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A B S T R A C T   

Equivalent circuit models (ECMs) have been widely used for capturing the electrical behaviour of lithium-ion 
batteries (LIBs). However, one limitation of the conventional full-cell level ECM is that it cannot capture the 
battery's internal states at half-cell level, e.g., the negative electrode (NE) potential. Real-time monitoring of NE 
potential is highly desirable for improving battery performance and safety, as it can prevent lithium plating 
which occurs when the NE potential drops below a threshold value. This paper proposes an easy-to-implement 
framework for real-time estimation of the NE potential of LIBs. An ECM at half-cell level is developed and 
parametrised by a bespoke experimental method, exemplified on a commercial 21700 LIB cell. The cell is 
instrumented with a lithium reference electrode that enables direct measurement of the per-electrode potential. 
Based on the developed model, an extended Kalman filter is implemented to estimate the battery's NE potential 
and SoC in real-time using only onboard available signals including the terminal current and voltage. Experi
mental results show that the proposed method achieves high modelling and estimation accuracy. The root mean 
square error of the real-time NE potential estimation is below 8 mV. The low computational complexity of the 
developed algorithm can facilitate practical implementation in commercial BMS.   

1. Introduction 

Lithium-ion batteries (LIBs) are widely used in electric vehicles and 
stationary storage systems which play a key role in decarbonizing the 
transport and energy sectors [1]. A battery management system (BMS) is 
essential to monitor and control the real-time operation of the battery 
system to ensure safety and efficiency. To enhance the BMS function
ality, a battery model is usually required to predict the system dynamics 
under various operating conditions [2]. Among different types of 
models, including electrochemical models, reduced order models and 
black-box models [3–5], the equivalent circuit model (ECM) is 
frequently favoured for onboard implementation in BMS for parameter 
and state estimation [6–8] and control [9,10], due to its low computa
tional cost, ease of parameterisation and desirable accuracy. 

One significant limitation of the conventional ECM is that it cannot 
capture battery's internal operating states at half-cell level, which are 

essential in maximizing cell performance without sacrificing lifetime 
and causing safety issues. For example, when the local anode potential 
drops below 0 V vs Li/Li+, lithium plating occurs [11–13] which reduces 
the battery's available energy capacity due to loss of lithium inventory. 
The formation of dendrites from plated lithium can lead to internal 
short-circuits [14–16]. The mainstream LIBs with graphite negative 
electrode (NE) are particularly vulnerable to lithium plating due to the 
low NE potential, especially under fast charging conditions. 

Real-time monitoring of the NE potential is a significant step towards 
preventing lithium plating and prolonging battery life. A quasi-reference 
electrode (RE) can be embedded inside the battery to directly measure 
the NE potential, which enables a quantitative evaluation of various 
electrochemical aspects of the battery's internal electrochemical re
actions, such as the distinct contribution of each electrode to the overall 
battery performance [17]. Several studies [18–20] have demonstrated 
the use of a RE to aid the design of fast charging profiles that do not 

Abbreviations: BMS, battery management system; CC, constant current; CV, constant voltage; ECM, equivalent circuit model; EKF, extended Kalman filter; LIB, 
lithium-ion battery; NE, negative electrode; OCV, open circuit voltage; PE, positive electrode; RC, resistor-capacitor pair; RMSE, root mean square error; SoC, state of 
charge. 
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violate the NE potential threshold. For example, Liu et al. [18] devel
oped a lithium-plating-free fast charging profile using a RE to prevent 
the NE potential from dropping below 10 mV vs Li/Li+. The long-life 
stability and low polarisation of the chosen RE in the battery's internal 
environment was verified experimentally. Compared with the manu
facturer's fast charging strategy, the proposed strategy achieved twice 
the charging speed with similar ageing impact on the battery cell within 
the first 100 charging cycles. One limitation of these studies is that the 
charging current is controlled in steps starting from the highest allow
able value [18–20], and when the NE potential threshold is reached, the 
current steps down. Using this greedy algorithm for current control 
cannot guarantee to find the optimal charging profile. A battery model is 
essential to achieve the optimal stepless charging profile, e.g., to mini
mise the charging time using optimal control algorithms. Further, while 
the use of RE in LIBs is essential for validation in offline studies in the 
laboratory environment, its deployment in a commercial battery pack in 
electric vehicles is challenging for both cost and safety reasons associ
ated with the risk of short circuits and the combustible nature of the 
electrolyte [17]. 

Because embedding sensors inside the battery is generally difficult, a 
more desirable solution is to estimate the NE potential using virtual- 
sensor or model-based estimation algorithms. The dynamics of the 
battery's per-electrode potential can be described by an electrochemical 
model, such as the pseudo-2D or single particle model [21,22], which 
enable the application of a state observer or a controller for real-time 
estimation and control of the physical states inside the battery [23]. 
However, the computational complexity of these physics-driven models 
is very high, making it unsuitable for onboard implementation in a 
commercial BMS with limited computing and storage capacity. 
Although a reduced order model can be developed [5,22,24], the full- 
order physical models still need to be parametrised before the model 
order reduction procedure can be implemented. However, the para
metrisation of those physics-informed battery models are very complex 
and challenging [25,26]. 

Apart from physical models, data-driven methods have also been 
developed for real-time estimation of the NE potential. Lin et al. [27] 
proposed a long short term memory neural network that predicts the 
anode potential by using the onboard measurable signals including the 
battery's terminal current, voltage, state of charge, and surface tem
perature. The model was trained using simulation data generated from 
an experimentally validated pseudo-2D model supplemented by a two- 
state thermal model. In another study, Hamar et al. [28] compared 
three NE potential estimation methods in terms of their accuracy and 
storage requirements. The test data for model training were generated 
using a Pseudo-2D model. The advantage of the data-driven model is 
that it does not involve a deep understanding of the electrochemistry or 
tedious parameter tuning [27,28]. However, a large amount of data is 
generally required for model training to ensure effectiveness. For 
example, a national high performance computing cluster was used to 
train the neural networks model in [27]. Another limitation of these 
studies [27,28] is that the NE potential estimation is not validated using 
experimental data. 

Zhao et al. [29] developed a half-cell ECM for capturing the dy
namics of the per-electrode potential of LIBs. The model was para
metrised using simulation data from a pseudo-2D model and showed 
high accuracy in predicting the battery's NE potential under multi-rate 
constant current charging simulation. However, the model is not vali
dated with experimental data of NE potential measurements. Drees et al. 
[30] developed a fast charging method to reduce the process cost of cell 
formation based on an half-cell level ECM, and the model is para
metrised using special 3-electrode test cells (PAT-Cells from EL-Cell 
GmbH). However, these studies [29,30] did not address the problem 
of real-time tracking of NE potential with initial estimation error. 

The contribution of this paper is summarised as follows. An easy-to- 
implement ECM is developed for capturing the dynamics of the battery's 
per-electrode potential. The developed model is validated with 

experimental test data from a commercial 21700 cylindrical LIB cell 
with a reference electrode embedded for separate anode and cathode 
potential measurements. A novel parameterisation method is developed 
to optimise the ECM parameters. Finally, based on the developed model, 
an extended Kalman filter (EKF) is implemented to enable real-time 
estimation of the NE potential and SoC from cell-level measurements. 
Experimental results show that both the half-cell model and the EKF 
estimator achieve high accuracy. The developed algorithm is expected 
to be suitable for implementation in commercial BMS due to the low 
computational complexity. 

2. Battery and test data 

2.1. Test setup 

The battery selected in this paper is a 5 Ah, cylindrical LIB cell (LG 
INR21700-M50). A Biologic VMP3 multi-channel potentiostat is used for 
charging/discharging the cell placed inside a thermal chamber (Binder 
MK720) that maintains the ambient temperature at constant 25 ◦C. The 
operating range of the battery test channel of VMP3 is ±5A and 0–5 V. 
The current and voltage measurement accuracy is within 0.1% FSR (full 
scale range). A K-type thermocouple is attached to the cell at middle- 
height to monitor the battery's temperature response using a PicoLog 
data logger. The temperature measurement accuracy is around ±0.5 ◦C 
for the K-type thermocouples used in this study. 

2.2. RE preparation and implementation 

Lithium metal reference electrodes embedded in a cell monitor the 
anode and cathode electrochemical potentials during battery testing. 
Standard reference electrodes, such as Standard Hydrogen Electrode 
(SHE) are impossible to fit inside a commercial Li-ion cell format (due to 
geometrical constraints and chemical incompatibility), thus alternatives 
such as pure metals are used instead [19,31]. Unlike a standard refer
ence electrode, the lithium metal quasi-reference electrode does not 
exhibit a controlled concentration of common ion in the adjacent pha
ses. The RE technology used in this paper has been experimentally 
validated in previous studies for cell monitoring and developing fast 
charging profiles [19,31,32]. Fig. 1 shows an assembled lithium refer
ence electrode. 

For this study, 7 mm lithium foil was used. A nickel-coated copper 
wire current collector was attached to the open end of the lithium strip. 
The assembly was covered with polyimide tape to prevent shorting with 
the cell positive cap, with the exception of the sensing section to allow 
ionic contact with the jellyroll. The reference electrode was inserted into 
the cell utilising the empty space on top of the jellyroll, subsequently the 
cathode cap was re-seated and the cell can re-sealed with a resin. All of 
the above operations were performed in an argon filled glovebox with 

Fig. 1. (a): Schematic diagram of the instrumented cell with reference elec
trode (RE). (b): A photo of the actual RE. Lithium strip with a copper wire 
current collector, covered with protective layer of polyimide to prevent short
ing with the cylindrical cell cap. This RE assembly was inserted on top of the 
electrode jellyroll. 
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O2 and H2O levels below 1 ppm. The cells were then transferred into a 
climate chamber to undergo testing. 

2.3. Battery test procedure 

The test procedure is summarised in Table 1. It starts with a condi
tioning protocol using three 0.3C charge-discharge cycles, followed by 
OCV characterisation at 0.04C, and ends with four pulse charge cycles at 
different current rates from 0.32C to 0.88C. Here, the battery's nominal 
capacity is 5 Ah, such that 1C = 5A. The tests were all conducted at 25 ◦C 
ambient temperature. The configuration for each test step is detailed 
below. 

The electrical behaviour of the instrumented cell is tested against 
two unmodified fresh cells. Under the 0.3C conditioning test and the 
four pulse current charge tests, between the instrumented cell and the 
fresh cells, the relative difference of the battery capacity is within 
0.03%; and the relative difference of the voltage response is within 0.3% 
at the medium-to-high SoC range where the developed model is vali
dated. The comparison results confirm that the effect of the embedded 
RE on the cell's capacity and terminal voltage response is negligible. The 
details of cell comparison can be found in the Supplementary Material. 

2.3.1. Cell conditioning tests at 0.3C 
The charge step uses a standard constant current constant voltage 

(CCCV) profile. The CC stage current is 0.3C. The CV stage voltage is 4.2 
V with a cut-off current at 0.01C. The discharge step uses a CC discharge 
at 0.3C till the cut-off voltage at 2.5 V. 

2.3.2. OCV characterisation tests at 0.04C 
After the conditioning test, the cell is fully charged using the CCCV 

procedure. The CC stage current is 0.04C and the CV stage voltage is 4.2 
V with a cut-off current at 0.01C. The battery's SoC at the end of this 
CCCV test is set to 100%. Next is a CC discharge at 0.04C till the cut-off 
voltage at 2.5 V. The test data is shown in Fig. 2. 

The potentials of each electrode under this 0.04C charge and 
discharge cycle are taken as the charging and discharging open circuit 
voltage (OCV), respectively, and the average value is taken as the mean 
OCV. 

2.3.3. Pulse charging tests at different current rates 
In this test step, the battery is always discharged at 0.5C CC until it 

reaches the cut-off voltage of 2.5 V. Four tests are conducted at different 
charge current rates, as it is shown in Fig. 3(a). The charging current is a 
square wave superimposed on a CC. The average currents of the four 
charging tests in Fig. 3(a) are in sequence [1.6A, 2.5A, 3.8A, 4.4A], or 
[0.32C, 0.5C, 0.76C, 0.88C]. The square wave has a period of 20s, a duty 
of 50%, and a magnitude of 0.4A. The superimposed square wave is used 
to characterise the battery's fast and short-term potential dynamics, 
while the average CC is used to characterise the slow and long-term 
dynamics. Fig. 3(c) shows that the maximum observed temperature 
rise on the battery's surface is 7 ◦C. 

3. Data analysis and model development 

3.1. Half-cell model structure 

The ECM model with separated anode and cathode potential is 
schematically shown in Fig. 4. The cell-level ECM is divided into the NE 
and PE sub-models, and each sub-model has a set of OCV element, re
sistors and capacitors for capturing the half-cell voltage dynamics. Ac
cording to Kirchhoff's voltage law, the per-electrode potentials are given 
as follows, 

vpe = vpt − vre = OCVpe + R0,pei + v1,pe
vne = vnt − vre = OCVne − R0,nei − v1,ne

(1)  

where vpt, vnt, vre stand for the potentials of the positive terminal, 
negative terminal and the reference electrode. i stands for the terminal 
current and is positive for charging and negative for discharging. v1, pe, 
v1, ne stand for the over-potentials of the RC networks in the sub-model of 
the positive electrode (PE) and NE, respectively. The number of the RC 
pairs for each electrode sub-model is configurable in the modelling 
fitting procedure for trade-off between complexity and accuracy [33]. 

As the dynamics of the PE and NE sub-models mirror each other, for 
simplicity, in the following text only the description of the PE sub-model 
is presented. 

The dynamic equations of the PE sub-model are 

SoC(t + dt) = SoC(t) +
dt

3600Cn
i(t)

v1,pe(t + dt) = a1,pev1,pe(t) + R1,pe
[
1 − a1,pe

]
i(t)

vpe(t) = OCVpe(SoC(t) ) + R0,pei(t) + v1,pe(t)

a1,pe = exp
(

−
dt

τ1,pe

)

(2)  

where t stands for time, dt is the sampling period, Cn the nominal ca
pacity of the battery in Ampere-hour, and τ1, pe the time constant of the 
RC pair. When more than one RC pair is used, their dynamics equations 
can be added accordingly in the same term as R1, peC1, pe. 

3.2. Parameter dependency on current rate and SoC 

It is well established that the battery's internal impedance depends 
on the SoC and current rate. The dependency of the ECM's resistor values 
on SoC is generally captured using look up tables [33,34]. Although an 
extra dimension of the look up tables can be used to capture the 
parameter dependency on current rate, this formulation is cumbersome 
and increases the dimension of model parameters, which in turn in
creases the chance of parameter fluctuations due to over-fitting. This 
paper develops a new way of describing the current dependency through 
an careful analysis of the properties of the battery's internal resistance. 

With the PE OCV characterised from the 0.04C test and the PE po
tential vpe directly measurable using the RE, the total over-potential 
across the resistors of the PE sub-model can be expressed as follows, 

vop,pe = vpe − OCVpe = R0,pei+ v1,pe (3) 

The average current of the pulse charging test (the square wave 
current shown in Fig. 3) is denoted by iave, such that the effective total 
internal resistance of the PE can be written as, 

Reff ,pe =
vop,pe

iave
(4) 

The dependence of the calculated Reff, pe on cell SoC and iave is shown 
in Fig. 5. The average current rates iave are given in the legends in Fig. 5. 
The fluctuations of the Reff, pe shown in the augmented subplot are 
caused by the square wave charging current. It is clear that current rate 
has a high impact on the PE's impedance. For example, at around 50% 
SoC, the Reff, pe increases by about 50% when the iave decreases from 4.4A 

Table 1 
Test procedure for the instrumented cell.  

Test step Settings Limits Repeat 

1, CCCV charge I = 0.3C V > 4.2 V, I < 0.01C 3 times 
2, CC discharge I = 0.3C V < 2.5 V 
3, CCCV charge I = 0.04C V > 4.2 V, I < 0.01C 1 time 
4, CC discharge I = 0.04C V < 2.5 V 
5, Pulse current 

charge 
Average current =
0.32C 

V > 4.2 V, I < 0.3C 1 time 

6, Pulse current 
charge 

Average current = 0.5C V > 4.2 V, I < 0.3C 

7, Pulse current 
charge 

Average current =
0.76C 

V > 4.2 V, I < 0.3C 

8, Pulse current 
charge 

Average current =
0.88C 

V > 4.2 V, I < 0.3C  
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to 1.6A. Further, the dependency of Reff, pe on iave varies noticeably 
before and after a crossover point located around 27% SOC, which in
dicates a change in the battery's internal properties. It generally requires 
two different models or at least two sets of model parameters within an 
ECM to capture this kind of crossover behaviour. However, the current 
work will only focus on the medium to high SOC range, i.e., after this 
crossover SoC point. This choice is based on two considerations. First, it 
is shown in [35] that, a nonlinear ECM is required to capture the bat
tery's highly nonlinear dynamics in the low SoC range. However, this 
nonlinear ECM increases the model complexity, and the identification of 
parameters is also complex. Second, the NE potential drops as the SoC 

increases. Therefore, in the medium to high SOC range the NE potential 
is at its lowest, increasing the chance of plating at high SoC, which is the 
mechanism of interest in this study. 

A couple of SoC breakpoints are chosen in Fig. 5 including the in
flection points of the Reff, pe vs SoC curve. The average Reff, pe at these SoC 
knots are then calculated by smoothing out the fluctuations, and the 
results are plotted in Fig. 6(a). It shows a nonlinear dependency of Reff, pe 
on current, which increases the complexity of parameter optimisation. 
Therefore, the parameter dependency on current is linearised using a 
nonlinear transformation as follows, 

Fig. 2. 0.04C charge and discharge test for OCV characterisation. (a): Terminal current and voltage. (b) PE and NE voltages. (c): Cell OCV under charging and 
discharging. (d) PE and NE OCV under charging and discharging. 

Fig. 3. Battery charging tests at 25 ◦C ambient temperature. (a): Terminal current and voltage. (b): PE and NE voltage. (c): Battery's surface temperature.  
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Reff ,pe(i, SoC) = Reff ,pe,0(SoC)+Reff ,pe,1(SoC)
1

i2 + a0,pe
(5)  

where a0, pe is a constant, and Reff, pe, 0, Reff, pe, 1 are dependent on SoC. 
The linearisation results are shown in Fig. 6(b). After this trans
formation, the model parameters Reff, pe, 0, Reff, pe, 1 become linear-in-the- 
parameter, which is a desirable property that can significantly improve 
the parameter optimisation efficiency. 

Finally, the series resistor R0, pe is characterised using the current 
jump points in the square wave, i.e., 

R0,pe =
vpe(t + dt) − vpe(t)

i(t + dt) − i(t)
,where |i(t+ dt) − i(t) | = 0.4 A  

and the results are given in Fig. 6(c). It shows that R0, pe is dependent on 
SoC but relatively much less dependent on the current. Therefore, the 
dependency of Reff, pe on current is attributed to the resistor R1, pe of the 
RC network, i.e., 

Fig. 4. Schematic representation for ECM with separate potentials for the 
two electrodes. 

Fig. 5. The dependency of the effective total internal resistance of the PE sub-model on SoC and current rate. Reff, pe is calculated using Eq. (4) by processing the pulse 
charging test data at different current rates. 

Fig. 6. Analysis of the dependency of the internal resistance of the PE half-cell on current rate. (a): Original data. (b) Linearisation of this current dependency. (c) 
Characterisation of series resistor R0, pe. 
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R1,pe(i, SoC) = R1,pe,0(SoC) + R1,pe,1(SoC)
1

i2 + a0,pe

R0,pe = R0,pe(SoC)
(6) 

The same data analysis procedure is performed for the NE sub-model. 

3.3. Model parameter optimisation 

The above analysis of the battery's internal resistance is then inte
grated into the model equations. By substituting Eq. (6) into Eq. (2), we 
get the following, 

v1,pe(t+dt)=a1,pev1,pe(t)+
[

R1,pe,0(SoC)+R1,pe,1(SoC)
1

i2 +a0,pe

]
[
1 − a1,pe

]
i(t)

vpe(t) − OCVpe(SoC(t))=R0,pe(SoC)i(t)+v1,pe(t)
(7) 

The recently developed ECM parametrisation algorithm in [36] is 
adopted here to optimise the model parameters. One novelty of this 
optimisation algorithm in [36] is that the time constant is fixed (inde
pendent of SoC and current) which significantly reduces optimisation 
complexity. The SoC-dependent resistor values are optimised all-at- 
once, and necessary constraints can be incorporated to ensure smooth 
parameter transition in the full SoC range. The readers are directed to 
[36] for the parametrisation algorithm details. The parameter optimi
sation procedure for the PE and NE sub-models is detailed in the Sup
plementary material. 

3.4. Extended Kalman filter to correct initial state estimation error 

Due to the difficulty of implementing an RE in a commercial battery 
pack in real-world operation, the NE potential is not a measurable 
property from the perspective of the BMS and must be estimated using 
the developed battery model and the onboard measurements of the 
battery's terminal current and voltage. 

The overall equations of the cell-level model are summarised as 
follows,   

This is a standard nonlinear state-space formulation. Therefore, an 
EKF can be implemented to correct the initial estimation error of the 
battery's states and the per-electrode potential. The EKF implementation 
procedure can be found in textbooks and publications [37,33], and is 
therefore omitted here. 

4. Results and discussion 

4.1. Model validation 

The validation of the half-cell level ECM with separated electrode 
potentials was performed using the experimental data of multi-rate 
pulse current charging tests. Currents of 1.6A, 2.5A, 3.8A and 4.4A 

were applied in a climate chamber with controlled ambient temperature 
at 25 ◦C. 

The three data sets (current i = [1.6A, 2.5A, 4.4A]) were used for 
model training and parameter optimisation, and the data set (i = 3.8A) 
was used for model validation. It was found that a high model accuracy 
was already achieved with only 1 RC pair for both the PE and NE sub- 
models. The time constant of the NE and PE RC pair was the same 
(fixed at 238 s). It is noteworthy that if more test data are used for model 
training, such as field drive cycles, more RC pairs might be required to 
achieve a desired accuracy. The number of the RC pairs, as well as the RC 
time constants, can be optimised separately for each electrode sub- 
model using the developed parameter optimisation algorithm in order 
to achieve high model accuracy under a wider range of operating 
conditions. 

The results of model prediction and experimental measurements are 
compared in Fig. 7. The star points on the SoC curves in Fig. 7(a,2)–(d,2) 
indicate the crossover point of 25% SoC, as mentioned above. It is visible 
that in all four charging cases, the simulated terminal voltage does not 
match the experimental result when the SoC is lower than the crossover 
point. This is because the test data in the lower SoC range was not used 
in model training as mentioned in Section 3.2, such that the developed 
model focuses on the medium-to-high SoC range. 3.2 

For SoC values higher than the crossover point, the model shows high 
accuracy in capturing both the cell and the NE voltage profiles under all 
four charging current rates. The root mean square errors (RMSEs) of the 
cell voltage after the SoC crossover point for the four current rates 
([1.6A, 2.5A, 3.8A, 4.4A]) are [1.14 mV, 1.79 mV, 1.97 mV, 1.51 mV] 
respectively. The RMSEs of the NE voltage for the four current rates are 
in turn [0.82 mV, 1.25 mV, 0.85 mV, 0.72 mV]. It is worth noting that 
the developed half-cell model can accurately capture the cell and NE 
voltage in both the CC and CV charging stages. These results indicate 
that the parametrised ECM with resolution on anode/cathode is suitable 
for capturing the electrical behaviour both for the whole cell and the 
internal NE within the given SoC and current range. The validated model 
provides the basis for accurate prediction and estimation of the NE po
tential in real-time. 

4.2. State estimation for NE potential and SoC 

As an efficient and simple estimation method, EKF is implemented to 
the established ECM. The accuracy and effectiveness of the ECM com
bined with EKF is validated in this section. The estimation starts after the 
crossover point at 25% SoC where the model is valid. The initial SoC 
guess is deliberately set at 15%, with 10% error. The initial voltages of 
the RC networks are set to be zero, which also induces initial errors, 
because an over-potential across the RC pairs would have built-up 
during charging before the SoC crossover point. The state estimation 
results under the four charging current rates are shown in Fig. 8. The 
RMSEs of the NE voltage estimation for the four current rates ([1.6A, 
2.5A, 3.8A, 4.4A]) are [2.37 mV, 4.54 mV, 6.70 mV, 7.48 mV] respec
tively. After the estimation convergence point, the NE voltage error is 
maintained below 3 mV. 

SoC(t + dt) = SoC(t) +
dt

3600Cn
i(t)

v1,pe(t + dt) = a1,pev1,pe(t) +
[

R1,pe,0(SoC) + R1,pe,1(SoC)
1

i2 + a0,pe

]
[
1 − a1,pe

]
i(t)

v1,ne(t + dt) = a1,nev1,ne(t) +
[

R1,ne,0(SoC) + R1,ne,1(SoC)
1

i2 + a0,ne

]
[
1 − a1,ne

]
i(t)

v(t) = OCVpe(SoC(t) ) − OCVne(SoC(t) ) + R0,pe(SoC)i(t) + v1,pe(t) + R0,ne(SoC)i(t) + v1,ne(t)

(8)   
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Fig. 7. Modelling results. (a,1) (b,1) (c,1) (d,1) show the fitting results of the cell and NE voltage under the four charging rates [1.6A, 2.5A, 3.8A, 4.4A]. (a,2) (b,2) 
(c,2) (d,2) show the cell and NE voltage errors as well as the SoC curve. The star points on the SoC curves indicate the crossover point. A high accuracy is achieved in 
the medium-to-high SoC range (i.e., after the star points) where the model is trained. 

Fig. 8. EKF estimation results. (a,1) (b,1) (c,1) (d,1) show the estimation results of the NE voltage and SoC under the four charging rates [1.6A, 2.5A, 3.8A, 4.4A]. 
(a,2) (b,2) (c,2) (d,2) show the estimation error of the NE voltage and SoC. 
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The implementation of EKF on the established ECM not only enables 
NE potential estimation, but also benefits the accurate estimation of SoC, 
which is also a key parameter for the cell. The results for SoC estimation 
are also shown in Fig. 8. It shows that the EKF can effectively correct the 
initial error in SoC estimation. The RMSEs of the SoC estimation for the 
four current rates are in turn [0.96%, 1.71%, 2.88%, 3.46%], and after 
the estimation convergence point the SoC error is maintained below 1%. 

Therefore, the accuracy of this framework of half-cell level ECM with 
EKF is validated for NE voltage and SoC estimations. Because the 
developed ECM has the advantage of low complexity to facilitate prac
tical implementation in commercial BMS, it provides a viable solution 
for prolonging lifetime and enhancing battery systems' safety. 

5. Conclusion 

The widely used full-cell level equivalent circuit model (ECM) of 
lithium ion battery (LIB) has a significant limitation, as it cannot capture 
the battery's internal dynamics. To address this issue, a half-cell level 
ECM is developed in this paper. A cylindrical 21700 LIB cell instru
mented with a reference electrode is used to collect experimental test 
data of the battery's per-electrode potential to enable model para
metrisation and validation. A parsimonious and easy-to-implement 
method is proposed to capture the dependency of model parameters 
on current rate. Based on the developed new ECM, an extended Kalman 
filter (EKF) is implemented for real-time estimation of the negative 
electrode (NE) voltage and state of charge (SoC) using only onboard 
available singles including the terminal current and voltage. Experi
mental results confirm that the developed algorithms achieve high 
modelling and estimation accuracy of the NE potential (RMSE <8 mV). 
The RMSE of SoC estimation is below 3.5%. After the convergence of the 
EKF, the estimation errors of the NE potential and the SoC are main
tained below 3 mV and 1%, respectively. 

Real-time estimation of the battery's internal operating conditions, 
especially the NE potential and SoC, is of high significance to industrial 
applications, because it can expand the operating envelope of the bat
tery to maximize performance while minimising ageing impact. Real- 
time NE potential estimation is key to preventing lithium plating for 
mainstream LIBs with graphite NE. This paper demonstrates that it is 
feasible to achieve this target using a real-time capable model that is 
suitable for practical implementation into commercial BMS. Therefore, 
this work should be of high interest to academic and industry re
searchers in area of battery energy storage. 

There are a few limitations identified in this study. Due to the diffi
culty of embedding a reference electrode inside the battery in practical 
applications, the model and estimation algorithms proposed in this 
paper have to be parametrised offline, which makes it difficult to capture 
the battery parameters varying over time due to ageing. Further, the 
battery tests are conducted under only one ambient temperature and the 
current rate is limited to values below 1C to prevent high temperature 
rise, therefore the temperature effect is not considered in this work. 
Since the model parametrisation algorithm used in this paper can apply 
to a range of current and temperature levels, as it is shown in [36], the 
framework developed in this paper can be used in future studies e.g., 
with higher charging current under different temperature levels to 
capture the coupled electro-thermal properties of LIBs. 
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Appendix A. Supplementary data 

This supplementary material consists of two sections. Section 1 
compares the electrical properties of the instrumented cell with a 
reference electrode and two unmodified fresh cells. The parameter 
optimisation method of the equivalent circuit model with separate 
electrode potential is presented in Section 2. Supplementary data to this 
article can be found online at https://doi.org/10.1016/j.est.2022.10 
4362. 
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