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Abstract: The latest quantum computers have the ability to solve incredibly complex classical cryptog-
raphy equations particularly to decode the secret encrypted keys and making the network vulnerable
to hacking. They can solve complex mathematical problems almost instantaneously compared
to the billions of years of computation needed by traditional computing machines. Researchers
advocate the development of novel strategies to include data encryption in the post-quantum era.
Lattices have been widely used in cryptography, somewhat peculiarly, and these algorithms have
been used in both; (a) cryptoanalysis by using lattice approximation to break cryptosystems; and
(b) cryptography by using computationally hard lattice problems (non-deterministic polynomial
time hardness) to construct stable cryptographic functions. Most of the dominant features of lattice-
based cryptography (LBC), which holds it ahead in the post-quantum league, include resistance
to quantum attack vectors, high concurrent performance, parallelism, security under worst-case
intractability assumptions, and solutions to long-standing open problems in cryptography. While
these methods offer possible security for classical cryptosytems in theory and experimentation, their
implementation in energy-restricted Internet-of-Things (IoT) devices requires careful study of regular
lattice-based implantation and its simplification in lightweight lattice-based cryptography (LW-LBC).
This streamlined post-quantum algorithm is ideal for levelled IoT device security. The key aim of
this survey was to provide the scientific community with comprehensive information on elementary
mathematical facts, as well as to address real-time implementation, hardware architecture, open
problems, attack vectors, and the significance for the IoT networks.

Keywords: Internet-of-Things; cybersecurity; cryptography; quantum processing; encryption;
communication systems

1. State-of-the-Art

Due to recent developments in the field of quantum computers, the search to build
and apply quantum-resistant cryptographic algorithms brings classical cryptography to the
next level [1]. Using those machines, many of today’s most popular cryptosystems can be
cracked by the Shor Algorithm [2]. This is an algorithm that uses quantum computation to
equate the prime number phases expressed as sine waves to factor large integers, effectively
solving the discreet logarithm problem that many current cryptographic algorithms are
focused on [3–5]. Quantum computation is still in its infancy and is limited to a handful
of mathematical operations that can be reliably determined by Reference [6]. We do need
to build sufficient logical qubits (a logical cubit is stable over time and can be made up
of hundreds or thousands of today’s physical qubits) that can be used to fully break
cryptographic codes [7]. In addition to all previous and continuing advances, quantum-
resistant cryptography algorithms need to be rigorously checked using old and current
data formats or sources to make them compatible with all platforms [8].

Predominantly, state-of-the-art public key algorithms are based on related problems,
three of which are at the top of the list [9]. These three types of problems are known as
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the discrete algorithm problem, the entire factoring problem, and the new pre-eminent
elliptical curve discrete algorithm problem [10]. These three groups will be broken by
Shor‘s quantum PC approximation. This is undoubtedly concerning, considering that these
equations are commonly used to ensure the protected sharing of confidential information
across the Internet, the development of digital signatures and the securing of other links
over unsafe networks [11].

In view of the inherited shortcomings and major disadvantages involved in the im-
plementation of an effective and smooth Quantum Key Distribution (QKD) [12], the quest
for a classic, non-quantum cryptography algorithm that will operate in current real-time
infrastructures is an increasingly growing field of study. These quantum robust algorithms
are called Post-Quantum Cryptography (PQC) algorithms and are assumed to remain
stable after the availability of functional large-scale quantum computing machines [13],
as depicted in Figure 1. Every modern cryptography must be combined with existing
protocols, such as transport layer security. The latest cryptosystem has to weigh:

• The size of the encryption keys and the signature.
• Time taken to encrypt and decrypt at either end of a contact line, or to sign messages

and validate signature.
• For each proposed alternative, the amount of traffic sent over the wire needed to

complete encryption or decryption or to transmit a signature.

Figure 1. Basic types of Post-Quantum Cryptography (PQC).

Many NIST (National Institute of Standards and Technology) proposal submissions
are also under review. Others have been broken or excluded from the process; some
are more conservative or demonstrate how far it would be possible to advance classical
cryptography so that it could not be cracked by a quantum computer at a fair expense [14].
But it is possible to categorize most cryptographic structures into these families: lattice-
based, multivariate, hash-based (signatures only), and code-based. These categories are
discussed in Section 2. For certain algorithms, though, there is a concern that they might be
too inconvenient to use in the Internet-of-Things (IoT) networks [1]. With current protocols,
such as Secure Shell (SSH) or Transport Layer Security (TLS), we must also be able to
integrate new cryptographic schemes. Designers of post quantum cryptosystems need to
take these attributes into account for IoT use-cases in order to do so:

• Latency induced by encryption and decryption at both ends of the communication
line, assuming a number of devices to slow and memory limited IoT devices from
large and fast servers.

• For ultra low latency, limit the size of public keys and signatures.
• Clear network architecture that facilitates crypt-analysis and the detection of vulnera-

bilities that could be exploited in a dense IoT network.
• Seamless integration with the existing infrastructure.

Post-Quantum protocols include a rich collection of primitives that can be used to
solve the problems presented by implementation across different computing platforms
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(e.g., cloud versus IoT ecosystems) and for various use cases [15–17]. This involves the
ability to compute encrypted data by having resilient (somewhat widely described than
ever before) protocols against powerful attackers based on asymmetric key cryptography
(using quantum machines and algorithms) and to provide security beyond the context of
classical cryptography [18]. Indeed, PQ cryptosystems are committed to strengthening the
protection [19] of mission-critical infrastructures, especially in energy, medical, surveillance,
space exploration, etc. Due to the flexibility and scalability of PQ cryptosystems, these
algorithms are also implemented in next generation 5G/NB-IoT networks, as well as for
secure communications, for electric vehicle charging infrastructure [20–22].

This survey has the following contributions. In Section 1, we discuss the state-of-the-
art of Lattice-Based Cryptography (LBC), including the review papers to date. Section 2
elaborates the wider implementation of post-quantum cryptography (PQC), including
Hash-Based Signatures, Code-Based Signatures, Multivariate Cryptography, and Lattice-
Based Cryptography. In Section 3, we look at the fundamental mathematics and security-
proofs of LBC. Moreover, it discusses the Ajtai-Dwork, Learning with Errors (LWE), and
N-th degree Truncated polynomial Ring Units (NTRU) cryptosystems in detail. The ex-
tended security proofs of LBC against quantum attacks are discussed in Section 4, whereas
Section 5 deals with the implementation challenges of LBC, both at software and hardware
domain for authentication, key sharing, and digital signatures. In addition, the studies are
applied to the application of LBC for power-restricted IoT applications, i.e., Lightweight
Lattice Cryptography (LW-LBC). To conclude the survey, we review the implementation of
LBC at FPGA level for the real-time experimentation of post-quantum cryptography. The
key motivation of this survey was to provide comprehensive information on the future
issues of quantum robust cryptography for IoT devices through LW-LBC.

2. Introduction to Post-Quantum Cryptography (PQC)

The PQC algorithms, as summarized in Figure 2, are mainly implemented by either
Hash-Based Signature Algorithms, Code-Based Cryptography, Multivariate Cryptography
Protocols, or by Lattice-Based Cryptography. In the following section, we shall discuss the
PQC algorithms briefly.

Figure 2. Implementation methods of four basic quantum secure algorithms.

2.1. Hash-Based Signatures

A hash-based signature scheme initializes from a one-time signature (OTS), i.e., a
signature scheme where each key pair only needs to be used to sign a message with [23].
If an OTS key pair signs two different notes, this cab threatens the network, and a hacker
will easily fake signatures that expose the customer’s personal details. Merkle used the
scheme of Lamport [24] and its variations. Merkle [25,26] recommended that a binary hash
tree later named Merkle tree be used to create a many-time signature scheme. The leaves
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are the hash values of OTS public keys in a Merkle tree. Each inner node is measured as
the hash of its two child nodes concatenating. If a collision tolerant hash function is used,
this ensures that all leaf nodes, i.e., all OTS public keys [27], can be authenticated using the
root node.

The root node of the Merkle tree turns into a public key in a Merkle signature scheme
(MSS) and the set of all OTS hidden keys becomes the secret key. Random bit strings are
the hidden keys for hash-based OTS. Therefore, one can store a short seed and (re)generate
the OTS secret keys using a cryptographically protected pseudo-random generator instead
of storing all OTS secret keys [28]. To prevent reuse of OTS key pairs, they are used
according to the order of the leaves, starting with the leftmost leaf [29]. To do this, the
scheme keeps as an internal state the index of the last used OTS key pair. They are used
according to the order of the leaves, starting with the leftmost node, to stop reuse of OTS
key pairs [29]. In order to do this, the scheme holds the index of the last used OTS key pair
as an internal condition.

2.2. Code-Based Signatures

Code-based cryptography is an upcoming contender for the diversification of to-
day’s [30] public-key cryptosystems, most of which rely on the complexities of either the
factorization or the discrete logarithm problem [31]. Code-based cryptography, unlike
public-key algorithms, is based on the problem of decoding unknown error-correcting
codes, considered to be NP-hard [32]. There are two simple Code-based cryptography
systems named after Robert McEliece [33] and Harald Niederreiter [34], their inventors.
Compared to traditional cryptosystems, such as RSA [35], both share the issue of having
massive key lengths, which renders their implementation impossible on embedded devices
with very limited resources.

The input message is converted into a code-word for plain text encryption by either
adding random errors to the message or encoding a message in the error sequence [36].
By deleting the errors or retrieving the original input message from the errors, decryption
restores plain-text. It is, therefore, important to conceal the algebraic structure of the text,
essentially cloaking it as an anonymous generic code [37]. An adversary understanding
the particular code used will be able to decipher the message.

2.3. Multivariate Cryptography

The challenge of solving non-linear equation structures over finite fields is the founda-
tion of Multivariate Cryptography schemes [38]. Generally speaking, seeking a solution
for such structures is called a NP-complete/-hard problem [39]. Patarin’s Secret Fields [40]
is one of the fascinating cases, generalizing a suggestion by Matsumoto and Imai [41].

The same basic architecture is used for all Multivariate Public-Key Cryptosystems
(MPKC), as they all depend on the use of multivariate polynomials over a finite field. The
polynomial equations are of degree two in most cases, resulting in multivariate quadratic
polynomials, which are still credited with being solved as NP-hard [42]. The MQPKC can
not be solved more easily with Shor’s algorithm than using a classical computer, since it
does not depend on any of the hard problems that Shor’s algorithms can solve, as compared
to many other forms of PKC (public-key cryptography). It is also a potential candidate
group for, a quantum resistant encryption scheme [42].

2.4. Lattice-Based Cryptography

Miklos Ajtai [43] first demonstrated Lattice-based algorithms, with the suggestion of
designing stable cryptographic algorithms based on the hard lattice problem (NP) [44].
A lattice-based public-key encryption scheme was adopted [44], but a scheme that was
sufficiently robust and proven stable was not presented until 2005, when Oded Regev
proposed his scheme. This method uses both lattices and a generalization of the problem of
parity learning [44]. A lattice, given in n-dimensional vector space, is a particular arrange-
ment of points with an periodic structure and is used in a variety of fields. Lattice-based
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cryptographic algorithms are mostly based on either the problem with the nearest vector
(CVP) or the problem with the shortest vector (SVP). In most lattice-based cryptographic
algorithms, the cryptographic builders used are very time-efficient and simple, while still
providing security proofs based on the worst-case hardness [45]. A number of the simple
problems used in this type of cryptographic algorithms often tend to be quantum resistant,
since they are not based on any of the complicated problems solved by the algorithm of
Shor [46]. This results in one of a few types of algorithms that are believed to carry promise
as potential candidates for post-quantum cryptography is lattice-based cryptography.

For everyday Internet communications, generic cryptographic protocols, such as TLS
and HTTPs [47], ensure that the communication between the two parties (sender and
receiver) are authentic and private. Certain encryption algorithms that underpin these pro-
tocols, such as RSA [48,49], Diffie-Hellman [50,51], and elliptic curve [52–54], all are based
on hard-to-solve mathematical problems and are categorized as asymmetric cryptographic
primitives [55]. The time and resources needed to address these issues are prohibitive,
which ensures that data encrypted using current encryption algorithms is considered
secure. Due to the fact that the quantum computers [56,57] using Shor’s factorization
quantum algorithm [58] can quickly solve current asymmetric cryptographic primitives.
Table 1 summarizes the impact of Shor’s [59] and Grover’s algorithms processing on typical
classical data sets or cryptosystems [60]. The table summarizes public-key cryptography
and similar algorithms being demolished by the development of quantum computers,
leaving only symmetric cryptography (with greater key sizes) still usable and applicable
but also on a small scale [61].

Table 1. Summary of the widely deployed classical cryptographic systems and their security levels
against the best pre-quantum and post-quantum attacks known [61].

Name Function Pre-Quantum
Security Level

Post-Quantum
Security Level

Symmetric Cryptography (Private Key)
AES-128 [62] Block Cipher 128 64 (Grover)

AES-256 [62] Block Cipher 256 128 (Grover)

SALSA-20 [63] Stream Cipher 256 128 (Grover)

GMAC [64] MAC 128 128 (no impact)

POLY-1305 [65] MAC 128 128 (no impact)

SHA-256 [66] Hash Function 256 128 (Grover)

SHA-3 [67] Hash Function 256 128 (Grover)
Asymmetric Cryptography (Public Key)

RSA-3072 [68] Encryption 128 Broken (Shor)

RSA-3072 [68] Signature 128 Broken (Shor)

DH-3072 [69] Key Exchange 128 Broken (Shor)

DSA-3072 [70] Signaure 128 Broken (Shor)

256-bit ECDH [71] Key Exchange 128 Broken (Shor)

256-bit ECDSA [72] Signature 128 Broken (Shor)

Several security specialists and scholars agree that the lattice-based cryptography
algorithm is the path forward to deliver quantum-resistant encryption and, opposed
to the other post-quantum cryptography strategies, is vigorous, as in Table 2. Lattice-
based cryptography uses two-dimensional algebraic constructs known as lattices [73,74],
which are not easily defeated with quantum computing schemes. A lattice is an infinite
arrangement of dots, and the most vital lattice-based computational problem is the Shortest-
Vector Problem (SVP) [75,76], which requires finding the point in the grid that is closet to a
fixed central point in the space, called the origin. This is easy to solve in a two-dimensional
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grid, but, as the number of dimensions increases, even a quantum machine cannot solve the
problem effectively. The fact that lattice-based cryptography provides fast, quantum-safe,
fundamental primitives, and enables the construction of primitives previously thought
impossible, makes it the front runner candidate for IoT applications [77].

Table 2. Comparison among different techniques for post-quantum cryptography [78].

Hash-Based Code-Based Multivariate-Based Lattice-Based

Schemes Signature
Signature

Encryption
Hash

Signature
Encryption

Signature
Encryption

Hash
Oblivious Transfer

Identity-Based Encryption
Homomorphic Encryption

Security Reduction Collision
Resistance Code Invertibility

Solving
Multivariate Equation

System

Finding good basis for a
lattice

Solving lattice problems in
special multidimensional

lattices

Theoratical Speeds Dependent on Hash
function used Good for Hardware Good for Hardware Good for Software

Practical Speeds Extremely Fast Good Under Test Under Test

Advantages Extreme Fast and Modular Mature and Secure Fast and Small Keysizes
Excellent Security

Robust
Flexible

Disadvantages Large Footprint
Only Signature

Extensive Memory
Requirements

Variants Proven Insecure
Low Security Not Fully Tested

3. Foundations of Lattice-Based Cryptography

High dimensional geometric structures are implemented by lattice cryptography, as
seen in Figure 3, to conceal or mask the original details, generating a complexity that
is deemed difficult to overcome even with available fault-tolerant quantum computers
without the existence of the original key. A lattice is an infinite grid of dots, often arranged
in a 2-dimensional setting.

Figure 3. Example for lattice-based encryption (LBC) in a 2-dimensional structure: The secret,

symmetrical base is [
→
S 0,
→
S 1]; the public, asymmetrical base is [

→
P0,
→
P1]. The sender utilizes [

→
P0,
→
P1]

to outline the message to a lattice point m and adds an error vector to obtain the resultant point

[
→
C]. The point [

→
C] is adjacent to the [

→
m] than to any of the other lattice points. Therefore, the

receiver can utilize the well formed secret-base [
→
S 0,
→
S 1] to easily retrieve [

→
m] (dotted vectors); this

is a hard computation for an attacker who only has the scrambled base [
→
P0,
→
P1]. For a quantum-

secure scheme, the n-dimension of the lattice must be much higher than 2 as in this example (source:
http://publica.fraunhofer.de/dokumente/N-481797.html (accessed on 3 February 2021)).

http://publica.fraunhofer.de/dokumente/N-481797.html
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LBC’s security statement gives much greater faith in the long-lasting transfer of stable
data in post-quantum cryptosystems that are directly based on hard lattice problems for
two reasons. First of all, certain lattice-theory questions are validated to be NP-Hard [79].
NP-Hard is the non-deterministic polynomial-time hardness in computational theory that
characterizes the property of a class of problems that are informally analogous to the most
difficult problems in the NP solution [80]. Secondly, there is a worst-case to average-case
simplification of the security of many lattice problems. This reduces the security proof
requirement of a cryptosystem to a series of proof of an average-case hardness due to
adaptation of the worst-case to average-case. In designing the cryptosystems to help satisfy
the requirements of the [43] case, this provides greater flexibility and stability.

3.1. A Simple Lattice Model

A full-rank lattice basis B, as in Equation (1), is defined as a set of n linearly indepen-
dent vectors in a vector-space of dimension n.

B = {b1, ...., bn}, bk ∈ Rn. (1)

A lattice LB is characterized as the set of all the integral combinations of the basis B of
linearly independent vectors across a vector space of dimensions n [78]. We need a succinct
way to represent lattices, as in Equation (2), if we are going to use them in cryptography.
For this, we use what is called a ’basis of a lattice’. A basis is a small collection of vectors
that can be used to reproduce any point in grid that forms the lattice [81]. An analytically
good basis are those vectors in which a given problem is easy to solve without complexities,
and it is termed bad basis for those in which it is generally not easier than a random basis
to solve a particular lattice problem, i.e., NP-Hard.

LB = Zb1 + .... +Zbn,Rn. (2)

3.2. Computational Complexities in Lattice

As discussed previously, the evidence for cryptosystems to be secure can be provided
by assuming the hardness of the certain lattice problems in the worst-case. The most well
known computational problems on lattices [82] are as follows:

Shortest Vector Problem (SVP): Given an irrational basis B of a lattice L = L(B), find
a shortest non-zero lattice vector in the given set, i.e., v ∈ L such that ‖v‖ = λ(L) [83].

Closest Vector Problem (CVP): Given a lattice basis B and a target vector t (not
necessarily in the lattice grid or vector set), we have to find the lattice point v ∈ L(B)
closest to t in the vector space [84].

Shortest Independent Vectors Problem (SIVP): Given the lattice basis B ∈ Zn∗n, find
n via linearly independent lattice vectors S = [S1, ...., Sn], where Si ∈ L(B) for all the values
of i, hence minimizing the quantity S = maxi‖si‖ [75].

Bounded Distance Decoding Problem (BDDP): Given basis B of an n-dimensional lat-
ticeL =L(B) and a target point t ∈ Rn with the affirmation that dist(t,L) < dΛ1(L)/2γ(n),
calculate the distinctive lattice vector v ∈ L such that ‖t− v‖ > d [85].

3.3. Lattice-Based Cryptosystems

In the following section, we will address in depth the all-important lattice cryptosys-
tems, examine their security and application of their realistic real-time problems. It has
been shown that the post-quantum stable cryptosystem can be generated via the hidden
hyper-plane problem (HHP) with its security proof depending on the worst case of the
one-way trapdoor function [86]. Although HHP accepted the worst-case/average-case
reduction, large key-sizes are involved for an acceptable security standard [87] due to the
colossal cipher-text expansion. Therefore, this cryptosystem was not ever meant to replace
the current cryptosystems in an optimal and realistic way. We shall outline the basics of
Ajtai-Dwork cryptosystem [88], Learning with Errors (LWE) cryptosystem [89], and N-th
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degree Truncated (NTRU) [90]. As a first step, enlist the summary of the key generation,
encryption, and decryption.

Key Generation

• Create a good basis R.
• Transform the good basis R into the bad basis Q through a uni-modular transformation.
• Publish the bad basis Q as public basis and keep the good basis R as private basis.

Encryption

• Choose any lattice vector w using the public basis Q and add a customized plain-text
vector p to it.

• Send this new vector c = w + p as the cipher-text.

Decryption

• Using the private basis, compute the closest lattice vector w to the cipher-text c.
• Subtract this lattice vector w from the cipher-text to give the plain-text p = c− w.

Security Evaluation

Lattice-based cryptography offers a great deal of promise for the most realistic, stable
post-quantum cryptosystem, with the worst-case/average-case minimization as seen by
Ajtai and Dwork [91], along with certain lattice concerns that are shown to be NP-Hard [92].
While several lattice-based cryptosystems improve simplicity, scalability, and robustness,
the computational complexity is much too high compared to the algorithms of classical
cryptosystems and multivariate cryptosystems. Indeed, it would almost seem as if cryp-
tographic research based on lattices is a race towards quantum-unbreakable security and
performance, whereas cryptographic research based on multivariates is a race towards
security. With the implementation of advanced q-ary lattices and the ideal lattice classes,
this efficiency versus security gap is closing rapidly.

3.3.1. Ajtai-Dwork Cryptosystem

In the following section, we define the state-of-the-art Ajtai-Dwork cryposystem
(Algorithm 1), examine its security, and, at the end of the section, we shall discuss its
practical real-time implementation [93].

Algorithm 1 Ajtai-Dwork Cryptosystems

• Parameters: Integers n,m;
• Private Key: s ∈ Rn;
• Public Key: a set of m random points {yi}m

i=1, yi ∈ Rn∀i such that:〈s, yi〉 ≈ 0 mod 1,
i.e., s is a solution of HHP with data {yi}m

i=1;
• Encryption: to encrypt the data that is represented by 0 generate a random point y in

lattice vector Rn. Similarly, To encrypt 1, consider y = ∑l∈y y1 with J =⊂ [m] arbitrary
and, finally, send y;

• Decryption: the receiver evaluates 〈s, yi〉. By linearity r ≈ 0, he de-crypts the cipher-
text as 1, otherwise as 0.

Security Evaluation

Ajtai and Dwork evaluated the security proof of this cryptosystem through two
independent methods and results [91]:

• whoever can determine between the encryption of 0 and 1 can also master the art of
solving the HHP with the same data. This means that breaking the semantic security
of their cryptosystem is at least as hard as solving HHP (search-to-decision reduction).

• starting from any algorithm that solves HHP, it is possible to implement one that
efficiently solves uSVPγ, in the worst case, for some γ = poly(n).
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Combining these results together, Ajtai and Dwork got a worst-case to average-case
reduction, which means that breaking the cryptosystem is at least as hard as solving
uSVPγ [94].

Complexity and Implementation

This initial version of the cryptosystem is very inefficient when actually applied,
i.e., hard boundaries, as stated in the previous sections, despite being a groundbreaking
outcome from a theoretical point of view. In 1998, a heuristic attack was demonstrated by
Nguyen and Stern [95], which works efficiently for limited parameters and to recover the
private key provided that the classical one is known. In this way, the researchers showed
that in order to prevent crypt-analytic attacks, the n dimension in vector space should be of
several hundred, concluding that Ajtai-Dwork cryptosystem is only of theoretical value
without significant improvements. Ajtai proposed a more powerful implementation of
the cryptosystem characterized by public keys and cipher-text sizes of O (n2) and O (n)
respectively in his subsequent work [Ajt05]. However, to date, no average-case to worst-
case reduction is known, and, although being very similar to lattice-based protocol, it is
based on a Dirichlet issue that does not seem to be connected to any known Dirichlet lattice
issues [96].

3.3.2. Learning-With Errors Cryptosystem

In this paragraph, we define the actual LWE cryposystem (Algorithm 2) and examine
its security and eventually discuss its practical real-time implementation [97,98].

Algorithm 2 Learning-with Errors (LWE) Cryptosyste

• Parameters: n, q, m positive integers, α ∈ R such that 0 < α < 1 and χ = Dz, discrete
distribution over Z;

• Private Key: s ∈ Zn
q uniformly at random;

• Public Key: select m vectors a1, ...., am ∈ ∑Zn
q independently according to the uniform

distribution. In addition, draw e1, ...., em ∈ Z from χ and get the public key {ai, bi}m
i=1,

with b = 〈ai, s〉+ ei mod q;
• Encryption: Let µ ∈ {0, 1} be the bit to encode, choose a random set S ⊂ [m], then to

encrypt µ one sends (a, b) = (∑i∈S ai ∑i∈S bi + µ
q
2 );

• Decryption: If b− 〈a, s〉 is close to 0 than to q
2 mod q output 0, otherwise decrypt as 1.

Security Evaluation

By analyzing encryption and decryption of LWE cryptography, we may notice that the
choice of parameters is responsible for the correctness of the crytpographic protocols. For
example, if µ = 0, we need χ and q to be such that b−〈a, s〉 = ∑i∈S ei <

q
4 ; otherwise, the bit

would be decrypted as 1. This condition can be obtained by requiring q significantly larger
than the error distribution χ and m. The following set of parameters will guarantee both
in order to make this cryptosystem protected and accurate at the same time [98]: q prime
between 2n and 2n2 with n in the order of hundreds. In addition, m = (1+ ∈)(n + 1) log q
for an arbitrary ∈> 0, and, finally, χ = DZ,αn for α(n) = 1√

nlog2 n.

Complexity and Implementation

The choice of the parameters is the prime priority for the implementation of LWE. The
secret and the public key sizes are respectively O(n) and O(mn)logq = O(n2). Furthermore,
it is possible to reduce the public key size by exploiting the set of vectors a1, ...., am can be
shared by all users and distributed as part of the encryption and decryption software, thus
leading to the public key b1, ...., bm.
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3.3.3. NTRU Encryption Scheme

The first protocol based on polynomial rings, especially on f-ideal lattices [99], is this
cryptosystem. As far as output is concerned, both in terms of run times and key size,
the NTRU is basically effective. Combined with the presumed protection from quantum
attacks, these characteristics are the reasons why NTRU is commonly used as an alternative
to RSA and ECC. In the following (Algorithm 3), we describe the original cryptosystem
as it was presented and, later on, we briefly discuss subsequent works highlighting an
evident trade-off between performance and security.

Algorithm 3 NTRU Encryption Scheme

• Parameters: n power of 2, f (X) = Xn + 1 and q odd sufficiently large, we define
R = Z[X]/ f (X) and Rq = R

qR ;
• Private Key: s, g ∈ R short polynomial, (i.e., with small coefficients) such that s is

inevertible mod q and mod 2;
• Public Key: h = 2g.s1 ∈ Rq with g ∈ R short polynomial;
• Encryption: choose a short e ∈ R such that e mod 2 encodes the desired bit, choose

r ∈ Rq randomly and compute the cipher-text c = h.r + e ∈ Rq accordingly
• Decryption: multiply the cipher-text with the secret key to get cs = 2gr + es ∈ Rq, lift

it in R as 2gr + es (possible if the following variables, i.e., g, r, e, s are short enough
compared to q) and reduce it | 2 | obtaining es | 2 | and, therefore, the initial bit.

Security Evaluation

As already interpreted, neither implementation of the NTRU provided either an
average-case reduction to the worst-case reduction or a more general safety proof. Unfor-
tunately, the real-time implementation is less effective than the original scheme to get an
acceptable degree of security, and this depicts the trade-off between the security level and
the efficiency appraisal, which unfortunately appears to stop the rapid development of
lattice-based cryptography.

Complexity and Implementation

Today, the ‘NTRUEncypt’ is a standard public key cryptosystem (IEEE Std. 1363.1)
successfully commercialized and available under a free open source license initiative.
Meanwhile, we may notice that both private and secret keys require O(nlogq) bits to be
encoded to get the level of security from PQC perspective.

3.4. Lattice Reduction Algorithms

The strategies outlined in the previous section for applying the problems of LWE and
NTRU, substantially based on the concepts of lattice reduction, are the strategy of creating
a sufficiently orthogonal basis given the definition of a lattice. Slide decrease [100] is the
lattice reduction algorithm that achieves the successful theoretical performance. However,
we tend to consider the best operating algorithm experimentally, BKZ (Block Korkine
Zolotarev) [101]. Given the basis for one of the lattices in vector space as described above,
we need to select the block size required to retrieve the shortest vector when running BKZ
(i.e., the block size is the smallest size of operating data on a computing device or memory
can have). This is done following the analysis introduced in Reference [102] for the LWE
and NTRU primal attacks, and the analysis done in Reference [103] for the LWE dual attack.

In exchange, BKZ uses a smaller lattice oracle to solve the Shortest Vector Problem
(or SVP oracle). Several SVP algorithms can be used to instantiate this oracle, with current
generations of Reference [104] filters or [105] enumeration being the two most powerful.
Because we consider security in post-quantum cryptography, we also need to consider
quantum algorithms, which mostly implies considering possible Grover [106] speed-ups
for the algorithms as of writing [107].
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4. Lattice Cryptography Against Quantum Attacks

In this section, we will summarize the fact thet LWC algorithm is secure against the
known quantum attacks, i.e., SVP is NP-hard [108,109]. We shall show that the problems
of approximating the shortest and closest vector in a lattice to within a factor of

√
n

lies in the NP intersect coNP [110]. Different information is available in the literature
to test the security standard of LWC post-quantum cryptographic primitives [110–112].
Consider factoring the NP-Hard and the language to describe factoring is C={(n, c), where
n has a factor ≤ C. Now, C ∈ P and the factoring is highly dependent on P [113], since
N−C = P∪ {1}, so that there would be a polynomial time algorithm for deciding whether
a string is s = P or not [114]. If, under some applied conditions, we assume that C is NP
complete, but, in cryptography theory, to date, there is no proof available for P = NP, it
stays P 6= NP [115,116].

Extended Security Proof

The lattices have have been investigated extensively in mathematics, and many dif-
ferent problems can be explored exclusively related to lattices, such as integer program-
ming [117], factoring polynomials with rational co-efficients [118], integer relation find-
ing [119], integer factoring, and diophantine approximation [120,121]. Latest research on
the study of lattices gained a lot of attention in the computer science community due to the
fact that lattice problems were shown by Ajtai [43] to possess a particularly desirable prop-
erty for cryptography: worst-case to average-case reducibility. As discussed previously
in Section 2, the two problems Shortest Vector Problem (SVP) and Closest Vector Problem
(CVP) have been widely studied [122–124]. The most important parameter of interest here
is the factor of approximation β in the given basis v1, ...., vn of a lattice to find the shortest
non-zero lattice point in the Euclidean norm in the case of SVP, whereas, given the basis
v1, ...., vn of a lattice and a target vector v ∈ Rn, find the closest lattice point to v in the
Euclidean norm for CVP. The problem GapSVPβ constitutes of distinguishing between the
instances of SVP in which the length of the shortest vector is maximum 1 or larger than β,
where β can be a constant or a fixed function of the dimension of the lattice n, whereas, for
GapCVPβ, basis and the extra vector v ∈ Rn decodes whether the distance of v from the
lattice is at most 1 or larger than β. The un-likelihood of the NP-hardness of approximating
SVP and CVP within polynomial factors has also been evaluated in [125]. Here, we for-
mulate the approximation problems associated with the shortest vector problem and the
closest vector problem in terms of the following supposition or a promise problem (i.e., a
generalization of a decision problem where the input is promised to belong to a particular
subset of all the possible inputs of a system):

Definition 1. (approximate SVP): The promise problem GapSVPγ (where γ ≥ 1) is a function
of the dimension that is defined as follows. Instances are pairs (B, d), where B ∈ Znxk is a lattice
basis, and d is a positive number and can be expressed as:

• (B, d) is a YES instance if λ(B) ≤ d, i.e., ‖Bz‖ ≤ d for some Z ∈ Zn \{0},
• (B, d) is a NO instance if λ(B) > γ.d, i.e., ‖Bz‖ > γ.d for all Z ∈ Zn \{0}.

Definition 2. (approximate CVP): The promise problem GapCVPγ (where γ ≥ 1) is a function
of the dimension that is defined as follows. Instances are triples (B, y, d), where B ∈ Znxk is a lattice
basis, y ∈ Zn a vector, and d is a positive number and can be expressed as:

• (B, y, d) is a YES instance if dist(y(LB)) ≥ d, i.e., ‖Bz− y‖ ≤ d for some z ∈ Zn,
• (B, y, d) is a NO instance if dist(y(LB)) > γd, i.e., ‖Bz− y‖ > γd for some z ∈ Zn.

Definition 3. (approximate CVP’): The promise problem GapCVP′γ (where γ ≥ 1) is a function
of the dimension that is defined as follows. Instances are triples (B, y, d), where B ∈ Znxk is a full
rank matrix, y ∈ Zn a vector, and d is a positive number and can be expressed as:

• (B, y, d) is a YES instance if ‖Bz− y‖ ≤ d for some z ∈ {0, 1}n,
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• (B, y, d) is a NO instance ‖Bz− wy‖ > γd for all z ∈ Zn and all w ∈ Z \{0}.

Therefore, it can be characterized that [125] GapSVP, GapCVP, and GapCVP′ are
NP-hard for any constant factor γ ≥ 1. For LWC on the implementation of cryptographic
primitives, it is well documented that the security level relies on the hardness of the above
mentioned lattice problems [83,126]. For example, in cryptographic constructions based
on factoring, the assumption is that it is hard to factor numbers chosen from a certain
distribution, which is why it is considered as quantum-secured algorithm.

5. Lightweight Lattice-Based Cryptography for IoT Devices

The emergence of new edge computing platforms, such as cloud computing, software-
defined networks, and the Internet-of-Things (IoT), calls for the adoption of an increasing
number of security frameworks, which in turn require the introduction of a variety of
primitive cryptographic elements, but the security is just one vector in the IoT world [127].
It is also necessary to implement those secure frameworks that consume less on-board
processing, memory and power resources [128]. This presents enormous difficulties in the
design and execution of new cryptographic principles in a single embodiment, as diverging
priorities and restrictions are accurate for the computing platforms. This involves the
development of programmable IoT hardware capable of effectively executing not only
individual cryptographic algorithms [129], but complete protocols, with the subsequent
task of agility design, e.g., developing computer devices that achieve the performance of
Application-Specific Integrated Circuits (ASICs), while keeping some programmability
level [130,131].

Recently, many researchers are investigating Lightweight Lattice-Based Cryptography
(LW-LBC) [128,132], where performance evaluation is fairly measured and benchmarked in
terms of low-power footprint, narrow area, lightweight bandwidth requirements and good
performance. The main characteristics of post-quantum LBC that makes them well suited
for IoT world are: (a) these schemes offer security proofs based on NP-hard problems
with average-case to worst-case hardness; (b) secondly, the LBC implementations are
noteworthy for their efficiency in addition to being quantum-age stable, largely due to
their inherent linear algebra-based matrix/vector operations on integers; and, (c) third,
for specialized security, LBC buildings offer expanded features, in addition to the simple
classical cryptographic primitives (encryption, signatures, key exchange solutions required
in a quantum era, services, such as identity-based encryption (IBE) [133], attribute-based
encryption (ABE) [11], and fully homomorphic encryption (FHE)) [134].

Figure 4 depicts the communication bandwidth by calculating the data bytes of
various LBC algorithms with sk, pk, and signature variants, as comprehensively analyzed
in Reference [128], while the number manifested at the end of each algorithm is the level of
security achieved according to the NIST standards. These security levels can be defined
as: (a) Level 1: at least as hard to break as AES-128 (exhaustive key search), (b) Level
2: at least as hard to break as SHA-256 (collision search), (c) Level 3: at least as hard to
break as AES-192 (exhaustive key search), (d) Level 4: at least as hard to break as SHA-384
(collision search), and (e) Level 5: at least as hard to break as AES-256 (exhaustive key
search). It is also worth mentioning that this security matrix is highly dependent on the
hardware/computational resources of IoT-Edge nodes in the network. It can be seen from
the analysis that Dilithium algorithms have consumed high bandwidth but are unable
to achieve a high level of security, whereas the Falcon algorithms have consumed less
bandwidth for achieving high level of security. These algorithms are ideal for lightweight
implementation of LBC in the IoT devices.

Figure 5 depicts the communication bandwidths of LBC algorithms implemented
with public key encryption (PKE) or with Key encapsulation mechanisms (KEM)
schemes [128,135,136]. It can be seen from the results that Saber and ThreeBears vari-
ants both consume less bandwidth at diverse NIST security levels and can be considered
as the suitable candidates for lightweight implementation of LBC in the IoT networks.
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Figure 4. Comparison of Internet-of-Things (IoT) communication bandwidth for lattice-based cryp-
tography (LBC) algorithms with secret key (sk), public key (pk), and signature variants [128].

Figure 5. Comparison of IoT communication bandwidth for LBC algorithms implemented via public
key encryption (PKE)/KVM schemes with secret key (sk), public key (pk), and signature variants [128].

6. Hardware Implementation of Lightweight Lattice-Based Cryptography

In this section, we have discussed the hardware implementation of LW-LBC on differ-
ent computational platforms [137]. Many lattice systems originally require large matrices
to be stored over integer rings and are very inefficient in both run-time and storage space.
The principle of replacing matrices with polynomials in integer rings over ideals enables
both to be minimized. Therefore, in very effective structures, the substitution of lattices
with perfect lattices occurs [136,137]. It is recommended that, for IoT devices (based on
communication technologies, such as IEEE 802.11ah, 802.15.4, low-power Wi-Fi, BLE, Lo-
Rawan, Sigfox, NB-IoT, etc.), that inherently have reduced computational resources, limited
on-board memory, and small form-factor battery banks (based on hardware platforms,
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such as Raspberry Pi, Beaglebones, etc.), instead of storing huge matrices of space O(n2),
where n is larger than 128, it is sufficient to store just O(n log n) elements. In addition, the
Fast Fourier Transform can be used effectively to multiply the elements of ideal lattices
(FFT w.r.t time O(n log n) for serial architecture and O(log n) for a parallel architecture
rather than complex O(n2) computation. This way, the hardware resources available can
be utilized to implement LW-LBC in a cost-effective way in an IoT network.

The fundamental modules of lattice-based cryptosystem that guides the actual hard-
ware implementation are the multipliers and samplers. The primary performance bot-
tlenecks are polynomial multiplication for perfect lattices, and matrix multiplication for
regular lattices, whereas the discrete Gaussian sampling is used to sample noise and cover
hidden information. In the literature, there are different algorithms for the sampler and
multiplier, providing the researchers with a particular end-user application [138]. For
the lightweight arithmetic implementation of LBC, matrix multiplication algorithms are
adopted for regular LWE schemes, while number theoretical transform (NTT) is a safer
alternative in Ring-LWE for polynomial multiplication [139]. On the other hand the dy-
namics of large scale implementation of IoT hardware is different. Standard LWE-based
systems display a comparatively high memory foot-print when deployed due to the large
key scale (hundreds of kilobytes per public key), which makes it impossible to quickly
deploy standard LWE-based systems [140]. The adoption of unique ring architectures, such
as Ring-LWE, provides a crucial size reduction by a factor of n compared to regular LWE,
rendering Ring-LWE an outstanding candidate for resource-restricted IoT devices.

As we can see in more depth in the coming paragraph, high-performance Intel/AMD
processors, which are famously equipped with Advanced Vector Extensions (AVX) and
ARM/AVR micro-controllers are common software execution platforms [140]. Recently,
practical software implementations of standard lattices, encryption schemes and key ex-
changes have been reported [141]. Other hardware platforms, such as field programmable
gate arrays (FPGA) and application-specific integrated circuits (ASICs), have also been
used to implement LBC. FPGAs provide flexibility and customization but not agility [142],
whereas ASCIs are less power hungry, while offering compactness and design flexibility.

In this section, we summarize the practical hardware implementation of LBC by
comparing the memory usage (bytes), computational time (ms) and clock cycle counts on
an ARM CORTEX-M AT 168 MHz platform [128]. Table 3 depicts the hardware complexity
of implementing LBC based on KEMs [143]. The statistics show that, for a limited memory
footprint, Saber stands out both in terms of its resource-constrained existence but also in
terms of throughput performance, while it also achieves the level-5 security according to
the NIST guidelines. Therefore, it is recommended that Saber can be used as a lightweight
LBC algorithm well suited of post-quantum IoT networks.

Table 3. Hardware implementation and complexity of LBC based on Key encapsulation mechanisms
(KEMs).

Scheme Operation Cycles Time (ms) Stack (Bytes)
Key Generation 1147000 7 13883

Encryption 1444000 9 16667Saber-5
Decryption 1543000 9 17763

Key Generation 1771729 11 15664
Encryption 2142912 13 19352Kyber-5
Decryption 2188917 13 20864

Key Generation 1243729 7 11152
Encryption 1963184 12 17448NewHopeCCA-5
Decryption 1978982 12 19648

Key Generation 101273066 603 35484
Encryption 106933956 637 63484FrodoKEM-AES-3
Decryption 107393295 639 63628
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Table 4 depicts the hardware complexity of implementing LBC via signature
scheme [144,145]. The data analyzed by Reference [128] depicts that signature-based
schemes are computationally exhaustive as compared to KEMs schemes. Nevertheless,
Dilithium performs well as compared to Falcon and qTesla. We can conclude that, for
signature implementation, Dilithium can be used in post-quantum IoT networks where
level-5 security is not the prime focus but the acceptable range of security is in between 1
and 3.

A perfect post-quantum cryptosystem, such as pseudorandom generators, pseudo-
random functions, and digital signatures, enables to identify the best parameters. As,
discussed in this section the performance of diverse PQ algorithms is based on the level of
acceptable security levels. The compromise on the security level can lead to side-channel
attacks in the IoT networks. The computational cycles, time, and stack (bytes) are the key
parameters researchers have to take into account while designing the dense IoT networks.
In lattice schemes, the problem of storage (memory) occurs when immense operations of
matrices are used in an integer ring. It is, therefore, appropriate to use polynomials for
the matrix multiplication of elements using Fast Fourier transformation (FFT). Although
the computational time of LW-LBC is much faster than classical LBC algorithms, these
algorithms still need extensive research in machine-to-machine (M2M) and industrial IoT
environments with dense sensor devices in the operational technology.

Table 4. Hardware implementation and complexity of LBC based on signatures.

Scheme Operation Cycles Time (ms) Stack (Bytes)
Key Generation 114516135 682 63652

Encryption 80503242 479 63653Falcon-1
Decryption 530900 3 63654

Key Generation 365950978 2178 120596
Encryption 165800855 987 120597Falcon-5
Decryption 1046700 6 120598

Key Generation 2320362 14 50488
Encryption 8348349 50 86568Dilithium-3
Decryption 2342191 14 54800

Key Generation 30720411 183 43992
Encryption 11987079 71 58112qTesla-3
Decryption 2225296 13 45712

7. Conclusions

In this survey, we discussed the practicality of post-quantum cryptography in resource
constrained devices, such as Internet-of-Things. We compared the performance of diversi-
fied post-quantum key exchange schemes by analyzing the memory usage, computational
time and clock cycle counts on hardware platforms. The potential arrival of quantum
computation pushes for the realization and implementation of cryptographic algorithms
that are quantum-resistant, among which a very promising alternative for IoT networks
seems to be lattice-based cryptography (LBC). The versatile processors, i.e., FPGAs, ASICs,
and Raspberry Pi, enable low-power edge devices to perform the hardest quantum encryp-
tion systems today. For lightweight implementation of LBC, the researchers are adapting
advanced hardware designs based on number theoretical transformation (NTT) for post-
quantum realization. The updated NTT separates data from vectors and allocates portions
through allocated memory with smaller foot-prints ensuring reduced energy consump-
tion, while maintaining the desired throughput and level of security. The scalability and
flexibility that can be used to optimize efficiency and security for the implementation
of lightweight LBC make lattice cryptography the leading candidate for post-quantum
IoT security.
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