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Abstract

Deep learning uses neural networks which are parameterised by their weights. The neural
networks are usually trained by tuning the weights to directly minimise a given loss function.
In this paper we propose to re-parameterise the weights into targets for the firing strengths
of the individual nodes in the network. Given a set of targets, it is possible to calculate the
weights which make the firing strengths best meet those targets. It is argued that using
targets for training addresses the problem of exploding gradients, by a process which we call
cascade untangling, and makes the loss-function surface smoother to traverse, and so leads
to easier, faster training, and also potentially better generalisation, of the neural network.
It also allows for easier learning of deeper and recurrent network structures. The necessary
conversion of targets to weights comes at an extra computational expense, which is in many
cases manageable. Learning in target space can be combined with existing neural-network
optimisers, for extra gain. Experimental results show the speed of using target space,
and examples of improved generalisation, for fully-connected networks and convolutional
networks, and the ability to recall and process long time sequences and perform natural-
language processing with recurrent networks.

Keywords: Deep Learning, Neural Networks, Targets, Exploding Gradients, Cascade
Untangling

1. Introduction

A feed-forward artificial neural network (NN) is a function f(~x, ~w), parameterised by a
weights vector ~w, that maps an input vector ~x to an output vector ~y = f(~x, ~w). This paper
initially considers feed-forward fully-connected layered NNs with nL layers, as illustrated in
Figure 1.

NNs can be used in many problem domains, including pattern recognition, classification
and function approximation (Bishop, 1995; Goodfellow et al., 2016). There are also numer-
ous industrial and scientific applications for NNs, including vision, neurocontrol, language
translation, image captioning, reinforcement learning and game playing (Silver et al., 2017;
Mnih et al., 2015; Karpathy and Fei-Fei, 2015; Fairbank et al., 2014a,b; Sutskever et al.,
2014; Samothrakis et al., 2016).

Training a NN means deciding upon an appropriate value for the weights vector ~w so
that the NN performs the desired task successfully. This training process is usually an
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Figure 1: Example feed-forward NN with structure “3-2-3-2-3”, with five layers (nL = 5).
An input vector ~x ∈ R3 (in this example) is fed in from the left. Data propagates
along the forward arrows (weights) causing nodes to fire, layer by layer, eventually
producing output vector ~y ∈ R3. The precise equations governing a NN are given
in Section 2.1. Bias weights are not shown here, and this NN does not include
shortcut connections.

iterative numerical method that works by trying continually to adjust ~w so as to minimise
some real-valued loss function L(~x1, ~x2, . . . , ~xnp , ~w) for a given set of np example input
vectors (~x1, ~x2, . . . , ~xnp). In a supervised-learning task, the loss function is designed so that
when minimised, each output vector ~yi = f(~xi, ~w) matches as possible closely some given
data label or desired value ~y∗i , for each input vector ~xi for i ∈ {1, . . . , np}. In unsupervised
tasks, the loss function would represent some other objective, for example a penalty in a
reinforcement-leaning problem, or an ability to reconstruct or group the input data.

The loss function measures how well the NN is achieving its desired task and its value at
each point in weight space creates a surface, which the training process attempts to traverse
to find a suitably low point. Most training algorithms use the gradient of the error function
with respect to the weights, ∂L

∂ ~w , which is calculated by the celebrated backpropagation
algorithm (Werbos, 1974; Rumelhart et al., 1986). Two major difficulties for training are
that the loss surface can be very crinkly in places, making the algorithms very slow, and
also that the surface may be riddled with sub-optimal local minima and saddle points. It is
these problems that the various training algorithms in existence, including novel activation
functions and weight-initialisation schemes, are designed to overcome, to varying extents.

When a NN processes an input vector ~x, as illustrated in Figure 1, the internal (hidden)
neurons and output neurons in it will fire at different strengths, or activations. Hence there
is a real number, the activation strength, associated with each node. These activation values
can be gathered together for all hidden layers and the output layer to form a single vector,
~a.

Hence for each input vector ~xi, and given set of weights ~w, there will be an associated ac-
tivation vector ~ai. Given the NN weights ~w and several input vectors {~x1, ~x2, . . . , ~xnp}, the
set of vectors {~a1,~a2, . . . ,~anp} is uniquely determined by the equations that govern the NN’s
operation. Conversely, given an arbitrary set of target activation vectors, {~a1,~a2, . . . ,~anp},
and corresponding input vectors, {~x1, ~x2, . . . , ~xnp}, a relatively cheap calculation using lin-
ear algebra could take place to uniquely determine the weight vector ~w that most closely
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achieves the set of target-activation vectors. Therefore the training process could work by
iteratively improving the targets, instead of the weights. That is the central idea of this
paper: to do NN training in target space (the space of all possible sets {~a1,~a2, . . . ,~anp})
instead of the usual weight space (the space of all possible ~w).

The motivation for switching from weight-space learning to target space is now discussed.
With weight-space learning, any small adjustment to a weight in an early layer shown in
Fig. 1 will make the activations coming out of that layer change by a correspondingly small
amount. However these changed activations will have a knock-on effect in changing the
activations in the next layer, and so on with each subsequent layer, often forming a cascade
of changes which reverberate through the later layers.

If the subsequent layers’ neurons are all close to their firing thresholds, or are on a
particularly steep part of the activation function, then the small change in the early layer
could have a catastrophic scrambling effect on the NN output. This is why the error surface
in weight space is so crinkly, or even chaotic (Skorokhodov and Burtsev, 2019; Phan and
Hagan, 2013). This is not a desirable property for any learning strategy to have to cope with.
Another way of stating that a small change to a weight causes a catastrophic scrambling of
behaviour, is to say that the sensitivity of the loss function with respect to that weight is very
large. This is referred to as the exploding-gradients problem (Hochreiter and Schmidhuber,
1997a), and we hypothesise that this is the main reason why NNs with many layers are
difficult to train using standard backpropagation.

With target space, any small change to the targets for one layer will still cause a corre-
spondingly small change to the activations of that layer. But then the algorithm that tries
to match the node activations to their targets in the subsequent layers will try to choose the
weights intelligently so the disturbance to later layers is minimised, an effect which we call
cascade untangling (see Fig. 2). If successful, this should minimise the disturbance caused
by the initial small change, and hence make the error surface in target space much smoother
than that of weight space, directly addressing the exploding-gradients problem. Increased
smoothness of the surface will also reduce the number of local minima in it, and make the
crevices in it wider and easier to follow by gradient descent. This should be increasingly
beneficial for NNs with many layers, and even more so for recurrent neural networks (RNNs)
where the output of a neural network is looped back to be combined with subsequent inputs,
causing data to cycle around the network many times. We discuss target-space techniques
for RNNs in Section 4.1, but initally focus on feed-forward networks.

If the cascade untangling of target-space learning works as intended, then the path ex-
plored by gradient-descent should be more direct and hence reach lower minima. This could
contribute to better generalisation by the neural network (Nakkiran et al., 2020). Further-
more, the resulting loss-function surface in target space should be smoother in general,
and in particular it may be flatter at the final resting place of the optimisation process.
This could also contribute to better generalisation, since flat minima are hypothesised by
Hochreiter and Schmidhuber (1997b) to produce better generalisation than a sharper mini-
mum (although this is an area for further research because it might not be straightforward
to directly compare the flatness between two different parameterisations of a loss-surface
(Dinh et al., 2017)).

The experimental results given in this paper show that using target space does indeed
allow for gaining better performance in the training of deeper networks than occurs with
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weight space, and includes examples of improved generalisation and improved number of
training iterations required for feed-forward networks, recurrent networks and convolutional
layered networks; but with a higher computational cost per training iteration (due to the
linear algebra process which converts from target space to weight space). We argue that
this extra cost motivates choosing deeper but narrow network architectures, when training
a network in target space.

Input Batch

3 4 5 6 7 86 5 4

Layer 1

Layer 2

Layer 3

Layer 4

Output Batch

Loss

Figure 2: In this analogy, a ball bounces deterministically down through a grid of pins, like
in the game bagatelle. This represents a neural network processing a batch of
input vectors and producing a batch of output vectors. The objective of training
the neural network is to arrange the pins to make the ball bounce into a region
of minimum loss at the bottom. Each row of pins represents a layer of weights
in the neural network (but the number of pins in each row is unrelated to the
number of nodes in that network layer). The x-coordinate of the ball’s launch
position represents a whole training batch of input vectors, compressed down to a
single x-coordinate for this visualisation. Likewise, the ball’s horizontal position
at each layer of pins represents all of the hidden-state activation vectors at that
layer, for each training pattern, compressed down to a single x-coordinate. With
weight-space learning, we consider what effect sliding Layer 1 of pins sideways
will have on the final destination of the ball – clearly it will often catastrophically
scramble the ball’s trajectory (exploding gradients). In contrast, with target-
space learning, whenever Layer 1’s pins are moved, the positions of the lower rows
of pins automatically adjust themselves to try to stabilise the ball’s trajectory as
much as possible. This represents “cascade untangling”. In target space, learning
takes place by actively bending segments of the ball’s zig-zag trajectory, while
causing only minimal disturbances to the other trajectory segments.

The rest of the paper is structured as follows. In the rest of this section, we discuss
related published work. In Section 2 we define the main target-space algorithm for feed-
forward layered neural networks, and then discuss background technical information about
the method in Section 3. In Section 4 we show how the method can be extended to con-
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volutional and recurrent neural networks. In Section 5, we give experimental results for
feed-forward, convolutional and recurrent neural networks. Finally, in Section 6, we give
conclusions.

1.1 Related work

Target-space techniques were originally proposed by Rohwer (1990) under the name of
“moving targets”, and then re-proposed under different names by Atiya and Parlos (2000);
Enrique Castillo and Alonso-Betanzos (2006). There are some technical difficulties with
these early works, which were later identified and improved upon by Carreira-Perpinan and
Wang (2014), and follow-up work. These prior target-space methods, and their modern
variants, are described in more detail in Section 3.4.

Other modern deep-learning methods enable the training of deep networks in a different
way from target space. Some of these are described here.

Exploding gradients in deep neural networks were first analysed by Bengio et al. (1994)
and Hochreiter and Schmidhuber (1997a). They also identified and defined the opposite
problem, vanishing gradients, which also occurs in deep and recurrent networks. The solu-
tion proposed by Hochreiter and Schmidhuber (1997a), Long Short-Term Memory (LSTM)
networks, focuses on solving vanishing gradients in recurrent networks, and is very effective,
especially at spotting and exploiting patterns in long time sequences. The target-space so-
lution we propose focuses only on addressing exploding gradients, but when combined with
a powerful optimiser like Adam, can also learn and exploit long time sequences (even com-
pared to LSTM networks); as shown in Sections 5.3-5.4.

Glorot et al. (2011) identified that vanishing and exploding gradients could largely be
controlled by changing the non-linear functions used which affect the node’s firing activa-
tion. They proposed to replace the conventional logistic-sigmoid and hyperbolic-tangent
function by a rectified linear function, ReLU(x). Since their proposed activation function
has a maximum gradient of 1, it limits the scale of a cascade of changes arising from any
perturbed weight, and hence eases training of deep networks. It does not entirely prevent
the gradients from decaying/exploding though, since the magnitude of the gradients are
also amplified proportional to the magnitude of the weights in each layer (Hochreiter and
Schmidhuber, 1997a). Furthermore, the rectified linear function produces some problems of
its own, with its unbound magnitude of its output; which can lead to infinities appearing,
particularly in recurrent networks. These infinities make the proposed ReLU activation
function inappropriate for recurrent networks. We compare and include our method with a
variant of this activation function in Section 5.

Another significant recent breakthrough in training deep networks has been through the
careful choice of the magnitude by which weights are randomised before training commences.
The magnitudes derived by Glorot and Bengio (2010) and He et al. (2015) are carefully
chosen so that the mean and variance in activations of each node remain 0 and 1 respectively,
regardless of the depth of the network. This prevents the activations at each layer growing
without bound, or saturating on the flat parts of the tanh activation function, and thus
prevent gradients from decaying or exploding.

Batch Normalisation (BN) (Ioffe and Szegedy, 2015) is a powerful method for helping
with the training of deep networks. This method can be viewed as a simplification and close
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relative of target space, and also similar in aim as the above weight-initilisation methods, in
that BN prevents the activations of nodes at subsequent layers from growing or saturating
without bound. BN works by setting an individual “target” for the mean µ and standard-
deviation σ for every node in a layer. These are applied to normalise the entire training
batch passing through the given node. This normalisation can help by performing some
limited form of cascade untangling, but to a lesser extent than target space does, since with
BN the targets are just summary statistics for a whole node. BN is proven to work well
in practice, and there has been some discussion on how it works so well (Santurkar et al.,
2018). BN also has a relatively low computational cost compared to target space. However
target space can do a better job of cascade untangling and training deep networks. We
describe empirical comparisons of BN to target space in Section 5.

2. Target-Space Algorithm for Layered Feed-Forward Networks

In the first two subsections we describe the notation for ordinary weight-space learning for
neural networks. The target-space algorithm is then defined in the subsequent subsections.

2.1 Terminology, feed-forward and training mechanisms for a Neural Network

We extend the basic NN architecture described in Figure 1 to act on a batch of size nb
patterns simultaneously. Concatenate the batch of input column vectors {~xb1 , ~xb2 , . . . , ~xbnb

}
side by side into a single matrix X with nb columns. Then we can define a feed-forward
neural network (FFNN) as a function that maps this matrix, X, to an output matrix, Y . The
network is split into nL layers of nodes, each node having an activation function, g : R→ R,
and there being a matrix of weights between each pair of layers. The activation function g
is usually smooth, monotonic and non-linear. Common choices are g(x) = tanh(x) or the
ReLU function (Glorot et al., 2011).

The layers, respectively, consist of d1, d2, . . ., dnL nodes, as shown in Figure 1. Thus
X ∈ Rd1×nb and Y ∈ RdnL

×nb . In the most general case, each layer j is connected to each
later layer k > j, via a matrix of weights Wj,k ∈ Rdk×dj . The network is then said to have
“all shortcut connections”. However in the more common case, shortcut connections are
not included and the only non-zero weight matrices are between consecutive layers.

Each node has a bias which can be implemented by having an extra “layer 0” which
contains just one node that always has activation of unity. Thus for each layer j, W0,j ∈
Rdj×1 is a column vector of weights coming from layer 0, which represent bias values for
layer j.

The activations are calculated layer-by-layer, according to Algorithm 1. We allow the
function g to be applied to a vector or matrix in an elementwise manner, i.e. (g(A))ij :=
g(Aij), for all i and j. In line 4 of the algorithm, I (j) denotes the set of integer layer-
numbers of all layers that feed forwards into layer j. So for example, for a fully-connected
layered network with all shortcut connections, I (3) = {0, 1, 2}.

Running the feed-forward algorithm with an input matrix X generates a sequence of
intermediate work-space matrices, Aj and Sj for all layers j, whose elements hold the
activations and sums, respectively, of each layer’s nodes. These matrices and the output
matrix Y are to be retained for later use. The pth column of each matrix X, Aj , Sj and Y
all correspond to the same pattern p.
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Algorithm 1 Feed-Forward Dynamics

1: A0 ← [1 1 . . . 1] {Bias nodes ∈ R1×nb ; a row vector of 1s}
2: A1 ← X {Input matrix. X ∈ Rd1×nb .}
3: for j = 2 to nL do
4: Sj ←

∑
k∈I(j)Wk,jAk {Sums received by each node. Sj ∈ Rdj×nb .}

5: Aj ← g(Sj) {Apply activation function. Aj ∈ Rdj×nb .}
6: end for
7: Y ← AnL {Output Matrix. Y ∈ RdnL

×nb .}

To train the neural-network, we first define the loss function, or error function, L :
(X, ~w) → R, where ~w is a vector of all of the weights in the network. For supervised
learning, the most common loss functions are the mean-squared error and cross-entropy
loss. Then, we seek to minimise L with respect to ~w using gradient descent:

∆~w = −η ∂L
∂ ~w

. (1)

This weight update is applied iteratively, with a small positive learning rate η. The learning
rate η can be changed over training time, or a more advanced optimiser could be used to
try to accelerate learning (e.g. RPROP (Riedmiller and Braun, 1993), conjugate gradients
(Møller, 1993), Levenberg-Marquardt (Bishop, 1995), RMSProp (Tieleman and Hinton,
2012), or Adam (Kingma and Ba, 2014)).

To compute the gradients in the right-hand side of (1) efficiently, we can use the back-
propagation algorithm (Werbos, 1974; Rumelhart et al., 1986), or equivalently automatic
differentiation packages provided by a neural-network software library (Rall, 1981; Werbos,
2005; Abadi et al., 2016).

2.2 Stacked Layer Input-Matrix and Weight-Matrix Notation

For layer j, define A[0:j) to be shorthand form for a vertically stacked block matrix of all
the Ak matrices that provide an input to layer j, i.e. for all the k ∈ I (j). For example, for
a simple layered feed-forward network we would have,

A[0:j) :=

(
A0

Aj−1

)
, (2a)

(where A0 is the layer of bias nodes), and if all shortcut connections were present, then this
would become,

A[0:j) :=


A0

A1
...

Aj−1

 . (2b)

Also define W[0:j] as a side-by-side block concatenation of all the weight matrices that
input to layer j. For example, with for a simple layered feed-forward network, we would
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get:

W[0:j] :=
(
W0,j W(j−1),j

)
, (3a)

and, if all shortcut connections were present, we would get,

W[0:j] :=
(
W0,j W1,j . . . W(j−1),j

)
. (3b)

This simplifies the formula for the NN feed-forward equations; line 4 of Algorithm 1
becomes,

Sj ←W[0:j]A[0:j). (4)

2.3 Using Targets to Parameterise a Neural Network Instead of Weights

So far the neural-network parameters have been the weights ~w. We now describe how we
can switch the representation to “targets”.

Define the matrices T2, T3, . . . , TnL , to be the “target matrices” for each layer. These
have the same dimensions as the corresponding Sj matrices. In the target-space approach,
the set of Tj matrices will be the learnable parameters, replacing the role of the weight
matrices. The weight matrices are relegated into calculated quantities that are dependent
on the Tj matrices.

The target matrix for each layer Tj holds the “targets” for the Sj matrix at that layer;
hence we want to choose the weights which make the Sj matrices get as close as possible
to the Tj matrices, or to minimise ||Sj − Tj ||, where ||·|| denotes the Frobenius norm. To
simplify computational complexity, we do this in a greedy layer-by-layer manner.

Substituting (4) shows that we therefore need to find

W[0:j] = arg min
W

[∣∣∣∣WA[0:j) − Tj
∣∣∣∣2 + λ ||W ||2

]
, (5)

where the λ ||W ||2 term is included to provide Tikhonov regularisation, which ensures that
the solution in W is unique and kept reasonably small. The minimisation in (5) is a standard
least-squares problem from linear algebra, with solution

W[0:j] = Tj
(
A[0:j)

)†
, (6)

where the † indicates a regularised pseudoinverse matrix, defined by

A† := AT (AAT + λI)−1. (7)

Here AAT is referred to as the Gramian matrix, λ ≥ 0 specifies the amount of Tikhonov
regularisation, and I is the identity matrix. The presence of λI in (7) prevents the occur-
rence of non-invertible matrices.1

Hence the layer weights and activations can be calculated layer by layer. The full method
by which the weights are calculated from the target matrices is given in Algorithm 2.

1. An alternative to Tikhonov regularisation would be to use the Truncated Singlular Value Decomposition
pseudoinverse, but this was avoided because the truncation means the derivatives are not as smooth.
However the SVD (or similar decompositions) may be used to implement (7) in practice, to obtain
improved numerical stability.

8



Deep Learning in Target Space

Algorithm 2 Converting Targets to Weights, in a FFNN, with Sequential Cascade Untan-
gling (SCU)

1: A0 ← [1 1 . . . 1] {Bias nodes. A0 ∈ R1×nb .}
2: A1 ← X {Input matrix. X ∈ Rd1×nb .}
3: for j = 2 to nL do

4: W[0:j] ← Tj
(
A[0:j)

)† {Calculates weights to layer j. Tj ∈ Rdj×nb .}
5: Sj ←W[0:j]A[0:j) {Sj ∈ Rdj×nb .}
6: Aj ← g(Sj) {Aj ∈ Rdj×nb .}
7: end for

The main inputs to this algorithm are an input matrix X with batch size nb, and a list
of target matrices Tj . The main outputs of this algorithm are the realised weight matrices,
Wj . The quantities Sj and Aj are work-space matrices.

Because A[0:j) is a shorthand for a stack of activation matrices Aj , as defined in (2),
it is intended that the changes to Aj in line 6 will immediately affect the A[0:j) matrices
referenced in line 4 for higher values of j. This is what carries forwards the changes of an
earlier layer, so that they can be corrected for by a later layer.

Once these weight matrices are obtained, they are then used in Alg. 1 to calculate the
actual NN output. Note that Alg. 2 followed by Alg. 1 are run back-to-back, in that order,
and can therefore be viewed as one continuous computational graph. (This is in contrast
with some prior published work on target space, e.g. Carreira-Perpinan and Wang, 2014,
where there are alternating phases of updating the Wj matrices followed by updating Tj
matrices. In our method, the Wj matrices are defined as functions of the Tj matrices, and
there are no alternating phases.)

Alg. 2 is designed to work with a potentially different input batch X from the input
matrix X used to evaluate the output of the main network via Alg. 1. This separation aids
using mini-batches when training the network, which is discussed further in Sec. 3.1. Note
that because Alg. 2 uses a different input matrix (X) compared the input matrix X used
by Alg. 1, therefore the work-space matrices Sj and Aj are a different set of variables in
Alg. 2, compared to Alg. 1.

Note that the aim of matching the Sj matrices to their targets by (5) will not be
achieved exactly. In general where the number of patterns nb is larger than the rank of the
weight matrix, matching the targets exactly will be impossible. Hence we carry forward the
disturbances actually achieved to the Sj matrices, as opposed to the disturbances intended
by Tj matrices, in Line 6 of Alg. 2. Then the subsequent layers’ targets will act to continue
to try to dampen down this disturbance, taking into account the fact that the previous
layer’s targets will not have been met exactly, so that the subsequent cascade of changes is
always minimised as much as possible. Hence we refer to the algorithm as having Sequential
cascade untangling (SCU).

We found SCU to be much more effective when training neural networks than an alter-
native of assuming targets are met exactly, which would be implemented by replacing line
6 of Alg. 2 by

Aj ← g(Tj). (8)

9



Fairbank, Samothrakis and Citi

Since this approach does not carry forwards the actual cascade of changes beyond just
one layer, we call this alternative approach “optimistic cascade untangling” (OCU), and
this is what prior published research (for example, Rohwer, 1990; Atiya and Parlos, 2000;
Enrique Castillo and Alonso-Betanzos, 2006) has always done. Experiments in Sec. 5.1
(Fig. 6) show a significant improvement in performance from using SCU over OCU on
the Two-Spirals classification problem, and experiments in Sections 5.3 and 5.4 show the
advantage it gives in recurrent neural networks.

2.4 Calculating the Learning Gradient in Target Space

The previous subsection described an algorithm which converts targets to weights. The
next objective is to be able to do gradient descent in target space, i.e. with respect to the
targets themselves.

Algorithm 2 can be viewed as a mapping function m from targets to weights, such that

~w = m(X,~τ), (9)

where ~τ is a shorthand for the vector of all target matrices flattened and concatenated
together. Given such a differentiable mapping function, m, we can define the loss function
L in terms of the targets (which we will denote as L′), as follows:

L′(X,~τ) := L(X,m(X,~τ)) (10)

Consequently, using the chain rule we can convert gradient descent in weight space to
gradient descent in target space:

∂L′

∂~τ
=

(
∂m

∂~τ

)T ∂L
∂ ~w

, (11)

where ∂m
∂~τ uses Jacobian matrix notation, and ∂L

∂ ~w and ∂L′

∂~τ are treated as column vectors.

This gradient ∂L′

∂~τ allows us to perform gradient descent in target space, directly on the
main neural-network objective function, via

∆~τ = −η∂L
′

∂~τ
. (12)

Algorithm 3 applies (11) to calculate the ∂L′

∂Tj
matrices, for Algorithm 2’s mapping

method. In this code, A � B means the Hadamard or elementwise product. The algo-
rithm uses workspace matrices δAj and δSj , which are identically dimensioned to their
non-prefixed counterparts, for each layer j. The matrix δA[0:j) is built up of δAk matrices,

in the same way as Equation (2), and similarly ∂L
∂W[0:j]

is composed of ∂L
∂Wk,j

matrices like

(3). It is assumed that these matrices point to the same underlying data, so for example,
changing δA[0:3) will immediately affect δA2, and vice versa.

The useful outputs of the algorithm are the quantities ∂L′

∂Tj
, for all layers j, which can

be written collectively as ∂L′

∂~τ . Hence the algorithm gives ∂L′

∂~τ , which can be used to per-
form gradient descent in target space (12). As with weight-space gradient descent, a more
advanced optimiser might be applied to achieve a speed up.
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Algorithm 3 Calculation of Learning Gradient in Target Space

Require: Sj , Aj and Wj matrices calculated by Alg. 2 for input matrix X, and ∂L
∂Wk,j

matrices calculated by back-propagation applied to Alg. 1 for input matrix X.
1: ∀j, δAj ← 0
2: for j = nL to 2 step −1 do
3: δSj ← (δAj)� g′(Sj)
4: ∂L′

∂Tj
←
(

∂L
∂W[0:j]

+ (δSj)A[0:j)
T
)

(A†[0:j))
T

5: δA[0:j) ← δA[0:j) + W[0:j]
T (δSj − ∂L′

∂Tj
) + (A[0:j)A

T
[0:j) +

λI)−1
((

∂L
∂W[0:j]

)T
+A[0:j)(δSj)

T

)
(Tj − Sj)

6: end for

The target-gradient computation algorithm (Alg. 3) is derived in Appendix B. The most
interesting part of the derivation is the differentiation under the matrix inverse operation.
This was omitted by prior research (Rohwer, 1990; Enrique Castillo and Alonso-Betanzos,
2006), which indicates that their learning gradients were incorrect. Our informal exper-
iments (not recorded here) showed that this severely reduced performance of those prior
algorithms. Modern automatic-differentiation (Abadi et al., 2016) libraries correctly handle
differentiation under a matrix inverse, but as this step is non-obvious to derive manually,
we have included the explicit algorithm here. Alternatively, if Alg. 2 followed by Alg. 1
followed by the calculation of L is passed through an automatic-differentiation library, then
∂L′

∂~τ will be calculated correctly, automatically.

The algorithmic complexity to implement one iteration of target-space learning is derived
(under various assumptions) in Appendix A.1 to be approximately 4nb/nb times larger
than time taken to implement one iteration of weight-space learning. Note that in this
ratio, nb is the batch-size used for the target space matrix X, and nb is the batch size
for the weight-space input matrix X. Hence if smaller mini-batches are used to acquire
the weight-space gradient than are used in the target-space algorithms, then the time per
iteration of the target-space algorithm (which cannot use tiny mini-batches) would become
increasingly large in comparison to the weight-space calculations. Hence in the extreme
case of pattern-by-pattern learning (nb = 1), the target-space algorithm would be slower
by a very significant factor of approximately 4nb. In the experiments of Section 5.1, we use
nb = nb, and the resulting theoretical ratio of 4 holds out well empirically.

3. Technical Aspects for Target-Space Implementations

The previous section has defined the main target-space method. We now consider some
technical aspects, including how to use mini-batching, the effects of choice of λ, how to ini-
tialise the target variables at the start of training, detail of differences between this method
and previous published target-space work, and convergence properties of our method.
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3.1 Mini-batching and the Choice of X

For very large datasets, it becomes prohibitively expensive to compute ∂L
∂ ~w for the whole

dataset. Hence with very large datasets, it is standard practice in deep-learning to use
mini-batches; that is to operate on a smaller, randomly chosen, subset of the training data
in any one training iteration, with nb � np. The mini-batch chosen would be used to build
the input matrix X inputted to Alg. 1. Using mini-batching also introduces a stochastic
element to the optimisation process, which is also beneficial in finding flatter final minima
in the loss-function surface, and thus improving generalisation (Bottou, 2010; Masters and
Luschi, 2018).

As noted in Section 2.3, it is possible to use a different X for the computation of ∂L
∂ ~w

by backpropagation through Alg. 1 from the X used in the target-space calculations of
Algs. 2-3. But unlike the random mini-batches which may be used for calculating ∂L

∂ ~w , the
X used for target space must be fixed; because every time we shuffle the mini-batches in
X, the corresponding learnable quantities Tj would have their meaning scrambled, which
would disrupt learning.

For computational efficiency, it is possible for the patterns in X to be a mini-batch, i.e.
a subset of the entire training set, or even a fixed random matrix2. But it must be a fixed
matrix.

The larger nb is (where nb is the number of columns in X), the more computationally
expensive things will become. So how large should nb be? Ideally, nb should be sufficiently
large so that the Gramian matrix in (7) would not have any zero eigenvalues. The more
non-zero eigenvalues this product has, i.e. the more linearly independent columns in each
Aj , the more useful the pseudoinverses calculated will be in performing cascade untangling
(defined in Section 1). If there are too few patterns in X then it will mean that target-space
learning will not be able to generate usefully full-rank weight matrices in any layer where
the number of layer inputs exceeds nb, which can limit the representation capabilities of
the neural network (see section 5.1, Fig. 7, for an example.)

Since the side-dimension of AjA
T
j is equal to the number of inputs to layer j, as a

rule of thumb, we recommend to set nb to be preferably as large as the widest layer in
the network, and more so if the computational expense can be spared; as this will usually
ensure the Gramian matrix is full rank. Achieving this while also maintaining computational
efficiency motivates the use of network architectures which are deep and narrow, as opposed
to architectures with a large number of nodes to each hidden layer.

3.2 Choice of λ

For choosing λ in equation (7): if it is too large then the effect of the pseudoinverses in (7)
will be dulled in their ability to perform cascade untangling. Hence for large λ, the benefits
of target-space learning start to disappear.

If λ is too small, then the inverse might become close-to-singular. This would mean
small changes in Aj make large changes to the generated weight matrices, and hence the
learning gradients in target space would become too steep.

2. See Sec. 5.4 for an example of this.
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If instability in learning is observed, then λ could be increased, to try to remove any
particularly steep gradients in target space caused by the matrix inversion process. We used
either λ = 0.001 or λ = 0.1 in all experiments in this paper.

Note that the λ in equation (5) is performing L2 regularisation only on the mapping
between targets and weights. It does not limit the final magnitude of the weights in the
neural network, since there is no restriction of the magnitude of T in equation (6), and there
is no cost on the magnitude of T appearing in the main training objective function L. Hence,
this L2 regularisation should not be confused with a desire to apply L2 regularisation on the
weights of the neural network (weight decay), which would have the intention of regularising
the neural network into having smaller magnitude weights. If that was required, then explicit
weight decay terms (on the magnitudes of W ) should be added into L.

3.3 Target initialisation

At the start of training, the layer target matrices Tj need to be randomised. We used a
truncated normal distribution, with mean 0 and a fixed variance to randomise each element
of each Tj matrix.

Since these initial layer targets have the same fixed variance at every layer, the vari-
ance of the magnitudes of the layer activations should be the same at every layer of the
initially-randomised network. This is in contrast to weight-space initialisation, where unless
the initial randomised weight magnitudes are chosen very carefully (such as by using the
methods proposed by He et al. (2015); Glorot and Bengio (2010)), then the activations at
subsequent layers can grow exponentially, eventually either saturating or becoming zero.

We have empirically found that it may be beneficial to run Alg. 2 once immediately
after the initial targets are randomised, to compute the weight matrices and Sj , and then
to apply

Tj ← Sj , ∀j, (13)

exactly once before training commences. This simply projects the newly-randomised targets
on to the hypersurface through target space which represents the subset of targets which
are exactly achievable. This step is done in all of the target space experiments presented
in this paper. It remains to be seen how much value this step adds, although our informal
experiments seemed to show some benefit in our recurrent neural-network experiments.

3.4 Relationship to Prior Target-Space Research

The work by Rohwer (1990) is a stand-out early work on target space which we discuss
here, along with more recent notable work, particularly those following on from Carreira-
Perpinan and Wang (2012). Some of the prior work is dedicated to recurrent networks (e.g.
Atiya and Parlos, 2000), some is dedicated to feed-forward networks with one hidden layer
(Enrique Castillo and Alonso-Betanzos, 2006), and some (especially more recent publica-
tions) is dedicated to general deep architectures (e.g. Rohwer, 1990; Carreira-Perpinan and
Wang, 2012; Lee et al., 2015a,b; Taylor et al., 2016; Zhang et al., 2016; Frerix et al., 2017).

In some of the prior works, the process which converts targets into weights seeks to
minimise ||g(Sj)− Tj || or

∣∣∣∣Sj − g−1(Tj)∣∣∣∣ instead of ||Sj − Tj ||. Unfortunately there is no
closed-form solution to minimise ||g(Sj)− Tj || with respect to the weights, and the second
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option
∣∣∣∣Sj − g−1(Tj)∣∣∣∣ requires the function g to be invertible and the domain of Tj to be

restricted to the range of g.

Early prior published work (Rohwer, 1990; Atiya and Parlos, 2000; Enrique Castillo and
Alonso-Betanzos, 2006) is only applicable to the sum-of-squared loss function, and hence
only to supervised regression problems. A significant defect of these early target-space
methods, which probably held back their greater adoption, is that instead of optimising the
main objective function L, they instead optimise an intermediate loss function, similar in
concept (ignoring bias and shortcut connections) to

E(X,~τ) =
∑
j

||Wjg(Tj−1)− Tj ||2 , (14)

instead of the true sum-of-squares cost function,

E(X,~τ) =
∑
j

||Wjg(Sj−1)− Tj ||2 . (15)

They aim to minimise (14) with respect to the variables Tj , subject to each Wj satisfying
(6), and subject to the final layer’s targets satisfying TnL = Y ∗, where Y ∗ is the target data
in the supervised regression problem. If (14) is successfully minimised down to zero then it
will follow that Tj = Sj for all j, and (14) will match (15), and so the supervised learning
problem will be solved. However seeing as it is in general impossible to achieve a zero error
in (14), it means that the first network layer will fail to achieve S1 = T1 exactly, and hence
the “input” to the second layer in (14), namely g(T1), will be wrong. This misalignment
between Sj and Tj will grow more and more as the layer number j increases. The end
result is that local minima in (14) do not align with local minima in (15), and so gradient
descent on (14) does not actually minimise the intended loss function. This was a crucial
error limiting the applicability of the methods by Rohwer (1990) and Enrique Castillo and
Alonso-Betanzos (2006). Additionally the work by Rohwer (1990) and Enrique Castillo and
Alonso-Betanzos (2006) make an incorrect derivative calculation in computing the learning
gradient, by omitting to differentiate through the matrix inverse operation of equation (7).
A related error of following the wrong gradient descent direction appears in the work of
Atiya and Parlos (2000). They approximate ∂L′

∂Tj
= 0 for all j < nL, which is incorrect since

cascade untangling can never occur perfectly.

Later work rectifies these problems. The work by Carreira-Perpinan and Wang (2012)
refers to the target variables as auxiliary coordinates. They solve the problems associated
with (14) by instead using a bespoke objective function that is something like a weighted
sum between (14) and (15), and where the weighting towards (15) is gradually increased
during learning. This ensures that it is (15) that is finally optimised, while benefitting from
the easier learning of (14) in earlier training. However their method requires alternating
phases of minimisation with respect to Wj followed by minimising with respect to Tj ; and
then both of these phases need interlacing with increasing the weighting of (15) versus (14).
Our method streamlines this process by having a single optimisation to do, which avoids
zig-zagging through the search space, and allows for acceleration methods to be applied.
But in comparison, their method increases the decoupling of the layers by successfully using
an equation based on (14) for the majority of the learning process.
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Frerix et al. (2017) extend upon the work of Carreira-Perpinan and Wang (2012) but
they modify the cost function so that the targets within it are anchored to the forward-
propagated activations (by an equation similar to (13); so that the targets are no-longer
free variables to be learned). This modification creates an implicit quadratic cost function
attached to each layer (similar to (14)) which enables the use of a semi-implicit optimisation
algorithm based on proximal updates. The proximal updates can converge under much
higher learning rates than would be possible with ordinary gradient descent.

In “Difference Target Propagation”, Lee et al. (2015b) define a method which uses learn-
able targets for each hidden layer. In this method, the target at one layer Tj is iteratively
set to L−1P (Tj+1), where L−1P is an inverse function of the layer’s forward-propagation func-
tion, and where this inverse (being generally an unknown function) is learned by an auto-
associative network which learns to model LP for each given network layer. This method
potentially allows training of networks with discrete activation functions. In “Deeply-
Supervised Nets”, Lee et al. (2015a) add an extra support-vector machine classifier for
the output of each layer. This provides extra training information; a kind of target for each
hidden layer, which proves very effective in training deep classification networks.

Taylor et al. (2016) use learnable targets for both the Aj and Sj matrices, and update
these learnable variables with iterative application of a closed-form Bregman method, which
trains the network to solve the objective function, without needing to use any form of
gradient descent. Zhang et al. (2016) use a similar iterative scheme to train neural networks
to generate supervised hash codes.

In summary, much of the prior work shows the potential and power of target space, and
the recent prior work addresses the problems appearing earlier in novel ways.

Our work provides several notable further enhancements and alternatives to the prior
work, particularly regarding the introduction of the SCU method, which we show in our
experiments is beneficial to performance. Furthermore, none of the prior work shows how
to separate the input matrix X (which is used for calculating the weights from targets)
from the input matrix X (which is used to run the neural network in Alg. 1). Our work
also introduces the correction of gradient calculations through the pseudoinverse operation
(which is necessary to apply (11) correctly); the separation of the main objective’s loss
function from the intermediate closed-form least-squares minimisation; and the introduction
of mini-batches. The simplicity of the method, and the view of searching in “target space”,
gives a single, simple, gradient-descent objective, i.e. (12), which can easily be combined
with existing acceleration schemes such as Adam.

3.5 Convergence Properties and Representation Capabilities of Target Space

The target-space gradient descent update (12) is derived to be true gradient descent on
the loss function L(~x,m(X,~τ)) with respect to ~τ . The loss function L is the main learning
objective function, as chosen by the practitioner. For example, for a regression problem, L
could be the mean-squared error, or for classification problems, it could be cross-entropy
loss.

A potential source of confusion is that there is a second loss function appearing in the
least-squares sub-problem given by (5), and also that the targets in each layer will not
usually be matched exactly; but this least-squares sub-problem is completely separate from
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the neural-network’s main objective function, L. To see this more clearly, the mapping
from targets to weights, ~w = m(X,~τ), given by Alg. 2, could be replaced by any other
well-defined differentiable mapping function. Regardless of what the differentiable function
m is, and regardless of how well any targets are matched or not matched, gradient descent
is still performed on the main neural-network objective function L by (11) and (12).

Any sufficiently small step size in target space by (12) will yield a decrease in L, since,
to first order:

∆L ≈ (∆~τ)T
∂L′

∂~τ
(ignoring higher order terms)

= −η
(
∂L′

∂~τ

)T ∂L′
∂~τ

(by (12))

≤ 0 (16)

Since the function L has a lower bound, L will decrease monotonically but not beyond
that bound. Hence convergence of L(~x,m(X,~τ)) to some limit is guaranteed. Similarly,
the standard convergence proofs for gradient descent with appropriately chosen step sizes
apply here (Bertsekas, 1999, Section 1.2.2).

Since the differentiable mapping function m is arbitrary, the convergence guarantees
work just as well as for the OCU and SCU variants described in Section 2.3. The difference
is that we hope that the target-space loss-surface is smoother in one variant than the other
(and that both variants are smoother than in weight space), and therefore they will produce
faster convergence and better generalisation (which can only be justified empirically; see
discussion in Section 1 and empirical results in Section 5).

For any given set of weights we can run the neural network forwards, and can capture
the sums Sj at each layer j, and assign these to the targets at each layer, by (13). Ignoring
the Tikhonov regularisation in (5), this will mean the targets will generate weights approx-
imately equal to the given set of weights that we started with. This shows that any point
in weight space has at least one equivalent representation in target space, such that m is a
many-to-one function, and hence any local minimum in weight space could be reached by
gradient descent from an appropriate random start point in target space.

An important question is the relationships between “solutions” (i.e. stationary points) of
the target-space problem, L(~x,m(X,~τ)), and those of the original weight-space one, L(~x, ~w).
Equation (11) shows that whenever ∂L

∂ ~w = 0, we must also have ∂L′

∂~τ = 0. Furthermore, when

Alg. 2 is used to define the mapping function m, Appendix C shows that whenever ∂L′

∂~τ = 0,

we must also have ∂L
∂ ~w = 0. Hence any stationary point in target space is also a stationary

point in weight space, and also the reverse is true.
For a step in target space ∆~τ , applying a first-order Taylor-Series Expansion of (9)

gives:

∆~w ≈ ∂m

∂~τ
(∆~τ) (first-order Taylor Series)

= −η∂m
∂~τ

(
∂L′

∂~τ

)
(by (12))

= −η∂m
∂~τ

(
∂m

∂~τ

)T ∂L
∂ ~w

(by (11)) (17)
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Comparing (17) to (1) shows that a first-order approximation to gradient descent in target
space via (12) is equivalent to descent in weight space, but where each weight-space di-

rection is multiplied by a positive semi-definite preconditioner matrix ∂m
∂~τ

(
∂m
∂~τ

)T
. However

by explicitly working in target space, we get the benefit of being able to apply an accel-
eration procedure to the descent steps in target space, such as Adam, and still retain the
convergence guarantees proven for that acceleration method. We would lose these guaran-
tees if we applied the semi-definite preconditioner matrix in weight space, and then applied
Adam afterwards. Also, rather than viewing target space simply as weight space with this
particular preconditioner, we have found empirically that issuing (17) directly can be more
unstable than using the exact function ~w = m(X,~τ), presumably due to the first-order
approximation used in (17); although this is an area for further research.

If mini-batching is used to generate samples of X, then the expectation of the gradient
descent direction in target space can be derived as follows. Denote the sampled mini-batch
as X̂, and L̂ := L(X̂, ~w), and EX̂ to be the expectation operator with respect to X̂. Then,

EX̂ (∆~w) = −ηEX̂

(
∂m

∂~τ

∂m

∂~τ

T ∂L̂

∂ ~w

)
(by (17))

= −η
(
∂m

∂~τ

∂m

∂~τ

T)
EX̂

(
∂L̂

∂ ~w

)

= −η
(
∂m

∂~τ

∂m

∂~τ

T) ∂L

∂ ~w
. (18)

The second line above follows because the mapping function m is independent of the
sample chosen X̂, for a given ~w = m(X,~τ). The final line concludes that even though mini-
batching may be used, with X independent of X̂, the expectation of the learning gradient
in target space will still produce a preconditioned descent step on the loss function on the
whole dataset L.

4. Specific Deep Architectures

The target-space method can be extended to different neural architectures and layer types.
Here we show specifically how the method can be extended to convolutional neural networks
and recurrent neural networks.

4.1 Application to RNNs

Recurrent neural networks (RNNs) are a powerful architecture of neural networks, which
extend the feed-forward network by having one or more recurrent (backward pointing)
weights. These feedback connections allow information from previous inputs be retained
and to contribute extra information to subsequent inputs to the network. This creates short-
term memory, which allows the network to remember and act on past inputs, enabling a
RNN to potentially have much greater functionality than a FFNN, potentially allowing it
to act like an agent interacting with an environment. Successful RNN applications are in
areas such as neurocontrol, time-series analysis, image captioning, language translation,
and question answering (Karpathy and Fei-Fei, 2015; Fairbank et al., 2014a,b; Sutskever
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et al., 2014; Samothrakis et al., 2016). However RNNs are generally more difficult to train
than feed-forward networks, with major challenges being vanishing or exploding learning
gradients, making it difficult for a RNN to remember information over long time sequences.

This section describes how a RNN can be trained in target-space. Target-space methods
potentially allow RNNs to tackle more complex time sequences and data-processing tasks
which previously have been very challenging for RNNs to solve.

A simplified recurrent architecture is shown in Fig. 3. This architecture consumes nt
input matrices X(t), one at each time step t ∈ {1, ..., nt}, and produces nt output matrices
Y (t). At each time step, data from an input matrix X(t) enters the RNN from the left and
propagates forwards in the usual manner. When data reaches the “context layer”, layer
cL, it loops back to the start of the RNN, and is combined with the next input matrix to
go through the RNN again. Data loops around the recurrent layers many times, each time
also passing through the exit layers which perform some final post-processing on the data
to deliver the output matrices Y (t).

A
(t)
1

Next Input
X(t)

A
(t)
2

Context
Input Nodes:

A
(t−1)
cL

A
(t)
3 . . . A

(t)
cL

Context
Layer

A
(t)
cL

. . .
Exit Layers

A
(t)
nL

Next Output
Y (t)

Recurrent feedback to
next “loop”: t← t+ 1

Figure 3: Diagram showing dataflow in a Recurrent Neural Network (RNN). Arrows show
dataflow. Each rectangle shows a layer of nodes in the neural network; the layers
with only a single rectangle are those that make no transformation to the incom-
ing data. The data cycles around the network multiple times in “loops”, each
loop indexed by t. Algorithm 4 describes the process in greater detail. The “exit
layers” do any necessary post-processing on the data. Extra shortcut connec-
tions, or repeated recurrent structure, may be present to obtain different RNN
architectures.

Pseudocode is given in Alg. 4. In this notation, layer 0 is reserved for the bias nodes;
layer 1 is for the input matrices X(t), and layer 2 is for feedback received from the later
context layer cL. Superscript numbers in brackets indicate the time step, t.

Each input matrix X(t) may itself contain a batch of several patterns (one in each

column). Hence the matrices A
(t)
j and S

(t)
j have dimension dj × nb.

An appropriate loss function L would be chosen that is a function of some or all of the
Y (t) matrices, and then the gradient of this loss function with respect to the weights of the
network, ∂L∂ ~w , can be found by automatic differentiation, using for example, backpropagation
through time (Werbos, 1990), in execution time O(nbntnw), where nw is the number of
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Algorithm 4 Recurrent NN Dynamics

Require: On entry, require nt input matrices X(t) ∈ Rd1×np .

1: A
(0)
cL ← 0 {Initial context units are zero}

2: for t = 1 to nt do
3: A

(t)
0 ← [1 1 . . . 1] {Bias nodes}

4: A
(t)
1 ← X(t) {tth input matrix.}

5: A
(t)
2 ← A

(t−1)
cL {Feedback from context layer}

6: for j = 3 to nL do

7: S
(t)
j ←W[0:j]A

(t)
[0:j)

8: A
(t)
j ← g(S

(t)
j )

9: end for
10: Y (t) ← A

(t)
nL {tth output matrix. Y (t) ∈ RdnL

×np .}
11: end for

weights in the network. Then, assuming weight-space is being used, an iterative optimizer
would use this gradient information to tune ~w, and train the network.

To incorporate target-space learning for a RNN, the intermediate objective is to make

all the S
(t)
j coming from Alg. 4 match as closely as possible some given target matrices T

(t)
j ,

for all time steps t. Hence, considering line 7 of Alg. 4, the objective is to choose a weight
matrix W[0:j] so as to achieve,

W[0:j]A
(t)
[0:j) ≈ T

(t)
j for all 1 ≤ t ≤ nt,

or equivalently to achieve, as closely as possible,

W[0:j]A
(:)
[0:j) ≈ T

(:)
j ,

where we have defined

A
(:)
[0:j) :=

(
A

(1)
[0:j) A

(2)
[0:j) . . . A

(nt)
[0:j)

)
, 3 ≤ j ≤ nL (19a)

and
T
(:)
j :=

(
T
(1)
j T

(2)
j . . . T

(nt)
j

)
, 3 ≤ j ≤ nL (19b)

The least squares solution to this is the same as in (6) and (7):

W[0:j] = T
(:)
j

(
A

(:)
[0:j)

)†
, (20)

however since this is a RNN, we now have the problem in that it is not possible to know

the values of A
(:)
[0:j) until the network can by run by Alg. 4; but that algorithm cannot be

run until equation (20) is solved.
To break out of this cyclic dependency, we can approximate using the “optimistic”

cascade untangling (OCU), given by (8), and therefore just set:

A
(t)
j ← g

(
T
(t)
j

)
∀t. (21)
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This OCU step only needs doing on the context layer which feeds backward connections to
the input layers. For the rest of the layers, it is preferable to use the SCU method. Alg.
5 shows how to do this in detail. This algorithm calculates the weights of a RNN from a

given list of target matrices T
(t)
j , using the SCU method wherever possible, and the OCU

method for the recurrent layer. The algorithm includes in line 10 an attempt to correct the
error introduced by the OCU step once the exit layers (shown in Fig. 3) are reached.

To modify the algorithm to a fully OCU method, then we would replace line 8 by
equation (21), and delete lines 7 and 10.

Algorithm 5 Conversion of Targets to Weights for a RNN (using SCU)

Require: On entry, require nt input matrices X
(t) ∈ Rd1×nb .

1: A
(t)
0 ← [1 1 . . . 1] ∀t {Bias nodes}

2: A
(t)
1 ← X

(t) ∀t
3: A

(t)
cL ← g

(
T
(t)
cL

)
∀t {Estimates A

(t)
cL matrices by OCU method.}

4: A
(:)
2 ←

(
0 A

(1)
cL A

(2)
cL . . . A

(nt−1)
cL

)
{Applies recurrent feedback from layer cL to layer

2. Hence A
(:)
2 is a block shifted-right version of A

(:)
cL .}

5: for j = 3 to nL do

6: W[0:j] ← T
(:)
j

(
A

(:)
[0:j)

)†
{Calculates weights to layer j}

7: S
(:)
j ←W[0:j]A

(:)
[0:j).

8: A
(:)
j ← g

(
S
(:)
j

)
{SCU method}

9: if j = cL then

10: Use the newly calculated W[0:j] matrices (for 3 ≤ j ≤ cL) to run Alg. 4 (using X
(t)

as the input matrices), up to layer cL, to obtain the true A
(:)
[0:cL+1) matrices. {This

is an attempt to correct for the OCU estimation made in line 3.}
11: end if
12: end for

For the reasons discussed in Sec. 3.1, the content and length of the target-space input

matrices, X
(t)

for t = 1, . . . , nt, may differ from the content and length of the weight-space
input matrices (X(t) for t = 1, . . . , nt).

This algorithm merely outputs a set of weights of the RNN. The RNN would then have
to be run separately, using Alg. 4, to obtain the set of output matrices Y (t).

Since Alg. 5 defines the mapping from targets to weights, it is possible to calculate the
learning gradient with respect to the targets (first going via ∂L

∂ ~w ) using automatic differenti-
ation, and hence train the RNN in target space. For example, if Alg. 5 followed by Alg. 4 is
passed to an auto-differentiation toolbox, then the toolbox will be able to correctly calculate
∂L′

∂~τ by differentiation through both algorithms sequentially. Section 5 shows experiments
which do this, with successful results.

The bottleneck in algorithmic complexity for Alg. 5 is in forming the Gramian matrix
AAT , which will take ni

2nbnt flops by direct multiplication. This is similar to a full forward-
unroll of the RNN with the input matrix X. Hence the relative complexity of running Alg.
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5 using X, compared to Alg. 4 using input matrix X, is approximately nbnt/nbnt. This
motivates a choice of using a small value of nt where possible. See Section 5.4 for an
example.

4.2 Application to Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent one of the most powerful modern deep-
learning architectures and are particularly applicable to vision problems. The key innovation
of the convolutional neural network is the 2D-convolution operation: a smaller weight matrix
is “convolved” (i.e. a sliding dot product is performed) with the source image to calculate
the activations in the next layer. The convolutional operation means the weight matrix
connecting one layer to the next can be much smaller than that of a fully connected network;
and also that this smaller group of weights, the convolutional “kernel”, will be applied to
multiple patches of the image. This reuse helps in generalisation, and helps preserve spatial
relationships in the image from one layer to the next.

A CNN network structure is usually comprised of a mixture of layer types - including one
or more convolutional layers, one or more down-sampling (max-pooling) layers, flattening
operations that reduce a tensor from rank 4 down to rank 2, and one or more regular fully-
connected layers (as described in Section 2). Further details of how these layers all work
and are arranged with each other are given by LeCun et al. (1998).

In generating a target-space method for training a CNN, it is only the convolutional
layers and fully-connected layers that have any weights, and so only those two layer types
that need modifying.

Each convolutional layer takes as input a 2D image, of size width×height, with a third
depth dimension representing a number of input channels. Together with the batch size, nb,
this input image is a rank-4 tensor, of shape [nb, input height, input width, input channels].
The convolutional kernel that acts on it is a rank-4 tensor of shape [kernel height, ker-
nel width, input channels, output channels], and the layer’s final output is a rank-4 tensor
of shape [nb, output height, output width, output channels].

The entire convolutional layer’s operation can be split into 6 steps:

1. Flatten the kernel to a 2-D matrix with shape [kernel height×kernel width×input channels,
output channels]. Call this matrix W .

2. Extract image patches from the input tensor, and reshape them, to form a patches
matrix A of shape [num patches, kernel height×kernel width×input channels], where
num patches= nb×output height×output width.

3. Multiply the kernel matrix W by the patches matrix A, obtaining S = WA.

4. Add in the bias to S.

5. Reshape the result back into rank-4 tensor of shape [nb, output height, output width,
output channels]

6. Apply the activation function g.
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To optimise this process, so as to be able to easily modify it for target-space training,
we first combine the bias addition of step 4 with the matrix multiplication of step 3. This
can be achieved by adding an extra row of 1s into A, as was done in equation (2a), and an
extra column of weights to W , as was done in equation (3a).

Then we need a target matrix T of the same dimension as S in line 3. Given this target
matrix and the matrix A, we can derive the weights which best achieve the targets using
the same least-squares process as with equation (6), i.e. W = TA†.

This derived weight matrix W is then used to calculate the actual product S = WA, and
steps 5 and 6 (the reshape and activation function) are applied, completing the convolutional
layer’s behaviour.

The fully-connected layers are handled with their own target matrices and least-squares
solution, as in Alg. 2. The rest of the layer-types in the CNN are unchanged - down-
sampling does not use any targets (or weights), and nor does the reshape operation.

Automatic differentiation can be used to compute the necessary learning gradients.

The algorithmic complexity for the target-space CNN layer is derived in Appendix A.2,
and is shown to be slower than the corresponding weight-space CNN layer by a factor which
is bounded above by approximately (3(khkw) + 1)nb/nb, where kh and kw are the kernel
height and width, respectively. This is not a constant bound, even when nb = nb, unlike
that found for the fully-connected network.3 Hence there is an incentive in target space to
choose CNN architectures with smaller kernel matrices, or to only use a subset of patches
when forming the pseudoinverse matrix. In the CNN architectures used in the experiments
of Section 5.2, the ratio is empirically found to be around 7 (with a 3-by-3 kernel), which is
considerably better than the theoretical upper-bound. Part of this improvement might be
down to the fact that the backward pass of automatic differentiation can reuse the expensive
matrix products and inverses computed in the forward pass.

This completes the description of how to use target space with a conventional CNN
architecture.

5. Experiments

In this section we show the performance of the target-space method on the Two-Spirals
benchmark problem, and on four classic small-image vision benchmark problems for con-
volutional neural networks, and then we demonstrate the target-space method on some
bit-stream manipulation tasks and a sentiment-analysis task for recurrent neural networks.

The experiments show the effectiveness of the target-space method, in ability to train
deep networks and produce improved generalisation. There are improved generalisation
results on the CNN vision benchmarks compared to the equivalent weight-space method
applied to the same CNN architecture. In the recurrent network tasks, it shows the target-
space method being able to solve problems with long time-sequences, which appear to be
intractable in weight space.

3. In future work, it is possible to remove this numerator factor of khkw, since with a stride-length of 1
there is significant overlap between patches in the matrix A, and therefore optimisations can be made
when forming AAT .
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All experiments were implemented using Python and Tensorflow v1.14 on a Tesla K80
GPU.4 Shading in graphs indicates 95% confidence intervals as calculated by the Python
Seaborn package.

5.1 Two-Spirals Experiments

The Two-Spirals classification problem consists of 194 two-dimensional training points,
arranged in two interleaving spiral shapes, corresponding to the two output classes, each
spiral revolving through three complete revolutions. The training and test sets are shown
in Fig. 4. The test set was created as the angular midpoints between consecutive training
points.

A layered network architecture was used, with dimensions 2-5-5-5-2, and with all short-
cut connections, following Riedmiller and Braun (1993). The cross-entropy loss function
was used for training, and the tanh activation function used on all hidden layers, with
softmax on the output layer.

Fig. 4 shows the output function of two trained networks, mapped to a single scalar
output, and visually indicates that the solutions attained in target space are smoother and
capture the essence of the problem better than in weight space.5

Figure 4: Typical results for the two-spirals trained network, after 4,000 Adam iterations;
target space versus weight space. Red/blue crosses denote test set; circles denote
the training set. Grey-scale background indicates network output for the given
(x, y)-coordinate input. Smoothness of the target-space result shows how suc-
cessful generalisation is more likely.

Fig. 5-left shows the problem being solved using gradient-descent with optimal learning
rates empirically determined as η = 10 for target space and η = 0.1 for weight space. The
results show that with optimal learning rates, the target-space algorithm can fully learn

4. Source code for experiments is available at https://github.com/mikefairbank/dlts_paper_code

5. Although it should be noted that Levenberg Marquardt and conjugate gradient training can produce
similarly nice solutions as the left figure.
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the two-spirals problem’s training set, and generalise well to the test set, in around 1,000
epochs; compared to around 40,000 epochs for weight space to mostly learn the training set
only. It does not seem possible to generalise as well to the test set in weight space, likely
due to the unevenness appearing in Fig. 4-right.

Figure 5: Results for Two-Spirals learning, using Batch Gradient Descent (on left) and
Adam optimiser (on right).

Fig. 5-right shows results when the Adam optimiser was used, and shows a similar
outcome. The learning rate used was 0.01, which was found to be beneficial to both target
space and weight space on this problem. In this problem, the target-space gradient descent
converges to a solution in fewer epochs than Adam in weight space.

These results all seem consistent with the target-space motivation for making the loss-
function surface smoother, and the minima commonly found lead to better generalisation.

In our implementation the processing time was on average 3.5 times longer for each
target-space training iteration compared to each weight-space iteration. In all experiments,
the full data-set was used in all training batches (nb = nb = 194). With target space,
λ = 0.001 was used for equation (7), and initial targets were randomised using a truncated
normal distribution with σ = 1, followed by the projection given by (13). For weight-space
learning, the weights were randomised using the method of Glorot and Bengio (2010).

Fig. 6 shows the effectiveness of the Sequential Cascade untangling (SCU) variant
against the Optimistic Cascade untangling (OCU) target-space algorithm (described in
Section 2.3), and indicates that the SCU method is more stable and effective than the OCU
method.

The same graph also shows that Batch Normalisation does not seem to help on this
problem and network size, and in fact performs worse in weight space than without batch
normalisation. Batch normalisation does significantly help though in the CNN experiments
described in the next subsection.

Fig. 7 demonstrates the sensitivity of the target-space algorithm to two of its key hyper-
parameters. The left diagram shows that reducing nb, the number of patterns appearing
in X (see Section 3.1), reduces the representation capability of the weights generated by
equation (6). In each experimental trial, a random subset of nb columns of X was chosen
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Figure 6: Results for Two-Spirals learning, using Adam Optimiser, comparing two forms of
target space: Optimistic Cascade untangling (OCU) versus Sequential Cascade
untangling (SCU), and against Batch Normalisation in weight space.

to form X. The results show that as nb reduces below the size of the narrowest network
layer (which is 17 in this network), the weight matrices generated from the targets become
low-rank, and it is no longer possible to fully learn the training set. Fig. 7-right shows
that as the λ used in (7) increases, the ability of the algorithm also reduces (see Section
3.2). Furthermore, with λ � 10−4 the algorithm stopped due to numerical errors causing
non-invertible matrices to appear.

Figure 7: Sensitivity of the Target Space algorithm to algorithm hyper-parameters nb and
λ.
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5.2 CNN Experiments

In this set of experiments we train convolutional neural networks on the following four
classic small-image classification problems:

• The MNIST digit dataset: 60,000 training samples of 28-by-28 grey-scale pixellated
hand-written numeric digits, each labelled from 0-9, and a test set of 10,000 samples
(LeCun et al., 2010).

• MNIST-Fashion dataset: 60,000 28x28 grayscale images of 10 labelled fashion cate-
gories, along with a test set of 10,000 images (Xiao et al., 2017).

• CIFAR10 dataset: 50,000 32x32 colour training images, labelled over 10 categories,
and 10,000 test images (Krizhevsky et al., 2009).

• CIFAR100 dataset: 50,000 32x32 colour training images, labelled over 100 categories,
and 10,000 test images (Krizhevsky et al., 2009).

All of these datasets were used as training data without any modification to the training
images. For example, we did not use any data-augmentation techniques, such as image
rescaling and distortion, which are known to help improve neural-network performance
(and to be necessary to achieve state-of-the art classification performance).

The networks used here all had six compound convolutional/pooling layers, each of which
consisted of a convolutional operation (with a square kernel of size m × m, applied with
stride-length 1 with “same” padding, and c output channels) followed by an application
of the activation function, followed by (possibly) an application of max-pooling (with a
square kernel of size k × k, and applied with stride-length k). Each max pooling operation
of side length k reduces the side-length of the image by factor k. Hence each compound
convolutional layer can be summarised by a 3-tuple (m, c, k), with k = 1 if no max-pooling
is used. Using this 3-tuple notation, the network architectures considered are listed in Table
1.

After the convolutional layers, the layer output is flattened, and then passed through a
number of fully-connected (dense) layers, as described in Table 1.

Benchmark Convolutional Layers
Problem (Convolution size - Number of channels - Max Pool

size)
Dense Layers

MNIST (3-16-1)-(3-16-2)-(3-32-1)-(3-32-2)-(3-64-1)-(3-64-2) 128-10
MNIST-Fashion (3-16-1)-(3-16-2)-(3-32-1)-(3-32-2)-(3-64-1)-(3-64-2) 128-10

CIFAR-10 (3-32-1)-(3-32-2)-(3-64-1)-(3-64-2)-(3-128-1)-(3-128-2) 128-10
CIFAR-100 (3-32-1)-(3-32-2)-(3-64-1)-(3-64-2)-(3-128-1)-(3-128-2) 512-128-100

Table 1: Convolutional Network Architectures considered for MNIST Problem

All non-final layers used the “leaky-relu” activation function (Maas et al., 2013) defined
by,

LReL(x) = max(x, 0.2x), (22)

26



Deep Learning in Target Space

and the final layer used softmax activation. Leaky-relu was found to slightly be better
than the ReLU function, since it leaves fewer zeros in the activations which can potentially
stall learning after the weights are initially randomised; and also can potentially make the
Gramian matrix in (7) low rank.

The networks were trained with the cross-entropy loss function and the Adam optimizer,
with learning rate 0.001 for weight-space learning, and 0.01 for target-space learning. Mini-
batches of size nb = 100 were randomly generated at each iteration, for computing the ∂L

∂ ~w
gradient. A fixed mini-batch of size nb = 100 was used for the targets’ input matrix X.

In weight space, the weight initialisation used magnitudes defined by He et al. (2015),
which are derived to work well with LReL. In target space, the targets values were all ini-
tially randomised with a truncated normal distribution with standard deviation 0.1, followed
by the projection operation given by (13). λ = 0.1 was used in equation (7).

Results are shown in Table 2. The results show the target-space method helping gener-
alisation performance, both with and without dropout (Srivastava et al., 2014), and when
comparing against weight space both with and without batch-normalisation; and with en-
semble architectures. The benefit of target space is noticeable in the latter 3 benchmark
problems; mostly so in the most challenging benchmark problem, i.e. CIFAR100.

The two CIFAR problems were given a time budget of 24 GPU hours to train each
network. This allowed approximately 640 epochs in target space, and 5300 epochs in weight
space (lowering to 4000 epochs when batch-norm was used). The two MNIST problems
received a 8 GPU-hour time budget, resulting in approximately 480/3000/2400 epochs for
target-space/weight space/BN, respectively. Hence roughly seven times more processing
time was required per epoch for the target-space algorithms compared to the weight-space
algorithms.

Algorithm (no dropout) MNIST MNIST-Fashion CIFAR-10 CIFAR-100
Weight Space 99.26(±0.01)% 91.6(±0.1)% 77.9(±0.2)% 40.3(±0.7)%
Weight Space + Batch Normalisation 99.41(±0.04)% 91.6(±0.2)% 80.7(±0.2)% 46.5(±0.6)%
Target Space 99.29(±0.04)% 92.2(±0.2)% 82.6(±0.3)% 50.5(±0.2)%
Algorithm (with dropout) MNIST MNIST-Fashion CIFAR-10 CIFAR-100
Weight Space 99.50(±0.06)% 93.12(±0.01)% 82.90(±0.09)% 52.22(±0.04)%
Weight Space + Batch Normalisation 99.58(±0.01)% 94.07(±0.09)% 86.70(±0.01)% 59.7(±0.2)%
Target Space 99.55(±0.03)% 93.7(±0.1)% 87.4(±0.1)% 60.4(±0.1)%
Algorithm (with dropout + ensemble) MNIST MNIST-Fashion CIFAR-10 CIFAR-100
Weight Space 99.49 % 93.99 % 85.43 % 56.85 %
Weight Space + Batch Normalisation 99.6 % 94.5 % 88.19 % 62.51 %
Target Space 99.62 % 94.34 % 88.81 % 63.24 %

Table 2: Test-Set Accuracies for CNN Experiments, on Standard Datasets

When dropout was used, it was applied with a dropout probability of 0.2 to all non-final
dense layers, and all even-numbered convolutional layers. The results show that dropout
provides useful benefit to both weight-space learning and target-space learning.

When dropout was used in target space, dropout was independently applied during both
the feed-forward algorithm used to calculate ∂L

∂ ~w using the mini-batch input matrix X, and
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the feed-forward algorithm to map from target space to weight space using the fixed input
matrix X.6

When batch normalisation was used, it was applied to every convolutional layer and to
every non-final dense layer. Batch normalisation is only applicable to weight-space learning.
In target space learning, the targets for each layer already define the batch mean and
standard-deviation which batch normalisation hopes to specify; making the combination of
batch normalisation with target space redundant.

The error margins in Table 2 are calculated as the standard-deviations of just two trials;
but are sufficiently small to convey the trend adequately.

When the ensemble of networks were used, the outputs of the two networks created in
the two trials were averaged after softmax. Ensemble networks can usually generalise better
than any of their constituent networks individually, assuming the outputs of the constituent
networks are somewhat independent of each other. In this scenario the independence comes
from different initial randomisation, different shuffling of mini-batches, and different choices
of the X matrix used by the target-space algorithm. The results show that target space
and weight space are assisted by using such an ensemble; even one comprised of only two
networks.

5.3 Bit-Stream Recurrent Neural-Network Experiments

In this section we describe two recurrent neural-network experiments regarding remembering
and manipulating streams of bits.

The first experiment is to memorise and recall a random stream of bits. The RNN
receives a new random bit at every time step t, and must output the bit it saw at the time
step t−N , where N is the delay length. As the delay length is increased, the problem gets
harder, since more bits must be memorised.

For example if the delay length is N = 2, and the RNN receives a bit stream such
as “1,1,1,1,0,1” (with most recent bits appearing at the right) then the RNN is expected
to produce an output stream “-,-,1,1,1,1”. (The first two outputs in the sequence, each
indicated by here “-”, are ignored, since the delay length in this example is 2.)

The neural network has architecture 1− (N + 3)− 2, with the hidden layer being fully
connected to itself with recurrent connections (corresponding to setting cL = 3 in Fig. 3).
The hidden layer used tanh activation functions, and the final layer used softmax with
cross-entropy loss function. The loss function was made to ignore the first N outputs in
the stream (since these are undefined).

The N + 3 recurrent hidden nodes are enough to allow the network to remember the
most recent N bits (with 3 spare nodes to add a little flexibility in solution), as required; for
example the RNN could learn manipulate the remembered bits with a rotate-right bit-wise
operation, so as to successfully queue and recall the bits, and forget about bits older than
N .

A batch size of 8,000 random bit streams of length nt = N + 50 was used to train the
network. Random mini-batches of size nb = 100 were used during each training iteration.

6. Generalisation results were noticeably worse if dropout in target space was applied to either one of these
two stages without the other.
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A fixed mini-batch of size nb = 100 with nt = nt was used for the target-space matrices

X
(t)

.

In weight space, the weight initialisation used magnitudes defined by Glorot and Ben-
gio (2010). In target space, the targets values were randomised with a truncated normal
distribution with standard deviation 1, followed by a projection by equation (13). This
projection step seemed to improve results for the target-space experiments.

The networks were trained with 50,000 iterations of Adam optimiser, with learning rate
0.001 for both weight-space and target space, and with λ = 0.1 for target space.

A result was considered a success if a classification accuracy ≥ 99% was achieved on the
test set at any training iteration; otherwise it was a failure.

Results are shown in Fig. 8 for various delay lengths. They show that the target-space
method is able to learn sequences with a delay length of around two to three times as
long as the weight-space methods are capable of, with a significantly less steep rise in the
number of training iterations required for success; and that the target-space SCU method
is significantly stronger than the target-space OCU method.

Figure 8: Memorisation of a delayed binary stream of bits using a RNN. The left graph
shows the ratio of trials which were successful in correctly learning > 99% of
the output bits correctly (in a test set). The right-hand graph shows, for those
successful trials, the average iteration number at which success was first achieved.

For comparison, an extra experiment was made using an LSTM network. Here the N+3
hidden nodes were replaced by N +3 LSTM memory cells. The LSTM network was trained
in weight space, again using Adam for 50,000 iterations. Results are shown in the same Fig.
8. This trial shows that the LSTM network does not seem to help in solving this problem
in weight-space.

In a second RNN experiment, we modify the task from pure mermorization into one of
binary addition. In this experiment, the target output is the binary sum of the stream of
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bits with the N -step delayed stream. To ease binary addition, the stream is assumed to
arrive in bit-wise little-endian form.

For example, if N = 2, and the bit stream received is “1,0,1,1,0,1”, then the target
output stream that the RNN must learn is “-,-,0,0,0,1”, which is calculated by binary
addition: 1101+1011=00011. Here the target output stream terminated before the final
carry bit could be delivered, so only the 0001 remained.

As this problem was slightly harder than the previous one, since the relationship be-
tween the target-bit sequence and the past sequence is quite well disguised (the relationship
has similarities to a delayed XOR problem but there is also a hidden carry-bit process to
discover), we gave the recurrent network N + 5 hidden recurrent nodes, i.e. two more than
previously.

Results are shown in Fig. 9. The experimental conditions are otherwise unchanged from
the previous RNN experiment.

In this experiment the strength of the target-space methods are again shown, with the
SCU method again being capable of coping with delay lengths two to three times as long
as the weight-space methods, and with better scaling of the number of iterations required.
The strength of the SCU method’s results confirms the value of lines 8 and 10 in Alg. 5,
when compared to the OCU method.

Figure 9: Addition of a delayed binary stream of bits using a RNN.

In both of these RNN experiments, the SCU method significantly beats the LSTM net-
work. It therefore seems that the exploding-gradients problem (which target-space networks
are designed to address) is more significant in this problem than the vanishing-gradients
problem (which LSTM networks are designed to address). A complication in making this
comparison is that Adam was used. Adam might have been picking up and aggressively
accelerating tiny components of the gradients in target space, thus counteracting the van-
ishing gradients and helping the target-space methods compete with LSTM. Possibly in a
more noisy problem environment, it will not be possible to accelerate such tiny gradients
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due to the low signal-to-noise ratio. In that case a combination of LSTM plus target space
could be attempted.

5.4 RNN Movie-Review Sentiment Analysis

In this final experiment we trained a RNN to solve the natural-language processing task
of sentiment analysis for 50,000 movies reviews from the Internet Movie Database (IMDB)
website. In this binary classification task, each review is labelled as either positive or
negative. The dataset was obtained from the Tensorflow/Keras packages, with a 50-50
training/test-set split, using options of only including the top 5000 most frequent words,
and padding/truncating all reviews to a length of 500 words each.

A word-embedding vector of length 32 was used to encode each word from the vocabulary
of size 5000 (Bengio et al., 2003; Mikolov et al., 2013). Once each word is converted into an
embedded vector, the neural-network architecture is the same as in the previous experiment,
but with 32 inputs, 100 nodes in the recurrent layer, and two output nodes. Each embedded
word of a review is fed to the RNN one-by-one, making the sequence length nt = 500. Only
the final output matrix of the neural network, Y (500), is observed.

Results are shown in Fig. 10 and are summarised in Table 3, and show that the target-
space method’s performance slightly exceeds that of the LSTM network, and significantly
exceeds ordinary neural networks trained in weight space.

Figure 10: Results for Movie Sentiment Analysis RNN Problem.

Algorithm / Best Test Average GPU time
Network Type Accuracy per Epoch (s)

Weight Space 79.0(±5.2)% 51.3
Weight Space + LSTM 87.3(±0.6)% 111.3

Target Space 87.7(±0.2)% 64.9

Table 3: Results for Movie Sentiment Analysis RNN Problem
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All neural networks were trained using Adam with learning rate 0.001, and mini-batch
sizes of nb = 40. The target-space algorithm used λ = 0.001. Weights and targets were
initially randomised as in the previous subsection. Word embeddings were also initially
randomised (using a normal distribution with µ = 0 and σ = 0.1). Hence all weight and
target matrices, and the embedding vectors, were learned in an end-to-end training process.

To customise the target-space method to handle word embeddings efficiently, a fixed

sequence of target-space input matrices X
(t)

was chosen, for a sequence length of just
nt = 60, and mini-batch size nb = 40. For efficiency, it was chosen that these matrices would

represent some already-embedded word sequences. Hence each matrix X
(t) ∈ R32×40, for

t = 1, . . . , 60. Each of the X
(t)

matrices was generated using a uniform random distribution
in the range [-1,1], and then held constant throughout training. The lower sequence length
nt = 60 improves the algorithmic complexity factor (given at the end of Section 4.1),
and results in a more competitive target-space training time in Table 3. Even though
this sequence length (nt = 60) was less than the true sequence length (nt = 500), the

combination of fixed matrices X
(t)

and target matrices T
(t)
j provide enough information

to define the weight matrices W[0:j] unambiguously using Alg. 5; even though X
(t)

are
fixed random matrices, and therefore do not conform to any valid movie-review style of
writing. Hence the learning gradient ∂L

∂ ~w (which now includes the gradient of the learnable
embedding matrix, Wembed ∈ R5000×32), can be calculated in weight space, using the full
sequence lengths (500), and then converted to a target-space gradient ∂L′

∂~τ , using Alg. 5,

followed by automatic differentiation. To compute the gradient ∂L
∂Wembed

in target space,
in order to optimise those learnable variables too, we just used its value in weight space,
without any modification.

6. Conclusions

The target-space method provides an alternative search space in which to train deep and
recurrent neural networks. The theory and experiments indicate that the loss-function
surfaces being optimised are indeed smoother and easier to optimise in target-space than in
weight space. This increased smoothness potentially leads to easier solution of problems and
potentially leads to better generalisation capabilities in the final neural networks produced.

Using target space comes at an added computational expense. In fully connected net-
works, where the batch sizes for X and X roughly match, this is usually a modest constant
cost of approximately 3 or 4 times as much computation per training iteration. With CNNs
it can be more, being around 7 times in the CNN architectures considered in this paper,
and more so if wider convolutional kernels are used. With the RNN experiments, which can
be considered as extremely deep and narrow networks, the timings were of similar order of
magnitude between weight space and target space. It is hoped that by careful choice of ar-
chitecture, focusing on deeper networks with narrower hidden layers (possibly with several
narrower layers running in parallel, which has already been proven as a powerful design by
Xie et al., 2017, in their “ResNeXt” CNN design), and avoiding pattern-by-pattern learning,
these costs can be minimised.

It has been shown how to combine mini-batching with target space. The lack of mini-
batching has historically been a major Achilles heel in the adoption of some previous so-
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phisticated optimisers (for example conjugate gradients or Levenberg-Marquardt), with very
large datasets.

Target-space methods are particularly promising in recurrent neural-network environ-
ments. In the examples given, problems with sequence lengths that were previously in-
tractable have been solved, and the LSTM results were surpassed in a natural-language
problem. This is despite the fact that LSTM networks have extra features, such as memory
gates, which make the learning task easier, yet the target-space learning has still managed
to make ordinary RNNs outperform them. In the feed-forward problems given, target space
has consistently produced better generalisation in deeper neural networks.

The theoretical motivation for target space, in that using targets should be able to
untangle the cascades of changes caused during training, with a beneficial outcome, appears
to be feasible. Hence target space aims to directly address the recognised “exploding-
gradients” problem which exists in deep learning.

Regarding a hypothetical future of neural networks being able to produce simple pro-
grams similar to those formed by human programmers, we hypothesise that whenever a
neural network gets to a really interesting point of training, then the neural activations
will often all be very close to their firing thresholds, and the exploding-gradients problem
becomes really significant in blocking further learning. For example if the neural network
training process had somehow successfully managed to build a series of interlocking XOR
gates, which were almost all working well together so as to implement a conventional com-
puter program out of those logic gates, then the scrambling of behaviour from any potential
infinitesimal weight change will always make learning destabilise in weight space. The
target-space approach is designed to be helpful in these circumstances, and would seem to
have more chance of making further progress than a simple weight-space search would.

Our experimental results with recurrent neural networks over long time sequences com-
bined with data-processing outperform the equivalent LSTM networks. Hence it seems that
in those problems at least, the exploding-gradients problem is more significant than van-
ishing gradients; at least when Adam is allowed to accelerate the small gradients in target
space. This is particularly paradoxical when it is noted that the objective of the target-
space cascade untangling is to dampen down learning gradients even more, thus amplifying
the vanishing-gradients problem.

Many significant deep-learning innovations exist in prior published work. These in-
clude the closely-related method of batch normalisation, plus modern activation functions,
optimisers, and weight-initialisation techniques. Many of these are more computationally
efficient than target space, but are maybe slightly less effective; and some can be combined
with target space. Sophisticated neural architectures, such as LSTM, CNNs, and more
recently, attention models, Differentiable Neural Computers and Neural Turing Machines
(Graves et al., 2014, 2016), exist, which all add to neural-network functionality, and which
could all in-principle be trained in target space. So in final conclusion, the target-space
method seems to be a powerful additional tool which has tremendous potential for the
enhancement of deep learning.
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Appendix A. Target-Space Algorithmic Complexity Calculations

In this appendix we derive the algorithmic complexity for the main target-space algorithms.
In these derivations, we ignore the computation of activation functions, and matrix addi-
tions, assuming these are dwarfed by matrix-multiplication operations.

A.1 Computational Complexity for Fully-Connected Feed-forward networks

First we consider the main target-space algorithm for feed-forward neural networks (i.e.
Algorithms 2-3).

For a given layer j, the input matrix to that layer is A[0:j), the weight matrix is W[0:j] and
the target matrix is Tj . For brevity, we will denote these three matrices without subscripts,
as A, W and T . Let ni be an initialism for the number of inputs to the layer (i.e. the
number of rows in A) and let no be the number of outputs from the layer (i.e. the number
of rows in T ).

Since A ∈ Rni×nb , and if nb > ni, then direct multiplication to form the Gramian AAT

will take ni
2nb floating-point operations (flops). Assuming matrix inversion takes roughly

n3 flops, and since the Gramian is of shape ni × ni, the formation of (AAT + λI)−1 will
take a further (ni)

3 flops. The formation of the product with AT in equation (7) will take
a further (ni)

2nb flops. Since T ∈ Rno×nb , the multiplication by T in equation (6) will take
a further ninonb flops. Hence summing these four terms gives the total time to form the
pseudoinverse and calculate the weight matrix in (6), as (ni)

3 + 2(ni)
2nb + ninonb.

If however nb < ni, then the matrix A is taller than it is wide, and (7) can be rearranged
using the Woodbury matrix identity into an equivalent but more efficient form:

A† := (ATA+ λI)−1AT . (23)

If this version is used, then the computational complexity is identically derived, resulting
in the same flop-count expression but with all occurrences of ni and nb swapped.

Hence the resulting overall flop count for calculating W by a pseudoinverse, assuming
the faster of the two equations (7) and (23) is used, is

Flop count for W calculation =

{
(ni)

3 + 2(ni)
2nb + ninonb if ni < nb

(nb)3 + 2(nb)2ni + ninonb otherwise
(24)

Once the W matrix for the layer is formed, the feed-forward calculation of the product
Sj = WA takes place, which is the same computational complexity as is required in ordinary
weight space, i.e. requiring

Flop count for Sj calculation = ninonb (25)

If it can be assumed that the number of nodes in each layer of the neural network is
approximately the same, so that dj = d for all j, and no shortcut connections are present,
then we can assume that ni ≈ no ≈ d (ignoring the single input from the bias node). If,
as advocated in Section 3.1, we further assume that the size of the batch nb is larger than
d (so that also nb > ni), then summing the expressions in (24) and (25) and simplifying
shows that the flop count for each layer of the target space Alg. 2 is bounded above by
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4d
2
nb. In comparison, the weight-space forward-pass algorithm for a single layer is just

given by (25), i.e. d
2
nb flops. Hence the ratio of computation between target space and

weight space is approximately upper-bounded by (4nb/nb). Since automatic differentiation
produces backward computations of similar algorithmic complexity as to the forward pass,
the overall computation ratios for forward-and-backward passes between target space and
weight space, when summed over all layers, is still approximately (4nb/nb).

A.2 Computational Complexity for a CNN layer in Target Space

We now derive the computational complexity of the CNN target-space layer. Notate the
convolutional kernel width and heights by kw and kh respectively, and the number of input
and output channels by nic and noc respectively. Let npatch be the number of image patches
to be taken from each image. Since the number of inputs operated on by the flattened W
matrix is ni = khkwnic, and the number of outputs is no = noc, and the number of columns
in the patches matrix A is nb′ = nbnpatch, then substituting these factors into (24) gives a
total flop count for the formation of W as:

CNN Flop count for W formation =

{
(khkwnic)

3 + 2(khkwnic)
2nb′ + khkwnicnocnb′ if khkwnic < nb′

(nb′)
3 + 2(nb′)

2khkwnic + khkwnicnocnb′ otherwise

(26)

In contrast, the weight-space CNN forward pass only requires the formation of S, where
the flop count is given by (25), which equates to only khkwnicnocnbnpatch flops.

If we argue like in Section A.1 that nb′ > ni (which is quite probable with the large
number of image patches being processed by a CNN), and noc ≈ nic, then the flop count in
target space is bounded above by

CNN Flop count for W formation / 3(khkwnic)
2nb′ + khkw(nic)

2nb′

= (3(khkw) + 1)khkw(nic)
2nbnpatch (27)

and hence the ratio of the flop count in target space to that in weight space is bounded
above by approximately (3(khkw) + 1)nb/nb.

Appendix B. Derivation of Algorithm 3

B.1 Preliminary Definitions

Single-Entry Matrix:
Define [J ij ] to be the single-entry matrix with element at row i and column j equal to{

1 if m = i and n = j

0 otherwise
(Petersen and Pedersen, 2012). This is useful when differentiating

a matrix with respect to one of its elements, since ∂A
∂Aij = [J ij ], with [J ij ] having the same

dimensions as A.
Raised Indices Notation:
Define upper indices (without parentheses) after a matrix variable to indicate the matrix
element, so that for example Aij is the element of A with row index i and column index j.
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Define raised indices [ij] in square brackets after a scalar function f(i, j) to mean the

whole matrix whose element at row i and column j is f(i, j). For example,
(
Aij
)[ij] ≡ A,

and
(
Aji
)[ij] ≡ AT .

Frobenius Inner Product, 〈A,B〉F
For two m × n matrices A and B, define 〈A,B〉F :=

∑
∀i,j A

ijBij . This inner product is
useful when using the chain rule; for example, if X, Y and Z are matrices with X = X(Y )
and Y = Y (Z) then ∂Xmn

∂Zij =
〈
∂Xmn

∂Y , ∂Y
∂Zij

〉
F

. Furthermore, if L(X) is a scalar function,

then ∂L
∂Y =

(〈
∂X
∂Y ij ,

∂L
∂X

〉
F

)[ij]
.

B.2 Basic Lemma for Combining Frobenius Inner Product with Single-entry
Matrix

A useful result for combining the inner product with [J ij ] is

(〈
A[J ij ]B,C

〉
F

)[ij]
= ATCBT (28)

since
〈
A[J ij ]B,C

〉
F

=
∑

mn(A[J ij ]B)mnCmn =
∑

mn

(∑
pq A

mp[J ij ]pqBqn
)
Cmn

=
∑

mn(AmiBjnCmn) = (ATCBT )ij .

Similarly, (〈
A[J ij ]TB,C

〉
F

)[ij]
= BCTA (29)

B.3 Matrix Differentiation

Differentiating a scalar by a matrix gives an identically dimensioned matrix, e.g.
(
∂L
∂X

)ij
:=

∂L
∂Xij . Similarly for differentiating a matrix by a scalar:

(
∂X(a)
∂a

)ij
:= ∂Xij(a)

∂a .

Matrix differentiation follows the usual product rule:

∂AB

∂Xmn
=

∂A

∂Xmn
B +A

∂B

∂Xmn
. (30)

For example, if A,B and C are constant matrices, then

∂AXBXC

∂Xmn
= A[Jmn]BXC +AXB[Jmn]C.

The derivative of an inverse matrix A−1 is ∂A−1

∂Aij = −A−1[J ij ]A−1 (Brookes, 2011).
Combining this with the product rule gives

∂(BBT + λI)−1

∂Bij
= −(BBT + λI)−1

(
[J ij ]BT +B[J ij ]T

)
(BBT + λI)−1

= −(BBT + λI)−1[J ij ]B† − (B†)T [J ij ]T (BBT + λI)−1 (31)
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And so,

∂B†

∂Bij
=
∂BT (BBT + λI)−1

∂Bij
(by (7))

=[J ij ]T (BBT + λI)−1 −BT ∂(BBT + λI)−1

∂Bij
(by product rule)

=[J ij ]T (BBT + λI)−1 −
(
B†[J ij ]B† +B†B[J ij ]T (BBT + λI)−1

)
(by (31))

=(I −B†B)[J ij ]T (BBT + λI)−1 −B†[J ij ]B† (32)

B.4 Ordered Partial Derivatives

Define the notation ∂
∂∗ to be the ordered partial derivatives (Werbos, 1974), which take into

account cascading changes to all later layers’ weights and activations by Algorithm 2. For
example ∂ ~w

∂∗Amn
j

describes how all the layers’ weights would change according to Algorithm

2 if a small perturbation was forced to occur to Amnj .

For a layer j, define δAj :=
(

∂ ~w
∂∗Amn

j

∂L
∂ ~w

)[mn]
. This matrix accounts for what effect a

small change to Aj will have on L, solely through the effect of cascading changes to later
layers’ weights via alg. 2. Note that δA is subtly different from ∂L

∂∗A since at the final layer

δAnL = 0 (since there are no later layers whose weights can change), but ∂L
∂∗AnL

= ∂L
∂Y 6= 0.

Similarly, define δSj :=
(

∂ ~w
∂∗Smn

j

∂L
∂ ~w

)[mn]
and δW[0:j] :=

(
∂ ~w

∂∗Wmn
[0:j]

∂L
∂ ~w

)[mn]

.

B.5 Derivation of Algorithm 3

Define δA[0:j) to be the composite of δAj matrices in the same way that the A[0:j) matrices
are composed of Aj matrices, analogous to Eq. (2).

The matrices W[0:j], A[0:j), Tj , Yj , Aj and Sj are for an arbitrary layer j. Throughout
the following, all these matrices refer to the same subscripted value of j, therefore we omit
this subscript to ease presentation. To avoid the clash of variable names between Aj and
A[0:j), we define B ≡ A[0:j) and A ≡ Aj as shorthand.

First we give useful results for ∂W
∂Bmn and δW :

∂W

∂Bmn
=T
[
(I −B†B)[Jmn]T (BBT + λI)−1 −B†[Jmn]B†

]
(by (6) and (32))

=(T − S)[Jmn]T (BBT + λI)−1 −W [Jmn]B† (by (6) and (4)) (33)

The derivation for δW =

(
∂ ~w

∂∗Wmn
[0:j]

∂L
∂ ~w

)[mn]

in Equation (34) starts by adding two terms.

The first term, ∂L
∂W , accounts for the contribution from the changing weights in that par-

ticular layer. The second term,
(〈
δS, ∂S

∂W pq

〉
F

)[pq]
, accounts for the cascading changes to all
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later layers’ weights (by the definition of δS).

δW =
∂L

∂W
+

(〈
δS,

∂S

∂Wmn

〉
F

)[mn]

=
∂L

∂W
+ (〈δS, [Jmn]B〉F )[mn] (by (4) and (30))

=
∂L

∂W
+ (δS)BT (by (28)) (34)

To derive a formula that calculates ∂L′

∂T for a particular layer given ∂L
∂ ~w , we first note that

changing Tmn for one layer will initially just change the weights of that layer, according
to ∂W

∂Tmn . Then cascading changes to the later layers’ weights will occur via Algorithm
2, as a consequence of this initial single layer’s change of weights, and therefore all these
cascading effects are represented by δW . Combining these two factors with the Frobenius
inner-product gives:

∂L′

∂T
=

(〈
δW,

∂W

∂Tmn

〉
F

)[mn]

=
(〈
δW, [Jmn]B†

〉
F

)[mn]
(by (6) and (30))

=

(
∂L

∂W
+ (δS)BT

)
(B†)T (by (28) and (34)) (35)

This requires calculation of the δS matrices for each layer. Since Amn = g(Smn), the
chain rule gives

δS = δA� g′(S) (36)

The derivation for δB is given in Equation (37). The first line of this derivation consists
of two terms which are present, respectively, because changing B will change the weights
for that layer directly (via the equation W = TB†), and will also change the sums for that
layer directly (via the equation S = WB). The effects of these two changes are what the
terms δW and δS, respectively, are defined to represent.

δB =

(〈
δW,

∂W

∂Bmn

〉
F

+

〈
δS,

∂S

∂Bmn

〉
F

)[mn]

=
(〈
δW,

(
(T − S)[Jmn]T (BBT + λI)−1 −W [Jmn]B†

)〉
F

+ 〈δS,W [Jmn]〉F
)[mn]

(by (33), (4) and (30))

=(BBT + λI)−1(δW )T (T − S)−W T (δW )(B†)T +W T δS (by (28) and (29))

=W T

(
δS − ∂L′

∂T

)
+

[
(BBT + λI)−1

(
∂L

∂W
+ (δS)BT

)T
(T − S)

]
(by (35) and (34))

(37)

This enables us to find δB from δS for a particular layer. Since δA[0:j) ≡ δB is composed
of δAj−1, and δAnL = 0 we can calculate the δA matrices backwards, layer by layer. Thus
equations (35), (36) and (37) give lines 4, 3, and 5 of Alg. 3 respectively.
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Appendix C. Proof that a stationary point in target space corresponds
to a stationary point in weight space

In this appendix we show that if ~τ∗ is a stationary point for the target-space problem,

i.e. ∂L′

∂~τ

∣∣∣
~τ=~τ∗

= 0, then the corresponding vector of weights ~w∗ obtained from ~τ∗ through

Algorithm 2 is a stationary point for the resulting weight-space problem, i.e. ∂L
∂ ~w

∣∣
~w=~w∗

= 0.

After a preliminary definition and two lemmas, the main theorem and proof follows.

Definition: Let

A‡ := A+ λ (A+)T . (38)

where A+ denotes the (non-regularised) Moore-Penrose pseudoinverse (Golub and Van
Loan, 2013, Section 5.5.2).

Lemma 1 For any real-valued matrix A, the following identity holds: AA†A‡ = A.

Proof We use the singular value decomposition (SVD) to prove this. Let the shape of A
be m× n, and the rank of A be r. Let the full SVD of A be given by

A = USV T , (39)

where the matrices U ∈ Rm×m, S ∈ Rm×n and V ∈ Rn×n, the only non-zero elements of
S are on its leading diagonal, and where U and V are orthogonal. Since A is rank r, the
matrix S will have its first r diagonal elements as non-zero and the remaining elements all
zero. Hence we can partition S into block-matrix form as follows:

S =

(
Σ 0
0 0

)
, (40)

where Σ is a diagonal matrix of shape r × r, and the zeros are rectangular matrices of
appropriate shape so as to make S ∈ Rm×n. Since Σ is square and full rank, its Moore-
Penrose pseudoinverse simplifies into an ordinary inverse:

Σ+ = Σ−1. (41)

Using the SVD, and repeatedly cancelling orthogonal self-products such as UTU and
V TV , we can write:

A † = V ST (SST + λI)−1UT (by (7)) (42)

A+ = V S+UT (Moore-Penrose SVD) (43)

A ‡ = U(S + λS+)V T (by (38) and (43)) (44)
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Substituting these into the left-hand side of the lemma’s identity, and cancelling orthogonal
self-products, gives,

AA†A‡ = USST (SST + λI)−1(S + λS+)V T

= U

(
Σ2 0
0 0

)(
(Σ2 + λI)−1 0

0 λ−1I

)(
Σ + λΣ−1 0

0 0

)
V T (by (40) and (41))

= U

(
Σ2(Σ2 + λI)−1(Σ + λΣ−1) 0

0 0

)
V T (block multiplication)

= U

(
Σ(Σ2 + λI)−1(Σ2 + λΣΣ−1) 0

0 0

)
V T (commute diagonal matrices)

= A (by (39) and (40))

This proves the lemma.

Remark: Lemma 1 is analogous to the identity for the non-regularised Moore-Penrose
pseudoinverse given by AA+A = A (Golub and Van Loan, 2013, Section 5.5.2), which also
holds for any real-valued matrix A.

Lemma 2 When the weights are calculated from the targets by Algorithm 2, given any layer
j, such that j = nL or ∂L

∂W[0:k]
= 0 for all k > j, we have ∂L′

∂Tj
= 0⇒ ∂L

∂W[0:j]
= 0.

Proof First, let us write explicitly the derivative of the loss function L with respect to the
weights of layer j:

∂L

∂W[0:j]
=

(〈
∂L

∂Sj
,
∂Sj

∂Wmn
[0:j]

〉
F

)[mn]

=

(〈
∂L

∂Sj
, [Jmn]A[0:j)

〉
F

)[mn]

(by (4) and (30))

=
∂L

∂Sj
AT[0:j), (by (28)) (45)

And similarly, explicitly state its derivative with respect to the targets of the same layer:

∂L′

∂Tj
=

〈 ∂L

∂Sj
+
∑
k>j

(〈
∂L

∂W[0:k]
,
∂W[0:k]

∂Spqj

〉
F

)[pq]

,
∂Sj
∂Tmnj

〉
F

[mn]

. (46)

In this equation, instead of following (35), we have used the chain rule to produce an expres-
sion that explicitly connects ∂L′

∂T to ∂L
∂S . The summation in (46) evaluates to δSj defined in

Section B.4, which accounts for the effects of the weights in all later layers k > j which will
change by Alg. 2 as a result of a change to Tj. Following on from the initial assumptions of
this lemma, which were that either j = nL or the condition ∂L

∂W[0:k]
= 0 holds for all k > j,
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therefore the summation vanishes and (46) reduces to:

∂L′

∂Tj
=

(〈
∂L

∂Sj
,
∂Sj
∂Tmnj

〉
F

)[mn]

=

〈 ∂L

∂Sj
,
∂
(
Tj
(
A[0:j)

)†
A[0:j)

)
∂Tmnj

〉
F

[mn]

(by (4) and (6))

=

(〈
∂L

∂Sj
, [Jmn]

(
A[0:j)

)†
A[0:j)

〉
F

)[mn]

(by (30))

=
∂L

∂Sj
AT[0:j)

(
AT[0:j)

)†
. (by (28)) (47)

Aiming from a contradiction, let us assume that ∂L
∂W[0:j]

6= 0. Then one can choose an

appropriately sized column vector u such that ∂L
∂W[0:j]

u 6= 0. We now consider a second

vector v =
(
AT[0:j)

)‡
u, using (38), and write:

∂L′

∂Tj
v =

∂L

∂Sj
AT[0:j)

(
AT[0:j)

)†
v (by (47)) (48)

=
∂L

∂Sj
AT[0:j)

(
AT[0:j)

)† (
AT[0:j)

)‡
u (by the definition of v)

=
∂L

∂Sj
AT[0:j) u (by Lemma 1)

=
∂L

∂W[0:j]
u. (by (45)) (49)

While we initially assumed that the last line (49) is non-zero, the first line (48) must be
zero, due to ∂L′

∂~τ = 0. This contradiction proves the lemma.

Theorem 3 When the weights are calculated from the targets by Algorithm 2, we have
∂L′

∂~τ = 0 =⇒ ∂L
∂ ~w = 0.

Proof We shall prove this result by induction, by first showing it holds for the last layer
(used as the base case), and then showing that if it holds for all subsequent layers then it
must also hold for the current layer (the inductive step).

Lemma 2 explicitly handles the case where j = nL, thus the base-case claim, that ∂L′

∂~τ = 0

implies ∂L
∂W[0:nL]

= 0, is true. Next we consider the inductive step, i.e. that if ∂L′

∂~τ = 0 and

∂L
∂W[0:k]

= 0 for all k > j, then ∂L
∂W[0:j]

must be zero. Again, Lemma 2 applies here, since it

explicitly applies to ∂L
∂W[0:k]

= 0 for all k > j, and therefore the inductive step is also true.

This completes the proof by induction.
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This final theorem concludes the proof that ∂L′

∂~τ = 0 implies ∂L
∂ ~w = 0, i.e. that a stationary

point for the target-space problem is also a stationary point for the corresponding weight-
space problem obtained through Algorithm 2.
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