics and contexts from the input
data (e.g., the varying channel quality information, CQI). For
instance, H-MECs can apply the fast fading CQI to activate the
reset gates and use the long-term large-scale channel fading
information to activate the update gates and then make the
real-time decision fully viable.

To solve the large-scale user association problems, Convo-
lutional Neural Networks (CNNs) may be applied, due to its
excellent feature extraction abilities. For instance, in H-MEC,
CNN can be applied to identify important features (e.g., users’
behaviours and channel quality) from the original large-scale
information by applying several convolutional layers and then
reduce the dimensionality of the original problem. To this
end, the complexity of primal large-scale problem may be
significantly reduced based on the extracted features. Another
idea of solving the large-scale network optimization is to
apply clustering algorithm, which divides original variables
into several clusters. In this way, the original optimization
problem can be divided into several small-scale sub-problems
and tackled efficiently [10].

(4) For the resource management problems with several
constraints, as mentioned before, it is difficult for the AI-
based solutions to address them. This is because, AI-based

solutions, e.g., neural networks, are normally designed for
optimization without constraints and therefore the output of
neural networks may not strictly satisfy all constraints. In
this case, other methods, e.g., extra check may be conducted.
Moreover, another layer may be attached to the networks
dedicated to the feasibility check.

(5) For caching deployment in H-MEC, the bidirectional
Long Short Term Memory (bi-LSTM) network [11] could be
applied, as it can exploit both the previous and future contexts
by analysing the data (e.g., video recoding clips) from two
reverse directions. In particular, this scheme can deploy cache
by considering the requested information at its previous and
future states and predict the content request distribution. In the
proposed H-MEC, bi-LSTM can be implemented to allow both
fixed and mobile edge nodes to update their local content cache
according to the mobility patterns of users while avoiding
frequent access to the core network.

(6) For security and privacy issues in H-MEC, one may
notice that the main obstacle of learning based methods lies
in lack of samples. In other words, automatic feature selection
and extraction are highly required. Auto-encoder algorithm
may be applied. For example, H-MEC could benefit from a
pre-training scheme of Stacked Auto-Encoder (SAE) [12] for
automatic feature learning. In particular, SAE can be applied
to train an attack detection model with a mix of unlabelled
normal/attack samples so that the model identifies patterns of
attack and normal data by an auto-encoder scheme, this can
in turn improve the accuracy of the attack detection model on
unseen and mutated attacks.

Moreover, in Table II, we summarize the main advantages
and disadvantages of different AI-based solutions in H-MEC.

B. Tips
In this subsection, we will give some tips on the design

of deep learning (DL)-based solutions (e.g., CNN, GRU, bi-
LSTM, SAE and DDPG), as the typical representatives of AI-
based methods applied in H-MEC.

(1) Incremental learning: When applying DNN in H-MEC,
one may need to continually train and adjust the parameters
in response to the fast changing environment. Incremental
learning could be applied here to update the DNN model
dynamically [13]. In H-MEC, edge servers can track the
variations of the environment and update the training data peri-
odically and applied to re-train the learning model to guarantee
that the model performs well even when the environment is
constantly changing.

(2) Compressing learning: As the mobile edge nodes are
resource/energy constrained, it is important to reduce the
energy and computation consumption during the leaning pro-
cess. Therefore, the compressing learning could be applied.
Compressing learning can reduce parameters of DNNs while
mitigating result accuracy loss. Since DNNs are usually ex-
tremely over parameterized, they are capable of compression.
Several approaches have been proposed to facilitate this pro-
cess, such as network pruning, knowledge distillation, weight
quantification and lossless compression [14].

(3) Experience Learning: In H-MEC, it is important to get
the high-quality data as training samples, otherwise, the trained



IEEE NETWORK MAGAZINE 5

TABLE II: Typical AI-based solutions in H-MEC.

AI-based solutions Algorithm Advantages Disadvantages

Supervised learning GRU, bi-LSTM Outstanding memory attribute and time
series prediction ability. • Labeled training data requirement.

• Unable to handle the constraint problems.
• Model is sophisticated and hard to deploy on

the mobile equipment.

CNN Mature technology and high recognition
accuracy.

Unsupervised learning FCM Soft clustering and no labeled sample
requirement.

The solution is just an approximate version of the
optimal result and rely on initial data distribution.

SAE Feature learning automatically and no
labeled sample requirement.

Reinforcement learning DDPG Learning from the environment and no
labeled sample requirement.

The final results can be unstable and hard to repro-
duce [6].

model may be biased. To achieve this goal, experience learning
may be applied here to find the optimal solutions from the
historical experience data [10].

V. AI-BASED JOINT RESOURCE SCHEDULING (ARE)
FRAMEWORK

In this section, we will introduce the AI-based joint Re-
source schEduling (ARE) framework with two different strate-
gies, (i.e., DNN- and DRL-based architectures) to show the
potential of AI-based solutions in H-MEC when applying it
to the dynamic environment.

A. System Model and Problem Formulation

1) System model: We consider the MEC system with multi-
ple UEs and edge nodes consisting of UAVs, GVs and GSs, as
shown in Fig. 1. We assume that each UE has one computation
task, which can be executed either locally or by one of the edge
nodes. We model the computational-intensive task of the i-UE
as Ui = (Fi, Di), ∀i ∈ N , where Fi denotes the computing
resource required by the task and Di denotes the data size of
the task if offloading is decided.

2) Computing model: The local task execution time for
the i-th UE is determined via Fi divided by the computation
capacity of the i-th UE (in CPU cycles per second). Also, the
edge task execution time for the i-th UE is determined via
Fi divided by the allocated computing resource from the edge
nodes.

3) Communication model: For the remote execution in
edge nodes like UAV, GV and GS, we assume that the UE
offloads its task via orthogonal frequency division multiplexing
(OFDM) channels, which means that there is no interference
between each other. The communication delay for the i-th UE
is determined via Di divided by the transmission data rate
between UE and MEC (e.g., UAV, GV or GS).

4) Problem formulation: We aim to obtain an online al-
gorithm to minimize the sum of weighted latency for all
the tasks, by jointly optimizing the user association and
resource allocation in real time, while considering dynamic
environment, i.e., the number and the locations of UEs may
vary. One can formulate the optimization problem as follows:

• Objective function: the minimization of total weighted
task latency of all the UEs (i.e., the summation of
communication delay and remote task execution delay if
offloading or the local execution time if completing the
tasks locally);

• Decision variables: user association, resource allocation,
and the locations of GVs and UAVs;

• Constraint C1: tasks can be executed either locally or by
one of the edge nodes;

• Constraint C2: the coverage of each UAV;
• Constraint C3: the computing resource available in each

node (i.e., UEs, GSs, GVs and UAVs).

One can see that the above problem is a mixed integer non-
linear programming (MINLP), which is challenging to address.
This is because the user association is binary whereas the
resource allocation and the location variables of UAVs and
GVs are continuous. This problem becomes even more chal-
lenging if we consider the dynamic environment (which means
the system parameters, i.e., the channel state information, the
number and the locations of UEs may change).

We decompose the formulated problem into two sub-
problems: 1) deployment problem of mobile edge nodes; and
2) resource scheduling and decision-making problem. We first
apply a clustering algorithm to locate UAVs and GVs [15], and
then we apply DNN-based and DRL-based ARE framework to
conduct the decision making and resource allocation for each
UE. The core part of the ARE framework is the application of
DNN to make the real-time decision. Different from current
AI-based contributions, we input the state information of
one UE to the DNN at a time. This modification has the
following benefits: (1) The input dimension of the DNN only
depends on the number of H-MECs and is not related to the
number of UEs. In general, the number of access points or
edge nodes changes much slower than the number of UEs
accessing the network. Hence, our DNN can be applied in a
long time once it is trained, which is more practical in the
real-world environment. (2) Since each time, we only input
the information of one user, we can reduce the dimension of
input data and then reduce the training complexity, which is
suitable for large-scale networks with large number of UEs.



IEEE NETWORK MAGAZINE 6

Next, we adopts the epoch register to collect the input and
output information of all the UEs at this epoch for the sample
optimization and DNN training, which can train the DNN
by considering the information of all the UEs. Finally, we
introduce two different online learning mechanisms to train the
DNN for tracking the variations of the real-world scenarios.
Next, we will introduce ARE framework in more details.

B. DNN-based ARE framework

We first present the DNN-based ARE framework, as shown
in Fig. 2 (a), which includes the offline pre-training stage,
online decision making process and the incremental learning
stage. Note that the parameter tuple (Hi, Fi, Di,W) of the
i-th UE is applied as the input to the DNN, and the decision
tuple (ai, fi) is used as the output of the DNN, where Hi =
{hij ,∀j ∈M} is a set of the channel gains hij between the i-
th UE and the j-th edge nodes. W = {wj ,∀j ∈M} includes
the average allocated computing resources for each UE of the
edge nodes, which can be counted from the historical data.
In the following, we describe each stage of the DNN-based
framework.

1) Offline pre-training stage: The training phase can be
carried out in the cloud as it holds a large amount of computing
resource. Firstly, lots of historical data is collected. To this
end, the sample generator is applied for solving the original
problem. In general, the optimization algorithm can be divided
into the following three categories: (1) The exhaustive search
is applied to obtain the sample if the search space is small;
(2) The mixed-integer programming solvers (e.g., CPLEX)
can be applied when the search space is medium; (3) The
global heuristic algorithms (e.g., Genetic Algorithm or Particle
Swarm Optimization) may be adopted to obtain samples when
the search space is large. The sample generator is carried
out repeatedly until sufficient samples are collected. Then,
the supervised learning is applied to train the DNN until the
evaluation conditions are satisfactory.

2) Online decision stage: The pre-trained DNN can be
implemented for online decision making process. To do this, at
epoch t, the system information Ii,t = {Hi,t, Fi,t, Di,t,Wt}
of the i-th UE is input to the DNN and obtain the corre-
sponding solutions Oi,t = {ai,t, fi,t} of the i-th UE, with
only some simple algebraic calculations instead of solving the
original optimization problem. An epoch register is applied to
store solutions {Ii,t,Oi,t} ,∀i ∈ N of all the UEs at epoch
t for considering the system information of all UEs in the
incremental learning.

3) Online incremental learning stage: Incremental learn-
ing is applied for tracking the variations of the dynamic
environment, which can improve the proposed DNN through
continuous fine-tuning rather than repeatedly re-training the
network from scratch. The procedure of incremental learning
is described as follows: Firstly, an average entropy check is
applied to inspect the output of DNN at epoch t, which can
decide if the collection of new samples are needed. Outputs
with higher entropy are expected to contribute more to elevate
the current DNN’s performance. Therefore, entropy check
is applied by applying a simple threshold evaluation. If the

average output entropy of all the UEs at current epoch is
larger than the threshold, the current state information is sent
to the sample generator for global optimization and the new
samples are generated to store in the memory. The memory
is the dynamic database with fixed-size, and the first-in first-
out (FIFO) scheduling policy is applied when the memory is
full. In our framework, the memory is applied as the sample
database to fine-tune the DNN, which means the negative
error gradient of the current iteration is added to the weights
of the DNN fine-tuned in the previous iteration, in real-time
processes.

C. DRL-based ARE framework

In this subsection, we introduce the second type of ARE
framework, which is the DRL-based architecture, as shown in
Fig. 2 (b), which includes online decision making stage and
policy updating stage. Note that we apply the DNN as the
agent of DRL. The state of the i-th UE is given by Si,t =
{Hi,t, Fi,t, Di,t,Wt} and the action of the i-th UE is given
as Ai,t = {ai,t, fi,t}, and the reward is the reciprocal of our
objective function. In the following, we describe each stage of
the proposed framework in details.

1) Offloading decision making stage: At the epoch t, the
agent whose parameters are represented as the offloading pol-
icy πt, which can be deployed for generating online scheduling
decision Ai,t according to the state Si,t. Then the epoch
register is applied to collect {Si,t,Ai,t} ,∀i ∈ N of all UEs at
this epoch for considering the states of all UEs in the action
refinement. As the decision making from the offloading policy
πt has low computing complexity via forward networks of
DNN, the decision Ai,t can be output in real time.

2) Offloading policy updating stage: The action refinement
is applied as an efficient exploration to find sub-optimal action
A∗

i,t compared to the traditional random search process (e.g.,
ε-greedy). In general, the action refinement can be divided
into two categories: (1) The local exhaustive search is applied
(e.g., K-Nearest Neighbour) when the action space is small; (2)
The local heuristic search method is applied (e.g., Simulated
Annealing or Tabu Search) when the action space is large.
The improved

{
Si,t,A∗

i,t

}
explored by the action refinement

is selected as the new transition and appended to the replay
buffer. Then, a batch of transitions are drawn from the buffer
by prioritized experience replay, and the agent is trained and
the offloading policy is updated from πt to πt+1. The new
offloading policy πt+1 is applied in the epoch t+1 to generate
the offloading decision at+1 according to the new st+1.

Moreover, the above two stages are alternately performed
and therefore the offloading policy can be gradually improved
in the iteration process.

D. Summary of above DNN- and DRL-based architecture

In this section, we will provide the summary and compari-
son of the above DNN- and DRL-based ARE architecture. For
the DNN-based framework, we employ incremental learning
to track the variations of the dynamic environment. In addition,
a novel entropy check is applied to inspect the output of
DNN and collect new system information from the varying



IEEE NETWORK MAGAZINE 7

Fig. 2: The proposed ARE framework.
(a) DNN-based architecture; (b) DRL-based architecture.

environment. As we use the global optimizer as the sample
generator, the computing time of online training is longer
than the DRL-based ARE framework, but the performance is
better than the DRL-based framework, especially for large-
scale MEC systems with slowly changing environment.

In the DRL-based ARE framework, we adopt DRL to update
offloading policy dynamically for the varying environment.
An extra action refinement is introduced to explore actions
for improving the efficiency and robustness of the DRL-based
framework. For achieving online policy updating, we adopt the
local optimizer as the action refinement tool, and therefore the
computing time is shorter than the DNN-based framework, but
the performance decreases when the action space increases.
This framework is suitable for small to medium-scale MEC
systems with fast changing environment.

E. Simulation Results

In the simulation, we assume that there are 50 UEs, 2
UAVs, 1 GV and 1 GS in a 50m × 50m squared zone,
with the coordinate of GS as (25m, 25m). We apply the
line 3x+2y-180=0 to depict the position of road for GV. The
bandwidth is set as 1 MHz, the computational capability of
UE, UAV, GV and GS is set to 109 cycles/s, 15×109 cycles/s,
30×109 cycles/s and 50×109 cycles/s, respectively. Each user
is randomly distributed with the maximal velocity of 1m/s.
The environment data (e.g., Hi,t, Fi,t, Di,t,Wt) is collected
every 3 seconds for the training of ARE. For the DNN-based
framework, the DNN structure includes an input layer, two
hidden layer (64 and 32 neurons) and an output layer. The
learning rate and iteration number of DNN are set to 1.5 and
500, respectively. For the DRL-based framework, the agent
employs the same structure of DNN; the replay buffer size is
set to 10000; and the batch size is set to 1000. The Simulated
Annealing is applied as the action refinement algorithm. All
simulations for the DNN and DRL are carried out in Matlab
2020 environment running on a i7-6500U CPU with 8GB
RAM and 512G SSD. The DNN and DRL are implemented
by the deep learning toolbox. The total simulation time of the

DNN-based ARE and DRL-based ARE are 123.56 seconds
and 43.32 seconds, respectively.

In Fig. 3 (a), we compare the performance of the DNN-
based ARE model and the traditional DNN model without
incremental learning. It can be seen that the DNN-based ARE
model achieves lower training and testing losses than the
traditional DNN. This is because the incremental learning can
enhance the learning ability of DNN in dynamic environment
and allow the DNN to learn latest information continuously.
We can also see that the difference between the testing loss
and the training loss of traditional DNN increases gradually
without incremental learning when the environment is chang-
ing.

Fig. 3 (b) further characterizes the benefits of the proposed
DRL-based model with the action refinement by using the
performance metric, i.e., reward during the online policy
updating stage. One can see that the proposed model with
action refinement not only converges to a higher reward than
traditional DRL but also achieves faster convergence speed.
This is because the action refinement is an efficient exploration
process to find sub-optimal action compared to the traditional
random search process.

Then, we evaluate the performance of DNN- and DRL-
based ARE framework by comparing with the following
offloading schemes:

• Random offloading (Random) denotes that the offloading
decision is decided randomly for each UE.

• Greedy offloading (Greedy) denotes that all the UEs
offload the tasks to the nearest edge nodes.

• Local execution (Local) denotes that all UEs decide to
execute the task locally.

Fig. 4 shows the total task latency versus different offloading
schemes. One can see that compared to Greedy, Random and
Local offloading schemes, DRL-based ARE achieves similar
performance to the DNN-based ARE but performs much better
than the other algorithms.



IEEE NETWORK MAGAZINE 8

(a)

(b)

Fig. 3: Performance comparison: (a) Training and testing
losses of DNN-based ARE; (b) Reward values of DRL-based

ARE.

VI. CONCLUSIONS

In this paper, we have studied the AI driven H-MEC
architecture, which is expected to be applied in dynamic envi-
ronment. We have discussed the key challenges of the H-MEC
architecture and the possible AI-based solutions. Moreover, we
provide an ARE framework with two different strategies. In
the DNN-based ARE framework, online incremental learning
stage is applied for tracking the dynamic environment, while
in the DRL-based ARE framework, online policy updating is
used to adjust the policy of DRL. Moreover, we only input
the state information of one UE to the ARE framework each
time, which is more practical for the scenarios with changing
number of UEs. Simulation results have been provided to show
the effectiveness of the proposed framework.

The future research directions can be summarized in the
following: (1) we will consider to test the proposed framework

Fig. 4: Performance comparison of the objective function
between different offloading schemes..

in the real-world test-bed or apply the real data set from
the mobile operators; (2) we plan to predict the mobility
pattern and requests of the mobile users, in order to improve
the performance of the whole networks; (3) we will further
enhance the security and privacy of the ARE framework.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358,
Fourthquarter 2017.

[2] K. Wang, P. Huang, K. Yang, C. Pan, and J. Wang, “Unified offloading
decision making and resource allocation in me-ran,” IEEE Transactions
on Vehicular Technology, to appear, 2019.

[3] S. A. P. Quintero, F. Papi, D. J. Klein, L. Chisci, and J. P. Hespanha,
“Optimal UAV coordination for target tracking using dynamic program-
ming,” in 49th IEEE Conference on Decision and Control (CDC), Dec
2010, pp. 4541–4546.

[4] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp.
4177–4190, June 2018.

[5] P. Zhao, H. Tian, C. Qin, and G. Nie, “Energy-saving offloading by
jointly allocating radio and computational resources for mobile edge
computing,” IEEE Access, vol. 5, pp. 11 255–11 268, 2017.

[6] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[7] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means
clustering algorithm,” Computers & Geosciences, vol. 10, no. 2-3, pp.
191–203, 1984.

[8] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient
UAV control for effective and fair communication coverage: A deep
reinforcement learning approach,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 9, pp. 2059–2070, 2018.

[9] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in NIPS 2014
Workshop on Deep Learning, December 2014, 2014.

[10] W. Zhang, Z. Zhang, H.-C. Chao, and M. Guizani, “Toward intelligent
network optimization in wireless networking: An auto-learning frame-
work,” IEEE Wireless Communications, vol. 26, no. 3, pp. 76–82, 2019.

[11] L. Sun, S. Kang, K. Li, and H. Meng, “Voice conversion using deep
bidirectional long short-term memory based recurrent neural networks,”
in 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2015, pp. 4869–4873.



IEEE NETWORK MAGAZINE 9

[12] F. Jiang, K. Wang, L. Dong, C. Pan, and K. Yang, “Stacked autoencoder-
based deep reinforcement learning for online resource scheduling in
large-scale mec networks,” IEEE Internet of Things Journal, vol. 7,
no. 10, pp. 9278–9290, 2020.

[13] Z. Zhou, J. Shin, L. Zhang, S. Gurudu, M. Gotway, and J. Liang, “Fine-
tuning convolutional neural networks for biomedical image analysis:
Actively and incrementally,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[14] R. Xie, X. Jia, L. Wang, and K. Wu, “Energy efficiency enhancement
for cnn-based deep mobile sensing,” IEEE Wireless Communications,
vol. 26, no. 3, pp. 161–167, 2019.

[15] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “Deep-
learning-based joint resource scheduling algorithms for hybrid mec
networks,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6252–
6265, 2020.


