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Cochran’s Q statistic is routinely used for testing heterogeneity in meta-analysis. Its

expected value is also used in several popular estimators of the between-study variance,

τ2. Those applications generally have not considered the implications of its use of

estimated variances in the inverse-variance weights. Importantly, those weights make

approximating the distribution of Q (more explicitly, QIV) rather complicated. As an

alternative, we investigate a new Q statistic, QF, whose constant weights use only the

studies’ effective sample sizes. For the standardized mean difference as the measure of

effect, we study, by simulation, approximations to distributions ofQIV andQF, as the basis

for tests of heterogeneity and for new point and interval estimators of τ2. These include
newDerSimonian–Kacker-typemoment estimators based on the firstmoment ofQF, and

novel median-unbiased estimators. The results show that: an approximation based on an

algorithm of Farebrother follows both the null and the alternative distributions of QF

reasonably well, whereas the usual chi-squared approximation for the null distribution of

QIV and the Biggerstaff–Jackson approximation to its alternative distribution are poor; in

estimating τ2, our moment estimator based on QF is almost unbiased, the Mandel – Paule
estimator has some negative bias in some situations, and the DerSimonian–Laird and

restricted maximum likelihood estimators have considerable negative bias; and all 95%

interval estimators have coverage that is too high when τ2 ¼ 0, but otherwise the Q-

profile interval performs very well.

1. Introduction

When the individual studies assembled for a meta-analysis report means for their

treatment and control arms, but those data are on different scales or come from different

instruments, the customary measure of effect is the standardized mean difference

(SMD). The SMD is considered to be the most appropriate effect-size index in
psychological research (Sánchez-Meca & Marı́n-Martı́ nez, 2010), and was also found to

be more generalizable than the mean difference (Takeshima et al., 2014). In studying

estimation of the overall effect in random-effects meta-analyses of SMD, we found that
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SSW, a weighted mean whose weights involve only the studies’ arm-level sample sizes,

performed well, avoiding shortcomings associated with estimators that use inverse-

variance weights based on estimated variances (Bakbergenuly, Hoaglin, & Kulinskaya,

2020).
The present paper takes a natural further step by investigating a version of Cochran’s

Q statistic (Cochran, 1954) for assessment of heterogeneity that uses those constant

weights. This work also draws on favourable results for Q with sample-size-based

weights when the measure of effect is the mean difference (MD), which is less common

but more tractable (Kulinskaya, Hoaglin, Bakbergenuly, & Newman, 2021). From this

version of the Q statistic we also derive new point and interval estimators of the

between-study variance, τ2.
Simulation of the actual distribution of Q enables us to study the accuracy of

approximations for the null distribution (τ2 ¼ 0), the empirical level when τ2 ¼ 0 and

when τ2 > 0, the bias of point estimators of τ2, and the coverage of confidence intervals for
τ2. For comparison we include the usual version ofQ (based on inverse-variance weights)

and familiar point and interval estimators of τ2.
Section 2 briefly reviews study-level estimation of SMD. Section 3 reviews the random-

effects model (REM) and describes the Q statistic. Section 4 introduces new point and

interval estimators for τ2. Section 5 discusses approximations to the distribution of Q.

Section 6 describes the simulation design and summarizes the results. Section 7 provides
an example of meta-analysis using SMD. Section 8 offers a summary and discussion. An

Appendix gives the derivation of conditional and unconditional moments of Hedges’s

estimator of study-level SMD.

2. Study-level estimation of standardized mean difference

Consider ameta-analysis ofK comparative studies, each consisting of two arms, treatment

(T) and control (C), with sample sizes niT and niC . The total sample size in study i is

ni ¼ niT þ niC , and the ratio of the control sample size to the total is f i ¼ niC=ni. The

subject-level data in each arm are assumed to be normally distributed with means μiT and

μiC and equal variances σ2i . The sample means are xij, and the sample variances are s2ij, for

i ¼ 1, . . . , K and j ¼ C, T .

The SMD effect measure is

δi ¼ μiT � μiC
σi

:

The unbiased estimator of δi is Hedges’s g, given by

gi ¼ JðmiÞ xiT � xiC

si
, (1)

where the standard deviation, σi, is estimated by the square root of the pooled sample

variance s2i ,mi ¼ niT þ niC � 2, and the factor JðmÞ ¼ Γ m
2

� �
=
ffiffiffi
m
2

p
Γ m�1

2

� �
corrects for bias.

For the variance of gi we use the unbiased estimator.
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v2i ¼
niT þ niC

niTniC

þ 1� mi � 2ð Þ
miJðmiÞ2

 !
g2i , (2)

derived by Hedges (1983). The literature contains several other estimators of the variance

of gi and its biased counterpart, di. Lin and Aloe (2021) provide a comprehensive

assessment.

Define ~ni ¼ niCniT=ni, theeffectivesamplesize instudy i.ThesampleSMDgihasascaled

non-central tdistributionwithnon-centralityparameter γi ¼ ~n
1=2
i δi (Hedges&Olkin,1985):ffiffiffiffiffi

~ni

p
JðmiÞ�1

gi ∼ tmi
~n
1=2
i δi

� �
: (3)

3. Random-effects model and theQ statistic

We consider a generic REM. For study i (i ¼ 1, . . ., K) the estimate of the effect is

θ̂i ∼ G θi, v2i
� �

, where the effect-measure-specific distributionGhasmean θi and variance

v2i , and θi ∼ Nðθ, τ2Þ. Thus, the θ̂i are unbiased estimates of the true conditional effects θi,

and the v2i ¼ Varðθ̂ijθiÞ are the true conditional variances.
Cochran’s Q statistic is a weighted sum of the squared deviations of the estimated

effects θ̂i from their weighted mean θw ¼ ∑wiθ̂i=∑wi:

Q ¼ ∑wiðθ̂i � θwÞ2: (4)

In Cochran (1954),wi is the reciprocal of the estimated variance of θ̂i. We denote this

traditional version of Q with inverse-variance weights by QIV. In meta-analysis those wi

come from the fixed-effect model. In what follows, we examine the version of Q,

discussed by DerSimonian and Kacker (2007) and further studied by Kulinskaya et al.

(2021), in which the wi are arbitrary positive constants. We denote this Q statistic with

fixed weights by QF.
Define W ¼ ∑wi, qi ¼ wi=W and Θi ¼ θ̂i � θ. In this notation, and expanding θw,

equation (4) can be written as

Q ¼ W ∑qið1� qiÞΘ2
i �∑

i≠j
qiq jΘiΘ j

" #
: (5)

We distinguish between the conditional distribution of Q (given the θi) and the

unconditional distribution, and the respective moments of Θi. For instance, the

conditional second moment of Θi is M
c
2i ¼ v2i , and the unconditional second moment is

M2i ¼ E Θ2
i

� � ¼ Varðθ̂iÞ ¼ E v2i
� �þ τ2.

Under the above REM, it is straightforward to obtain the first moment of QF as.

EðQFÞ ¼ W ∑qið1� qiÞVarðΘiÞ½ � ¼ W ∑qið1� qiÞ E v2i
� �þ τ2

� �� �
: (6)

This expression is similar to equation (4) in DerSimonian and Kacker (2007); they use

the conditional variance v2i instead of its unconditional mean Eðv2i Þ.
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Kulinskaya et al. (2021) also provide expressions for the second and third moments of

QF , but these moments require higher moments of Θ, up to the sixth moment. For

Hedges’s g the expressions for these higher central moments are rather complicated; we

provide them in the Appendix.

4. Point and interval estimators of τ2

4.1. Point estimators

Rearranging the terms in equation (5) gives the moment-based estimator of τ2:

τ̂2M ¼ Q=W �∑qi 1� qið ÞÊ v2i
� �

∑qið1� qiÞ
: (7)

DerSimonian and Kacker (2007) obtain a similar result; they use the conditional

estimate, v̂2i , instead of the unconditional estimate, Ê v2i
� �

. For MD the two estimators are

the same, because then E v2i
� � ¼ v2i . For SMD we study both estimators with effective-

sample-size weights w. With the conditional estimated variances in equation (7), we

denote the estimator by SSC; with the unconditional estimated variances, it is SSU.

The estimator τ̂2M arose from setting the observed value ofQ equal to its expected value

and solving for τ2. Instead of the expected value, one could use the median of the

distribution ofQ given τ2. If the true (or approximate) cumulative distribution function is

Fð�jτ2Þ, a point estimator of τ2 can be found as

τ̂2med ¼ max ð0, fτ2 : FðQjτ2Þ ¼ 0:5gÞ:

In the Farebrother approximation to the distribution of Q (Section 5), one can use
either the conditional estimated variances or the unconditional estimated variances. We

denote the resulting estimators by SMC and SMU, respectively.

For comparison our simulations (Section 6) include four estimators that use inverse-

variance weights: DerSimonian and Laird (1986) (DL), REML, Mandel and Paule (1970)

(MP), and an estimator (KDB) based on the work of Kulinskaya, Dollinger, and Bjørkestøl

(2011a) and discussed by Bakbergenuly et al. (2020). KDB uses an improved non-null first

moment of Q and has better performance than most other estimators. In their review of

methods for estimating the between-study variance, Veroniki et al. (2016) explain that DL
is (by default) the most widely used, and they conclude that both REML and MP are better

alternatives.

4.2. Interval estimators

Straightforward use of Fð�jτ2Þ also yields a 100ð1� αÞ% confidence interval for τ2:

fτ2 ≥ 0 : FðQjτ2Þ∈ ½α=2, 1� α=2�g:

We use both the conditional estimated variances and the unconditional estimated

variances in the Farebrother approximation to F; we refer to the resulting profile

estimators as FPC and FPU. Jackson (2013) introduced a similar approach using

conditional variances.
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Our simulations (Section 6) also include the Q-profile (QP) interval (Viechtbauer,

2007b), the profile-likelihood (PL) interval (Hardy & Thompson, 1996), and the KDB

interval, which is based on the chi-squared distribution with the corrected first moment

developed by Kulinskaya, Dollinger, and Bjørkestøl (2011b).

5. Approximations to the distribution of Q

For meta-analysis of MD, Kulinskaya et al. (2021) considered the distribution of QF, a

quadratic form in normal variables, which has the formQ ¼ ΘTAΘ for a symmetric matrix

A of rankK � 1. Because the vectorΘ has amultivariate normal distribution,Nðμ, ΣÞ, the
distribution of Q can be obtained by the algorithm of Farebrother (1984) (after

determining the eigenvalues ofAΣ and someother inputs). If the variances inΣ are the true

variances, Farebrother’s algorithm evaluates the exact distribution of Q. In practice (as in

our simulations), it is necessary to plug in estimated variances. Encouragingly, the

resulting approximation is quite accurate forMD. Kulinskaya et al. (2021) also considered

a two-moment approximation and a three-moment approximation. The three-moment

approximation regularly encountered numerical problems, so we do not include it here.

For SMD,QF is a quadratic form in t variates. The Farebrother algorithmmay provide a
satisfactory approximation, especially for larger sample sizes. To apply it, we again plug in

estimated variances. We investigate the quality of that approximation, which we denote

by F SW, and the two-moment approximation (M2 SW), which is based on the gamma

distribution.

The null distribution of QIV is usually approximated by the chi-squared distribution

with K � 1 degrees of freedom. For MD and SMD, however, this approximation is not

accurate for small sample sizes (Viechtbauer, 2007a). For SMD, Kulinskaya, Dollinger, and

Bjørkestøl (2011a) provided an improved approximation to the null distribution of QIV

based on a chi-squared distribution with degrees of freedom equal to the estimate of the

corrected first moment; we denote this approximation by KDB. Biggerstaff and Jackson

(2008) used the Farebrother approximation to the distribution of a quadratic form in

normal variables as the ‘exact’ distribution of QIV. We denote this approximation by BJ.

Jackson, Turner, Rhodes, and Viechtbauer (2014) extended this approach to a Q with

arbitrary weights in a meta-regression setting. When τ2 ¼ 0, the BJ approximation to the

distribution ofQIV is the χ
2
K�1 distribution. For comparison, our simulations include these

three approximations.

6. Simulation design and results

6.1. Simulation design

Our simulation design follows that described in Bakbergenuly et al. (2020). Briefly, we

varied five parameters: the overall true SMD (δ), the between-studies variance (τ2), the
number of studies (K), the studies’ total sample size (n and n) and the proportion of

observations in the control arm (f). Table 1 lists the values of each parameter.

The values of δ (0, 0.2, 0.5, 1, 2) aim to represent the range containing most values

encountered in practice. Our choices align well with the results of Rubio-Aparicio et al.

(2018), who reanalysed the data of 41 meta-analyses on the effectiveness of clinical

psychology treatments. Their pooled estimates of δ ranged from 0.068 to 1.075, with a

median at 0.409;many of thosemeta-analyses included study-level estimates of δ thatwere
somewhat larger, occasionally exceeding 4. An illustrative meta-analysis of the efficacy of

Q with constant weights for SMD 5
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treatments for obsessive-compulsive disorder (Sánchez-Meca & Marı́n-Martı́ nez, 2010)

involved 24 studies; half of the study-level SMDs were less than 1 in magnitude. For the

social sciences more broadly, Ferguson (2009) proposed 0.41, 1.15 and 2.70 as

benchmarks for small, medium and large effects.
The values of τ2 (0, 0.5, 1, 1.5, 2, 2.5) systematically cover a reasonable range.Weknow

little about actual values of τ2 for SMD, primarily because accurate estimation of variances

requires quite large samples. Rubio-Aparicio et al. reported estimates of τ2 from0 to 0.789.

The numbers of studies (K = 5, 10, 30) reflect the sizes of many meta-analyses and

have yielded valuable insights in previous work. Rubio-Aparicio et al. (2018) reported

numbers of studies ranging from 7 (their minimum for inclusion) to 70, with 28 of the 41

between 10 and 24.

In practice, many studies’ total sample sizes fall in the ranges covered by our choices
(n ¼ 20, 40, 100, 250 when all studies have the same n, supplemented by 30, 50, 60,

70; and n ¼ 30, 60, 100, 160 when sample sizes vary among studies). The choices of n

follow a suggestion of Sánchez-Meca and Marı́n-Martı́ nez (2000), who constructed the

studies’ sample sizes to have skewness 1.464, which they regarded as typical in

behavioural and health sciences. The meta-analyses studied by Rubio-Aparicio et al. had

median study-level sample sizes from 16 to 87.5; within those meta-analyses, the sample

sizes varied substantially.

Many studies allocate subjects equally to the two groups ( f ¼ 1=2), and rough equality
holds more widely (as in the studies analysed by Rubio-Aparicio et al.). Unequal

allocations, either planned or observed, are not uncommon. To investigate potential

impacts of such situations, we also used f ¼ 3=4, a substantial departure from equality.

We generated the true effect sizes δi from a normal distribution: δi ∼ Nðδ, τ2Þ. We

generated the values of Hedges’s estimator gi directly from the appropriately scaled non-

central t distribution, given by equation (3).We used a total of 10,000 repetitions for each

combination of parameters.

R statistical software (RCore Team, 2016)was used for simulations. The user-friendly R
programs implementing ourmethods and analysing the example in Section 7 are available

at https://osf.io/3gytv.

6.2. Simulation results

In tests based on either version of Q, heterogeneity corresponds to large values of Q.

Thus, we focused on the upper tail of the distribution. For each configuration of

parameters and for each generated value of Q, we used each approximation to

calculate the probability of a larger Q: ~p ¼ 1�bFðQÞ (bF denotes the distribution

function of the approximation). We recorded empirical p-valuesbp ¼ #ð~p< pÞ=10, 000

at p =.001,.0025,.005,.01,.025,.05,.1,.25,.5 and, for completeness, the complementary

values.75,. . .,.999. Thus,bp estimates the upper-tail probability.PðbFðQÞ> 1� pÞ
The values of τ2 included both null (τ2 ¼ 0) and non-null (τ2 > 0) values (Table 1). The

approximations to the non-null distribution ofQwere based on the value of τ2 used in the

simulation. These data provide the basis for probability–probability (P-P) plots (vs. the

true null distribution) for two approximations to the distribution of Q with effective-

sample-size weights (F SW and M2 SW) and two approximations to the distribution of Q

with IV weights (chi-squared/BJ and KDB (for τ2 ¼ 0 only)) and for estimating their null

levels and their non-null empirical tail areas. We also estimate the bias of eight point

Q with constant weights for SMD 7
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estimators of τ2 (DL, REML, MP, KDB, SSC, SSU, SMC and SMU) and the coverage of five

interval estimators of τ2 (QP, PL, KDB, FPC and FPU).

Our full simulation results are available as an arXiv e-print (Bakbergenuly, Hoaglin, &

Kulinskaya, 2021).

6.3. P-P plots for τ2 ¼ 0

To compare an approximation for a distribution function of Q against the theoretical

distribution function, we use P-P plots (Wilk & Gnanadesikan, 1968). Evaluating two

distribution functions, F1 and F2, to obtain upper-tail probabilities at x yields

p1 ¼ 1� F1ðxÞ and p2 ¼ 1� F2ðxÞ. In the usual plot of p2 versus p1, equality of the

twodistributions corresponds to the linep2 ¼ p1. Tomakedepartures from that reference
pattern more visible, we flatten the plot by subtracting the line; that is, we plot p2 � p1
versus p1.

When δ ¼ 0, P-P plots show that the KDB and F SW approximations perform

reasonably well for small sample sizes, but the χ2K�1 and M2 SW approximations do not

(Figure 1). This difference is especially pronounced for larger K values. It appears that

KDB performs better overall for small K, and F SW for large K. All four approximations

perform reasonably well for n ≥ 100. When δ increases, the performance of KDB

deteriorates somewhat in the upper half, though it may be somewhat better than F SW in
the lower half. Both the χ2K�1 and M2 SW approximations deteriorate further. Results are

similar for equal and unequal sample sizes.

6.4. Empirical levels when τ2 ¼ 0

To better visualize the quality of the approximations as the basis for a test for

heterogeneity at the 0.05 level, we plot their empirical levels under the null τ2 ¼ 0 against

sample size. Figure 2 presents typical results at the 0.05 level. Figure 3 depicts the quality
of the approximations at the 0.95 level.

For small sample sizes, the error rate of the test based on F SW somewhat exceeds the

nominal 5% (up to 6%), and the error rate of the test based on KDB is somewhat low

(between 4% and 3%). Both the χ2K�1 andM2 SW approximations result in tests with error

rates that are noticeably too low (in that order). For all approximations, departures from

the nominal level increase for larger K and larger δ, especially when sample sizes are

unequal. The χ2K�1 approximation has empirical levels of about 2.5% (vs. the nominal 5%)

when K = 30. For unequal sample sizes or unbalanced samples, the results are similar.
The chi-squared approximation provides reasonable results by n = 100.

The picture is similar in the lower tail. All approximations except M2 SW, which

produces extremely high empirical levels whenn is small, workwell forK ¼ 5. However,

increasing values ofK and, to a lesser degree, of δ, result in decreasing empirical levels for

χ2K�1 (down to 92%) and hence larger error rates, and, to a lesser degree, for F SW (to

93.5%) when K ¼ 30. KDB exhibits the best performance in the lower tail.

6.5. Empirical levels when τ2 > 0

To understand how the approximations behave as τ2 increases, we plot the empirical p-

values (p̂) versus τ2 for the F SW, M2 SW and BJ approximations for the nominal level 0.05

(Figure 4). F SW provides robust though somewhat high (for larger K ) levels at all values

8 Ilyas Bakbergenuly et al.
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Figure 1. Flattened P-P plots of upper-tail probabilities for the Farebrother andM2 approximations

to the null distribution of Q with sample-size-based weights, and for the chi-squared and KDB

approximations to the null distribution of Q with IV-based weights. First three rows: equal sample

sizes, n ¼ 20, f ¼ 0:5, δ ¼ 0, 0:5, 1. Fourth row: n ¼ 40, δ ¼ 1, f ¼ 0:5
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Figure 2. Empirical levels of approximations to the null distribution ofQwith sample-size-based or

IVweights at nominal 0.05 level against sample sizen. In all plots, τ2 ¼ 0 and f ¼ 0:5. Top two rows:

equal sample sizes, δ ¼ 0 and δ ¼ 1. Bottom two rows: unequal sample sizes, δ ¼ 0 and δ ¼ 1
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Figure 3. Empirical levels of approximations to the null distribution ofQwith sample-size-based or

IVweights at nominal 0.95 level against sample sizen. In all plots, τ2 ¼ 0 and f ¼ 0:5. Top two rows:

equal sample sizes, δ ¼ 0 and δ ¼ 1. Bottom two rows: unequal sample sizes, δ ¼ 0 and δ ¼ 1
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Figure 4. Empiricalp-values of approximations to thedistribution ofQwith sample-size-based or IV

weights at the nominal 0.05 level against between-study variance τ2. All plots have equal sample

sizes and f ¼ 0:5. Top two rows: δ ¼ 0, n ¼ 20 and n ¼ 100. Bottom two rows: δ ¼ 1, n ¼ 20 and

n ¼ 100
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of τ2 and δ. This is also true for unequal sample sizes and unbalanced studies. M2 SW

results in lower error rates; its level decreases further for larger δ but does not depend on

τ2. The BJ approximation has even lower error rates, and it deteriorates further as τ2

increases.

6.6. Bias in estimation of τ2

Here we compare eight point estimators of τ2: three well-known estimators (DL, REML,

MP), the less-well-known KDB, and four new estimators (SSC, SSU, SMC, SMU). Figure 5

depicts the biases of the eight estimators for small sample sizes.
SSC is the best estimator overall; it is almost unbiased under all studied conditions even

for very small and unbalanced sample sizes (Figure 5). DL is clearly the worst; it has

considerable negative bias, which increases in τ2. REML is the second worst; its bias is

similar to DL but less pronounced. MP is the best of the established estimators; this agrees

with the recommendation of Veroniki et al. (2016). It is also negatively biased for largerK

and τ2 values, but not by much. The bias of SSU is similar to that of MP for K ¼ 5, and it is

smaller than that of MP for larger values ofK and δ, though it is larger than that of SSC. This
makes sense, as the unconditional variance is calculated from averages overK values, so it
is estimated more precisely for larger K. Estimators SMC and SMU are positively biased;

their bias increases in τ2 but decreases inK. SMU is less biased than SMC. By design, these

two estimators are expected to bemedian-unbiased;we discuss them further in Section 8.

Finally, KDB is somewhat positively biased, and its bias increases in τ2. We recommended

MP and KDB in our previous work (Bakbergenuly et al., 2020), and our current results

agree with the previous ones.

To summarize, SSC provides very precise estimation of τ2 and should be exclusively

used in practice.

6.7. Coverage in interval estimation of τ2

Herewe compare the coverage of five interval estimators of τ2 (QP, PL, KDB, FPC, FPU) at

the 95% nominal level of confidence. Figure 6 depicts the coverage of the five estimators

for small sample sizes.

All interval estimators have coverage that is too high for τ2 < 0:5. For larger values of τ2,
QP andKDB typically have somewhat excessive coverage (KDBmore so thanQP), and PL,
FPC and FPU typically have somewhat deficient coverage. Coverage of FPC is very slightly

above that of FPU. The coverage of these two new estimators is close to nominal when

K ¼ 5 and τ2 ≥ 0:5, but it decreases to about 94% for K ¼ 30. Coverage of PL may be

erratic, especially for small K , even for large sample sizes, and we do not recommend its

use.

Overall, QP performs quite impressively, and we recommend its use in practice. This

finding is counter-intuitive, as we saw previously that the χ2K�1 approximation does not

hold levels well. However, it works for confidence levels. The explanation is that the
confidence intervals provided by QP are not symmetrical for small n, especially for large

values of K and δ.
To explain this point, consider a QP confidence interval at the 90% level. In the

discussion of empirical levels in Section 6.4 and Figures 2 and 3 for levels 0.05 and 0.95,

we noted thatwhenK ¼ 30, the χ2K�1 approximation has empirical level about 2.5% at the

nominal 5% level and empirical level about 92% at the nominal 95% level. The QP 90%

Q with constant weights for SMD 13
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Figure 5. Bias in estimation of between-study variance τ2 by eight methods: DL, REML, MP, KDB,

SSC, SSU, SMC and SMU. First two rows: equal sample sizes, n ¼ 20, f ¼ 0:5, δ ¼ 0 and δ ¼ 2.

Second two rows: unequal sample sizes, n ¼ 30, f ¼ 0:75, δ ¼ 0 and δ ¼ 2
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Figure 6. Coverage at 95% nominal level of confidence of five interval estimators of between-study

variance τ2: QP, PL, KDB, FPC and FPU. First two rows: equal sample sizes, n ¼ 20, f ¼ 0:5, δ ¼ 0

and δ ¼ 2. Second two rows: unequal sample sizes, n ¼ 30, f ¼ 0:75, δ ¼ 0 and δ ¼ 2
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confidence interval consists of fτ2 : q0:95 ≥ Qwðτ̂2Þ ≥ q0:05g, where the qα are critical

values of χ2K�1 andw τ̂2
� �

are the IVweightswðτ̂2Þ ¼ ðv2i þ τ̂2Þ�1
. This intervalwould have

about 8% probability below the lower limit and about 2.5% above the upper limit. The

results for levels .025 and .975 (not shown) also show non-symmetric patterns similar to

those in Figures 2 and 3.QP intervals at the 95% level can have about 4% in the left tail, and

1% in the right tail.

7. Example

We use data, previously considered by (Sánchez-Meca & Marı́n-Martı́ nez, 2010) and

subsequently by Bakbergenuly et al. (2020), on the efficacy of psychological treatments

for obsessive-compulsive disorder. These data consist of 24 trialswithmostly small sample

sizes, ranging from 12 to 121 patients. The effect measure is SMD, and positive values
correspond to lower levels of obsessions and compulsions in the treatment group. The

data appear in table 4 of Bakbergenuly et al. (2020), and our Figure 7 shows a forest plot.

Heterogeneity in these data is rather high. The value of QIV is 53:45 resulting in a p-

value of :00032 for the χ2K�1 approximation and a p-value of :00010 for the KDB

approximation. The value 83:44 forQF results in ap-value of :00003 for F SWand in amuch

higher p-value, :0139 for the two-moment approximation, M2 SW. Table 4 of

Bakbergenuly et al. (2020) includes the year of the study (one in 1980 and the rest from

1993 to 2006) and whether the study design was experimental or quasi-experimental
(four studies). The values of gi, however, are not systematically related to either of these

variables. Further examination of potential sources of heterogeneity would consider

details of the studies’ designs and variation among the means of the control arms.

Table 5 of Bakbergenuly et al. (2020) shows results for several point and interval

estimators of τ2 thatwe also consider here, and for the corresponding estimators of δ, withbδ values from 1.07 to 1.12. Our Table 2 includes all estimators of τ2 in our simulation

RE Model

−2 0 2 4 6
Observed Outcome

Study 24
Study 23
Study 22
Study 21
Study 20
Study 19
Study 18
Study 17
Study 16
Study 15
Study 14
Study 13
Study 12
Study 11
Study 10
Study 9
Study 8
Study 7
Study 6
Study 5
Study 4
Study 3
Study 2
Study 1

 1.59 [ 0.56, 2.62]
 3.78 [ 2.08, 5.48]

 0.49 [−0.18, 1.16]
 0.67 [−0.01, 1.36]
 0.60 [−0.20, 1.39]
 1.49 [ 0.50, 2.49]

 0.86 [−0.32, 2.04]
 3.00 [ 1.65, 4.35]
 1.62 [ 0.94, 2.30]
 0.98 [ 0.37, 1.59]

 0.19 [−0.69, 1.07]
−0.23 [−1.36, 0.91]

 2.33 [ 1.13, 3.52]
 1.08 [ 0.30, 1.87]
 1.88 [ 0.85, 2.91]
 0.73 [ 0.36, 1.10]
 1.00 [ 0.62, 1.38]
 1.01 [ 0.23, 1.78]
 1.65 [ 0.94, 2.35]

 0.28 [−0.44, 1.00]
 0.91 [ 0.38, 1.44]
 0.92 [ 0.40, 1.45]
 1.07 [ 0.44, 1.69]
 1.42 [ 0.39, 2.46]

 1.07 [ 0.84, 1.30]

Study SMD [ 95% CI ]

Figure 7. Forest plot for meta-analysis of the data from Sánchez-Meca and Marı́n-Martı́ nez (2010)

on the efficacy of psychological treatments for obsessive-compulsive disorder. The estimate of the

overall effect obtained by using REML is included for illustration

16 Ilyas Bakbergenuly et al.



study. For comparison, our simulations include data patterns with K ≥ 20, δ ¼ 1 and

τ2 ≤ 0:5.
Point estimates of τ2 are lowest for REML and DL, in agreement with our simulations

(Figure 5). All our new estimators give rather similar values. SSC, at 0:2698, is
somewhat higher than SSU, at 0:2504; and SMC, at 0:2879, is somewhat higher than

SMU. KDB is highest, also in agreement with our simulations. MP is unexpectedly high,

but this may be due to the comparatively low value of τ2, as all estimators have positive

bias at τ2 ¼ 0.

The lower limits of the QP, FPC and FPU confidence intervals are rather similar,

whereas PL is lowest, at 0, and KDB is highest, at 0:2167. The lengths of the confidence

intervals are also rather similar, except forQP,which iswidest at 1.001. Thismay be due to

the shift of the upper limit of the QP interval, further into the right tail, as discussed in
Section 6.7.

8. Discussion

The Q statistic serves as the basis for two main steps in random-effects meta-analysis:
testing for the presence of heterogeneity and estimating the between-study variance. In its

customary form, with inverse-variance weights based on estimated fixed-effect variances,

QIV contributes to a variety of shortcomings. Encouraged by the favourable performance,

with the mean difference as the measure of effect, of a version, QF, whose weights are

based only on the studies’ arm-based sample sizes, we studied key features of its

performance when the measure of effect is the SMD. Aspects of performance included

accuracy of approximations for the distribution of QF (or QIV), empirical levels when

τ2 ¼ 0 and when τ2 > 0, bias of point estimators of τ2, and coverage of interval estimators
for τ2. On most of these aspects, QF and related estimators performed better than QIV and

their other counterparts.

The P-P plots show that the Farebrother approximation (F SW) usually comes close to

the actual null distribution ofQF, much closer than the two-moment approximation. This

result should not be surprising, because F SW makes more detailed use of the study-level

variances than M2. It is encouraging, because F SW assumes that the variables in the

quadratic form have normal distributions, instead of the actual t distributions. For QIV,

the KDB approximation is consistently better than χ2K�1, especially as K increases when
n is small. Having the correct first moment of the null distribution can make a big

Table 2. Point and confidence-interval estimates for the heterogeneity parameter τ2 in the example

of efficacy of psychological treatments for obsessive-compulsive disorder

Method bτ2 L U Length of CI

DL&QP 0.1697 0.0992 1.1002 1.0010

REML&PL 0.1622 0 0.6029 0.6029

MP&QP 0.3722 0.0992 1.1002 1.0010

KDB&KDB 0.4539 0.2167 0.9033 0.6866

SMC&FPC 0.2879 0.0997 0.7415 0.6418

SMU&FPU 0.2671 0.0844 0.7056 0.6212

SSC 0.2698

SSU 0.2504

Note L and U denote the lower and upper limits of the 95% confidence interval.
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difference. It may be possible to improve both approximations, using data from

simulations on the empirical distributions of QF and QIV. We aim to pursue that topic in

further work.

ThenewSSCestimator of τ2 provides veryprecise estimationof τ2, andwe recommend
its exclusive use in practice. We also introduced two new estimators of τ2, SMC and SMU,

by solving for the value that equates the observed value ofQwith themedian of F SW. Both

have positive bias. When K ¼ 5, that bias grows rapidly as τ2 increases. When K ¼ 10,

however, the growth ismuch less rapid; andwhenK ¼ 30, SMU has little bias. The bias of

these estimators is due, in large part, to the difference between the mean and the median

of the (skewed) distribution of QF. We infer that the skewness decreases for larger K ,

similarly to the skewness of the χ2K�1 distribution, which approximates the distribution of

Q for large n. We expect both estimators to be almost median-unbiased, and we intend to
check this in future work. If median unbiasedness holds, SMC and SMUwould be the first

estimators of τ2 with this property. Whether mean unbiasedness or median unbiasedness

is more important is a moot point.

So far, we have demonstrated that the Q statistic with constant weights is useful in

testing for and estimating heterogeneitywhen the effectmeasure is themeandifference or

standardized mean difference. Its usefulness in meta-analysis of binary outcomes such as

the log-odds ratio or risk difference is less clear. In these cases the Farebrother

approximation seems less likely toprovide a goodfit to the distribution ofQF.We intend to
investigate binary outcomes further in future research.
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Appendix :

Derivation of the moments of Hedges’s g

The unconditional moments of Θi for θi ∼ Nðθ, τ2Þ are given by

Mri ¼ E½ðθ̂i�θÞr� ¼ ∑
r

j¼0

r

j

	 

E½ðθ̂i�θiÞ jðθi�θÞr�j� ¼ ∑

r

j¼0

r

j

	 

E½Mc

jiðθi�θÞr�j�, (A.1)

for conditional central moments Mc
ji ¼ E½ðθ̂i � θiÞ jjθi� with Mc

2i ¼ v2i .

For unbiased estimators θ̂i, Mi1 ¼ Mc
i1 ¼ 0 and M2i ¼ E v2i

� �þ τ2.
The scaled sample SMD,

ffiffiffi
~n

p
J�1 ĝ, has the non-central t distribution tn�2ðγÞ with non-

centrality parameter γ ¼ ffiffiffi
~n

p
δ (Hedges & Olkin, 1985, p. 79).

In what follows, we suppress the subscript i on all variables pertaining to study.i We

require the central moments E½ðĝ� δÞr� for r ¼ 1, . . ., 6. To ensure that these moments

exist, we assume that.n> 8 (The usual chi-squared approximation requires n> 4 for the

variance of g to exist.)

From Johnson, Kotz, and Balakrishnan (1995, p. 512), the moments of tn�2ðγÞ about
zero are given by
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μr ¼ E trn�2ðγÞ
� � ¼ n� 2

2

	 
r=2 n–2–r
2

� �
n–2
2

� � r=2
j¼0

r

2j

	 

2jð Þ!
2 jj!

r–2j: (A.2)

The first moment of tn�2ðγÞ, denoted by μ1, is

μ1 ¼
n� 2

2

	 
1=2 Γ n�3
2

� �
Γ n�2

2

� � γ (A.3)

The second moment is

μ2 ¼
n� 2

n� 4
ð1þ γ2Þ:

The (conditional) central moments of Hedges’sbg are

E½ðĝ�δÞrÞ� ¼ Jffiffiffi
~n

p
	 
r

E½ðtn�2ðγÞ � μ1Þr� ¼
Jffiffiffi
~n

p
	 
r

∑
r

s¼0

ð�1Þr�s r

s

	 

μsμ

r�s
1 , (A.4)

where μs is the sth moment E tsn�2 γð Þ� �
given by equation (A.2). Substituting the result

from equation (A.2) and expressions for γ and μ1, the conditional central moments of

Hedges’s g areg are
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Now we apply these results to study i by restoring the subscript i on variables

pertaining to study i and substituting the conditional moments into equation (A.1):
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(A.5)

where Em is themth central moment of the N 0, τ2ð Þ distribution. Define E0 ¼ 1. All odd

central moments are zero, and the even moments are Em ¼ τm m� 1ð Þ!!.
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