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Information Length Quantification and Forecasting
of Power Systems Kinetic Energy

Harold R. Chamorro, Senior Member, IEEE, Adrian-Josue Guel-Cortez, Student Member, IEEE,
Eun-jin Kim, Senior Member, IEEE, Francisco Gonzalez-Longatt, Senior Member, IEEE,

Álvaro Ortega, Member, IEEE, and Wilmar Martinez, Senior Member, IEEE

Abstract—One of the short-coming challenges of power systems
operation and planning is the difficulty to quantify the variability
of power systems Kinetic Energy (KE) to unveil online additional
information for the system operators’ decisions support. KE
monitoring requires innovative methods to analyse the continuous
fluctuations in the KE power’s systems. In this paper, we
propose the use of information theory, specifically the concept
of Information Length (IL), as a way to provide useful insights
into the power system KE variability and to demonstrate its
utility as a starting point in decision making for power systems
management. The proposed IL metric is applied to monthly
collected data from the Nordic Power System during three
consecutive years in order to investigate the KE evolution. Our
results reveal that the proposed method provides an effective
description of the seasonal statistical variability enabling the
identification of the particular month and day that have the least
and the most KE variability. Additionally, by applying a Long
Short-Term Memory (LSTM) neural network model to estimate
the value of the IL on-line, we also show the possibility of using
the metric as data-driven support.

Index Terms—Kinetic Energy Variability, Information Length,
Time-series Forecasting, Support Decision Tools, Data Fluctua-
tion Analysis.

I. INTRODUCTION

A. Motivation

Existing power systems governed by conventional energy
production sources raise environmental concerns. The develop-
ment towards a sustainable society involving a high penetration
of non-synchronous energy sources such as wind, tidal, and
solar power provokes challenges for Transmission System
Operators (TSOs) which include the grid’s instability and
the Kinetic Energy (KE) reduction [1], [2]. In this context,
TSOs find themselves in the need to develop real-time inertia
analysis tools to help them make safe and cost-effective
decisions while promoting regulation rules of the system’s
strength and KE to accommodate high levels of renewable
sources [3], [4].
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In this vein, research laboratories like the Pacific Northwest
National Laboratory (PNNL) have managed to facilitate the
KE analysis of, e.g., the Western Electricity Coordination
Council (WECC) system by developing KE estimation tools
[5]. The California Independent System Operator (CAISO)
is also concerned about the operating reserves with different
resources [6] by requiring new platforms for monitoring
the KE and the status of the network [7]. The European
synchronous area and its TSOs have also become aware
of the power system’s KE reduction in their systems, due
to the forthcoming non-synchronous generation integration’s
impact on operation, and coal power decommissioning [8].
For instance, the Romanian TSO Transelectrica S.A. [9] has
observed large imbalances degrading the inertia response after
dismantling carbon emitting power plants. Correspondingly,
the Spanish TSO, Red Electrica de España (REE) [10], has
reported a decrease on the system’s KE when trying to develop
an improved network plan to contemplate low-inertia future
scenarios. Particularly, the Nordic Power System (NPS) is
on gradual decommissioning of nuclear and thermal power,
which will clearly lead to a substantial reduction of the future
physical inertia and its intrinsic response in the system [11].
B. Literature Review

As a way to tackle some of the aforementioned chal-
lenges, TSOs are equipped with Supervisory Control And
Data Acquisition (SCADA) control centres where the status
of all the connected generators is available, and the inertia
information can be obtained. By taking advantage of these
technologies, the Electric Reliability Council of Texas (ER-
COT) in the United States has implemented a procedure for
real-time monitoring and evaluation of frequency and inertia
events. In their procedure, day-ahead market and the ancillary
services are included [12]. An online inertia estimation tool
has been implemented by the Nordic TSOs, (e.g. Fingrid,
Svenska Kraftnät, Statnett, and Energinet), to keep track of
the breaker positions of synchronously connected generators,
their apparent power and inertia constant. Thus, the KE in
the system can be estimated [13]. Another example is the
online tool used for the day-ahead and intra-day KE forecast
exhibited by the National Grid of the United Kingdom TSO
[14], as a testbed for the enhancement of the system [15].
System’s inertia estimations using historical operation data
of the Great Britain power system in [16], indicate the peak
demand periods to improve the system performance.

So far, we have underlined the importance of monitoring
the power system’s KE and stressed the existing experiences
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employed for such a task. However, it is also important to
study other aspects of the system’s KE, such as the amount of
fluctuations or variations that KE suffers through time. These
studies can provide powerful tools for future decision-making,
since a KE variation metric may detect issues like abrupt
events in the system [17]. In general, analysing fluctuations in
any complex system is a challenging endeavour that remains
an open research problem. A possible solution to this problem
may consist of the application of concepts from areas such
as statistical mechanics, stochastic thermodynamics or infor-
mation theory [18]–[20]. Up to date, few results have been
proposed for the study of fluctuations in the power system’s
KE which make use of the aforementioned approaches. For
instance, authors in [21] propose the use of the Rate of Change
of Inertia (RoCoI). This concept is useful when assessing
the generation schedule and observing the so-called energy
fluctuations in the process. Besides, [22] proposes to use
Probability Density Functions (PDFs) to quantify the impact
of variability in power systems frequency time series for a
yearly period, showing a comprehensive sensitivity analysis
and PDFs of the frequency of the Center of Inertia (CoI)
measurement under different scenarios.

More recent and promising approaches, also based on the
study of the PDFs evolution of the system through time, apply
the tools provided by the area of information theory. For
instance, a power system risk security assessment based on
maximum information entropy is studied in [23]. Similarly,
an overall information security assessment is given in [24], by
using entropy weight coefficients that improve the assessment
factors of the network. Based on the entropy principle [25], the
severity of cascading events was determined. A model based
on cross-entropy for wind power forecasting is proposed in
[26], showed an accurate prediction and information fusion
process. Additionally, an optimal generation dispatch strategy
that uses the maximum entropy principle for accurate proba-
bilistic distributions of the power flow is presented in [27].
Information transfer is used in [28], for characterising the
influence between the various states of a dynamical system,
and to identify the generators and states which are responsible
for causing instability of the power network related to the
participation factors. Authors in [29], propose an approach to
reconstruct of the power system security region by using infor-
mation theory and to evaluate the amount of High Information
Content (HIC) in each operating space variable, achieving the
effective descriptor variables of the security region separately.
In order to describe the overall properties of flow distribution,
the notion of flow entropy and its relationship with a blackout
in terms of both the dynamic propagation path and the scale of
static blackout are investigated in [30]. Based on the entropy
theory, the optimal allocation of Flexible AC Transmission
Systems (FACTS) is obtained in [31]. Power flow entropy
weighted by the regional average load rate is analysed in [32],
reflecting the power flow distribution accurately.

When discussing the information theory applications to
our field of interest, it is important to highlight that most
of the presented information-based results use the so-called
Shannon entropy concept. However, Shannon entropy does
not provide a full description of the statistical changes in a

time series. This has lead to the use of other information
theory concepts such as the Fisher information [33]–[35],
differential entropy [36], the Kullback-Leibler divergence [37]
or the information length (IL) [38], [39]. The latter, being of
our main interest in this work, permit us to quantify the total
amount of statistical changes in a given range of time. As
IL depends on the evolution path between two states (PDFs),
it has the advantage over other information metrics (for
instance, differential entropy) [40]. Moreover, IL’s formulation
provides an intriguing link between stochastic processes and
information geometry [41]. IL has been successfully applied
in different process including quantum, fluid and biological
process [38]. In addition, inspired by the IL metric, [42]
introduces a new information-geometric measure of causality
by calculating the effect of one variable on the information rate
of the other variable. Furthermore, [43] elucidates the meaning
of IL in light of stochastic thermodynamics, in particular,
detailing its connection to entropy production or free energy in
the case of the non-autonomous Ornstein–Uhlenbeck process.
Finally, [44] and [17] present the analysis of the computation
of IL for linear stochastic autonomous processes, facilitating
its application to a wide range of engineering scenarios, and
proving that IL can be used for abrupt event predictions. The
last inspiring the application of IL in the present work.

A secondary result follows if we pursue the forecasting of
the IL value, which could prevent the TSOs of future abrupt
events in the KE fluctuations. Forecasting is a large area of
research, but we can focus on one of the most prominent tools
used in power systems time series, the Neural Networks (NNs).
As a subset of Machine Learning, NNs applicability has been
shown in contributions such as frequency nadir forecasting
[45], wind power prediction [46], energy demand forecasting
[47], and load forecasting [48]. In addition, probabilistic
forecasting has been used in wind and photovoltaic (PV)
power forecasting. Equivalently, a wind power probabilistic
forecasting optimisation-mixed algorithm with quantile regres-
sion is proposed in [49], using data from two wind farms.
Two locations were studied, one in Colorado and another
one in New Brunswick, showing seasonality variation and
high accurate results. A bivariate wind power forecasting
algorithm based on a parametric approach is used in [50], with
marginal distribution using the data sampled from the Iberian
peninsula. In [51], Quantile regression averaging is used with
Long-short Term Memory (LSTM) to obtain probabilistic
of day-ahead PV forecasting using real measurement data.
A probabilistic forecasting of PV generation is proposed in
[52], incorporating the variability based on quantile regression
and extreme learning machine methods. The impact of such
analyses on the operation of power systems is a growing area
of research and, as the above contributions show, there is
potential of applying and merging both ML and probabilistic
techniques for forecasting, such as the proposed IL metric not
previously studied.

C. Contributions

The aforementioned works highlight the main issues that
TSOs are currently facing, namely the evaluation of the
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available KE and its evolution (fluctuations) in the power
system as the share of synchronous generation is being
gradually reduced. While techniques that provide an accurate
estimation of the instantaneous values of such parameters exist
and have been successfully implemented, the development of
approaches to analyse their evolution is still an intense topic of
research. Taking into account this background, an information
geometry based approach to analyse the statistical evolution
of the KE of a power system has not been presented yet.
Such a scheme is the main contribution of this paper, namely,
a data-driven approach that applies the promising IL metric
over the system KE. The proposed method is tested using
power systems’ KE time series observables of the Nordic
Power System (NPS) obtained from system recording data
of three consecutive years, 2018, 2019, and 2020. Then, we
discuss how the IL’s metric quantifies the variability behaviour
by season and month. We also evaluate a scenario during 2015
that includes the total KE and the KE produced by hydropower
during March. As a final contribution, we propose a proba-
bilistic forecasting tool that results from the combination of
the IL and a LSTM recurrent neural network. Such a result is
a proof-of-concept of IL as data-driven support in KE abrupt
events prediction.

D. Paper Organization

The remainder of the paper is organised as follows: Section
II describes the theoretical framework of the frequency re-
sponse, and KE definition used. Section III formally discusses
the concept of IL, its interpretation and the application to time
series variability. Section IV explains the details of the fore-
casting and IL computation algorithm. Section V shows the
time series data study cases performed. The simulation results
and discussions are presented in Section VI, specifying the
highest and lowest variability months per year. Additionally
in this section, a case presenting the KE forecast is given.
A brief discussion of the KE forecast is presented in Section
VII. Finally, the conclusions and future work are presented in
Section in VIII.

II. KINETIC ENERGY PRELIMINARIES

Synchronous and, to some extent, non-synchronous devices
are sources of inertia due to their rotating masses and/or
supplementary controllers that allow them to contribute to
the power system strength. High values of inertia ensure
that regulator controls are initiated before critical values are
reached by frequency. Low inertia systems, on the other hand,
have a high Rate of Change of Frequency (RoCoF), which is
not recommended for stability management. In a low-inertia
power system, high RoCoF causes the frequency to easily
exceed unsafe values and activate safety before activating
the control of the governor [53]. As inertia can vary over
time due to the penetration of stochastic non-synchronous
renewable energy sources, it is important to track the time-
varying KE values in the network. This will help to ensure
network planning, operation, stability control and optimisation
of system KE values.

Because of load variations, the frequency fluctuates around
the nominal value during normal operation. As a result of
the mismatch between mechanical and electrical torque, the
generator rotor speed changes, releasing the inertial response.
System inertia (HT ), which is reliant on the inertia constants
(Hi) of all synchronous generators in the system and system
rated power (ST ), dictates the system’s ability to deal with
these frequent shifts in the power balance. This is represented
as follows:

Hi =
KEi
Si

(1)

HT =

∑n
i=1KEi
ST

(2)

The rotational inertia (Hi) is a good indicator for the capacity
of a synchronous generator dominated power system to cope
with active power imbalances. However, the practical use of
the rotational inertia is limited due to the need to appropriately
relates the individual rotational inertia of each generator to a
common base to obtain the total rotational inertia of a system.
Instead of using the rotational inertia, we use the KE which
is a more convenient dimensional indicator to allow base-free
comparisons.

III. INFORMATION LENGTH THEORY

In this section, we provide a theoretical background of the
IL metric. We also present an interpretation of the metric and a
practical example where IL is computed from a mathematical
model. Besides, to compute IL from a time series, a discrete
version of IL is defined. Then, we describe the algorithm to
compute IL from a time series. Finally, we describe the major
benefits of the metric.

A. The concept of Information length

In mathematical terms, given a time-dependent probability
density function p(x; t) of a nth-order stochastic variable x,
the Information Length L(t) of its evolution from an initial
time t0 = 0 to a final time tf = t is defined by

L(t) =
∫ t

0

dt1
τ(t1)

=

∫ t

0

√
E(t1) dt1, (3)

E(t) =
∫
Rn

(
1

p(x; t1)

[
∂p(x; t1)

∂t1

]2)
dx. (4)

To understand (3), it is important to note that τ(t) is a
dynamic time unit which gives the correlation time over which
p(x; t) changes [40]. τ(t) also serves as the time unit in
the statistical space. In addition, its inverse 1

τ(t) quantifies
the (average) rate of change of information in time [43].
Finally, L is a dimensionless distance that quantifies the total
information change in time through the root-mean-squared
fluctuating energy rate

√
E [38]. In a few words, L gives the

total number of statistically different states the random variable
x passes through in time. Throughout this paper, we will call√
E(t) = 1

τ(t) the information velocity.
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B. Information length in a Gaussian process

In engineering, it is common to assume that the studied
random variable x is Gaussian or follows a normal distribution
with mean µ and covariance Σ, i.e. x ∼ N (µ,Σ). Hence, it
is useful to introduce the following result which allows us to
compute L in any given Gaussian process.

Theorem 1 ( [17], [44]): The information length of a nth-
order Gaussian random variable x with mean µ and covariance
Σ is given by the following integral

L(t)=
∫ t

0

√
E(t1) dt1, (5)

E(t1)=µ̇(t1)
TΣ−1(t1)µ̇(t1)+

1

2
tr
(
(Σ−1(t1)Σ̇(t1))

2
)
.(6)

From (6), we see that E(t) ≥ 0 for all t since Σ is symmetric
and positive definite and the value of tr(A2) ≥ 0 for any
matrix A ∈ Rn×n. Note that in [17], the value of E(t) has
been proved to be an alternative for abrupt events detection in
linear Gaussian process.

1) Interpretation of the information length: To have a
better understanding of the application of L, we can consider
computing its value from the mathematical model of a physical
process. To this end, consider a simple linear first-order
stochastic process given by the following Langevin equation

dx

dt
= −γ(t) (x− f(t)) + ξ, (7)

where x is a random variable, F is a deterministic force, ξ
is a short correlated random forcing such that 〈ξ(t)ξ(t1)〉 =
2Dδ(t − t1) and 〈ξ(t)〉 = 0. Eq. (7) is commonly used to
describe the movement of a particle confined to a harmonic
potential V (x) = 1

2γ(x− f(t))
2. According to [54], [55], the

value of (6) for (7) is given by

E(t) = β̇2

2β2 + 2βẏ2, (8)

where β̇ = dβ
dt and ẏ = dy

dt , such that

p(x; t)=
√

β
π exp [−β(x− y)]2, y(t)=〈x〉=x(0)e−G(t)+F (t)

1
2β(t) =〈(x(t)− y(t))

2〉=
∫ t

0

2De−2(G(t)−G(t1)) dt1,

F (t)=

∫ t

0

e−(G(t)−G(t1))γ(t1)f(t1) dt1, (9)

and G(t)=
∫ t
0
γ(t′) dt′.

From (8), we see that E(t) depends on changes in the
variance and mean defined by the dynamics of (7). If we
plot the changes of p(x; t) in the three-dimensional space
(t, x, p(x; t)), the result would be similar to the schematic
shown in Fig. 1 where

√
E(t) (information velocity) would

fluctuate along the path from the initial PDF p(x, t0) to the
final PDF p(x, tF ) describing the speed limit from the statisti-
cal distinguishability of the observables (for further details, see
[40]). Thus, the time integral of

√
E(t), as mentioned before,

gives us the total amount of statistical changes (i.e. changes
in the mean y and the variance 1

2β ) along the path.
As mentioned in Section I, when using metrics like the

differential entropy [36], we may not be able to observe all

p(x, t)

x

t

p(x, t0)

p(x, tF ) path

L(t) =
∫ tF
t0

√∫
Rn

(
[∂t1p(x;t)]

2

p(x;t)

)
dx dt1

Fig. 1: Schematic of the evolution of p(x; t) over time t.
Computing L(t) gives the total amount of statistical changes
on p(x; t) from t0 to tF .

the statistical changes that occur at any time. This is because
of the lack of locality since differential entropy focuses on
quantifying the difference between two given PDFs without
considering the intermediate states [56]. In other words, it
only informs us about the changes that affect the overall
system evolution. In contrast, IL L(t) measures local changes
that takes place along the path for the system [38], [39].
Furthermore, IL has been invoked as a new way of mapping
out an attractor structure and a useful measure that can link
stochastic processes and geometry [44], [56]. For instance, if
we define limt→∞ L(t) as the total IL over the entire evolution
of a system, for system (8), limt→∞ L(t) takes its minimum
value at the system’s stable equilibrium. Moreover, its value
increases linearly with respect to the mean position of an initial
PDF p(x; 0) from the stable equilibrium point [39], [57]. This
linear dependence show that the value of IL preserves the
linear geometry of the underlying Gaussian process (8). It is
important to note that such a feature is lost when using other
metrics [44], [56].

Finally, by definition (3), let us emphasise that IL is a
model-free and dimensionless metric. Thus, IL can be com-
puted by the estimation of a time-variant PDF of a time series,
regardless of the data’s nature.

C. The discrete information length

Regarding the nature of our application, it is important to
define the methodology that the present work uses to estimate
the value of IL for the KE time series in a power system.
Specifically, to compute the value of IL for a time series of
a random variable x, a discrete version of Equation (3) is
applied. Such expression can be defined as follows [56]

L[n]=h
n∑
k=0

1

T [kTs]
, (10)

1

T [kTs]2
=E [kTs]=

s

h2

∑
j

P [j; kTs]
(
ln P [j;(k+1)Ts]

P [j;kTs]

)2
.

where (10) k denotes discrete time with sample period Ts and
j denotes partial spatial point. The discrete version of Time-
dependent PDF (p(x; t)) is denoted by P [j, kTs]; and the time
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step and spatial step are denoted as h = (tf/n) (tf is the
total time) and s respectively. Since, logarithm is used in this
calculation (see (10)), when P [j; kTs] takes the smallest value
0, the ln(0) gives an undefined value. To overcome this issue
the following reasoning is applied:

q2=p,

[
dp
dt

]2
p

= 4

[
dq

dt

]2
,

E [kTs]=
∑

j 4
(√

P [j;(k+1)Ts]−
√
P [j;kTs]

)2

T 2
s

,

L[n]=
n∑
k=0

√
E [kT ]. (11)

We use Equation (11) to compute IL of the Kinetic Energy
time series. Besides, to estimate each p[j; kTs], an sliding-
window algorithm that moves over the time series is applied.
The sliding window can move over the set of real data (see
Algorithm 1) or the set of estimated values (see Algorithm 2).
The corresponding PDF of the k-th time is found by using the
kernel smoothing function method described in [58] (named
ksdensity in MATLAB®).

1) IL computation from a time series: As mentioned above,
implementing an sliding window algorithm is the easiest way
to compute IL from a time series. A pseudo-code description
for such procedure can be seen in Algorithm 1. From, Algo-
rithm 1, note that at least N measurements are necessary to
estimate the first value of

√
E .

Algorithm 1: Algorithm for the estimation of the
Information Length from a time series.

Data: Consider the initial data set:
Di := {D[kTs]|D[kTs] ∈ R ∀k =
i−N, i−N + 1, . . . , i} such that N is the
number of samples (window size) in the data set
(KE data in our case) sampled with sampling
period Ts and i ∈ N is the current time.
Besides, n ∈ N is the final discrete time of the
experiment.

Result: The value of L[n] and E [nTs] (see Eq. (11)).
1 P0 = ksdensity(D0) // Estimate the initial PDF

using the function ksdensity from MATLAB® on

the initial data D0.

2 i = 1
3 while i ≤ n do
4 Pi = ksdensity(Di)// Estimate next PDF.

/* Compute IL using Eq. (11). */

5 [L[i], E [iTs]]=InformationLength(Pi, Pi−1)
6 i = i+ 1
7 end
8 return L[n], E [nTs]

Finally, the function InformationLength in Algorithm 1
corresponds to the programming of the discrete functions in
Eq. (11).

IV. IL FORECASTING ALGORITHM

Since IL has been proved to detect abrupt events in the
statistical space [17], predicting its future value on real-time
can be of great importance in applications like power-systems
management. To this end, as a proof of concept, we introduce a
forecasting algorithm that implements a basic recursive neural
network over a sliding window to estimate the value of the
PDF P [j, kTs] at the discrete time kTs.

Remark 1: Here, our goal is to provide the basics for
applying IL with a forecasting algorithm. We do not intend to
provide a full study of the forecasting algorithm methodologies
that could be implemented. Instead, we explore a popular
method and combine it with the IL metric to analyse the
possible implications.

N

N + 1

p(x, t)

x

t

Ts

P0

x̂

P1

P2

P3

Fig. 2: Schematic describing the data-driven methodology to
compute IL through a forecasting algorithm. The method uses
the predicted value x̂ from the time series x (the present and
predicted values presented in green and red colour, respec-
tively) with sample time Ts and includes it in the sliding
window of size N to estimate the next value of the PDF (thus,
the next value of E).

First, we recall that NNs are a series of architectures and
algorithms based on brain behaviour. The goal behind these
models is to learn from examples and, in a similar way as
human cerebral cells do and to change the interactions between
basic units known as neurons [59]. Here, the NN is used as
a regressor which incorporates non-linearity and the potential
to learn from data. Specifically, the methodology uses a long
short-term memory (LSTM) model.

A LSTM is an Recurrent Neural Network (RNN)-based
architecture, where the ability to retain part of the information
that belongs to the hidden layer can be used for forecasting at
particular times [60]. The advantage of LSTM, in relation to
common RNN models, is the improvement of the performance
over the gradient vanishing problem, which represents a diffi-
culty in the traditional back-propagation algorithm employed
for training. However, the comparison of other neural models
or the usage of different forecasting methods is out of the
scope of this paper.

For our analysis, we have used the implemented LSTM
network in MATLAB®, a deep leaning method using 200
hidden units [61]. In Algorithm 2, we provide the pseudocode
that computes IL using (11) and the time series forecasted
value x̂. Figure 2 illustrates the proposed methodology. In
brief, as suggested by Fig. 2, in the first prediction Algorithm
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2 uses N data (data set D0) with sample time Ts to train the
RNN via the function TrainingFunc and estimate the initial
PDF P0 using the function ksdensity. Next, it forecasts the
next value in the time series x̂ using the PredictandUpdate
function, and adds it to the next sliding window N + 1 (data
set D1) via the function UpdateDataSet to estimate the next
PDF P1. Finally, the value of IL is computed from the initial
PDF P0 and the forecasted P1. Note that, after the value
x̂ is predicted by the RNN, we update the network with
the real value of the previous prediction using the function
PredictandUpdate in the next prediction. This process is
repeated till we reach the final discrete time n and return the
values of L[n], E [nTs].

Algorithm 2: Information length forecasting algo-
rithm.

Data: Consider the normalised initial data set:
Di := {D[kTs]|D[kTs] ∈ R ∀k =
i−N, i−N + 1, . . . , i} such that N is the
number of samples (window size) in the data set
sampled with sampling period Ts and i ∈ N is
the current time. Besides, n ∈ N is the final
discrete time.

Result: The value of L[n] and E [nTs] (see Eq. (11)).
/* Train the LSTM arquitecture N. */

1 N = TrainingFunc(D0)
2 P0 = ksdensity(D0) // Estimate the initial PDF

using the function ksdensity from MATLAB® on

the initial data D0.

3 i = 1
4 while i ≤ n do

/* Insert a new measurement, predict the new

value x̂ and update the network N. */

5 [N , x̂] =PredictandUpdateNet(N , D[iTs])
6 Di=UpdateDataSet(Di−1, x̂)// Move the sliding

window adding prediction x̂.

7 Pi = ksdensity(Di)// Estimate next PDF.

/* Compute IL using Eq. (11). */

8 [L[i], E [iTs]]=InformationLength(Pi, Pi−1)
9 i = i+ 1

10 end
11 return L[n], E [nTs]

V. KINETIC ENERGY TIME-SERIES STUDIED

The NPS is the interconnected and single market area of the
Nordic countries that belongs to the region in Northern Europe
and the North Atlantic, specifically Sweden, Norway, Finland,
and eastern Denmark. For the past ten years, the reduction of
rotational inertia has been a concern for the NPS TSOs. One
of the short-term measures to ensure the system frequency
stability has consisted in installing a measurement and moni-
toring system to capture the rotational inertia available in the
NPS. This monitoring system produces situational awareness
alarms to indicate when the levels of the inertia fall below
a predefined limit. Using this approach, the TSOs attempt to
avoid operational scenarios where the reduced inertia and an

N−1 contingency criterion can negatively affect the frequency
stability.

The NPS used the so-called ‘unit commitment method’ to
calculate the total system rotational inertia, and it is based
on adding the rotational inertia of each synchronous machine
connected to the system. The TSOs of the NPS have calculated
the KE of the NPS in real-time since 2015. This research paper
takes advantage of the recorded data of the KE to develop a
metric to quantify its variability and unveil hidden information.
We utilise the historical data of the KE in the NPS (in GWs)

0 50 100 150 200 250 300 350 400

120

140

160

180

200

220

240

260

280 Maximum

Minimum

Mean

2018

(a) KE time series Data Used in
2018

0 50 100 150 200 250 300 350 400

120

140

160

180

200

220

240

260

280 Maximum

Minimum

Mean

2019

(b) KE time series Data Used in
2019

0 50 100 150 200 250 300 350 400

120

140

160

180

200

220

240

260 Maximum

Minimum

Mean

2020

(c) KE time series Data Used in
2020

Fig. 3: KE time series of 2018, 2019, and 2020.

recorded during the entire years of 2018, 2019, and 2020. The
time series of the KE consists of 44640 samples; it comprises
the total data of these years with a resolution of one sample
per minute. Figure 3a shows a plot of the KE data where
seasonal variation of the KE is evident. For 2018, low values
are located during the summer months where the dominant-
heating and lighting load is reduced (min: 127 GWs) and as a
consequence, the number of generators to cope with the load
is minor. As expected, the maximum KE is located during
the winter months (max 272 GW.s). Figure 3 reflects the
raise of concern about the reduction of KE by comparing
the annual averages of KE. Average KE during 2018 had a
value of 200 GWs, whereas during 2019, and 2020 is 195
and 190 respectively, representing 5% reduction. A further
descriptive using classical statistics of the KE raw data in
the form of a monthly box plot is performed in Figure 4
(including distribution of the data as a histogram, the left
side of the boxplot). Figure 4 allows identifying the mean
and variance per month of the KE during the years studied.
From Figure 4a, November 2018 shows the highest variance
of the KE with extreme values outside the upper and lower
quartiles that almost reach the minimal global inertia reached
during summer months. On the other hand, May 2018 exhibits
minimum changes in the KE, and it coincides with mild
temperature and moderate load in the Nordic countries. For
years 2019 and 2020, the histograms show the highest variance
during January and November, respectively. In addition, the
lowest variance occurs during June, and July respectively.
Although these statistical measurements can provide us with
information from the KE of the entire month, a day-by-day
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(a) 2018 (b) 2019

(c) 2020

Fig. 4: Classic statistical Analysis of the KE Analysed per
Month. The charts show a combination of histograms and
boxplots per month in the years 2018, 2019 and 2020.

or hour-per-hour description of the statistical fluctuations is
still missing. Here, the IL metric can provide us with such
information since, as we have discussed previously, it tracks
time series evolution through time-variant PDFs [17], [40].

VI. INFORMATION LENGTH METRIC RESULTS

In the following, to visualise and analyse the given data,
we have assigned the measurements to seasonal groups per
year. Typically, in the Nordic countries, spring runs from
March/April to May, summer from June to August, fall from
September to October/November and winter from Novem-
ber/December to March/February. However, the seasons might
have longer winter and summer periods, and the seasons in
between, spring and fall, can be shorter. Thus, the demand
and power reserves vary accordingly.

From Figure 3, the dramatic effect of seasonality on the KE
is perceived, the summer and winter trends are well defined
whereas the spring and fall periods can be considered as the
decreasing/increasing ramps as the consumption during the
months on those seasons decrease/ increase respectively. Ad-
ditionally, less consumption typically occurs during summer
nights. Note that, the load and generation conditions of the
KE data are unknown and out of the scope of this work.

A. Information Length L(t) per Month during 2018

Figure 5 shows the value of IL L(t) per month in the years
2018, 2019 and 2020. Here, we start the analysis of the IL
metric in the KE from the year 2018. Although, the months
with higher load demand (in the Nordic countries are during
the winter season due to the lighting and heating households
necessity) could be intuitively assigned as the ones with the
higher amount of fluctuations. By analysing the value of the
IL metric per month during 2018, the highest and the lowest
L(t) are during August, and December, respectively. Thus,
indicating that during those months the KE vary the most or
remain stiff, respectively. In this regard, from Figure 4a, we
can also distinguish an anticorrelation between the variance
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Fig. 5: Monthly IL L(t) of the KE during 2018, 2019 and
2020.

and IL per month, which persists in the analysis of the two
consecutive years. In other words, in comparison to IL, when
IL tends to be high the covariance is small. In addition,
although in summer the power consumption is reduced (the
heating is not needed), the typical load fluctuations during
the day show a high L(t) value. This is because compared
to the less variability in winter, where fewer variations in the
consumption indicate less variation in the PDF, in summer
load fluctuations are more repetitive. This analysis implies
that the capacity and reserves need to be adjusted while
the day-ahead planning should be carefully optimised. This
optimisation process is not analysed in this paper.

To perform a more detailed analysis of the L(t) metric,
we have selected the months with the highest and lowest
IL in the year to create Figure 6, where the evolution over
the month of L and

√
E are depicted. When talking about

2018, these are August and December, as we have mentioned
before. Figure 6a presents a collection of time-dependent PDFs
that describe the KE evolution through the month. Note that,
even though all the computations are per hour, the PDFs in
Figure 6a are sampled per day to permit a better visualisation
of their fluctuations. Besides, Figure 6b shows the value of
the information velocity

√
E which describes the gradients of

the variation of both months PDFs through time. High values
and more concurrent peaks during August can be seen, which
means that August presents faster and rapid PDF variations.
These are depicted by high peaks in

√
E on the KE. Lower

values of
√
E represent slower changes. Let us recall that all

quantities are dimensionless.
Furthermore, in Figure 6b, the Information velocity allows

to identify the specific days or hours with extreme transitions
(abrupt events), as it is seen on the day 11 and, 12 during
August, and three subsequent peaks on days 18, 19, and 20.
The highest peak in December happens on the third day, and
subsequent peaks on the days 12, and 13. Both months tend
to have fewer fluctuations at the end of the month.

Figure 6c shows the information length L(t) associated
with the results presented in Figure 6b. We see that L(t)
during August increases faster overtime rate than in December,
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(a) PDF Evolution per day. August (p1(x, t)) vs December
(p1(x, t)) 2018.
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(b) Information Velocity per hour. August vs December 2018.
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(c) Information Length per hour. August vs December 2018.

Fig. 6: IL Metric Comparison during August and December
Months in 2018

specifically in the days 12 and 20 whose rates are considerably
ramping up, whereas in December there are fewer fluctuations
around the smaller slope. This corroborates how L(t) can be
interpreted as a measure of information changes in PDFs.

B. Information Length L(t) per Month during 2019 and 2020

To expand the analysis of the IL metric, we explore the
KE time series of the next consecutive years 2019 and 2020.
Based on Figure 5, for 2019, the months with the highest and
lowest variability are July and February, respectively. Besides,
for 2020, the months with the highest and lowest variability
are August and January, respectively. These months present
similar characteristics in comparison to the winter and summer
seasons of 2018 mentioned in the previous subsection. Note
that February has fewer days than July, for such a reason, we
have included a dashed line in Figures 7b and 7c setting the
end of February.

For July of 2019, in Figure 7b, the days with the highest
variability peaks are the 1st and 14th, which interestingly are
at the beginning and middle of the month followed by the

increasing consumption. The summer in the Nordic countries
is characterised by population movement to summer house-
holds which are continuously being modernised, for instance,
by including new electricity services. The abrupt and joint
activation of these households produce significant changes
(strong variations) in power consumption. Two main variability
peaks are observed on February 1st and 10th of 2019, while
the remainder of the month remains with few strong variations.

Along August of 2020, several KE fluctuations are more
visible as seen in Figure 7e. The highest peak is seen on the
11th. However, this month presents a heavily strong variability
with high intermittency and irregularity. During January of
2020, several more peaks are seen, especially at the end of
the month during the transition to February.

Figures 7c and 7f show a clear difference between the
information length L(t) of the respective months. A month
with higher fluctuations will have a higher value at the end
of the L(t) monthly calculation. Thus, the difference between
August and January of 2020, since both months are highly
fluctuating. The same difference is observed in the final values
between July and February of 2019. Similarly, this indicator
shows a higher variability for summer and winter of 2020
compared to 2019.

C. Information Length L(t) from KE Hydropower

As an additional case, we compare the KE variability be-
tween the KE provided by a renewable source, the hydropower
in this case, versus the total KE during 12 hours of March 27th,
2015. Figure 8a presents both KE time series where we can
observe the differences between these KE data. We have also
included their estimated PDF evolution in Figure 8b to note
the difference on statistical fluctuations. The contribution of
hydropower KE to the total KE is approximately 55% during
these hours. This is because hydroelectricity is a significant
source of energy in the NPS, particularly in Norway, which is
almost hydro-dominated. However, this percentage takes into
account the other countries in the NPS. Note that wind and
solar do not contribute to the KE, and other potential sources
are not available. The IL metric applied to these data shows
a strong variability change from the 7th to the 9th hour in
the KE provided by the hydropower (see Figures 8c and 8d).
Since both KE data are correlated, the total KE also presents
this variation.
D. Forecasting Results

Now, as a proof of concept, We utilise the probabilistic
properties of the KE observables to make predictions in the
values of L and

√
E . As we have discussed in Section IV and

Algorithm 2, the proposed short-term, hour-ahead probabilistic
forecast based on LSTM incorporating uses a normalised PDF.
Besides, the prediction has an hour-rolling horizon that is
being updated with every new estimated value x̂ of the KE
time series. Here, we test Algorithm 2 using the data of
January 2018.

The a posteriori multimodal PDFs evolution for the LSTM
process are shown in Figure 9a. Note that Figure 9 shows only
the second half of the month since the other half of the data
have been used for the LSTM training. As a result, we forecast
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(a) PDF Evolution per day. July
(p1(x, t)) vs February (p2(x, t)) 2019.
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(d) PDF Evolution per day. August
(p1(x, t)) vs January (p2(x, t)) 2020.
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Fig. 7: IL Metric Comparison between the month with the minimum and maximum L in 2019 and 2020
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Fig. 8: IL Metric Comparison of total KE vs hydro KE from
12:00-24:00 hrs at 27 March 2015. Here, N = 2 and Ts =
1hr.

the value of
√
E only for the second half of the month. In this

regard, Figure 9b shows the forecasted E(t) and L(t) metrics.
Here, we note that the variability is maintained with various
gradients during the month. The highest predicted variability
(abrupt event) value is observed during the day 26, however,
the general variability values are similar, meaning the same
KE trend, a high effort of the system to maintain the heavy
consumption since January is in the winter period.

Finally, to quantify the forecasting error, the Root Mean
Square Error (RMSE) between the prediction and the observed

data is used as a forecasting index. The results of the index are
shown in Figure 9c. Although the model gives the highest error
of 15%, the forecast data perform significantly well having an
RMSE of 4.33%.

VII. DISCUSSION

The potential growth of non-synchronous generation in
power systems worldwide is potentially leading to a KE
reduction in the system requiring a deep understanding of
the trends and fluctuations within months, hours or seasons.
The development and application of new metrics can help to
design or adjust the generators or controllers with the ability
to respond to a peak seasonal demand. To this end, we utilise
the IL metric to the behaviour of the KE during the year.
Specifically, we measure the time series fluctuations showing
the possibility to detect extreme and abrupt events in the
system. A clear advantage of the proposed technique is that
the availability of specific demand or generation profiles is
not required. However, patterns or aggregated annual energy
consumption data of the system will potentially help to clarify
further detailed aspects when using the proposed metric. This
aspect is constrained to availability since such data might
require security clearance from TSOs point of view. As the
implementation of KE by TSOs is a recently developed mon-
itoring system, the collection of further data will be needed to
perform a more exhaustive analysis.

Although, operating at full capacity for long periods of time
is unusual for a TSO, anticipatory behaviour and innovative
tools that contribute to gain insights on the system are needed
to incorporate more flexibility to support grid planning for
future irregular or rare events. Moreover, KE analysis, as a
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(a) Predicted PDF evolution for the second
half of January 2018.
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and information Length L(t) for the sec-
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Fig. 9: Analysis of the Prediction of Information Length using Algorithm 2 where the first half of January 2018 has been used
to train the NN and the second half of the month is predicted.

relatively new power systems topic, requires further under-
standing to provide operator planning tools that quantify, and
extract relevant data.

It is important to underline that traditional statistical analysis
should not be understood as erroneous but as complementary
to the probabilistic metrics presented in this paper. Both
can provide relevant information metrics of the KE periodic
variations.

Nonetheless, as we have shown, the IL metric can track
the variability through the time series evolution via time-
dependent PDFs. This gives the IL metric an advantage
over traditional statistical analysis. For the KE annual cases,
we consider it more valuable to understand the day-by-day
variability since a TSO could use this for its day-ahead
operations. Even though we have analysed the highest and
lowest variability months of the KE data per year, the proposed
metric can be used within other ranges of time.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented the application of the information length
metric for the annual Kinetic Energy time series quantification
in the NPS during 2018, 2019, and 2020. The proposed metric
allows us to identify the variability along the seasons and
evaluate the months where the KE fluctuations have abrupt
events and the minimum variability. Besides, The metric
enables us to detect daily gradient variations that are otherwise
difficult to measure for a TSO. Additionally, the proposed
forecasting algorithm uses the metric to predict the future KE
fluctuations in an hour-ahead horizon, enabling TSOs to adjust
the generator’s settings accordingly.

Future work will investigate other possible probabilistic and
dynamic metrics to measure power system related signals with
highly intermittent big data. For instance, we plan to use in-
formation length to measure the information flow between the
elements in the system by considering its causality properties
[42]. We also see that the integration of ML and the IL needs

to be explored in more detail. Finally, future work will also
focus on studying the practicality of the forecasting algorithm
that was presented in this paper, by comparing its performance
with other well-assessed forecasting techniques.
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