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Abstract: Urbanisation and the replacement of previously vegetated areas with impermeable surfaces
reduces the lag times of overland flow and increases peak flows to receiving watercourses; the
magnitude of this will increase as a result of climate change. Tree planting is gaining momentum
as a potential method of natural flood management (NFM) due to its ability to break up soil and
increase infiltration and water storage. In this study, a 2.2 km2 clay-textured area in Warwickshire,
England, planted with trees every year from 2006 to 2012 was sampled to investigate how infiltration
varies dependent on season and tree proximity and maturity. Infiltration data was collected from 10
and 200 cm away from selected sample trees from November 2019 to August 2021 using a Mini Disk
infiltrometer (MDI). The results show that mean infiltration is higher at the 10 cm proximity compared
with the 200 cm proximity by 75.87% in winter and 25.19% in summer. Further to this, mean 10 cm
infiltration is 192% higher in summer compared with winter, and mean 200 cm infiltration is 310%
higher in summer compared with winter. There is little evidence to suggest a relationship between
infiltration and tree maturity at the study site.

Keywords: tree planting; tree proximity; infiltration; flood risk management; natural flood manage-
ment (NFM)

1. Introduction

The global climate is predicted to change in ways unseen in recorded history [1,2].
Climate predictions show that across the UK, the frequency and severity of extreme weather
events will increase, sea levels will rise, summers will become warmer and drier, and
winters will be warmer and wetter [1,3]. Urbanisation and the replacement of previously
vegetated areas with impermeable surfaces, such as asphalt and concrete, reduces the lag
times of overland flow and increases peak flows to receiving watercourses; the magnitude
of this will increase as a result of climate change [4–8]. Conventional methods of flood
management prioritise moving flood waters downstream as quickly as possible [5,9];
however, the recent increase in flood frequency has led to increased investigations into
more sustainable methods of managing flood risk, namely, Natural Flood Management
(NFM) methods [5,10,11].

NFM methods aim to replicate pre-development catchment hydrology and encourage
infiltration, interception, and evapo(transpi)ration, with the aim of storing and slowing pre-
cipitation before reaching the receiving watercourse [4,12,13]. Common examples include
vegetation planting to increase infiltration and interception (and subsequent evapotranspi-
ration), reducing soil compaction by changing farming and animal grazing routines, and
‘roughening’ and obstructing watercourse channels and overland flow pathways to slow the
flow of water downstream during high-rainfall events [14–17]. Tree planting is often con-
sidered a valuable method of NFM as tree roots can enhance soil macro-porosity, connect
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flow pathways, reduce compaction, and improve soil structure, which increases infiltration
and water storage capacity [18–23]. The value of tree planting has been acknowledged by
the UK Government, who have allocated GBP 4 million to organizations aiming to increase
UK woodland coverage; and GBP 1.4 million to the Environment Agency (England) for the
same purpose [24]. Additionally, Government grants have been introduced to encourage
farmers to convert arable land to woodland via the ‘Woodland for Water’ scheme, run in
coalition with the Environment Agency and the Forestry Commission [25]. Furthermore,
the UK Government have pledged to plant 30,000 ha of trees per year until 2024 (the end of
the current Government), which highlights their acknowledgement of the benefits of tree
planting [26].

However, regardless of funding allocations and the increased investment in tree
planting, few studies have assessed the impacts of tree planting on infiltration, and contex-
tualised this with regard to flood risk mitigation and the use of tree planting as a method of
NFM [3,27–31]. Therefore, the aim of this study is to investigate the impacts of tree planting
on infiltration dependent on tree maturity and tree proximity.

This work is the precursor to another study previously conducted by the same au-
thors [31], which focused on the hydrological modelling of the collected infiltration data
(used for this work and listed in Section 3) and the analysis and variations in peak flow and
total discharge from the study site as a result of changing land cover. Therefore, the same
sample site and infiltration data collection methods (presented in Section 2) are used in
both studies. However, this study focuses solely on the variations in infiltration data, and
the influence of tree proximity and tree maturity on infiltration—in addition to undertaking
statistical testing on such data. Developing an understanding of the influences of tree
planting on infiltration, and contextualising these findings in the context of the wider
implementation of NFM and existing policy, will aid in the justification and subsequent
uptake of NFM methods [15,32]. This will allow for enhanced flood risk reduction both
at present, and in the future, considering the predicted impacts of climate change and
continued urbanisation [1,3–5].

2. Materials and Methods
2.1. The Heart of England Forest

The Heart of England (HofE) Forest charity have planted 1,883,928 trees across 2832
hectares of Warwickshire and Worcestershire, England. The charity aim to eventually plant
and maintain 12,140 hectares of forest across the English Midlands for the benefit CO2
mitigation, public amenity, habitat creation, wildlife, and biodiversity [33]. The HofE forest
began planting trees across the study site in 2006, and continued annually until 2012, when
the trees were left to grow with very little human interference. The HofE forest plant
saplings in line with National Vegetation Classification (NVC) guidelines [34,35] to ensure
that newly forested areas correspond with exiting native species for the area, defined as
‘mature lowland broadleaved woodland’.

2.2. Sample Area and Infiltration Data Collection

The study site is a 2.2 km2 area in Warwickshire, UK (52.1511◦ N, 1.5139◦ W), owned
by the HofE forest, and was defined by generating a watershed boundary using a 1 m
digital terrain model of the area [36] (Figure 1). Infiltration data were collected every other
week from specific sample trees planted in 2006 (Betula pendula), 2008 (Populus tremula),
2010 (Betula pendula) and 2012 (Populus tremula). In addition, infiltration data were collected
from a plot of pre-existing woodland planted in cc. 1900 (Quercus petraea), and a grassland
control site. The data collected from the grassland control were used in comparison with
the wooded areas, and the samples taken from the cc. 1900 area provided information
regarding the infiltration characteristics of mature trees and were used for comparison.
Figure 1 shows the locations of the infiltration sample plots and sampling locations.
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Figure 1. Sample sites and sampling locations with land cover highlighted [37]. Data is reproduced
under the open government license.

As this study aims to determine the variation in infiltration dependent on proximity,
infiltration measurements were taken from 10 cm and 200 cm away from the base of the
sample trees. The 10 cm proximity was as close as any measurement instrument could get
to the base of the tree without interference from the root system or growths around the
base. The 200 cm proximity was defined using literature specific to the tree species sampled
throughout the fieldwork [38–40], suggesting that the lateral root spread of all trees would
surpass the 200 cm measuring distance by the time the tree matured. The 200 cm proximity
would also act as a comparison for the 10 cm proximity, allowing for the influence of tree
proximity on infiltration to be delineated.

The Mini Disk Infiltrometer (MDI) was chosen for infiltration data collection due to its
portability, low water usage (in comparison to ring-infiltrometer methods), replicability,
ease of individual operation, and durability [41–43]. Relevant literature indicates that the
tension setting of the MDI is altered from study to study [41,44–46]; therefore, a tension
setting of 2 cm was selected following the suggestion of the MDI user manual [47]. It is
acknowledged that recent advancements in infiltration models are inclusive of plant-root
water uptake such as the Feddes reduction function [48], the compensated non-linear
uptake model [49], and methods involving Python [50]. However, this work utilised the
infiltration-time model due to the study scope outlining the influence of tree roots on soil
porosity and subsequent infiltration as the primary focus (see Section 1).
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It is well regarded in the literature that field infiltration measurements inherit high
spatial variability, and that replication is imperative for attaining accurate results [51–53].
Therefore, every MDI measurement was replicated twice (in addition to the first measure-
ment) and all replicates were averaged to give a mean average total for that site. As the
MDI required a watertight seal with the sample soil, vegetation was removed from the
surface of the soil before infiltration measurement proceeded. Figure 2a,b show the method
by which infiltration measurements were taken in proximity to the tree.
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Figure 2. (a) Diagram of MDI measurement location in proximity to the sample tree. Black crosses (X)
indicate MDI measurement location. (b) MDI measurement locations represented at the 2008 sample site.

The 10 cm datums were identified, and a line was measured from the base of the tree in
the direction of least obstruction (i.e., no other trees, undergrowth, or shrubbery intruding
the area) to mark the location of the 200 cm measurement locations; 50 cm was measured
either side of the line to identify replica locations. Replication could not take place in the
exact same location as the initial infiltration measurement, as any measurements would be
skewed due to previous saturation of the soil; so, 50 cm was chosen to avoid lateral seepage
(leading to the overestimation of infiltration values) [54–56]. The control site measurements
were collected in a triangular pattern, with each replication being 50 cm from the last to
avoid lateral seepage (Figure 3a,b).

A total of 1287 individual infiltration measurements were collected from November
2019–August 2021; 702 from the 10 cm proximity (including the grassland control), and 585
from the 200 cm proximity. Infiltration data was not collected from March 2020 to July 2020
due to the UK national COVID-19 lockdown.

2.3. Soil Texture Analysis and Seasonal Variation

Soil texture influences infiltration characteristics (rate, capacity) [43,57,58]. To under-
stand the influence that varying soil textures across the study site may have on the collected
infiltration data, soil samples were extracted from the surface (~5 cm depth) of the soil
surrounding the area of MDI measurement using a trowel. A LaMotte [59] soil texture
test kit was used to determine the percentiles of sand, silt, and clay for each infiltration
sample-area soil, and this information was compared against the UK soil texture triangle
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to determine the classification name of each sample soil. The percentiles and soil texture
classifications of the sample area are shown in Table 1.
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Table 1. Soil percentiles and texture classification of each sample site.

Sample Site Sand % Silt % Clay % UK Soil Classification

Control 53 20 27 SaCL Sandy clay loam
cc. 1900 47 40 13 SSL Sandy silt loam

2006 20 20 60 C Clay
2008 13 20 67 C Clay
2010 53 33 14 SaL Sandy Loam
2012 33 13 54 C Clay

The 2006, 2008, and 2012 sites are comprised of a clay-heavy soil texture, meaning
that they are naturally less permeable compared to other soil textures [55]. The grassland
control, cc. 1900 and 2010 sites are comprised of a sandier soil texture, indicating that these
areas are more permeable compared with other soil textures [55,60]. Due to the varying
soil texture, the study site varied hydrologically between summer and winter—particularly
across the clay-heavy soils. Throughout the summer, the clay-heavy soils began to crack,
creating macropores; this is the opposite to winter, where the soil was bare and often
completely saturated due to the inability of infiltration to take place (see Figure 4).

These changes influenced the collected infiltration data and as such, it was decided
that the collected infiltration data would be separated to represent soil conditions across the
site in both wet and dry periods. This approach also allowed for the trends in infiltration
change as a result of changing proximity to be compared through winter and summer,
allowing an in-depth analysis of the influence of tree planting on infiltration seasonally
across the site. Metrologically, December, January, and February are defined as winter,
and June, July, and August are defined as summer by the UK met office [61,62]. However,
as this collected data is the precursor to the development of a hydrological model (see
Revell et al., (2021)); winter is defined as October to March, and summer is defined as April
to September. These timeframes are based on UK average annual temperature and rainfall
data, provided by the Met Office [63].
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Figure 4. (a,b) saturation of the 2006 sample site throughout winter, (c,d) cracking of the 2006 and
2008 sample sites throughout summer.

3. Results
3.1. Tree Proximity and Infiltration

Table 2 shows the average infiltration values for each sample site throughout winter
and summer 2019/20 and 2020/21.

Table 2. Average infiltration for 10 and 200 cm proximities throughout both winter and summer
sample periods.

Winter (mL) Averages
Control cc. 1900 2006 2008 2010 2012

2019/20 10 cm

3.4

9.96 0.67 7.04 4.85 3.07 5.42
2020/21 10 cm 5.64 2.17 1.98 2.80 2.31 2.80
10 cm average 7.80 1.42 4.51 3.83 2.69 4.11

2019/20 200 cm 4.22 0.37 2.56 4.70 2.30 3.16
2020/21 200 cm 3.78 0.83 1.36 1.50 1.69 1.51
200 cm average 4.00 0.60 1.96 3.10 2.00 2.34

Summer (mL)
2019/20 10 cm

12.35

20.81 14.62 17.95 17.62 18.14 17.19
2020/21 10 cm 11.54 5.06 5.85 9.73 6.70 6.83
10 cm average 16.18 9.84 11.90 13.68 12.42 12.01

2019/20 200 cm 11.38 9.48 16.14 15.19 14.90 14.14
2020/21 200 cm 9.21 3.27 4.45 6.45 4.94 5.04
200 cm average 10.30 6.38 10.30 10.82 9.92 9.60
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Mean 10 cm and 200 cm infiltration was 192% and 310% higher in summer compared
with winter. In winter, the mean 10 cm infiltration was 75.87% higher than the mean
200 cm infiltration over both sample years; in summer, the mean 10 cm infiltration was
25.19% higher than 200 cm over both years. Throughout winter 2019/20, the mean 10 cm
infiltration was 71.38% higher than the 200 cm proximity; in winter 2020/21, the infiltration
at 10 cm was on average 85.26% higher than the infiltration at 200 cm across all sites.
Summer 2019/20 showed the mean 10 cm infiltration to be 21.55% higher than the 200 cm
infiltration, and the mean 10 cm infiltration data was 35.48% higher than the 200 cm
proximity values throughout 2020/21. These results show that infiltration varies more
between the 10 and 200 cm proximities in winter (71.38% and 85.26% for 2019/20 and
2020/20, respectively) compared with summer; however, the summer 10 cm infiltration was
still higher than the 200 cm by 21.55% and 35.48% (in 2019/20 and 2020/21, respectively).

3.2. Tree Maturity and Infiltration

It would be expected that the discrepancy between infiltration at the 10 cm and 200 cm
proximity would become greater as tree roots develop, break up the surrounding soil
matrix, reduce compaction, and increase porosity [20,21,64,65]. Considering this, it would
be expected that the most recently planted HofE trees would show a lower mean infiltration
at both proximities compared with older trees across the site; however, this is not the case
at the study site. Table 3 shows the two-year mean infiltration of each sample site in winter
and summer at both measured proximities, sorted in ascending order.

Table 3. Sample sites in ascending order based on mean infiltration in winter and summer at both 10
and 200 cm proximity.

Winter 10 cm
cc. 1900 2008 2010 2012 2006

7.8 4.51 3.83 2.69 1.42

Summer 10 cm
cc. 1900 2010 2012 2008 2006

16.18 13.68 12.42 11.9 9.01

Winter 200 cm
cc. 1900 2010 2012 2008 2006

4 3.1 2 1.96 0.6

Summer 200 cm
2010 cc. 1900 2008 2012 2006
10.82 10.3 10.3 9.92 6.38

Table 3 shows that, aside from the 2006 site, which consistently showed the lowest
mean infiltration regardless of season or proximity, the sorted mean infiltration data did
not follow the expected chronological order. The cc. 1900 site showed the highest mean
infiltration for winter (10 and 200 cm) and for summer at 10 cm; however, it was displaced
by 2010 at the summer 200 cm proximity. There was no obvious trend between the highest
and lowest infiltration values, with no consistent chronology, as would be expected based
on the existing literature [20,21,64,65].

Statistical Analysis: Mann–Whitney Testing

To further test for trends and relationships across the collected infiltration data, statis-
tical analysis was undertaken. Conducting a Kolmogorov–Smirnoff test found the collected
data to be non-parametric [66]; therefore, Mann–Whitney tests were undertaken [66–68].
The Mann–Whitney test is the non-parametric equivalent of the independent samples t-test,
and is used to deliver a p-value indicating to what extent two sets of sample data are
statistically significant. Both U1 and U2 (Equations (1) and (2)) can be interpreted as the
number of observations in a sample that precede or follow observations in the other sample
when all samples are ranked in ascending order [69]:

U1 = n1n2 +
n1(n1 + 1)

2
− R1 (1)
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U2 = n1n2 +
n2(n2 + 1)

2
− R2 (2)

where n1 and n2 are the number of samples in group 1 and 2, respectively, and R1 and
R2 are the sum of all ranks from the data in groups 1 and 2, respectively. To determine
significance (p), the normal approximation equation [70] can be used:

P =

∣∣Umin − n1n2
2

∣∣√
n1n2(n1n2+1)

12

(3)

where Umin is the smallest U value. The Mann–Whitney tests would indicate if there was a
significant difference in infiltration between the 10 cm and 200 cm proximities—initially for
all winter/summer data, then on a site-by-site basis. If p ≤ 0.05, then there is a significant
difference between the measured variables; if p > 0.05, then there is not a significant
difference between the two measured variables. The results of the Mann–Whitney test are
shown in Table 4.

Table 4. Test criteria, p values and significance levels of Mann–Whitney testing.

Test Criteria p-Value

All 10 cm vs. 200 cm <0.1
All winter 10 cm vs. 200 cm <0.1

All summer 10 cm vs. 200 cm 0.02

cc. 1900 10 cm vs. 200 cm winter 0.03
2006 10 cm vs. 200 cm winter 0.02
2008 10 cm vs. 200 cm winter 0.15
2010 10 cm vs. 200 cm winter 0.23
2012 10 cm vs. 200 cm winter 0.07

cc. 1900 10 cm vs. 200 cm summer 0.26
2006 10 cm vs. 200 cm summer 0.07
2008 10 cm vs. 200 cm summer 0.08
2010 10 cm vs. 200 cm summer 0.17
2012 10 cm vs. 200 cm summer 0.17

Table 4 shows that overall, there was a significant difference between the mean infil-
tration data at the 10 cm tree proximity and the 200 cm tree proximity in both winter and
summer. However, whilst the overall trends from the proximity infiltration data showed a
significant difference between the 10 cm and 200 cm proximities, this trend was infrequently
seen at each individual sample site. In winter, the only sites to show a p-value ≤ 0.05 were
cc. 1900 and 2006; in summer, no sites showed a significant difference between the 10 cm
and 200 cm infiltration data. Whilst only a few values were below the significance threshold
(0.05), the p-values can still be used as an indication of how tree maturity may be influencing
infiltration across the study site. As discussed, it would be expected that the more recently
planted trees would show less discrepancy between infiltration at both proximities, and
older planted trees would show more discrepancy. The difference between the sample site
p-values (representative of the difference between 10 cm and 200 cm infiltration) are shown
in Table 5.

Table 5. Sample sites sorted in ascending order of the relationship between infiltration difference
between 10 cm and 200 cm for winter and summer.

Winter p-Value Summer p-Value
2006 0.02 2006 0.07

cc. 1900 0.03 2008 0.08
2012 0.07 2010 0.17
2008 0.15 2012 0.17
2010 0.23 cc. 1900 0.26
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The values in Table 5 do not follow the expected chronological increase of the 10 cm
and 200 cm infiltration data, as would be expected based on existing literature; however,
this trend may be due to varying soil textures, sample days, and antecedent soil saturation.
Section 4 discusses and contextualises the presented results in further detail.

4. Discussion

The results of the collected infiltration data show that mean infiltration was higher at
the 10 cm proximity compared with the 200 cm proximity by 75.87% in winter and 25.19% in
summer. Additionally, the mean 10 cm infiltration was 192% higher in summer compared
with winter, and the mean 200 cm infiltration was 310% higher in summer compared with
winter. There is no evidence to suggest a correlation between tree maturity and increase
infiltration (Section 3.2). Infiltration was highest across both proximities at the cc. 1900 site,
which supports literature indicating that maturity results in greater infiltration [3,18,71];
however, infiltration was lowest at the 2006 site (the oldest HofE trees), which would be
expected to demonstrate the second-highest infiltration rate following chronology. When
contextualizing the results of this study, it is important to consider tree maturity, current
plating mentality, and antecedent conditions, which are discussed throughout this section.

4.1. Infiltration and Tree Proximity

Th results presented throughout Section 3 indicate that the presence of the tree, and
particularly the developing root system, influences infiltration by increasing soil porosity,
allowing for soil-water storage and faster infiltration [18,20,58]. Mean infiltration was
higher at the 10 cm proximity compared with the 200 cm proximity by 75.87% in winter
and 25.19% in summer. It was discussed in Section 1 that tree roots connect flow pathways,
reduce compaction, influence porosity, and change soil structure [18–23], and the results
of this study support this. Further to this, Section 3.1 highlights the variance between
winter and summer infiltration values, showing mean infiltration to be 235% higher in
summer compared with winter, and summer 10 cm and 200 cm infiltration being 180% and
290% higher than winter values, respectively. This adds further evidence in support of
tree planting, as results show that trees are capable of increasing infiltration at the 10 cm
proximity throughout summer and winter, regardless of the naturally low permeability of
the sample site soil (Table 1). These results contribute to the knowledge gap regarding both
infiltration and proximity, as well as seasonal variations in infiltration, and indicate that
tree planting is valuable as a method of NFM.

4.2. Infiltration and Tree Maturity

Regarding the influence of tree maturity on infiltration, there is no evidence to suggest
a correlation between tree maturity and increased infiltration at either proximity over
time, which has been identified through use of the Mann–Whitney testing presented
throughout Section 3. Whilst this finding does predominantly dispute what has been
identified regarding tree maturity in the literature [3,71,72], it is important to consider these
results in the context of the current ages of sampled trees. Aside from the cc. 1900 site,
the oldest trees sampled were planted in 2006 and the youngest in 2020. Thus, the 2006
woodland had only been in-situ for 15 years, and the 2012 woodland for 9 years (at the time
of analysis). The maturity ages of the sampled tree species were discussed in Section 2.2,
concluding that birch and aspen trees can live for 100–120 years, reaching their final
heights (where infiltration will be at a maximum) at 60 and 30 years, respectively [38–40].
Considering this, the sample trees are still early in their development and the maturity-
relationship results presented throughout Section 3 are only representative of the beginning
of the likely effects that the trees will have on infiltration. Whilst there are no obvious
trends between infiltration and maturity, Tables 2 and 3 show that the cc. 1900 sample
site demonstrated the highest infiltration at the 200 cm proximity in the winter, and the
10 cm proximity in both winter and summer. This supports the existing literature regarding
infiltration and maturity [18,28,73,74]. According to chronology, and based on the existing
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literature, it would be expected that the 2006 site would demonstrate the next highest
infiltration (after cc. 1900); however, this was not the case. Table 3 shows the 2006 site
to consistently show the lowest infiltration at both proximities, regardless of seasonality.
Referring back to the age of trees planted at the site, particularly in comparison to their
discussed maturity age and lifespan, this study has focused primarily on young trees (15 to
1 year old). The results of the infiltration data analysis have highlighted that very mature
trees (cc. 1900) promote high infiltration, which is an insight into what could potentially be
expected from the HofE planted trees across the site.

4.3. Anticedent Conditions

The results regarding tree proximity, maturity, and infiltration can be further con-
textualised when considering the influence of soil texture across the study site [23,60].
Seen in Table 1, the 2006, 2008, and 2012 sites are clay-textured, meaning they are less
permeable compared with the control, cc. 1900 and 2010 sites [75,76]. Antecedent moisture,
compounded by the less permeable clay-texture, often resulted in surface water pooling
during and after rainfall at the aforementioned sites. Infiltration data could not be collected
(although it was always attempted) during surface pooling, and it is this phenomenon
that may account for the recorded low permeability. Surface pooling was also exagger-
ated by the winter of 2020 being the fifth wettest on record (329.4 mm/143% higher than
the 1981–2010 baseline), and the February of 2020 being the wettest ever recorded, with
155 mm of precipitation (258% higher than the 1981–2010 baseline) [77,78]. It is important
to acknowledge the effect that soil texture and moisture may have had on the collected
results. However, this study shows that tree planting still increased infiltration at the 10 cm
proximity compared with the 200 cm proximity, which is a valuable contribution to the
current knowledge regarding the impacts of tree planting on infiltration, and their potential
use as a method of NFM.

4.4. Trees and Construction

While this study has demonstrated that there is not a correlation between tree ma-
turity and infiltration at both near and far proximities across the site, it is displayed in
Tables 2 and 3 that the cc. 1900 sample site showed the highest infiltration at the 200 cm
proximity in the winter, and the 10 cm proximity in both winter and summer. This finding
is notable when considering the way in which woodland areas are currently managed
regarding the felling and (less frequent) translocation of trees to make way for impermeable
developments [3,18,79]. Urbanisation can often involve the removal of mature(ing) trees,
and this study has shown that trees increase the nearby soil porosity and infiltration rate; so,
the removal of established woodlands can alter the hydrology of an area [3,18,30,80]. Aside
from the demonstrated improvements to soil porosity and infiltration (Section 3), trees are
also proven to contribute to increased interception. Quantifying interception is difficult
due to the need for specialised equipment or continuous monitoring [81–83]. However,
it is suggested that broadleaf interception loss as a percentage of total precipitation is
estimated to be between 10–34% (mean 24.25%) [84,85]. As a comparison, interception loss
for grassland is negligible, being <1% [16,86]. In addition to the hydrological implications
of mature woodland removal and translocation, it is widely acknowledged that woodlands
capture and store significant volumes of CO2 [72,87,88], and the value of woodland carbon
sequestration has been identified by the UK Government as key to aiding in achieving net
zero carbon emissions [26]. Furthermore, established woodlands are beneficial from the
perspectives of habitat creation and protection [89] and public amenity [16]. Apparent from
the benefits of established woodland areas, is that the removal and replacement of mature
woodland is mostly detrimental to the surrounding area. Whilst the influences of woodland
removal are sometimes ‘balanced out’ by planting saplings in alternate locations, the newly
planted saplings will not have a comparable moderating impact on flood risk (and habitats
and amenity) compared with the felled mature trees, as has been demonstrated throughout
Section 3 [30,75,90].
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4.5. Study Applications

The results of this study have shown that trees (and subsequently woodland) are
valuable as a method of NFM as they can increase infiltration at close proximities, and
become more capable of doing so with increased maturity; this in addition to the associated
benefits regarding carbon sequestration, biodiversity, habitat creation, and public amenity.
Referred to in Section 2.3, the HofE site is predominantly clay-textured, which is known
to demonstrate low permeability and infiltration [55,60]. This therefore indicates that the
derived results are a low-end representation of what the impacts of tree planting could be
over a more permeable geology. Area calculations of superficial alluvium, clay, peat, and
fluvial deposits throughout the UK show 15% (36,374.25 km2) to be similar in geology to
the HofE site [91]. Therefore, 15% of the UK is likely to demonstrate similar infiltration
characteristics to the results of this study (Section 3) if trees were to be planted. However,
this statistic can also be interpreted to show that 85% (206,120.75 km2) of the UK is non-clay
textured; indicating that the low-end results derived throughout this study will likely
be increased if applied to other areas of the UK [55,89]. Infiltration may be higher, and
differing trends may be identified regarding seasonality and tree maturity [20,21]. This
highlights the wider applicability of the collected data, emphasising the impact of the
study results and proving the applicability of the methodology to other areas across the
UK. This also presents an opportunity for this research to be extrapolated and applied to
other geologies and soil textures, to potentially aid in justifying the use of tree planting as a
method of NFM.

It was discussed throughout Section 4.4 that removing woodland does not only dis-
rupt the ongoing processes of infiltration and interception, but that habitats and carbon
sequestration are also influenced—something which the UK Government is trying to al-
leviate through woodland planting [26]. This is also applicable to planting new saplings
to account for the removed established trees—new saplings take time to develop the root
systems necessary to influence soil porosity (as has been shown throughout this study),
and saplings cannot intercept precipitation to the same extent as an established tree with a
larger canopy.

5. Conclusions and Future Work

This study used the MDI to collect 1287 infiltration measurements from 10 cm and
200 cm away from sample trees across a clay-texture site, owned by the HofE forest, in
Warwickshire, UK. The results of the study show that mean infiltration was higher at the
10 cm proximity compared with the 200 cm proximity by 75.87% in winter and 25.19% in
summer, and that mean infiltration was 180% and 290% higher in summer compared with
winter at the 10 cm and 200 cm proximities, respectively. There is little evidence to show a
relationship between tree maturity and infiltration; however, the sample trees were still
early in their development, and it is likely that infiltration will increase as the root systems
of the trees develop [18–23].

The conclusions show that tree planting increases infiltration, even over less-permeable
soil textures (see Section 2.3); therefore, is valuable as a method of NFM. The findings of
this study also have connotations regarding the way in which woodlands are currently
managed, with particular reference to development, construction, and forestry. Trees
should be left in-situ wherever possible, and allowed to mature to achieve their maximum
infiltration potential. Tree planting is not only beneficial to flood risk management, as
Section 4.3 indicates that further benefits include carbon sequestration, public amenity,
and habitat creation and preservation. It has been discussed in the literature [30] that
published research and case studies reporting the results of long-term woodland infiltration
studies are scarce. Shorter-term tree planting and infiltration studies have been under-
taken [3,18,30,79]; however, this study has contributed to the wider understanding of the
longer-term implications and relationships of tree planting and infiltration with regard to
proximity and maturity.
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Future work will involve developing a method for projecting the collected infiltration
data, and simulating this using a hydrologic model to project the likely future hydrological
response of the study site regarding precipitation and baseflow increases in light of climate
change. Additionally, future studies could investigate likely variations to the study findings,
with specific reference to the impact that climate change will have on woodland growth and
rainfall patterns, and how this would influence the effectiveness of tree planting as a method
of NFM. Furthermore, further considerations will be made regarding the incorporation of
time domain reflectometry (TDR) measurements to compliment the derived infiltration
data [92]; TDR instrumentation could be installed at both measurement proximities and
the information interpreted to inform infiltration measurements. This would allow for a
more robust interpretation of the influence of trees on infiltration characteristics dependent
on maturity and proximity at greater depths [93–95].
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