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Abstract 

Understanding the plant immune system is crucial for using genetics to protect crops from 

diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response 

system. The first plant Resistance (R) gene was cloned in 1992 (Johal and Briggs, 1992). Since 

then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes 

that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been 

cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune 

receptors, many components of immune signaling networks were discovered over the last 30 

years. We review the signaling pathways, physiological responses, and molecular regulation of 

both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of 

interactions between the two immune systems. We provide an overview of interactions between 

PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future 

research.  

The plant immune system 1 

Plants are constantly challenged by diverse organisms, including viruses, bacteria, fungi, 2 

oomycetes, herbivores, and parasitic plants. Disease ensues when a plant is susceptible to any 3 

of these organisms. Plants carry powerful defense mechanisms. To cause disease, pathogens 4 

usually need to evade detection by the host and/or to suppress these immune responses. Cell-5 

surface pattern-recognition receptors (PRRs) in plants recognize conserved pathogen-/damage-6 

/microbe-/herbivore-associated molecular patterns (PAMP/DAMP/MAMP/HAMPs) and 7 

activate pattern-triggered immunity (PTI), which restricts pathogenicity. PRRs are plasma 8 

membrane-associated and are usually either Receptor-Like Kinases (RLKs) or Receptor-Like 9 

Proteins (RLPs) that lack a protein kinase domain. Pathogens have evolved to evade or suppress 10 
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PTI through secreted effector molecules, which results in effector-triggered susceptibility 11 

(ETS). Plants, in turn, have evolved intracellular nucleotide-binding leucine-rich repeat 12 

receptors (NLRs) to detect effectors, which are often encoded by Resistance (R) genes, and 13 

activate effector-triggered immunity (ETI) upon effector perception. Pathogens might then 14 

evolve or diversify or lose effectors to suppress or evade ETI. The interaction between PTI, 15 

ETS and ETI was incorporated into the widely cited ‘zig-zag-zig’ intellectual framework 16 

(Jones and Dangl, 2006).  17 

The alphabet soup digested: nomenclatures applied to the plant immune system 18 

PTI was originally an abbreviation for ‘PAMP-triggered immunity’, mediated by PRRs such 19 

as Arabidopsis thaliana Flagellin-Sensing 2 (FLS2). ETI is an acronym for ‘effector-triggered 20 

immunity’, which is mostly mediated by NLRs (Jones and Dangl, 2006), but can also involve 21 

RLP-mediated detection of apoplastic effectors (Jones et al 1994). While the terms PTI and 22 

ETI are frequently used in the literature, there are limitations to their use in describing specific 23 

immune responses (Thomma et al., 2011). For example, the apoplastic effector Avr4 from the 24 

tomato (Solanum lycopersicum) leaf mold pathogen Cladosporium fulvum binds to fungal 25 

chitin to retard cell wall degradation by host chitinases and thus the release of N-acetyl 26 

glucosamine oligomers that activate defense (Joosten et al., 1994; van den Burg et al., 2006). 27 

Avr4 is recognized by the tomato cell-surface receptor-like protein (RLP) Cf-4 (Thomas et al., 28 

1997). Thus, while immunity activated by some PRRs can be classified as PTI, others can be 29 

classified as ETI, since cell-surface receptors can recognize both PAMPs and apoplastic 30 

effectors (Thomma et al., 2011). Other terms have been introduced to classify immune 31 

responses based on receptors, such as PRR-mediated immunity (PMI) and NLR-mediated 32 

immunity (NMI) (Lacaze and Joly, 2020). Immune responses are best defined by the location 33 

of recognition by the initiating protein, such as extracellularly triggered immunity (ExTI) and 34 

intracellularly triggered immunity (InTI) (van der Burgh and Joosten, 2019), or surface-35 

receptor-mediated immunity (SRMI) and intracellular-receptor-mediated immunity (IRMI) 36 

(van der Burgh and Joosten, 2019; Ding et al., 2020). Each of these terms has its own 37 

advantages and should be used with caution (Figure 1A). In this review, we try to minimize the 38 

overuse of these acronyms and emphasize immune responses triggered by the corresponding 39 

receptors.  40 

The protein structural and evolutionary views of PRRs  41 

Plant PRR proteins are either receptor-like proteins (RLPs) or receptor-like kinases (RLKs). 42 

RLKs consist of an extracellular domain, a transmembrane domain, and cytoplasmic kinase 43 
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domain. RLPs lack a cytoplasmic kinase domain, and both require co-receptors to transduce 44 

immune signals. PRRs are localized to the plasma membrane via a transmembrane α-helix or 45 

a glycophosphatidylinositol (GPI)-anchor (Boutrot and Zipfel, 2017). Both RLPs and RLKs 46 

perceive ligands via a range of extracellular domains. These include leucine-rich repeat (LRR), 47 

lectin, malectin, lysin motif (LysM), and epidermal growth factor (EGF)-like domains (Boutrot 48 

and Zipfel, 2017).  49 

RLKs are found in Plasmodium, plants, and animals but not fungi (Shiu and Bleecker, 2003). 50 

Conceivably, RLKs were present in the common ancestors of these organisms but were later 51 

lost in the fungi. Plant RLKs underwent remarkable expansion and constitute 60% of the 52 

kinases in the Arabidopsis genome (Shiu and Bleecker, 2003). Arabidopsis RLKs can be 53 

classified into 44 subfamilies based on their kinase domains (Shiu and Bleecker, 2003). The 54 

LRR-RLKs represent the largest subfamily of RLKs and are the best characterized RLKs in 55 

plants. A phylogenetic study of 33 plant species concluded that the average number of LRR-56 

RLKs in angiosperms is approximately 250 per species (Dufayard et al., 2017) (Figure 1B). 57 

LRR-RLKs are further classified into 20 subgroups, with subgroup XII constituting genes 58 

involved in pathogen recognition, such as FLS2, EFR, and Xa21 (Dufayard et al., 2017). 59 

Interestingly, the gene number in the LRR-RLK subgroup XII is highly variable across plant 60 

species, indicating that these genes underwent either expansion or contraction in particular 61 

lineages (Dufayard et al., 2017; Ngou et al., 2022). Similarly, the LRR-RLPs represent the 62 

largest subfamily of RLPs in plants, and the size of this gene family is also highly variable 63 

across plant species (Ngou et al., 2022) (Figure 1B).  64 

Structural and evolutionary overview of NLR proteins 65 

NLRs are grouped into three classes according to their N-terminal domains: coiled-coil (CC) 66 

NLRs (CNLs), Toll/Interleukin-1 receptor/Resistance protein (TIR) NLRs (TNLs), and RPW8-67 

like coiled-coil domain (RPW8) NLRs (RNLs). Both CNLs and RNLs contain N-terminal CC-68 

domains. Plant NLRs carry a nucleotide-binding (NB) domain shared by APAF-1, various 69 

plant R proteins and CED-4 (together, the NB-ARC domain), and LRR domains at their C-70 

termini. These domains vary between NLRs, and additional non-canonical domains can be 71 

integrated into some NLRs (also known as NLR-Integrated Domains, or NLR-IDs) (Sarris et 72 

al., 2016). The functions of these domains also vary among NLRs. The LRR domain is involved 73 

in direct or indirect recognition of effectors (Krasileva et al., 2010; Ma et al., 2020a; Martin et 74 

al., 2020). The NB­ARC domain exhibits ATP binding activity and acts as a switch for NLR 75 

activation (Wang et al., 2019b). The CC, TIR and RPW8 domains function as signaling 76 
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domains to downstream responses upon NLR activation (Adachi et al., 2019a; Bi et al., 2021; 77 

Duxbury et al., 2021; Jacob et al., 2021). Some CC-domains are involved in effector 78 

recognition and interact directly with effectors (Avr-Pik) as well as a ‘guardee’ protein (such 79 

as RIN4), which is a target of pathogen effectors (Lukasik and Takken, 2009; Kanzaki et al., 80 

2012). The α-helices in both the CC and RPW8 domains were recently shown to form cation 81 

channels required for defense signaling (Bi et al., 2021; Jacob et al., 2021). TIR domains can 82 

also self-associate or associate with the TIR domains from paired TNLs, which is crucial for 83 

their activation (Williams et al., 2014; Duxbury et al., 2020). TIR domains, upon 84 

oligomerization, exhibit NADase activity, which leads to the production of variant-cyclic-85 

ADP-ribose (v-cADPR) (Horsefield et al., 2019; Wan et al., 2019a). TIR domains also exhibit 86 

2’,3’-cAMP/cGMP synthetase activity (Yu et al., 2021). These small molecules produced by 87 

TIR domains likely function in signaling. The ID domain in NLR-IDs functions as a decoy, 88 

which enables the NLR to detect effectors targeting proteins with homology to the ID (van der 89 

Hoorn and Kamoun, 2008; Sarris et al., 2016; Baggs et al., 2017).  90 

NLR genes are present in the genomes of all land plants (Gao et al., 2018). CNLs, TNLs, and 91 

RNLs are present in basal angiosperm species such as Amborella and Nymphaea (Baggs et al., 92 

2020; Liu et al., 2021). However, TNLs are absent from most monocot genomes, indicating 93 

that gene loss likely occurred before monocots diverged from dicots (Tarr and Alexander, 94 

2009). The loss of TNLs was also accompanied by the loss of TNL-signaling components, such 95 

as ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), PHYTOALEXIN DEFICIENT 4 96 

(PAD4), and SENESCENCE-ASSOCIATED GENE 101 (SAG101) (Baggs et al., 2020; Liu 97 

et al., 2021). The loss of these signaling components may have driven the contraction of TNLs 98 

in some angiosperm lineages, or vice versa (Liu et al., 2021). Similar to the LRR-RLK-XII and 99 

LRR-RLP, the number of NLRs (or NB-ARC containing proteins) is also highly variable across 100 

the angiosperms (Baggs et al., 2020; Liu et al., 2021). Furthermore, the LRR-RLK-XII, LRR-101 

RLP, and NLR gene families have undergone lineage-specific co-expansion or co-contraction 102 

(Ngou et al., 2022) (Figure 1B). The cause of these concerted expansions and/or contractions 103 

is currently unclear but has been proposed to be linked to pathogen pressure and ecological 104 

specialization (Plomion et al., 2018; Baggs et al., 2020; Liu et al., 2021; Ngou et al., 2022).  105 

PRRs involved in pathogen recognition 106 

PRRs recognize PAMPs/MAMPs/HAMPs from bacteria, fungi, oomycetes, parasitic plants, 107 

and herbivores. Some PRRs also recognize self-molecules, such as DAMPs and other plant 108 

endogenous peptides (phytocytokines) (Hou et al., 2021). Some PRRs are not involved in direct 109 
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ligand recognition but function as PRR co-receptors and negative regulators of immune 110 

signaling. There are more than 60 characterized immunity-related PRRs with known elicitors, 111 

and we attempt here to list those PRRs with known elicitors that are involved in pathogen 112 

recognition (Figure 2). Due to space limitations, some PRR gene names are abbreviated: the 113 

full gene names can be found in Supplemental Data Set S1. 114 

PRRs involved in bacterial recognition 115 

Plants perceive a range of PAMPs from bacteria, including peptides, lipids, peptidoglycans 116 

(PGs), and polysaccharides. Arabidopsis perceives the bacteria-derived peptides flg22, elf18, 117 

and xup25 via the LRR-RLKs AtFLS2, AtEFR, and AtXPS1 and the proteinaceous eMAX and 118 

translation initiation factor 1 (IF1) via the LRR-RLPs AtRLP1 and AtRLP32, respectively 119 

(Chinchilla et al., 2006; Zipfel et al., 2006; Jehle et al., 2013; Mott et al., 2016; Fan et al., 120 

2021). Other bacterial peptides such as RaxX21, flgII-28, and csp22 are perceived by rice 121 

(Oryza sativa) OsXa21, tomato SlFLS3, and SlCORE/NbCSPR (from tomato and Nicotiana 122 

benthamiana), respectively (Pruitt et al., 2015; Hind et al., 2016; Saur et al., 2016; Wang et al., 123 

2016; Luu et al., 2019). The bacterial lipid 3-hydroxydecanoic acid (3-OH) is perceived 124 

through the lectin receptor kinase AtLORE (Kutschera et al., 2019). PGs from bacterial cell 125 

walls are perceived by the LysM-containing RLP AtLYM1/3 and rice OsLYP4/6 (Willmann et 126 

al., 2011; Liu et al., 2012). Bacterial exopolysaccharides (EPS) are perceived by the LysM-127 

containing RLK LjEPR3 from Lotus japonicus to control rhizobium infections (Kawaharada et 128 

al., 2015) (Figure 2A). 129 

PRRs involved in fungal recognition 130 

The fungal cell wall comprises chitin and oligo-galacturonides (OGs), which are perceived by 131 

multiple PRRs. Chitin is perceived by LysM-containing RLKs such as AtLYM2/4/5, 132 

OsLYP4/6, Medicago truncatula MtLYK4/9, grapevine (Vitis vinifera) VvLYK1-1/2, Lotus 133 

japonicus LjLYS6, and pea (Pisum sativum) PsLYK9 (Wan et al., 2008, 2012; Liu et al., 2012; 134 

Faulkner et al., 2013; Cao et al., 2014; Bozsoki et al., 2017; Leppyanen et al., 2017; Brulé et 135 

al., 2019). OGs are perceived by the cell wall-associated kinases AtWAK1/2 (Brutus et al., 136 

2010). AtWAK1/2 also perceive pectin from the plant cell wall (Kohorn and Kohorn, 2012). 137 

The common wheat (Triticum aestivum) wall-associated kinase TaWAK perceives the protein 138 

SnTox1 from the necrotrophic fungal pathogen Parastagonospora nodorum and induces cell 139 

death (Shi et al., 2016). In addition to the fungal cell wall, apoplastic effectors from fungal 140 

pathogens are recognized by multiple LRR-RLPs. These include SlCf-2, SlCf-4, SlCf-5, SlCf-141 

9, SlEIX2, SlVe1, SlHrc9-4E, SlI, SlI-3 and Brassica napus BnRLM2 (Jones et al., 1994; Dixon 142 
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et al., 1996, 1998; Thomas et al., 1997; Krüger et al., 2002; Westerink et al., 2004; Rep et al., 143 

2004; Ron and Avni, 2004; Houterman et al., 2008; de Jonge et al., 2012; Larkan et al., 2013; 144 

Catanzariti et al., 2015). A proteinaceous elicitor from the fungal pathogen Sclerotinia 145 

sclerotiorum, sclerotinia culture filtrate elicitor 1 (SCFE1), is perceived by AtRLP30, and 146 

fungal endopolygalacturonases (endo-PGs) are perceived by the LRR-RLP AtRLP42 (Zhang 147 

et al., 2013; Zhang et al., 2014) (Figure 2B). 148 

PRRs involved in the recognition of oomycetes 149 

The oomycete cell wall is also composed of chitin, endo-PGs, and OGs. Thus, plants also 150 

perceive oomycetes via PRRs described in the previous section. In addition, some PRRs 151 

recognize specific PAMPs from oomycetes. For example, the glycoside hydrolase XEG1 from 152 

Phytophthora sojae is recognized by the LRR-RLP NbRXEG1 (Wang et al., 2018d). INF1 153 

elicitin from Phytophthora infestans is recognized by the LRR-RLP SmELR from Solanum 154 

microdontum (Kamoun et al., 1997; Domazakis et al., 2020). Arabidopsis AtRLP23 recognizes 155 

a conserved peptide (nlp20) in necrosis and ethylene-inducing peptide 1-like protein (NLP) 156 

from multiple pathogens, including Phytophthora parasitica (Böhm et al., 2014; Albert et al., 157 

2015). The Arabidopsis lectin-receptor kinase AtRDA2 was recently shown to recognize 9-158 

methyl sphingoid base, a PAMP derived from oomycete ceramide (Kato et al., 2021) (Figure 159 

2C).  160 

PRRs involved in self-recognition 161 

Plants perceive DAMPs and phytocytokines from damaged or infected tissues to amplify and 162 

modulate immune responses against pathogens. Damage-induced cytosolic calcium influx 163 

activates metacaspases, which cleave the DAMP precursor PROPEPs into PEPs (Hander et al., 164 

2019). PEPs are then secreted and perceived by the LRR-RLKs AtPEPR1/2 (Yamaguchi et al., 165 

2006, 2010). Multiple phytocytokines are upregulated during immunity (Hou et al., 2021). The 166 

stress-induced plant signaling peptides CTNIPs are upregulated during PTI and are perceived 167 

by the Arabidopsis LRR-RLK AtHSL3 (Rhodes et al., 2021a). Another defense-induced 168 

secreted peptide, PIP1, is recognized by AtRLK7 (Hou et al., 2014). The Arabidopsis LRR-169 

RLK AtMIK2 perceives the phytocytokine SCOOP peptides and SCOOP-like peptides from 170 

Fusarium spp. (Coleman et al., 2021; Rhodes et al., 2021b). Thus, AtMIK2 is involved in both 171 

self- and fungal recognition during immunity. Plant PRRs also perceive a range of extracellular 172 

(e) self-molecules, such as eH2O2, eATP and eNAD. These molecules are perceived by 173 

AtHPCA1 (also known as AtCARD1), AtDORN1, and AtLecRK-1.8, respectively (Chen et al., 174 

2017a; Wang et al., 2017; Wu et al., 2020a). In tomato, the hormone peptide systemin is 175 
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perceived by SlSYR1/2 to enhance resistance against herbivores (Wang et al., 2018b) (Figure 176 

2D).  177 

PRRs involved in the recognition of parasitic plants 178 

In addition to eH2O2, AtCARD1 has also been shown to perceive the self-derived quinone 179 

compound 2,6-dimethoxy-1,4-benzoquinone (DMBQ) (Laohavisit et al., 2020). Perception of 180 

DMBQ induces AtCARD1-dependent immune responses. On the other hand, the parasitic plant 181 

Phtheirospermum japonicum perceives DMBQ via AtCARD1 homologues PjCADL1/2/3, 182 

which leads to development of haustoria for parasitic infection (Laohavisit et al., 2020). Thus, 183 

CARD1 is involved in both immunity (for non-parasitic plants) and parasitic plant infection. 184 

Plants also perceive PAMPs from parasitic plants to restrict infection. The tomato LRR-RLP 185 

SlCuRe1 perceives the peptide Crip21 from the parasitic plant Cuscuta spp. (Hegenauer et al., 186 

2020). Crip21 is derived from a Cuscuta glycine-rich cell wall protein (GRP). Activation of 187 

SlCuRe1 by Crip21 elicits cell death and defense responses in tomato (Hegenauer et al., 2020) 188 

(Figure 2E).  189 

PRRs involved in viral recognition 190 

While some PRRs, such as AtNIK1, have been shown to be required for viral resistance, no 191 

PRR has been reported to directly perceive viral particles (Zorzatto et al., 2015). However, the 192 

Arabidopsis PRR co-receptor bak1 loss-of-function mutant exhibits enhanced susceptibility to 193 

multiple viruses (Kørner et al., 2013). In addition, exogenous application of double-stranded 194 

RNAs and viral coat protein elicits PTI responses in plants (Allan et al., 2001; Niehl et al., 195 

2016). Conceivably, some uncharacterized PRR(s) are involved in the recognition of viral 196 

PAMPs (Figure 2F).  197 

PRRs involved in the recognition of herbivores 198 

In addition to eNAD+, AtLecRK-1.8 and AtLecRK-1.1 are involved in the perception of Pieris 199 

brassicae (cabbage moth) eggs (Gouhier-Darimont et al., 2019; Groux et al., 2021). The ligand 200 

from Pieris brassicae eggs that activates AtLecRK-1.8 remains to be identified and 201 

characterized. The Arabidopsis LRR-RLK AtNILR1 is involved in the perception of 202 

Heterodera schachtii (sugarbeet nematode) extracts, and nilr1 mutants are hypersusceptible to 203 

nematode infection (Mendy et al., 2017). The cowpea (Vigna unguiculata) LRR-RLP VuINR 204 

was shown to perceive inceptin, a proteolytic fragment of chloroplastic ATP synthase from the 205 

oral secretions of Lepidopteran herbivores (a HAMP) (Steinbrenner et al., 2019). Whether 206 

PRRs can perceive ligands directly from herbivores remains to be determined (Figure 2G). 207 
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PRR co-receptors  208 

Most, if not all, PRRs function with co-receptors to activate downstream immune responses. 209 

Multiple LRR-RLKs, such as FLS2, EFR, and PEPRs function with the co-receptors AtBAK1 210 

and AtBKK1 (Chinchilla et al., 2007; Roux et al., 2011). LRR-RLPs function with the co-211 

receptors SOBIR1 and BAK1, and the LysM-RLK LYKs and LysM-RLP LYMs function with 212 

the co-receptor CERK1 (Miya et al., 2007; Willmann et al., 2011; Liebrand et al., 2013; Cao 213 

et al., 2014). These co-receptors are highly conserved in land plants and are crucial for PRR-214 

mediated immunity (Figure 2H). 215 

 216 

NLRs involved in pathogen recognition 217 

Sensor NLRs are involved in the recognition of effectors from viruses, bacteria, fungi, 218 

oomycetes, parasitic plants, and herbivores. Some NLRs act as helpers or co-receptors to 219 

transduce immune signals from sensor NLRs following effector recognition (Wu et al., 2018). 220 

Currently, there are more than 140 characterized NLRs with known recognized effectors 221 

(Kourelis and Kamoun, 2020). Here, we summarize a list of NLRs involved in effector 222 

recognition (Figure 3; Supplemental Data Set S2).  223 

NLRs involved in bacterial recognition usually act by guarding host components 224 

Bacterial effectors have been selected that target PRR signaling components and suppress host 225 

immunity. Plants have evolved multiple NLRs to guard host immune components, which 226 

indirectly detect bacteria and induce ETI. For example, the Pseudomonas syringae effector 227 

AvrPto suppresses PTI by inhibiting host kinase activity (Li et al., 2005; He et al., 2006; Xing 228 

et al., 2007; Xiang et al., 2008; Wu et al., 2017b). The tomato decoy kinase Pto is guarded by 229 

the CNL Prf, which detects the perturbation of Pto kinase activity by AvrPto and activates ETI 230 

(Wu et al., 2004; Mucyn et al., 2006; Ntoukakis et al., 2013). Since plants have evolved 231 

multiple NLRs to guard central immune signaling pathways, some effectors from 232 

Pseudomonas syringae are recognized by multiple NLRs from different plant species (Jones 233 

and Dangl, 2006). Examples include the following: AvrB is recognized by AtTAO1, AtRPM1, 234 

and Glycine max GmRPG1b (Grant et al., 1995; Ashfield et al., 2004; Eitas et al., 2008). 235 

AvrRpm1 from P. syringae pv. maculicola (Pma) is recognized by AtRPM1, AtRPS2 and 236 

GmRPG1r (Ashfield et al., 1995; Grant et al., 1995; Kim et al., 2009a). AvrPphB is recognized 237 

by AtRPS5, Hordeum vulgare HvPbr1.b and HvPbr1.c (DeYoung et al., 2012; Carter et al., 238 

2019; Laflamme et al., 2020). AvrRpt2 from Pseudomonas syringae and RipBN from 239 
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Ralstonia pseudosolanacearum are recognized by the CNL Ptr1 from multiple Solanaceous 240 

species (Mazo-Molina et al., 2020). In addition, AvrRpt2 is recognized by the CNL AtRPS2, 241 

and AvrRpt2_EA from Erwinia amylovora is recognized by FB_MR5 from Malus × robusta 242 

5 (Axtell and Staskawicz, 2003; Mackey et al., 2003; Peil et al., 2019). HopA1 is recognized 243 

by AtRPS6, and HopAI1 is recognized by both AtSUMM2 and AtRPS6 (Kim et al., 2009b; 244 

Zhang et al., 2012; Takagi et al., 2019).  245 

On the other hand, central hubs of the immune system are targeted by multiple effectors. 246 

Correspondingly, NLRs, which guard central immune signaling components, can recognize 247 

multiple effectors (Khan et al., 2016). For example, the CNL AtZAR1 functions with the 248 

pseudokinase RKS1 to guard the receptor-like cytoplasmic kinase (RLCK) PBL2 (Wang et al., 249 

2015). By guarding RLCKs or decoy pseudokinases, AtZAR1 indirectly recognizes HopZ1a, 250 

HopF2, HopBA1, HopO1, HopX1 and AvrAC from P. syringae or Xanthomonas campestris, 251 

and potentially more effectors that target RLCKs (Wang et al., 2015; Laflamme et al., 2020). 252 

NbZAR1 is also required to recognize XopJ4 from Xanthomonas perforans via the 253 

pseudokinase JIM2 (Schultink et al., 2019). Other examples include the following: AvrRpm1Psa 254 

and AvrRpm1Psy from P. syringae pv. actinidiae biovar 3 (Psa) and P. syringae 255 

pv. syringae strain B728a (Psy) are recognized by Nicotiana tabacum NitabRPA1 (Yoon and 256 

Rikkerink, 2020). AvrE and HopAA are both recognized by Arabidopsis CAR1 (Laflamme et 257 

al., 2020). AvrRps4 from P. syringae pv. pisi and PopP2 from Ralstonia solanacearum are 258 

recognized by the paired-TNLs AtRRS1-R and AtRPS4 (Narusaka et al., 2009; Sarris et al., 259 

2015). In addition, AvrRps4 can also be recognized by the paired-TNLs AtRRS1B and 260 

AtRPS4B (Saucet et al., 2015). The TNL NbRoq1 recognizes HopQ1-1, XopQ and RipB from 261 

P. syringae, Xanthomonas, and Ralstonia solanacearum, respectively (Schultink et al., 2017; 262 

Thomas et al., 2020). Multiple TRANSCRIPTION ACTIVATOR-LIKE (TAL) effectors from 263 

Xanthomonas oryzae are recognized by the CNLs OsXo1 and OsXa1 (Yoshimura et al., 1998; 264 

Triplett et al., 2016; Read et al., 2020a, 2020b).The tomato TNL SlBs4 also recognizes multiple 265 

Xanthomonas effectors (Schornack et al., 2004, 2005). AvrRxo1-ORF1 from Xanthomonas 266 

oryzae and Burkholderia andropogonis are recognized by the CNL ZmRxo1 from maize (Zea 267 

mays) (Zhao et al., 2004) (Figure 3A). 268 

NLRs involved in fungal recognition 269 

Plant NLRs recognize multiple effectors and molecules from fungal pathogens. Victorin, a 270 

secondary metabolite from Cochliobolus victoriae, is recognized by LOV1 from Arabidopsis 271 

and Phaseolus vulgaris (Sweat et al., 2008; Lorang et al., 2018). AvrFom2 from Fusarium 272 
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oxysporum is recognized by the CNL CmFom-2 from Cucumis melo (Schmidt et al., 2016). 273 

Hordeum vulgare RESISTANCE LOCUS A (HvMLA) NLRs recognize a range of effectors 274 

from Blumeria graminis (Ridout et al., 2006; Lu et al., 2016; Saur et al., 2019) and can even 275 

recognize races of wheat stripe rust (Bettgenhaeuser et al., 2021). Multiple TNLs from Linum 276 

usitatissimum recognize effectors from Melampsora lini (Dodds et al., 2004; Dodds and Thrall, 277 

2009; Catanzariti et al., 2010; Anderson et al., 2016). Effectors from the rice blast fungus 278 

Magnaporthe oryzae are recognized by multiple CNLs from Oryza sativa (Jia et al., 2000; 279 

Ashikawa et al., 2008, 2012; Li et al., 2009, 2019; Zeng et al., 2011; Rai et al., 2011; Sone et 280 

al., 2013; Zhai et al., 2014; Devanna et al., 2014; Zhang et al., 2015; Wu et al., 2015; Vo et al., 281 

2019). Effectors from Blumeria graminis, Parastagonospora nodorum, Pyrenophora tritici-282 

repentis and Puccinia graminis are recognized by multiple CNLs from Triticum species 283 

(Srichumpa et al., 2005; Liu et al., 2006; Salcedo et al., 2017; Bourras et al., 2019; Navathe et 284 

al., 2020; Manser et al., 2021). AvrSr50 from Puccinia graminis is recognized by ScSr50 from 285 

Secale cereale (Chen et al., 2017b). Avr2 from Fusarium oxysporum is recognized by the CNL 286 

SlI2, and Pc-toxin from Periconia circinata is recognized by the CNL SbPc from Sorghum 287 

bicolor (Nagy et al., 2007; Nagy and Bennetzen, 2008; Houterman et al., 2009) (Figure 3B). 288 

NLRs involved in the recognition of oomycetes 289 

Multiple effectors from Hyaloperonospora arabidopsidis (Hpa) are recognized by Arabidopsis 290 

NLRs. ATR1, ATR4, ATR5, ATR13 and ATR39 are recognized by AtRPP1, AtRPP4, AtRPP5, 291 

AtRPP13 and AtRPP39, respectively (Rentel et al., 2008; Krasileva et al., 2010; Bailey et al., 292 

2011; Goritschnig et al., 2012; Asai et al., 2018). CX2CX5G effector-like proteins (CCG 293 

effectors) from Albugo candida are recognized by AtWRR4A and AtWRR4B (Redkar et al., 294 

2021).  295 

The oomycete genus Phytophthora carries multiple phytopathogenic species that cause 296 

enormous crop losses worldwide. Identification of NLRs that recognize Phytophthora effectors 297 

provides resources for crop resistance. The Phytophthora sojae effectors Avr1k and Avr1b-1 298 

are recognized by GmRps1-k (Song et al., 2013). Effectors from P. infestans are also 299 

recognized by NLRs from multiple Solanaceae species. For example, the effectors Avramr1 300 

and Avramr3, with homologs in many Phytophthora species, are recognized byRpi-amr1 (from 301 

S. americanum) and Rpi-amr3, respectively (Lin et al., 2020, 2021; Witek et al., 2021). Avrblb1 302 

is recognized by Rpi-blb1 (from S. bulbocastanum), Rpi-pta1 and Rpi-sto1 (from S. 303 

stoloniferum) (Vleeshouwers et al., 2008; Oh et al., 2009). Avrblb2 is recognized by Rpi-blb2 304 

and R9a (from S. bulbocastanum and S. demissum, respectively) (Oh et al., 2009; Jo, 2013). 305 
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PexRD12 is recognized by Rpi-chc1 (from S. chacoense) (Petre et al., 2021). Avr1, Avr3b and 306 

Avr8 are recognized by R1, R3b and R8, respectively (Ballvora et al., 2002; Li et al., 2011; Jo, 307 

2013; Du et al., 2015; Vossen et al., 2016). PiAvr2 is recognized by multiple NLRs from 308 

Solanaceae (Park et al., 2005; Lokossou et al., 2009; Champouret, 2010; Aguilera-Galvez et 309 

al., 2018). Avr3a is recognized by Rpi-sto2 and R3a (from S. tuberosum) (Bos et al., 2010; 310 

Champouret, 2010; Vleeshouwers et al., 2011; Chapman et al., 2014). Avrvnt1 is recognized 311 

by Rpi-vnt1 from S. venturi (Foster et al., 2009; Pel, 2010) (Figure 3C). 312 

Apparent absence of NLRs involved in self-recognition in plants 313 

In mammals, DAMPs can be indirectly recognized the intracellular NOD-, LRR- and pyrin 314 

domain-containing protein 3 (NLRP3)-inflammasome in macrophages (Swanson et al., 2019). 315 

However, no plant NLRs have been reported to detect self-molecules so far (Figure 3D). 316 

NLRs involved in the recognition of parasitic plants 317 

Virus-induced silencing of the CNL VuRSG3-301 from Vigna unguiculata leads to enhanced 318 

susceptibility to the parasitic plant Striga gesnerioides race 3 (SG3) (Li and Timko, 2009). The 319 

effector recognized by VuRSG3-301 has not yet been identified (Figure 3E). 320 

NLRs involved in viral recognition 321 

The coat proteins (CPs) from different viruses are recognized by pepper (Capsicum annuum) 322 

CaL1, CaL1a, Capsicum baccatum CbL2b, Capsicum chacoense CchaL4, Capsicum chinense 323 

CchiL1c, CchiL3, Capsicum frutescens CfL2, Nicotiana sylvestris NsN’, Solanum acaule Rx2, 324 

Solanum stoloniferum Rysto and potato (Solanum tuberosum) Rx (Saito et al., 1987; 325 

Bendahmane et al., 1995; Berzal-Herranz et al., 1995; Gilardi et al., 2004; Tameling and 326 

Baulcombe, 2007; Matsumoto et al., 2008; Tomita et al., 2011; Mizumoto et al., 2012; Grech-327 

Baran et al., 2021). Viral movement proteins (MPs) are recognized by Tm2, SlTm22 and 328 

SlSw5-b (Pelham, 1966; Hall, 1980; Weber and Pfitzner, 1998; Peiró et al., 2014). The RNA-329 

Dependent RNA Polymerase (NIb) of potyviruses is recognized by the Ca Pvr4 (Kim et al., 330 

2015). The RNA silencing suppressor protein NSs from tomato spotted wilt virus (TSWV) is 331 

recognized by CchiTsw (de Ronde et al., 2013). P3 cistrons from soybean mosaic virus (SMV) 332 

are recognized by Gm3gG2 (Wen et al., 2013). The helicase domain of the tobacco mosaic 333 

virus (TMV) replicase (p50) is recognized by Nicotiana glutinosa N (Whitham et al., 1994; 334 

Erickson et al., 1999). Cucumber mosaic virus (CMV) 2a protein is recognized by Phaseolus 335 

vulgaris PvRT4-4 (Seo et al., 2006). To summarize, multiple components involved in the 336 

process of viral infection are recognized by NLRs. (Figure 3F). 337 
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NLRs involved in the recognition of herbivores 338 

Multiple NLRs were shown to be involved in resistance against herbivores. NLRs involved in 339 

nematode resistance include the TIR-NB-LRR pair AtDSC1 and AtWRKY19, Aegilops 340 

tauschii AtaCD3.1, CaMi, Prunus cerasifera PcMa, SlHero, StGpa-2, and StGro1-4 (Lagudah 341 

et al., 1997; van der Voort et al., 1997; Milligan et al., 1998; Paal et al., 2004; Sobczak et al., 342 

2005; Chen et al., 2007; Claverie et al., 2011; Warmerdam et al., 2020). In addition, the tomato 343 

Mi gene confers resistance to multiple herbivores, such as nematodes, aphids and whiteflies 344 

(Kaloshian et al., 1995; Milligan et al., 1998; Rossi et al., 1998; Neiva et al., 2019). Other 345 

NLRs have been shown to confer resistance against the arthropod Nilaparvata lugens (brown 346 

planthopper). These include the rice OsBph1/9 and OsBph14 (Du et al., 2009; Zhao et al., 347 

2016). While multiple NLRs are involved in herbivore resistance, more work is needed to 348 

identify the recognized effectors (Figure 3G). 349 

Helper NLRs 350 

While some sensor NLRs do not require helper NLRs, many NLRs function with helper NLRs 351 

to transduce immune signals. In Arabidopsis, some CNLs and/or most TNLs require the RNLs 352 

ACTIVATED DISEASE RESISTANCE 1 (collectively known as ADR1s, which includes 353 

AtADR1, AtADR1-L1 and AtADR1-L2) and/or N REQUIREMENT GENE 1 (collectively 354 

known as NRG1s, which includes AtNRG1A and AtNRG1B) (Bonardi et al., 2011; Castel et 355 

al., 2019a; Wu et al., 2019; Saile et al., 2020). In Arabidopsis accession Col-0, the four RPW8 356 

homologs, AtHR1, AtHR2, AtHR3 and AtHR4, also contribute to resistance against bacterial 357 

and fungal pathogens (Barragan et al., 2019; Castel et al., 2019b). In Solanaceous plants, the 358 

CNLs NB-LRR REQUIRED FOR HR-ASSOCIATED CELL DEATH-2 (NRC2), NRC3, and 359 

NRC4 function as helper NLRs for multiple sensor NLRs (Wu et al., 2017a) (Figure 3H). The 360 

contribution of the NRC network to the functions of sensor NLRs has been extensively 361 

discussed (Wu et al., 2018; Ngou et al., 2021c).  362 

 363 

The PRR signaling pathway 364 

The extracellular domains of plant PRRs perceive diverse ligands (Boutrot and Zipfel, 2017). 365 

Binding of ligands leads to heterodimeric receptor complex formation between PRRs and their 366 

co-receptors, such as BAK1 and CERK1 (Miya et al., 2007; Ma et al., 2016; Hohmann et al., 367 

2017). On the other hand, RLPs constitutively interact with SOBIR1 and recruit BAK1 upon 368 

ligand recognition (Liebrand et al., 2013; Albert et al., 2015). In Arabidopsis, the bacterial 369 
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flagellin peptide flg22 is perceived by the LRR-RLK FLS2 (Felix et al., 1999; Chinchilla et 370 

al., 2006). Flg22 acts as a ‘molecular glue’ and interacts with and brings together the 371 

extracellular LRR domains of FLS2 and BAK1 (Sun et al., 2013; Hohmann et al., 2017). 372 

Heterodimeric complex formation between the LRR domains of FLS2 and BAK1 brings their 373 

cytoplasmic kinase domains into close proximity, which leads to a series of auto- and trans-374 

phosphorylation events (Schwessinger et al., 2011; Cao et al., 2013; Sun et al., 2013). This 375 

activated receptor complex then phosphorylates RECEPTOR-LIKE CYTOPLASMIC 376 

KINASEs (RLCKs) (Lin et al., 2013; Liang and Zhou, 2018). RLCK subfamily VII members 377 

(collectively known as RLCK-VIIs) were first shown to be important for surface receptor-378 

mediated immunity in tomato and tobacco and to be required for Cf-4 and Cf-9 to confer fungal 379 

resistance (Rowland et al., 2005). In Arabidopsis, RLCKs play particularly important roles 380 

during PRR-mediated immunity (Lu et al., 2010; Lin et al., 2014; Liang and Zhou, 2018; Rao 381 

et al., 2018). BAK1 associates with and phosphorylates the RLCK-VII BIK1 at the Try243 and 382 

Try250 residues (Lu et al., 2010; Lin et al., 2014).  383 

The activation of RLCK-VIIs promotes the phosphorylation of multiple signaling components, 384 

including the calcium channels CNGC2/4 and OSCA1.3, the NADPH oxidase respiratory burst 385 

oxidase protein D (RbohD), and the mitogen-activated protein kinase kinase kinase 386 

MAPKKK5 (Kadota et al., 2014; Li et al., 2014; Bi et al., 2018; Tian et al., 2019; Thor et al., 387 

2020). The activation of multiple calcium channels by BIK1 leads to cytosolic calcium influx, 388 

which activates calcium-dependent protein kinases (CDPKs/CPKs). In Arabidopsis, 389 

CPK4/5/6/11, together with BIK1, phosphorylate and activate RbohD, which leads to reactive 390 

oxygen species (ROS) production (Kadota et al., 2014, 2015; Li et al., 2014). The 391 

phosphorylation of multiple ion channels by RLCKs also leads to stomatal closure in response 392 

to PAMPs (Liu et al., 2019; Thor et al., 2020). In parallel, MAPKKK3 and MAPKKK5 393 

phosphorylate the MAPKKs MKK4 and MKK5, which then phosphorylate the MAPKs MPK3 394 

and MPK6 in Arabidopsis. In parallel, MKK1/MKK2 also phosphorylate MPK4 (Asai et al., 395 

2002; Rasmussen et al., 2012). RLCK-VIIs, CPKs and MPKs phosphorylate and activate 396 

multiple defense-related transcription factors, such as WRKY transcription factors, resulting 397 

in the upregulation of defense-related genes (Boudsocq et al., 2010; Gao et al., 2013; Lal et al., 398 

2018). PTI-induced transcriptional reprogramming leads to the biosynthesis of antimicrobial 399 

compounds and defense-related hormones, such as ethylene (ET) and salicylic acid (SA) 400 

(Macho et al., 2014; Bigeard et al., 2015; Guan et al., 2015; Bjornson et al., 2021). Hydrogen 401 

peroxide (a type of ROS) promotes protein and phenolic cross-linking, which result in callose 402 
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deposition and restricts fungal and oomycete infection (Luna et al., 2011; Voigt, 2014) (Figure 403 

4A). 404 

Signaling pathway of singleton NLRs 405 

NLR-mediated immunity is triggered by the detection of effectors through intracellular NLRs. 406 

NLRs detect effectors either via direct interactions with effectors, guarding effector targets, or 407 

guarding decoy proteins (Van der Biezen and Jones, 1998; Dangl and Jones, 2001; van der 408 

Hoorn and Kamoun, 2008). In Arabidopsis, CNLs and TNLs act as sensor NLRs that recognize 409 

effectors, while RNLs act as helper NLRs to transduce immune signals (Feehan et al., 2020). 410 

While the majority of sensor NLRs in Arabidopsis require helper NLRs to mediate immunity, 411 

some CNLs mediate immune responses alone. These are known as singleton NLRs, such as 412 

ZAR1 and RPM1 (Adachi et al., 2019b). ZAR1 recognizes a range of effectors by monitoring 413 

pseudokinases such as RKS1 and PBL2, which mimic authentic RLCK targets of effectors 414 

(Wang et al., 2019a). The bacterial effector AvrAC from Xanthomonas campestris uridylylates 415 

the RLCK PBL2. The ZAR1/RKS1 heterodimer associates with uridylylated PBL2 (PBL2UMP), 416 

which leads to conformational changes in the heterodimer. ADP in the NB-ARC domain in 417 

ZAR1 is ejected and replaced by ATP (Wang et al., 2019b). This results in the oligomerization 418 

of ZAR1/RKS1/PBL2UMP oligomers into pentameric resistosomes (Wang et al., 2019a) that 419 

localize to the plasma membrane to trigger downstream immune responses (Wang et al., 2019a; 420 

Bi et al., 2021).  421 

ZAR1 resistosomes were recently shown to exhibit cation channel activity (Bi et al., 2021). 422 

The N-terminal alpha-helices in ZAR1 form a funnel-shaped structure with a negatively 423 

charged carboxylate ring, which allows cations to pass through into the cytosol. Co-expression 424 

of ZAR1 with RKS1, PBL2 and AvrAC in plant protoplasts results in cytosolic calcium influx, 425 

ROS accumulation, and the perturbation of chloroplasts and vacuoles (Bi et al., 2021). Robust 426 

ROS accumulation during ZAR1 activation is likely caused by the activation of multiple 427 

downstream signaling components, such as the NADPH oxidases, since the CPKs are activated 428 

by cytosolic calcium influx (Gao et al., 2013). In addition, multiple CPKs and RbohD have 429 

been shown to be phosphorylated during RPS2 activation (Gao et al., 2013; Kadota et al., 430 

2019). Defense-related transcription factors are also likely activated by cytosolic calcium 431 

influx (Boudsocq et al., 2010; Gao et al., 2013). The perturbation of chloroplasts and vacuoles 432 

is quickly followed by the loss of plasma membrane integrity and cellular rupture (Bi et al., 433 

2021) (Figure 4B). How these processes are regulated by immune signaling components and 434 

their relationships to transcriptional reprogramming are currently unclear. 435 
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The signaling pathway of helper-NLR-dependent sensor NLRs 436 

The majority of sensor NLRs require helper NLRs to mediate immunity. In solanaceous plants, 437 

the NB-LRR REQUIRED FOR HR-ASSOCIATED CELL DEATH proteins (collectively 438 

known as NRCs) are required for immunity and the hypersensitive cell death response (HR) 439 

mediated by multiple sensor NLRs (Wu et al., 2017a). Interestingly, the N-terminal CC domain 440 

in ZAR1 contains a ‘MADA motif’ that is also present in NRCs (Adachi et al., 2019a). This 441 

suggests that perhaps NRCs also form cation channels with alpha-helices following activation. 442 

In Arabidopsis, ADR1s and NRG1s are required for resistance and HR mediated by some 443 

CNLs and many TNLs (Bonardi et al., 2011; Castel et al., 2019a; Wu et al., 2019; Saile et al., 444 

2020). Following effector recognition, TNLs also oligomerize into resistosomes to mediate 445 

resistance (Ma et al., 2020a; Martin et al., 2020). The Arabidopsis RPP1 recognizes the Hpa 446 

effector ATR1, and N. benthamiana ROQ1 recognizes the Xanthomonas effector XopQ. These 447 

effectors are recognized by the LRR and post-LRR (PL) domain, which likely leads to 448 

conformational changes and oligomerization of these TNLs into tetrameric resistosomes (Ma 449 

et al., 2020a; Martin et al., 2020).  450 

The TIR domains of TNLs are brought into close proximity following oligomerization, 451 

activating NADase activity and producing variant-cyclic-ADP-ribose (v-cADPR) (Horsefield 452 

et al., 2019; Wan et al., 2019a; Duxbury et al., 2020; Ma et al., 2020a; Martin et al., 2020). TIR 453 

domains also exhibit 2’,3’-cAMP/cGMP synthetase activity by hydrolyzing RNA or DNA (Yu 454 

et al., 2021). V-cADPR and 2’,3’-cAMP/cGMP are proposed to be signaling molecules that 455 

activate downstream signaling components (Horsefield et al., 2019; Wan et al., 2019a; Yu et 456 

al., 2021). Following the activation of TNLs, the EP-domain containing proteins (EP-proteins) 457 

SAG101 and EDS1 associate with NRG1 (Sun et al., 2021). Similarly, the activation of TNLs 458 

also leads to the association of the EP-proteins PAD4 and EDS1 with ADR1 (Wu et al., 2021b). 459 

These associations lead to the activation of these signaling components, which in turn activate 460 

downstream immune responses, such as defense-related gene expression and the HR (Lapin et 461 

al., 2019; Sun et al., 2021). The RNLs ADR1 and NRG1 were also recently shown to function 462 

as calcium channels to activate immunity (Jacob et al., 2021). It is conceivable that the 463 

association and activation of helper RNLs and EP-proteins induces calcium influx and triggers 464 

downstream immune responses (Figure 4C).  465 

 466 

Physiological responses induced by RLKs 467 
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Following ligand perception, the PRR co-receptor BAK1 and the RLCK BIK1 are 468 

phosphorylated (Lin et al., 2014; Perraki et al., 2018). This leads to the phosphorylation and 469 

activation of multiple signaling components (Macho and Zipfel, 2014). The activation of 470 

multiple calcium channels and NADPH oxidases leads to calcium influx, stomatal closure, 471 

ROS production, and callose deposition (Luna et al., 2011; Kadota et al., 2014; Li et al., 2014; 472 

Thor et al., 2020). The activation of CPKs and MAPKs leads to transcriptional reprograming 473 

and the biosynthesis of defense-related hormones (Boudsocq et al., 2010). In Arabidopsis, 474 

MPK3/MPK6 activate 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE 475 

(ACS) isoforms ACS2 and ACS6, which are involved in ET biosynthesis (Liu and Zhang, 476 

2004; Han et al., 2010). The transcription factors SYSTEMIC ACQUIRED RESISTANCE 477 

DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60 G (CBP60g) are 478 

required for PTI-induced upregulation of SA biosynthesis genes, such as ISOCHORISMATE 479 

SYNTHASE 1 (ICS1), ENHANCED DISEASE SUSCEPTIBILITY 5 (EDS5), and AVRPPHB 480 

SUSCEPTIBLE 3 (PBS3) (Zhang et al., 2010b; Sun et al., 2015). SARD1 and CBP60g are also 481 

required for the upregulation of pipecolic acid (N-hydroxyl-pipecolic acid, NHP) biosynthesis 482 

genes, such as FLAVIN-CONTAINING MONOOXYGENASE 1 (FMO1) (Sun et al., 2015; Liu 483 

et al., 2020) (Figure 5). 484 

Physiological responses induced by RLPs  485 

Similar to RLKs, RLPs also require PRR co-receptors, RLCKs, CPKs, and MAPKs to 486 

transduce immune signals (Piedras et al., 1998; Romeis et al., 1999, 2000; Rowland et al., 487 

2005; González-Lamothe et al., 2006; Yang et al., 2006; van den Burg et al., 2008). In 488 

Arabidopsis, nlp20-induced immune responses mediated by RLP23 require the co-receptors 489 

BAK1, SOBIR1, and multiple RLCKs such as PBL19/20/30/31/32 (Albert et al., 2015; Pruitt 490 

et al., 2020; Tian et al., 2020). The activation of RLP23 leads to changes in plasma membrane 491 

potential, an ROS burst, the phosphorylation of BIK1 and MAPKs, callose deposition, and SA 492 

and ET production, similar to the activation of FLS2 (Wan et al., 2019b). In addition, flg22 and 493 

nlp20 induce highly overlapping transcriptional reprogramming in Arabidopsis (Wan et al., 494 

2019b; Bjornson et al., 2021). Thus, RLKs and RLPs induce overlapping responses due to the 495 

activation of similar downstream signaling components. However, the individual activation of 496 

multiple RLPs, such as SlCf-4, SlCf-9, and AtRLP23, leads to the HR, perhaps due to the 497 

prolonged activation of downstream signaling components (Jones et al., 1994; Thomas et al., 498 

1997; Rowland et al., 2005; Albert et al., 2015). PAD4, EDS1 and ADR1 are required for both 499 

RLK- and RLP-mediated immunity (Pruitt et al., 2021; Tian et al., 2021). Thus, EP-proteins 500 
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and helper NLRs might also be activated during some PTI signaling, although it remains to be 501 

established whether EP proteins play a primary or secondary role in defense signaling (Figure 502 

5). 503 

Physiological responses induced by CNLs alone  504 

Activation of the Arabidopsis CNL RPS2 in the absence of PTI leads to the phosphorylation 505 

of RbohD (in Ser343/347), CPKs, and MAPKs (Gao et al., 2013; Tsuda et al., 2013; Kadota et 506 

al., 2019; Ngou et al., 2021a; Yuan et al., 2021). RPS2-induced RbohD phosphorylation and 507 

ROS production are dependent on BAK1/BKK1 and BIK1 (Yuan et al., 2021). However, it is 508 

currently unclear whether BAK1/BKK1 and BIK1 are directly or indirectly activated by CNLs. 509 

While the ZAR1 resistosome directly triggers calcium influx, other calcium channels may also 510 

be activated by CNLs (Bi et al., 2021). The activation of RPM1, RPS2, and RPS5 leads to 511 

MAPK activation and the HR (Ngou et al., 2021a). In addition, the activation of many CNLs 512 

leads to the upregulation of SA- and NHP-biosynthesis genes (Jacob et al., 2018; Ngou et al., 513 

2021a). Thus, ET, SA, and NHP are likely to be produced during CNL activation (Figure 5). 514 

Physiological responses induced by TNLs alone 515 

Activation of the Arabidopsis TNL RRS1/RPS4 does not lead to the phosphorylation of BIK1, 516 

RbohD (in Ser39/343/347), MAPKs, calcium influx, ROS accumulation, or the HR (Ngou et 517 

al., 2020, 2021a). Thus, RLCKs, NADPH oxidases, calcium channels, or CPKs are unlikely to 518 

be activated by RRS1/RPS4 alone. Activation of RRS1/RPS4 induces weak callose deposition, 519 

perhaps via SA accumulation (Tateda et al., 2014; Ngou et al., 2021a). Activation of TNLs 520 

leads to the association of EP-proteins with helper NLRs, which induces transcriptional 521 

reprogramming (Saile et al., 2020; Sun et al., 2021; Wu et al., 2021b). Similar to CNLs, the 522 

activation of TNLs leads to the upregulation of SA- and NHP-biosynthesis genes (Ding et al., 523 

2020; Ngou et al., 2021a). Thus, SA and NHP are likely to be produced during TNL activation 524 

(Figure 5).  525 

Physiological responses induced by the co-activation of PRRs and NLRs  526 

Co-activation of PRRs and NLRs (‘PTI + ETI’) leads to the robust activation of BIK1, RbohD, 527 

and MPK3 (Tsuda et al., 2013; Su et al., 2018; Ngou et al., 2021a; Yuan et al., 2021). This 528 

results in stronger calcium influx, ROS accumulation, and callose deposition compared to PTI 529 

or ETI alone (Ngou et al., 2021a; Yuan et al., 2021). In addition, ‘PTI + ETI’ leads to stronger 530 

accumulation of SA and NHP compared to PTI alone, which is likely due to the stronger 531 
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expression of SA- and NHP-biosynthesis genes during ETI (Wang et al., 2018c; Castel et al., 532 

2019a; Ding et al., 2020; Liu et al., 2020) (Figure 5).  533 

 534 

Regulation of PRR-mediated immunity 535 

The PRR-signaling pathway is tightly regulated, as the excessive activation of PRRs leads to 536 

autoimmunity and growth inhibition (Navarro et al., 2006; Albrecht et al., 2012; Huot et al., 537 

2014).  538 

Regulation of PRRs 539 

Both the transcript and protein levels of PRRs are regulated by multiple mechanisms. For 540 

example, the expression of FLS2 is regulated by the microRNA miR172b (Zou et al., 2018). 541 

The expression of FLS2 is also upregulated by ET (Boutrot et al., 2010). U-BOX DOMAIN-542 

CONTAINING PROTEIN 12 (PUB12) and PUB13 mediate the polyubiquitination of FLS2, 543 

which leads to the endocytosis and degradation of this protein (Lu et al., 2011). Cf-4 also 544 

undergoes endocytosis upon Avr4 recognition (Postma et al., 2016). The activation of PRRs 545 

and their co-receptors must also be regulated. BAK1-INTERACTING RECEPTOR-LIKE 546 

KINASE 1 (BIR1) is an RLK that associates with and sequesters BAK1 to prevent the auto-547 

activation of BAK1-associated PRRs (Gao et al., 2009; Ma et al., 2017; Hohmann et al., 2018). 548 

Following PAMP perception, the peptide RAPID ALKALINIZATION FACTOR 23 549 

(RALF23) is perceived by a PRR complex composed of the CrRLK1L FERONIA (FER) and 550 

the LORELEI-LIKE-GPI ANCHORED PROTEIN 1 (LLG1). The perception of RALF23 by 551 

FER negatively regulates the formation of the FLS2-BAK1 complex (Stegmann et al., 2017; 552 

Xiao et al., 2019). FER regulates plasma membrane nanodomain organization to modulate PRR 553 

signaling (Gronnier et al., 2020). In addition, the phosphorylation status of PRRs is regulated 554 

by multiple protein phosphatases. In Arabidopsis, POLTERGEIST-LIKE 4 (PLL4) and PLL5 555 

associate with EFR and negatively regulate elf18-induced responses (Holton et al., 2015). 556 

PROTEIN PHOSPHATASE 2A (PP2A) negatively regulates the phosphorylation status of 557 

BAK1 (Segonzac et al., 2014) (Figure 6). 558 

Regulation of PRR-signaling components 559 

In addition to PRRs, downstream signaling components are also regulated to prevent prolonged 560 

activation. As a central signaling component in the PRR-signaling pathway, the Arabidopsis 561 

RLCK BIK1 is regulated by multiple mechanisms. EXTRA-LARGE G PROTEIN 2 (XLG2) 562 

functions with other heterotrimeric G proteins to attenuate proteasome-mediated degradation 563 
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of BIK1 (Liang et al., 2016). The turnover of BIK1 is regulated by CPK28, PUB4/25/26, and 564 

the E3 ubiquitin ligases RING-H2 FINGER A3A/B (RHA3A/B) (Monaghan et al., 2014; Wang 565 

et al., 2018a; Derkacheva et al., 2020; Ma et al., 2020b). The phosphorylation status of BIK1 566 

is also negatively regulated by the protein phosphatase PP2C38 (Couto et al., 2016). In addition 567 

to RLCKs, other PRR-signaling components must also be regulated. RbohD is ubiquitinated 568 

by the E3 ubiquitin ligase PIRE, which leads to proteasome-mediated degradation (Lee et al., 569 

2020). PHAGOCYTOSIS OXIDASE/ BEM1P (PB1) DOMAIN-CONTAINING PROTEIN 570 

(PB1CP) negatively regulates ROS production by controlling the localization of RbohD (Goto 571 

et al., 2020). The PP2C phosphatases PP2C5 and AP2C1 negatively regulate the 572 

phosphorylation of MPK3 and MPK6 (Brock et al., 2010) (Figure 6). 573 

Regulation of NLR-mediated immunity 574 

Similar to PRRs, the prolonged activation of NLRs also leads to autoimmunity. Thus, the 575 

regulation of both NLRs and downstream signaling components is important to prevent 576 

autoimmunity.  577 

Regulation of NLRs 578 

The expression of NLRs is regulated at multiple levels (van Wersch et al., 2020). The 579 

transcription of NLRs is regulated by chromatin-remodeling proteins such as DECREASE IN 580 

DNA METHYLATION 1 (DDM1), SWI/SNF CHROMATIN REMODELER SYD 581 

(SPLAYED), and multiple WRKY transcription factors (Li et al., 2010b; Johnson et al., 2015; 582 

Lai and Eulgem, 2018). NLR transcript stability is also regulated by microRNAs (miRNAs) 583 

and NONSENSE-MEDIATED mRNA DECAY factors, such as UP-FRAMESHIFT1/2/3 584 

(UPF1/2/3) (Shivaprasad et al., 2012; Jung et al., 2020). NLR transcripts also undergo 585 

alternative splicing, which is regulated by some MODIFIER OF SNC1 (MOS) proteins such 586 

as MOS4/12/14 (Zhang and Gassmann, 2007; Xu et al., 2011, 2012).  587 

REQUIRED FOR MLA12 RESISTANCE 1 (RAR1), SUPPRESSOR OF THE G2 ALLELE 588 

OF SKP1 (SGT1), and HEAT SHOCK PROTEIN 90 (HSP90) function together as protein 589 

chaperones to regulate the folding, localization, and turnover of NLRs (Azevedo et al., 2002; 590 

Peart et al., 2002; Takahashi et al., 2003; Shirasu, 2009). In addition, NLR protein turnover is 591 

regulated by the SGT1-interacting protein SUPPRESSORS OF RPS4-RLD (SRFR1), multiple 592 

MUTANT SNC1-ENHANCING proteins (MUSEs), and the E3 ligases SNIPER1 and 593 

SNIPER2 (Li et al., 2010a; Huang et al., 2016; Dong et al., 2018; Wu et al., 2020c).  594 
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The localization of the ZAR1 resistosome to the plasma membrane is required for ZAR1-595 

mediated resistance (Wang et al., 2019a; Bi et al., 2021). In addition, the Arabidopsis importin-596 

α nuclear transport receptor protein IMP-α3/MOS6 is required for SUPPRESSOR OF NPR1-597 

1- (SNC1)-mediated immunity (Lüdke et al., 2021). Thus, the localization of NLRs is important 598 

and is likely regulated by proteins involved in trafficking (Figure 6). 599 

Regulation of NLR-signaling components 600 

The correct localization of helper NLRs is likely important for signaling. For example, the 601 

helper NLR NRC4 accumulates at the extra-haustorial membrane following P. infestans 602 

infection (Duggan et al., 2021). In addition, the balanced activity of both cytosolic- and 603 

nuclear-EDS1 is required for full immunity (García et al., 2010). Thus, the localization of 604 

helper NLRs and NLR-signaling components is important for defense. The activity of NLR 605 

signaling components is also negatively regulated. The Arabidopsis RNL NRG1C functions as 606 

a negative regulator in NLR-mediated immunity; overexpressing NRG1C compromised TNL-607 

mediated HR and resistance (Wu et al., 2021a). In addition, an atypical member of the NRC 608 

family, NRCX, negatively regulates other NRC members to modulate immunity (Adachi et al., 609 

2021). Post-translational modifications (PTMs) are important for the functions of both PRRs 610 

and NLRs. For example, the phosphorylation of the C-terminus of the TNL RRS1-R is crucial 611 

for its recognition of the effector PopP2 (Guo et al., 2020). It is currently unclear whether PTMs 612 

are important for the activation and/or stability of NLR-signaling components. Perhaps EP-613 

proteins and helper NLRs must also undergo PTMs in order to function properly. The 614 

additional regulation of NLR-signaling components pre- and post-NLR activation remains to 615 

be investigated (Figure 6). 616 

Suppression of immunity by effectors 617 

Multiple effectors have been shown to target both the PRR- and NLR-signaling pathways. 618 

Here, we summarize our knowledge of effectors reported to target PTI or ETI. Unless specified, 619 

the effectors mentioned in this section are from various P. syringae strains. AvrPtoB is an E3 620 

ubiquitin ligase that induces the degradation of FLS2 (Göhre et al., 2008; Lu et al., 2011). 621 

HopB1 specifically degrades activated BAK1 (Li et al., 2016). AvrPto targets SOBIR1 and the 622 

FLS2-BAK1 complex by inhibiting their kinase activities (Xing et al., 2007; Shan et al., 2008; 623 

Xiang et al., 2008; Meng and Zhang, 2013; Wu et al., 2017b). Similarly, the conserved 624 

Colletotrichum effector NIS1 also targets receptor kinase complexes (Irieda et al., 2019). The 625 

tyrosine phosphatase HopAO1 directly dephosphorylates EFR (Macho et al., 2014). As RLCKs 626 

are central immune regulators, they are targeted by multiple effectors. AvrAC from 627 
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Xanthomonas campestris uridylylates BIK1 and PBL2 (Feng et al., 2012; Wang et al., 2015). 628 

HopZ1a acetylates RLCKs, and AvrPphB is a cysteine protease that degrades RLCKs such as 629 

BIK1, PBS1, and PBL1 (Zhang et al., 2010a; Bastedo et al., 2019). Other downstream PRR 630 

signaling components are also targeted by effectors. The ADP-ribosyltransferase HopF2 631 

targets both BAK1 and MKK5 to suppress PTI signaling (Wang et al., 2010; Zhou et al., 2014). 632 

HopAI1 inactivates MPK3, MPK4, and MPK6 via its phosphothreonine lyase activity (Zhang 633 

et al., 2007). AvrRpt2 suppresses MPK4/11 activation (Eschen-Lippold et al., 2016). 634 

Interestingly, many parallel mechanisms are employed to suppress the same PRR-signaling 635 

node in different hosts by different pathogens (Figure 6).  636 

Phosphorylation of SGT1 by MAPKs is required for NLR activation, implying that NLRs are 637 

regulated by SGT1 following PTI-induced MAPK activation (Hoser et al., 2013; Yu et al., 638 

2020). The Ralstonia solanacearum effector RipAC prevents MAPK-mediated 639 

phosphorylation of SGT1, which suppresses NLR-mediated immunity (Yu et al., 2020). Two 640 

effectors were recently shown to suppress NRC-mediated HR. The P. infestans effector 641 

AVRcap1b and the cyst nematode effector SPRYSEC15 can suppress autoimmunity induced 642 

by autoactive alleles of NRC2 and NRC3 (Derevnina et al., 2021). Suppression of NRC2 and 643 

NRC3 by AVRcap1b is dependent on the membrane trafficking-associated protein TARGET 644 

OF MYB 1-LIKE PROTEIN 9A (NbTOL9a) (Derevnina et al., 2021). AVRcap1b suppresses 645 

NRC2 and NRC3 by directly interacting with their NB-ARC domains (Derevnina et al., 2021). 646 

Another Phytophthora effector (from P. capsici), PcAvh103, suppresses immunity by 647 

promoting the disassociation of the EDS1–PAD4 complex (Li et al., 2020). More studies are 648 

needed to identify pathogen effectors that target the NLR signaling pathway.  649 

In Arabidopsis, the transcription factors CALMODULIN-BINDING TRANSCRIPTION 650 

ACTIVATOR 1/2/3 (CAMTA1/2/3) and CBP60a negatively regulate defense-induced 651 

transcriptional reprogramming (Truman et al., 2013; Kim et al., 2020; Sun et al., 2020). 652 

Pathogens also target defense-related transcription factors to suppress immunity. For example, 653 

the Ralstonia solanacearum effector PopP2 acetylates and inhibits WRKY transcription factors 654 

to suppress immunity (Le Roux et al., 2015; Sarris et al., 2015; Zhang et al., 2017b). In addition, 655 

the Verticillium dahliae effector VdSCP41 inhibits SARD1 and CBP60g to facilitate its 656 

proliferation (Qin et al., 2018) (Figure 6).  657 

 658 

The interactions between PTI and ETI 659 
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While PRR- and NLR-mediated immunity have been extensively studied for the last 20 years, 660 

it has not been clear how or if these defense mechanisms interact. NLR-mediated immunity is 661 

mostly activated in the presence of microbes or PAMPs. Most studies on NLR-mediated 662 

immunity have involved transient expression-based comparisons between PTI and ‘PTI + ETI’. 663 

The activation of NLRs in the absence of PTI has not been extensively studied until recently. 664 

There have been multiple reports on the different interactions between these two immune 665 

systems. Here, we describe three situations in which PTI and ETI interact with each other. 666 

NLRs guard the PRR-signaling pathway 667 

Many effectors target the PRR-signaling pathway. Plants have evolved multiple NLRs to detect 668 

these effectors via the guarding of PRR-signaling components or decoys. As a result, many 669 

PRRs and PRR-signaling loss-of-function mutants, such as the Arabidopsis mutants bak1-4 670 

bkk1-1, bik1, cngc2/4, rbohd/f, mekk1, mkk1/2, mpk4 and camta3, exhibit autoimmune 671 

phenotypes (Torres et al., 2002; Roux et al., 2011; Zhang et al., 2012; Chen et al., 2016; Liu et 672 

al., 2017; Lolle et al., 2017; Kadota et al., 2019; Tian et al., 2019). The autoimmunity observed 673 

in some of these mutants is caused by the activation of multiple NLRs. The TNL 674 

CONSTITUTIVE SHADE-AVOIDANCE 1 (CSA1) guards both BAK1-INTERACTING 675 

RECEPTOR 3 (BIR3) and BAK1 (Schulze et al., 2021). In addition, bak1-3 bkk-1-676 

autoimmunity and HopB1-triggered immunity are dependent on ADR1s (Wu et al., 2020b). 677 

RLCKs are targeted by multiple effectors. The CNL ZAR1 together with the RLCK RKS1 678 

monitor PBL2, and the CNL RPS5 monitors PBS1, to reverse ETS (Shao et al., 2003; Zhang 679 

et al., 2010a; Wang et al., 2015). The CNL SUMM2 guards and senses the disruption of the 680 

MEKK1-MKK1/2-MPK4 kinase cascade via CALMODULIN-BINDING RECEPTOR-LIKE 681 

CYTOPLASMIC KINASE 3 (CRCK3), a substrate protein of MPK4 (Zhang et al., 2012, 682 

2017a). SUMM2 also detects the P. syringae effector HopAI1, which inhibits MPK4 kinase 683 

activity (Zhang et al., 2012). The TNL RPS6 also contributes to HopAI1-triggered immunity 684 

(Takagi et al., 2019). Whether the autoimmunity in bik1, cgnc2/4 and rbohd/f is dependent on 685 

NLRs remains unclear. Other NLRs that guard the PRR-signaling pathway remain to be 686 

identified (Figure 7A). 687 

Interdependency of signaling components between PRRs and NLRs 688 

PRR co-receptors, RLCKs, NADPH oxidases, calcium channels, CPKs, and MAPKs are 689 

considered to be canonical PRR-signaling components, while EP proteins and helper NLRs are 690 

considered to be canonical NLR-signaling components. However, recent studies indicated that 691 

PRR-mediated resistance is dependent on canonical NLR-signaling components and vice versa 692 
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(Ngou et al., 2021a; Pruitt et al., 2021; Tian et al., 2021; Yuan et al., 2021) (Figure 7B). As 693 

mentioned, flg22- and nlp20-induced resistance is partially dependent on EDS1, PAD4, 694 

SAG101, ADR1s, and NRG1s (Pruitt et al., 2021; Tian et al., 2021). Pruitt et al. (2021) 695 

proposed that EP-proteins and helper NLRs are activated by RLPs through interactions 696 

between RLP co-receptors (SOBIR1), EP-proteins, and helper NLRs, although it remains to be 697 

determined whether EP-proteins play a primary or secondary role in RLP defense signaling. 698 

Another report, however, suggested that the activation of PRRs leads to increased expression 699 

of multiple NLRs and other TIR-domain containing proteins, promoting downstream signaling 700 

(Tian et al., 2021). These two hypotheses are not mutually exclusive, and the exact mechanisms 701 

by which PRR-mediated immunity involves NLR-signaling components remain to be 702 

determined.  703 

NLR-mediated immunity is also dependent on PRRs and multiple PRR-signaling components. 704 

In Arabidopsis, RPS2-, RPS5- and RRS1/RPS4- mediated resistance is dependent on BAK1 705 

and BKK1 (Ngou et al., 2021a; Yuan et al., 2021). RPS2-mediated resistance is also be 706 

dependent on BIK1 and RbohD (Kadota et al., 2019; Yuan et al., 2021). Both RPM1- and 707 

RPS2-mediated resistance and the HR are dependent on CPK1/2/5/6 (Gao et al., 2013). The 708 

activation of MPK3 and MPK6 is also required for the HR and resistance mediated by multiple 709 

NLRs including RPM1, RPS2, RPS5 and RRS1/RPS4 (Su et al., 2018). One of the proposed 710 

key mechanisms by which ETI halts pathogen infection is to potentiate and restore PTI from 711 

turnover and the action of pathogen effectors (Ngou et al., 2021a; Yuan et al., 2021). As a 712 

result, PRRs and PRR-signaling components are required for NLR-mediated resistance. The 713 

molecular mechanisms by which ETI potentiates PTI will be discussed in the next section. 714 

Mutual potentiation between PRR- and NLR-mediated immunity 715 

Activation of the TNLs RRS1/RPS4 and RPP4 using an estradiol-inducible recognized effector 716 

(ETI without PTI) did not trigger the HR. The presence of PAMPs/MAMPs restored the HR 717 

induced by these TNLs (Ngou et al., 2020, 2021a). Similarly, the HR induced by the CNLs 718 

RPM1, RPS2 and RPS5 was also potentiated by the activation of PRRs (Ngou et al., 2021a). 719 

In addition, the HR and resistance induced by RPS2 are compromised in PRR mutants (Ma et 720 

al., 2012; Yuan et al., 2021). There are a few possible mechanisms by which PRRs potentiate 721 

NLR-induced immunity. Firstly, the activation of PRRs could induce the expression of NLRs 722 

and NLR-signaling components (Navarro et al., 2004; Bonardi et al., 2011; Brendolise et al., 723 

2018; Jung et al., 2020). A recent transcriptomics study suggested that the activation of 724 

different PRRs induces highly overlapping transcriptional changes (Bjornson et al., 2021). 725 
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Indeed, the activation of six distinct PRRs led to the upregulation of genes encoding most 726 

TNLs, CNLs, EP-proteins, and helper NLRs in Arabidopsis (Bjornson et al., 2021) (Figure 7C; 727 

Supplemental Data Set S3). The increased abundance of these proteins might therefore ‘prime’ 728 

the activation of NLRs upon effector recognition. Secondly, the activation of PRRs might 729 

prime NLR-mediated immunity via PTMs. Upon PAMP perception, SGT1 is phosphorylated 730 

by MAPKs, which is important for the stability of NLRs (Yu et al., 2020). In addition, 731 

nonsense-mediated decay of NLR transcripts is inhibited upon PAMP recognition (Jung et al., 732 

2020). Thus, the stability of NLRs can be affected by both transcriptional and post-733 

transcriptional modifications activated by PTI. Conceivably, EP-proteins and helper NLRs 734 

might also be primed via PTMs induced by PTI. Flg22 treatment led to reduced 735 

polyubiquitination levels of EDS1 (Grubb et al., 2021; Ma et al., 2021). Whether and how PTI 736 

primes NLR-signaling components remain to be investigated. 737 

The activation of NLRs potentiates PAMP-induced cellular responses, such as ROS 738 

production, callose deposition, and defense-related gene expression (Ngou et al., 2021a). The 739 

activation of multiple PRR signaling components, such as BIK1, RbohD and MPK3, is also 740 

potentiated by ETI (Ngou et al., 2021a; Yuan et al., 2021). ETI induces the transcript and 741 

protein accumulation of SOBIR1, BAK1, BIK1, RbohD and MPK3 (Ngou et al., 2021a). 742 

Transcriptomic analysis confirmed that multiple PRR signaling components are also 743 

upregulated upon the activation of RRS1/RPS4. These include CPK1/2/5/6, XLG2 and the 744 

calcium channels OSCA1.3, CNGC19/20, GLR2.7/2.8/2.9 (Ngou et al., 2021a) (Figure 7C; 745 

Supplemental Data Set S4). Interestingly, the transcript levels of BIK1, MPK3 and RbohD are 746 

only transiently upregulated during ETI. However, the protein levels of these genes remain 747 

upregulated for an extensive period of time (Ngou et al., 2021a). This implies that PTMs or 748 

other post-transcriptional mechanisms might also influence the stability of PRR-signaling 749 

components during ETI. The protein abundance of PRR signaling components, such as BAK1, 750 

BIK1, and RbohD, is tightly regulated by multiple processes (Figure 6). How ETI regulates or 751 

affects these processes remains unclear. In addition, calcium influx induced by NLRs might 752 

contribute to the potentiation of PTI through CPKs (Bi et al., 2021; Jacob et al., 2021; Ngou et 753 

al., 2021b). To summarize, PTI and ETI mutually potentiate each other through multiple 754 

mechanisms to induce robust immunity against pathogens (Figure 7C). 755 

 756 
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Historic overview of research in PTI and future challenges 757 

Researchers identified the first PRR-encoding gene, Cf-9, back in 1994 (Jones et al., 1994). 758 

Multiple PRR genes, such as Xa21, Cf-2, Cf-4, FLS2, EFR and RLP23, were subsequently 759 

identified and used as models to study PTI. (Song et al., 1995; Dixon et al., 1996; Thomas et 760 

al., 1997; Gómez-Gómez and Boller, 2000; Zipfel et al., 2006). Researchers then explored 761 

PRR-induced physiological responses and identified multiple signaling components. The 762 

activation of MAPKs by cell-surface receptors were reported back in 1997 (Ligterink et al., 763 

1997) and was verified for Cf- genes two years later (Romeis et al., 1999). In tobacco 764 

(Nicotiana tabacum), the perception of PAMPs leads to the activation of wounding-induced 765 

protein kinase (WIPK) and salicylic acid-induced protein kinase (SIPK) (Zhang and Klessig, 766 

1998; Yang et al., 2001). WIPKs and SIPKs are orthologs of the subsequently identified 767 

Arabidopsis MPK3 and MPK6, respectively (Asai et al., 2002). Accumulation of ROS and 768 

callose deposition during infection were also reported in 1997 (Thordal-Christensen et al., 769 

1997), and for Cf- initiated responses (Piedras et al., 1998). Researchers identified the human 770 

RESPIRATORY BURST NADPH OXIDASE HOMOLOGS (Rbohs) in Arabidopsis and 771 

showed that two of these (RbohD and RbohF) are required for ROS production during infection 772 

(Torres et al., 1998, 2002). It was unclear how these signaling components were activated by 773 

PRRs until the identification of the PRR co-receptors and RLCKs. BAK1 was identified as a 774 

co-receptor essential for FLS2-mediated resistance in 2007 (Chinchilla et al., 2007). In the 775 

same year, CERK1 was also shown to be essential for chitin-mediated immunity (Miya et al., 776 

2007). In 2013, SOBIR1 was identified as a co-receptor of RLPs, and the structure of the 777 

FLS2/BAK1 receptor complex was also defined (Liebrand et al., 2013; Sun et al., 2013). In 778 

2018, a genome-wide analysis of Arabidopsis LRR-RLKs interactions was reported, further 779 

supporting the theory that PRRs interact with each other to modulate and transduce signals 780 

(Smakowska-Luzan et al., 2018). Tomato ACIK1 was the first RLCK shown to be an essential 781 

signaling component in PRR-mediated immunity (Rowland et al., 2005). The Arabidopsis 782 

ortholog BIK1 was subsequently shown to be a central PRR-signaling component (Lu et al., 783 

2010; Zhang et al., 2010a). RbohD, MAPKKKs, and multiple calcium channels were shown to 784 

be phosphorylated by RLCKs, which leads to downstream immune responses (Boudsocq et al., 785 

2010; Kadota et al., 2014; Li et al., 2014; Yamada et al., 2016; Bi et al., 2018; Tian et al., 2019; 786 

Thor et al., 2020) (Figure 8A).  787 

More than 60 immunity-related PRRs with known ligands have now been identified. 788 

Arabidopsis EFR has been introduced into multiple plant species, such as tomato, rice, orange, 789 
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and apple, providing broad-spectrum resistance to many bacteria (Lacombe et al., 2010; 790 

Schwessinger et al., 2015; Mitre et al., 2021; Piazza et al., 2021). Therefore, the identification 791 

of novel PRRs that recognize PAMPs or other elicitors would provide resources to engineer 792 

disease-resistant crops. Other challenges in PRR biology include trying to understand how 793 

PRRs activate downstream signaling components and physiological responses, how these 794 

processes are regulated and suppressed by effectors, and how resistance against pathogens is 795 

achieved (Figure 8B).   796 

Historic overview of research in ETI and future challenges 797 

Arabidopsis RPS2 and the tobacco N gene were the first reported NLR genes (Bent et al., 1994; 798 

Mindrinos et al., 1994; Whitham et al., 1994). Multiple NLRs, including RPM1 and L6, were 799 

subsequently identified (Grant et al., 1995; Lawrence et al., 1995). Understanding how NLRs 800 

detect effectors has led to multiple models. The guard hypothesis was proposed to explain how 801 

the protein kinase Pto confers Prf-dependent recognition of AvrPto (Van der Biezen and Jones, 802 

1998). Many other examples have emerged that are consistent with this hypothesis, such as the 803 

requirement of the protease Rcr3 for Cf-2-mediated resistance (Van der Biezen and Jones, 804 

1998; Dangl and Jones, 2001; Krüger et al., 2002). The decoy model was then proposed, which 805 

is further supported by the discovery of integrated decoy domains in NLRs (van der Hoorn and 806 

Kamoun, 2008; Cesari et al., 2014; Le Roux et al., 2015; Sarris et al., 2015, 2016). The 807 

discovery of NRCs led to the concept of NLR networks (Gabriëls et al., 2007; Wu et al., 2017a, 808 

2018). Following the identification of multiple NLRs, researchers identified multiple genetic 809 

components required for NLR-mediated immunity. These include EDS1, NDR1, PAD4, 810 

RPW8, SGT1, RAR1, HSP90, SAG101, NRG1s and ADR1s (Parker et al., 1996; Century et 811 

al., 1997; Zhou et al., 1998; Falk et al., 1999; Xiao et al., 2001; Azevedo et al., 2002; Takahashi 812 

et al., 2003; Feys et al., 2005; Peart et al., 2005; Bonardi et al., 2011). EDS1 was later shown 813 

to co-function with SAG101 and PAD4 to mediate HR and resistance during ETI (Feys et al., 814 

2001, 2005; Wagner et al., 2013; Sun et al., 2021; Wu et al., 2021b). Similarly, ADR1 and 815 

NRG1 have been shown to function downstream of multiple sensor NLRs to mediate the HR 816 

and resistance (Castel et al., 2019a; Wu et al., 2019; Saile et al., 2020). How sensor NLRs 817 

activate these signaling components is currently under investigation. v-cADPR produced by 818 

TIR domains might contribute to the activation of EP-proteins and helper NLRs (Horsefield et 819 

al., 2019; Wan et al., 2019). NLRs were shown to oligomerize and trigger cytosolic calcium 820 

influx following effector recognition (Grant et al., 2000; Mestre and Baulcombe, 2006). The 821 

discovery of the structures of multiple NLR resistosomes proved that the oligomerization of 822 
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NLRs is required for resistance, likely through the formation of cation channels (Wang et al., 823 

2019a; Ma et al., 2020a; Martin et al., 2020; Bi et al., 2021; Jacob et al., 2021). However, 824 

oligomerization of TIR domains imposed by an NLRC4 scaffold is sufficient to activate 825 

defense (Duxbury et al., 2020) (Figure 8A). 826 

More than 140 NLRs with known recognized effectors have been identified (Kourelis and 827 

Kamoun, 2020). Cross-species transfer of NLR ‘stacks’ provides durable resistance against 828 

pathogens (Jones et al., 2003; Mukhtar, 2013; Ghislain et al., 2019; Luo et al., 2021; Witek et 829 

al., 2021). Identification of novel NLRs will provide resources to engineer crop resistance 830 

against multiple pathogens. Current challenges in NLR biology include understanding how 831 

NLRs activate downstream signaling components, how these signaling components then 832 

trigger immune responses, how these processes are regulated and suppressed by effectors, and 833 

how NLRs and PRRs co-function to achieve resistance against pathogens (Figure 8B).   834 

Conclusion and perspectives 835 

Plants respond to pathogens using a two-tier innate immune system activated by both cell-836 

surface and intracellular immune receptors. The perception of 837 

PAMPs/MAMPs/DAMPs/HAMPs on the cell surface leads to PRR-mediated immunity, and 838 

the recognition of effectors leads to intracellular NLR-mediated immunity. Many immune 839 

receptors have been identified since 1994, when the first PRR and NLRs were identified. 840 

Tremendous efforts have been made to understand the PRR- and NLR-signaling pathways. 841 

PRRs and NLRs utilize some overlapping but also unique signaling components to activate 842 

each of their downstream physiological responses, which thwart pathogen proliferation. Both 843 

signaling pathways are tightly regulated to prevent autoimmunity, while being suppressed by 844 

pathogen effectors. Recent studies have shown that PRR- and NLR-mediated immunity can be 845 

mutually potentiated and are dependent on each other. Great opportunities for novel discoveries 846 

remain in addressing the following challenges in the research of plant immunity: (1) identifying 847 

novel immune receptors; (2) understanding the signaling pathways and physiological responses 848 

triggered by both cell-surface and intracellular immune receptors; (3) understanding how 849 

immunity is intrinsically regulated and manipulated by external biotic and/or abiotic factors; 850 

(4) understanding the vastly diverse mechanisms by which plants resist pathogen infections, 851 

and (5) understanding how different immune systems function synergistically during 852 

infections. These challenges overlap with some of the ‘top 10 unanswered questions in 853 

molecular plant-microbe interactions’ (Harris et al., 2020) and will shape our understanding of 854 

plant immunity in the coming decades (Figure 8B). 855 
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Figure 1. Nomenclatures in plant immunity and the evolution of plant immune receptors. (A) 
Terminology for plant immune responses. Tabular summary of the different terms used to describe plant 
immune responses. Definitions, advantages, and disadvantages for each of these are included. (B) 
Number of LRR-RLKs, LRR-RLPs and NLRs in different plant species. Phylogenetic tree illustrating 
different plant species with the corresponding numbers of LRR-RLKs, LRR-RLK XII (class or subgroup 
XII), LRR-RLPs and NLRs. Red heatmap indicates the number of LRR-RLK XIIs, purple heatmap 
indicates the number of LRR-RLPs, and blue heatmap indicates the number of NLRs. The phylogenetic 
tree was generated using phyloT (https://phylot.biobyte.de/) based on the NCBI taxonomy database 
and visualized by iTOL (https://itol.embl.de/). LRR-RLK data were obtained from Dufayard et al., 2017, 
LRR-RLP data were obtained from Ngou et al., 2022, and NLR data were obtained from Baggs et al., 
2020. 
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Figure 2. PRRs involved in plant immunity. Characterized PRRs with known elicitors from (A) 
bacteria, (B) fungi, (C) oomycetes, (D) self-molecules, (E) parasitic plants, (F) viruses, (G) herbivores. 
(H) PRR co-receptors. Abbreviations for plant species: Arabidopsis thaliana, At; Solanum lycopersicum, 
Sl; Oryza sativa, Os; Nicotiana benthamiana, Nb; Lotus japonicus, Lj; Brassica napus, Bn; Medicago 
truncatula, Mt; Vitis vinifera, Vv; Lotus japonicus, Lj; Pisum sativum, Ps; Triticum aestivum, Ta; Solanum 
microdontum, Sm; Phtheirospermum japonicum, Pj; Vigna unguiculata, Vu. Abbreviation for pathogens: 
Fusarium oxysporum, Fo; Phytophthora parasitica, Pp. Number of LRR repeats in the LRR-RLKs and 
LRR-RLPs were predicted by phytoLRR (Chen, 2021).  The full name of these PRR genes can be found 
in Supplemental Data Set S1. 
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Figure 3. NLRs involved in plant immunity. Characterized NLRs with known effectors from (A) 
bacteria, (B) fungi, (C) oomycetes, (D) self-molecules, (E) parasitic plants, (F) viruses, (G) herbivores. 
(H) Helper NLRs. Abbreviations for plant species: Arabidopsis thaliana, At; Glycine max, Gm; Hordeum 
vulgare, Hv; Capsicum annuum, Ca; Nicotiana attenuate, Niatt; Nicotiana benthamiana, Nb; Nicotiana 
tabacum, Nitab; Nicotiana tomentosiformis, Ntom; Solanum lycopersicum, Sl; Solanum tuberosum, St; 
Oryza sativa, Os; Zea mays, Zm; Capsicum chacoense, Cch; Cucumis melo, Cm; Linum usitatissimum, 
Lu; Phaseolus vulgaris, Pv; Triticum monococcum, Tm; Secale cereale, Sc; Sorghum bicolor, Sb; 
Triticum aestivum, Ta; Solanum americanum, Sa; Solanum bulbocastanum, Sbu; Solanum chacoense, 
Sch; Solanum demissum, Sd; Solanum hjertingii, Sh; Solanum mochicense, Smo; Solanum nigrescens, 
Ssn; Solanum × edinense, Sxe; Solanum stoloniferum, Sst; Solanum venturi, Sv; Capsicum baccatum, 
Cb; Capsicum chinense, Cchi; Capsicum frutescens, Cf; Nicotiana sylvestris, Ns; Solanum acaule, Sac; 
Nicotiana glutinosa, Ng; Aegilops tauschii, Ata; Prunus cerasifera, Pc. Number of LRR repeats in the 
NLRs were predicted by LRRpredictor (Martin et al., 2020a). The full list of NLRs can be found in 
Supplemental Data Set S2. 
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Figure 4. Plant immune signaling pathways. (A) PRR signaling pathway. Ligand perception by PRRs 

activates multiple kinases, which leads to calcium influx to the cytosol, ROS production, transcriptional 

reprogramming, and callose deposition. (B) Singleton NLR signaling pathway. The ZAR1/RKS1 

heterodimer detects the effector AvrAC via association with uridylylated PBL2 by AvrAC. This leads to 

the activation and oligomerization of ZAR1. The ZAR1 resistosome localizes to the plasma membrane 

(PM) and triggers calcium influx, which leads to the hypersensitive response (HR) and cell rupture. (C) 

Helper-NLR-dependent sensor NLR signaling pathway. Recognition of ATR1 by the TNL RPP1 leads 

to oligomerization and the induced proximity of TIR domains. The TIR domain exhibits NADase activity 

and produces v-cADPR, which might activate EP-proteins and the helper NLRs (RNLs). Following TNL 

activation, EP-proteins and RNLs associate with each other and activate downstream immune 

responses, likely via cation channel activity from the helper NLRs. Timeline on the right indicates the 

order and duration of each signaling event following ligand/effector perception. Numbers indicate the 

corresponding signaling events in the figure on the left. Note that the activation of ETI is usually 

preceded by PTI activation, and the strength and duration of each event vary and are dependent on the 

PRRs/NLRs that are activated. 
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Figure 5. Signaling components and physiological responses activated by different modes of 
action of immune receptors. (Left) Tabular summary of signaling components and physiological 
responses activated by RLKs, RLPs, CNLs, TNLs and coactivation of PRRs and NLRs. Green (weak 
or strong activation) and white (no activation) shading represent confirmed responses from publications. 
Gray shading indicates predicted responses. Purple shading represents unclear responses that cannot 
be predicted. *Inoculation with the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) 
leads to NHP accumulation (Wang et al., 2018c; Liu et al., 2020). (Right) PRR and NLR signaling 
network. Activation of PRRs (red) and NLRs (blue) lead to the activation of downstream signaling 
components (orange) and physiological responses (yellow), which result in resistance against 
pathogens (pink). Note that the activation of physiological responses can vary between immune 
receptors and are dependent on specific PRRs/NLRs. 
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Figure 6. Regulation and suppression of immunity by plant proteins and pathogen-derived 
effectors. (Left; red shading) Regulation of the PRR signaling pathway by host proteins. Protein 
abundance and post-translational modifications (PTMs) of PRRs and PRR signaling components are 
tightly regulated. (Middle; yellow shading) Suppression of immunity by pathogen effectors. Many 
identified effectors suppress PTI via multiple mechanisms. Very few effectors that target the NLR 
signaling pathway have been identified so far. (Right; blue shading) Regulation of the NLR signaling 
pathway by host proteins. Both the transcript and protein level of NLRs are tightly regulated by multiple 
processes. The regulation of signaling events post-NLR activation has not been well characterized. 
Numbers indicate the corresponding mechanisms of immune regulation. 
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Figure 7. Interactions between PRR- and NLR-mediated immunity. (A) NLRs guarding the PRR-
signaling pathway. Multiple PRR-signaling components are suppressed by effectors. NLRs guard these 
signaling components and reverse susceptibility triggered by these effectors. Question marks (?) 
indicate unidentified effectors or NLRs. (B) Tabular summary of signaling components required for 
PRR- and NLR-mediated immunity. Green shading represents confirmed requirement from 
publications. Gray shading indicates predicted requirement. Purple shading represents unclear 
requirement that cannot be predicted. (C) Mechanisms involved in the mutual potentiation between 
PRR- and NLR-mediated immunity. Transcriptomic data were obtained from previously published data 
(Bjornson et al., 2021; Ngou et al., 2021a). Numbers indicate the corresponding mechanisms to 
potentiate PRR- or NLR-mediated immunity to achieve robust resistance against pathogens. 
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Figure 8. Historic overview of PTI and ETI and future challenges. (A) Discoveries in PTI (left) and 
ETI (right) in the past thirty years. Bar charts represent the number of ‘plant biology’ publications that 
mentioned ‘pattern-trigger immunity’ (red) and ‘effector-triggered immunity’ (blue). Data obtained from 
Dimensions (https://www.dimensions.ai/). (B) Future challenges and outlook in plant immunity 
research.  
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