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Abstract
The health status of an older or vulnerable person can be determined by looking into the additive effects of aging as well as

any associated diseases. This status can lead the person to a situation of ‘unstable incapacity’ for normal aging and is

determined by the decrease in response to the environment and to specific pathologies with apparent decrease of inde-

pendence in activities of daily living (ADL). In this paper, we use micro-Doppler images obtained using a frequency-

modulated continuous wave radar (FMCW) operating at 5.8 GHz with 400 MHz bandwidth as the sensor to perform

assessment of this health status. The core idea is to develop a generalized system where the data obtained for ADL can be

portable across different environments and groups of subjects, and critical events such as falls in mature individuals can be

detected. In this context, we have conducted comprehensive experimental campaigns at nine different locations including

four laboratory environments and five elderly care homes. A total of 99 subjects participated in the experiments where 1453

micro-Doppler signatures were recorded for six activities. Different machine learning, deep learning algorithms and

transfer learning technique were used to classify the ADL. The support vector machine (SVM), K-nearest neighbor (KNN)

and convolutional neural network (CNN) provided adequate classification accuracies for particular scenarios; however, the

autoencoder neural network outperformed the mentioned classifiers by providing classification accuracy of * 88%. The

proposed system for fall detection in elderly people can be deployed in care centers and is application for any indoor

settings with various age group of people. For future work, we would focus on monitoring multiple older adults, con-

currently in indoor settings using continuous radar sensor data stream which is limitation of the present system.

Keywords Radar sensing � Fall detection � Activity of daily living � Data classification

1 Introduction

Aging is associated with changes in dynamic biological,

environmental, psychological, behavioral, and social pro-

cesses and is measured by the functional abilities of the

person. The health status of an aged or mature person can

be determined by looking into the additive effects of aging

as well as the associated diseases. This status can lead the

mature individual to a situation of ‘unstable incapacity’ for

normal aging and is determined by the decrease in response

to the environment and to specific pathologies with

apparent decrease of integration and independence in

activities of daily living (ADL). Aging affects metabolic,

sensory, cardiovascular, respiratory systems, and most

noticeable is its effect on the musculoskeletal system for

mobility and locomotion [20], a general psychological,

physical and functional weakening that ultimately result in

increasing the risk of critical accidents such as falls.

Falls are categorized among one of the most hazardous

events that a mature person can encounter. According to

the reports published by World Health Organization [34],

falls are the second leading cause of accidental or unin-

tentional injury deaths worldwide. Each year an estimated

646,000 individuals die from falls globally of which over

80% are in low- and middle-income countries [34]. Fall
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incidences are inevitable but could be managed through

timely detection/intervention and prevented as well, if the

person under observation is properly supported. These

critical and life-threatening events require both technical

and human interventions known as the ‘gerontechnology.’

The outcome of this field is directed toward the autonomy

and improvement quality of life of an elderly person.

Timely and reliable detection of fall events is an

important strategy to handle the issue and has been studied

extensively over a past decade. The advent of wearable

sensors, micro-electro-mechanical systems (MEMS)-based

miniature inertial sensors (accelerometer, magnetometer

and gyroscope) and non-wearable sensors such as radar and

Wi-Fi have facilitated this rapid development. The sensors

are shrinking in terms of size and weight such that they can

be unobtrusively deployed on people’s body [16, 26]. Most

of the existing systems identify the forward/backward

acceleration caused by the human body toward the ground.

Brown et al. [3] took only the large acceleration toward the

ground into account when detecting falls in mature indi-

viduals, and this is considered as one of the first studies on

the specific topic. In order to improve the performance of

fall detection system, other researchers used data fusion

method using complex machine learning algorithms. For

instance, the authors in [9, 10] combined a gyroscope and

tri-axial accelerometer to detect human activities and fall

event. This system involves a three-step process including

multiple data acquisition sources such as audio, images and

an accelerometer. A large number of researchers have used

environmentally mounted sensors in indoor settings to

identify falls, such as sensors integrated in floors as in [32],

infrared sensors [35], acoustic sensors [6] [11] and camera-

based systems [39].

This paper presents an unobtrusive method for a gen-

eralized fall detection system using data portability in

conjunction with machine learning and deep learning

algorithms in elderly care homes using a be frequency-

modulated continuous wave (FMCW) radar sensor. The

proposed system aims to be independent of age group

involved and geometrical location, and can be easily

deployed in any indoor settings by importing a trained

model in any location for fall detection. The aspect of data

portability is emphasized in this work, aiming to develop

classification algorithms capable of identifying falls and

ADL patterns in different environments and with different

groups of subjects, i.e., enabling the system (data pro-

cessing and machine learning) developed in one environ-

ment to work effectively in another one, with different

people.

A two-stage method is used to detect falls and ADL in

mature people. Initially, the data were collected at nine

locations (four laboratory environments and five elderly

care centers) using a lightweight FMCW radar. In second

stage we used machine learning algorithms (SVM and

KNN), deep learning algorithms (CNN and auto-encoder)

and transfer learning techniques to classify successfully the

acquired data, in view of future real-time implementation

of such techniques.

2 Related work

Most of the researchers have used standard imaging sensors

to detect falls. Approaches ranging from using single

cameras [39, 39] mounted on ceilings or on walls, to

multiple cameras deployed in indoor environment gener-

ating a 3-dimensional (3-D) objects [2, 10]. Single camera-

based fall detection systems use imaging space feature

(bounding box ratios) extracted from silhouettes. Multiple

camera-based systems rely on extracting features such as

the person’s speed from 3-D generated objects using back

projecting silhouettes. The camera-based system presents

several challenges. First and foremost, extracting fore-

ground features consists of background modeling in red–

green–blue (RBG) image space that is a challenging task in

the context of real-world conditions considering the issues

of shadows and light intensity [24]. Second, fall activity in

no/low light can only be detected if an infrared (IR) light

source is deployed along the cameras. However, the RGB

information can be lost when IR is in operation, posing

another challenge for background feature extraction. Third,

as far as single camera-based system is concerned, feature

extraction that can measure the 3-D movements of person

and characterize falls [1] can be a challenge. Fourth, in

multiple camera-based systems, deployment and calibra-

tion in the same video frame introduce several concerns

and increase overall computational cost. Due to these

challenges, among others, researchers have turned their

attention to Microsoft Kinect depth imaging sensors to

recognize ADL. The Kinect sensor incorporates several

advanced sensing hardware. Most notably, it contains a

depth sensor, a color camera, and a four-microphone array

that provide full-body 3D motion capture, facial recogni-

tion, and voice recognition capabilities [38]. The authors

[39] used Kinect motion sensing using 3D images to detect

different human activities and fall event. Wichert et al. [33]

mounted Kinect sensor 30 cm above the ground to detect

falls. Pre-segmentation was made, and areas were identi-

fied where a potential fall could happen. Spatial charac-

teristics of objects were used to determine when fall

occurred. To summarize, the camera-based systems can be

computationally expensive where dedicated devices have

to be deployed and above all raise privacy concerns in

private homes and private environments.

Wearable devices-based fall detection system attempts

to detect fall events using sensors mounted on watches,
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belts or on coats. Some of the most widely used wearable

sensors are accelerometers, magnetometers, gyroscopes

[15], pressure sensors [22] and RFID [30]. These devices

only work provided put on by the subjects when the inci-

dence of fall occurs. Smartphone-based fall detection sys-

tem is one of the promising devices with huge potential

thanks to the popularity of sensor-rich smartphones [28].

Even if these fall detectors are appropriate solutions, the

always-on-body requirement of the devices may be a lim-

itation, especially in case of non-compliant users, such as

people refusing to or forgetting to wear or carry the sen-

sors, particularly at residential care centers or private

homes. Recently, non-contact radio-frequency (RF) sens-

ing technologies for ADL and automatic fall detection have

been widely used, as they have the ability to monitor dis-

abled or mature people without deploying any device on

the subject’s body [25, 27][7]. Some of these sensing

technologies include channel state information (CSI)

extracted using Wi-Fi signals [36][36] or exploiting micro-

Doppler information or range-profile obtained using radar

technology. However, the CSI data obtained present two

major limitations in the context of human activity recog-

nition and fall detection. Firstly, the CSI data suffer from

coarse grain resolution and its susceptibility to noise.

Secondly, CSI data obtained at one location are largely

different than that of another location, limiting the porta-

bility of the system. Hence, the Wi-Fi based systems fail in

the design of a generic, invariant fault detector that is

independent of geometrical location and age group

involved. The micro-Doppler signatures obtained using

radar technology present very similar patterns for specific

human activities in cross-room setup, i.e., in different

rooms or environments. These signatures are related to the

kinematics of the movements performed by the subjects

and less affected by changes in the EM propagation

channel and multipath that may hinder Wi-Fi-based per-

formances, and radar signal processing techniques such as

moving target indicator (MTI) filtering can remove the

presence of static reflectors and clutter. Hence, radar

micro-Doppler signatures are promising to design an

invariant, generic, and portable fall detection system such

as the one proposed in this paper. In the existing literature,

researchers have used classification algorithms on micro-

Doppler images [25]. However, this work only involved

limited number healthy volunteers with high mobility in

five different locations. Most of these healthy participants

have similar mobility profile for each activity. Eventually,

induced identical micro-Doppler signatures for each

activity performed by different healthy participant. In order

to make a more robust and reliable fall detection moni-

toring system using radar sensor, we recruited older adults

with fast, medium and slow mobility who performed dif-

ferent activities with varying speed. In addition, we

increased the complexity of the experimental campaign to

make it more realistic and applicable in real-world set-

tings—a total of nine different locations were considered

with different geometrical structure, furniture and location

of radar sensor.

3 FMCW radar and data processing

Radar systems use electromagnetic waves to detect objects.

The typical radar system comprises a transceiver and a

signal processing unit. The FMCW radar in operation

continuously transmits RF signals, and any object within

range reflects the waves that are received by the receiving

antenna.

In an FMCW radar, the instantaneous transmission fre-

quency changes linearly across the waveform, providing a

widely adopted solution for low-cost, short to medium

range sensing applications [4], including ADL and identi-

fication of falls. One of the main advantages of FMCW

radar is its robustness against external narrow-band inter-

ferences from other sources, low peak power, and capa-

bility of recording micro-Doppler signatures for target

recognition. Therefore, we have used a light-weight, easily

deployable FMCW radar sensor manufactured by Ancortek

with the specifications listed in Table 1.

The total number of signals transmitted by an FMCW

radar in a data recording can be written as:

x tð Þ ¼
XNF�1

i¼0

x ið Þ t � iTFð Þ; ð1Þ

Here TF is the total duration of a frame and NF represents

the total number of transmitted frames. The transmitted

FMCW signal comprising L number of chirps at the ith

frame can be written as:

xi tð Þ ¼
XL�1

t¼0

x0 t � lTð Þ; ð2Þ

T in Eq. 2 is the duration of an FMCW chirp signal x0(t)

and is written as follows:

Table 1 C-band ancortek radar parameters

Radar model SDR 580AD2

Waveform FMCW

Operating frequency 5.6 to 6.0 GHz

Bandwidth 400 MHz

Sweep time 1 ms

Transmitting power * ? 20 dBm
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x0 tð Þ ¼ e f0tþl
2
t2ð Þ�2pj for 0� t� T ð3Þ

Here f0 is the operating frequency and l denotes change in

instantaneous frequency of an FMCW chirp signal. The

value of l can be determined by bandwidth (B) divided by

duration of a chirp (T).

A. Micro-Doppler Signature

If the target within radar range has mechanical/dynamic

vibration or rotation in addition to its bulk translation, it

induces a frequency modulation on the returned signal that

generates sidebands about the target’s Doppler frequency

shift, that is called the ‘micro-Doppler effect’ [17]. Any

moving person located in P moves with frequency fv and

displacement Dv, having a displacement function,

D tð Þ ¼ Dv sin 2pfvt cos b cos ap. Assuming the value of R0

be the distance between the radar and the person initial

position O, the range function changes with respect to time

due to the person’s micro-motion, represented as:

R tð Þ þ D tð Þ. The RF signal received by the radar can be

express as follows:

s tð Þ ¼ q e 2pfotþ2pR tð Þ
kð Þj

� �
¼ qe 2pfotþU tð Þð Þj ð4Þ

In Eq. 4, f0 is the carrier frequency, k is the wavelength of

carrier, and q denotes the backscattering coefficient. By

substituting R(t) in Eq. 4, the signal received by radar can

be written as:

s tð Þ ¼ q e
4pR0
kð Þj

� �
� ej2pfotþDv sin wvtð Þcosbcosap4p=k ð5Þ

where wv ¼ 2pfv; from Eq. 5, the derivative of the second

phase component gives us the expression of micro-Doppler

shift that is written as follows:

fmD ¼ wvDv

pk
cos b cos ap cos wvtð Þ ð6Þ

To summarize, Eq. 6 shows that the micro-Doppler

frequency component is directly proportional to the

velocity of the movement/displacement of the specific

target’s part and to the frequency of the radar signal.

Furthermore, there is a dependency on the cosine of the

aspect angles in azimuth and elevation, so that only the

radial component of the velocity vector contributes to the

micro-Doppler signature.

With the introduction of micro-Doppler signatures, the

extraction of such information from the reflected radar

signal can play a vital role in automatic fall detection

system. In the next section, the experimental setup and data

acquisition using range of subjects are discussed.

4 Experimental setup and data acquisition

The experimental campaign for this work was conducted in

three different organizations, namely University of Glas-

gow, North Glasgow Housing Association Residential

Centre and Age UK West Cumbria Daily Centre. For the

purpose of training, validation and evaluation, data were

collected in 9 rooms as in Fig. 1 (4 at the University of

Glasgow, UK, and 5 at two residential and service centers

for older people) with a total of 99 participants (with age

range from 21 to 98 years) over the course of 10 days. A

total of 56 participants took part in experimental campaign

at the care centers, where 31 volunteers out of them were

aged 50 ? .

The six activities of daily living collected were A1—

walking back and forth, A2—sitting down on chair, A3—

standing up from a chair, A4—bending down to pick up

object, A5—drinking water and A6—falling [25]. Activi-

ties such as sitting down on a chair, picking up objects

from floor, and falling were deliberately chosen, as they are

similar in producing a movement of the body toward the

floor, in order to introduce classes that may be challenging

to classify. These six activities were selected to include

common, day-to-day actions performed by people in their

home settings, together with the fall, which is an action

requiring to be critically identified. The activities of sit-

ting/standing and bending were selected as they present a

net acceleration movement toward the radar (or away from

it, depending on the geometry of deployment for the radar

and the direction of the movement). Such movement often

translates into a clear peak in the Doppler spectrum that

may resemble the signature of a fall event in some cir-

cumstances and is typically included in the set of activities

considered for contactless radar-based activity recognition.

These very similar activities put the proposed classification

approach to test. A reliable identification of fall events is

critical with low missed detection and minimum false

alarms because lying for longer periods of time after falls

can have severe adverse effects on the affected people. The

data for each of the six activities were obtained 3 times for

each of the 99 subjects, producing a dataset of 1453

observations in total (note that it was not always possible to

collect all repetitions of each activity when mature par-

ticipants were involved). The younger participants we have

assumed someone less than 60 years, anyone over 60 is

considered as mature. The data collected in each room are

summarized in Table 2. The dataset was acquired offline,

indicating the activities were performed in a controlled

window size. Each activity had duration of 5 s except the

first one which was 10 s (walking). The dataset acquired

was balanced one considering the time duration. For future

work, the unbalanced dataset and unbalanced time-duration
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will be considered. The aim of this work was to develop a

generalized system independent of geometric location,

mobility of elderly people and age limit.

The Ancortek radar transmitted RF signals with

400 MHz bandwidth at 1 kHz pulse repetition frequency

(PRF). The transmitted power was approxi-

mately ? 20dBm; two Yagi antennas were used (one as

transmitter, one as receiver as in Fig. 1 of work published

in Shah [25] with gain equal to 17 dB. The radar operated

in C-band with signal centered at 5.8 GHz. The radar was

powered by USB, with its power consumption limited to

USB standards. Moreover, upon assessing the lifetime and

autonomy of the radar system in realistic deployment

scenarios, it would always be connected to a desktop or

laptop computer for operational and data acquisition pur-

poses, or to the electricity mains in indoor scenarios.

As far as human activities are concerned, the FMCW

radar provides both range and Doppler information. How-

ever, in this work, we have mainly focused on the Doppler

information since falls and other ADL can be detected

merely using this information as well. For data collection,

the radar sensor was placed on wooden table in all nine

locations where participants were asked to perform activ-

ities within a short range of 1-m to about 3-m range. The

two antennas were placed in such a way that it would allow

us to keep the torso of the participants in the center of the

beam in order to maximize the received signal strength.

The data recorded using the FMCW radar sensor were

processed using short time Fourier transform (STFT) to

characterize spectrograms and generate micro-Doppler

signatures. The range-time-intensity plots can initially be

obtained by stacking the received radar signals in matrix

form and applying fast Fourier transform (FFT) algorithm

along the fast-time direction to generate range profiles.

STFT is then applied on the range cells containing the

signatures of the targets, in this case people moving, to

characterize their micro-Doppler signatures. STFT applies

a sequence of FFTs with short, overlapping windows along

the total duration of the recorded data; the square absolute

value of the complex result is the so-called spectrogram, a

plot of velocities of moving body parts (measured through

the Doppler effect) as a function of time. A notch MTI

filter is applied to eliminate the contribution of static tar-

gets near 0 Hz such as furniture, walls, ceiling, and floor.

Room 2 Room 3 Room 4 Room 5

Room 6 Room 7 Room 8 Room 9

Room 1

University of Glasgow North Glasgow Homes Care Centre Age UK West Cumbria

Fig. 1 Nine locations for human activity recognition and fall detection

Table 2 Details of the data

acquired during experimental

campaign

Room/Location ID Number of Observations Age group Environment

1 Dataset 1 360 Younger Participants Laboratory Environment

2 Dataset 2 48 Younger Participants Laboratory Environment

3 Dataset 3 162 Younger Participants Laboratory Environment

4 Dataset 4 288 Younger Participants Laboratory Environment

5 Dataset 5 141 Mature Participants Old Age Home

6 Dataset 6 105 Mature Participants Old Age Home

7 Dataset 7 60 Mature Participants Old Age Home

8 Dataset 8 184 Mature Participants Old Age Home

9 Dataset 9 105 Mature Participants Old Age Home
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Figure 2a presents examples of micro-Doppler signa-

tures for six human activities, namely walking, sitting

down on a chair, standing up, picking up an object,

drinking water while standing, and a fall. The positive

values of Doppler components correspond with the

movements toward the radar sensor, while any movement

away from radar generates negative Doppler values. This is

evident in Fig. 2 where the person performs walking

activity: the main contribution (in red) comes from torso as

the subject moves back and forth in front of radar, resulting

in alternate values between positive and negative. Exam-

ining the fall activity, a strong forward acceleration toward

ground is observed. Note that in this figure the spectro-

grams for each activity were normalized as the distance

between radar sensor and subject varies.

Figure 2b shows the spectrograms for various subjects

with different age groups retrieved at nine various loca-

tions, namely four different rooms in University of Glas-

gow, three at North Glasgow Housing Association

Residential Centre and two at Age UK West Cumbria

Daily Centre. Depending on their physical characteristics,

some of the participants could move fast while few had

limited ability to walk. For instance, the bottom left

spectrogram in Fig. 2b was the slowest to move back and

forth. We have extracted the average body speed in Fig. 3,

as the center of mass of the spectrogram. This can be a

proxy for the overall mobility of the subjects, as reduced

mobility and risk of falling are usually correlated; plus this

shows that our radar-based system can not only measure

the velocity of different body parts, but also present the

average velocity of the movement.

5 Data classification

Deep learning is a subset of machine learning that has

recently experienced very significant growth thanks to

increased computation power provided by state-of-the-art

GPUs and rapid advancements in algorithms. Deep neural

networks are built on artificial neural network concepts,

using multiple layers of multiple neurons that increase the

overall size of the network and the complexity of the

nonlinear input–output relationship. Each neuron in deep

network is implemented by linearly convolving multiple

inputs plugged into an activation function. Previously,

hyperbolic or sigmoid functions were used as activation

function; however, the so-called vanishing gradient prob-

lem was posing limitation on network size and its proper

training. A gradient descent technique is used to train the

neural network that helps in minimizing the loss function

of the network during the backpropagation process. How-

ever, during backpropagation process, the error rate grad-

ually decreases as the input data flow through each layer

step by step, resulting in slow training with increase

number of layers. This problem was resolved using recti-

fied linear units, commonly known as ReLU working as

activation functions. The ReLU primarily has zero output

for negative input values and an output of positive for

positive input values. The ReLU enables a sparse repre-

sentation of the data when the network is randomly ini-

tialized. In addition, it also drastically reduces the

vanishing gradient problem by only considering values

between 0 and 1. Consequently, the ReLU has opened

doors for the design of state-of-the-art deep networks

producing incredible results by classifying massive data-

sets. The applications of CNN became famous when an

eight-layer architecture known as AlexNet [21] won Visual

Recognition Competition in 2012. Later on, a 16 layer deep

(a) (b)

Fig. 2 Spectrograms obtained for human activities. a Six human activities, b Walking activity in nine different rooms by different participants
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network, namely VGG-Net [29], and 152 layer network

architecture, ResNet [8], won the same challenge. Pre-

sently, the research work on deep learning algorithms

includes processing and classification of millions of images

into thousands of classes. This has led academics and

researchers within radar and healthcare community to

experiment with deep networks to classify datasets

obtained from RF signals. However, one of the biggest

challenges in applying deep network algorithms to RF

signals classification is the availability of limited datasets.

The RF data collection is relatively difficult, costly to

perform, and time consuming with respect to collecting

optical images, especially in the applications of radar

systems for monitoring and surveillance purposes. It is

impractical and almost impossible to obtain million or

micro-Doppler signatures for human activity recognition,-

subsequently, those algorithms will be facing overfitting

problems by training highly complex deep network archi-

tectures using small datasets.

Transfer learning has been proposed to overcome this

problem, whereby the deep networks are pre-trained using

millions of optical images and then simply fine-tuned with

the few available radar data at a subsequent training stage.

This approach was shown to outperform random initial-

ization of the weights and biases of the network. In this

work, we evaluate and compare different classification

approaches in terms of their portability, i.e., performances

when the training and testing datasets were collected in

different environments with different subjects. In particu-

lar, we have CNN to classify directly spectrograms of ADL

and falls, compared with other classifiers such as SVM,

KNN, autoencoder-based networks and transfer learning

techniques.

A. Transfer Learning

Transfer learning is a pivotal tool in machine learning and

deep learning to classify complex problems where insuf-

ficient data for training are available. It tries to transfer the

knowledge from one trained model to the target model by

extracting features with the former and training with latter.

This leads to a significant positive impact on the problems

where limited datasets are available, such as in our case

and in many automatic target classification problems based

on radar data.

The architecture of transfer learning is shown in Fig. 4.

Transfer learning primarily allows differences between

task, distributions of the training and target domains. This

Fig. 3 Speed profile of volunteers extracted from micro-Doppler signatures

Source Domain

Target Domain

Transfer 
Learning

Fig. 4 Transfer learning architecture model
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implies that the available training and test datasets might

use various distributions such that P(x) may follow distinct

labeling function P(y|x) which might have different set of

features for different classes. In the context of transfer

learning, the datasets that use similar distributions having

same labels with the same feature sets are known as source.

The core idea of using transfer learning is to learn machine

learning algorithms for classifications based on the target

datasets that primarily benefits from the existing datasets

originated from various sources, for instance, available

data that consist of similar patterns but do not have to be

exact representative of the target datasets.

We present one example of transfer classifier that uses

this same-and different-distribution training data for the

neural network part, all followed by SVM and KNN clas-

sifiers. This means reusing the weights in one or more

layers from a pre-trained network model in a new model,

and either keeping the weights fixed, fine tuning them, or

adapting the weights entirely when training the model.

B. Autoencoder

Another classifier we have used for classification and then

performance comparison is an autoencoder—that is exist-

ing classification algorithm previously used in Zhou et al.

[37]. It is a feed-forward artificial neural network that

reconstructs the input data at the output side of the network

under specific circumstances. For instance, for any input

dataset x, the autoencoder aims to estimate hw xð Þ ¼ x. The

pre-training algorithm for weight initialization and biases

of the autoencoder that provides high performance for

small number of available datasets is used. An autoencoder

uses unsupervised pre-training by encoding and decoding

the input values.

Consider an input vector, x, the encoder maps the input

values in a nonlinear manner as follows:

ei ¼ r Wxi þ bð Þ ð10Þ

where r indicates a nonlinear activation function, W rep-

resents weights, and b denotes the biases. The feature

vector that is encoded is decoded in next step to reconstruct

the specific input values as:

zi ¼ r W � ei þ b�ð Þ ð11Þ

In Eq. 11, W � and b� indicate the weights and biases

of the autoencoder at decoding side. When unsupervised

pre-training process, the neural network minimizes the

reconstruction error by tuning weights and biases such that

h ¼ b; b� ;W ;W �

J hð Þ ¼ 1

N

XN

i¼1

xi � zið Þ2 ð12Þ

In order to restrict the neural network, a sparsity

parameter is used along cost function that consequently

pushes the network to learn the correlation between input

values. The cost function, after adding sparsity parameters,

thus becomes as follows:

arg min
h

J hð Þ ¼ 1

N

XN

i¼1

xi � zið Þ2þb
XN

i¼1

KLðpjjplÞ ð13Þ

Here b is the sparsity proportion and KL represents Kull-

back–Leibler divergence. The Kullback–Leibler between

Bernoulli random values with mean p and pj is written as:

KLðpjjplÞ ¼ p log
p

pj

� �
þ 1 � pð Þ log

1 � p

1 � pj

� �
ð14Þ

Here pj is the activation value for jth hidden neuron and p is

the average activation value, h is the total number of hid-

den neurons in neural network.

The Kullback–Leibler divergence also known as relative

entropy is an exceptional instance of a more extensive

divergence and is an asymmetric information theoretic

measure of the separation between two likelihood density

functions. It is an approximation of how a specific dis-

semination differs from another, normal likelihood appro-

priation. Kullback–Leibler divergence has a considerable

measure of ongoing applications, specifically in machine

learning for healthcare sector. The proposed fall detection

system using radar sensing is micro-Doppler signature

analysis, using short time Fourier transform and examining

it with the help of Kullback–Leibler divergence and

autoencoder classifier.

In most applications of data pre-processing and data

classification using deep learning algorithms such as

autoencoder, we choose the classifier’s specific parameters

that minimize the mean square approximation error. The

same least squares approach has been used in the classical

deep neural classification algorithms. However, for deep

learning, it turns out that an alternative idea works better

minimizing the Kullback–Leibler (KL) divergence. The

use of KL divergence is justified if we predict probabilities,

but the use of this divergence has been successful in other

situations as well. In this paper, we use it for this empirical

success. Namely, the least square approach is optimal when

the approximation error is normally distributed and can

lead to wrong results when the actual distribution is distinct

from normal. The need to have a robust criterion, i.e., a

criterion that does not depend on the corresponding dis-

tribution, naturally leads to the KL divergence.

After pre-training process, the decoder is eliminated

from the neural network and encoder values were trained

using supervised learning technique by introducing Soft-

Max classifier having 6 neurons following the encoder, as

we have 6 activities in our case. The SoftMax function
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takes as input a vector of K real numbers and normalizes it

into a probability distribution consisting of K probabilities,

P ykjjxið Þ for k = 1,2,…K, proportional to the exponentials

of the input numbers [12]. The probability function where

input value xi corresponds to labels class yk is approxi-

mated. The probability class pk can be mathematically

written as:

P y ¼ kjxi ¼
ehkxi

PK
k¼1 e

hkxi

 !
ð15Þ

The weight and biases, h; can be optimized by mini-

mizing the cost function as follows:

J hð Þ ¼
XN

i¼1

XK

k¼1

1 yi ¼ k
� �

log
ehkxi

PK
k¼1 e

hkxi
ð16Þ

Equation 16 is solved using gradient-based technique

and is called ‘fine-tuning’ function where neural network is

trained using supervised machine learning algorithm. The

autoencoder architecture using spectrograms as images is

shown in Fig. 5.

6 Results and discussion

This section discusses the results and analysis of data

collected. The classification methods are divided into four

main parts. Firstly, two conventional machine learning

classifiers, namely support vector machine (SVM) and

K-nearest neighbor (KNN), were used to classify activities.

Secondly, transfer learning technique was used to extract

features with one CNN (AlexNet) and train a machine

learning/deep network model on the same features for

classification. Thirdly, a convolution neural network was

trained from scratch and testing was performed on the

specific model. Lastly, an autoencoder neural network was

used for training and testing. In all cases, the focus was on

using diverse available data in terms of environments and

subjects at the training and testing stage.

6.1 Classification results and discussion

This section presents the classification results obtained

using different methods. Each of the method is discussed in

detail as follows:

(1) Classification using machine learning

(a) Training and test on combined datasets

Initially, we combined all available datasets (healthy

individuals’ datasets from university laboratory environ-

ment and mature people datasets from residential and ser-

vice care centers) and performed classification tasks to

obtain some baseline results. Two conventional machine

learning classifiers, namely SVM and KNN, were consid-

ered for classification of activities. The SVM uses features

in order to produce a hyperplane margin that is based on

the distribution of set of features for a particular class. This

algorithm is already extensively used for human activity

recognition in indoor settings and has been compared with

other classifiers [23]. The second classifier, i.e., KNN, is a

nonparametric technique used for classification tasks. It

compares the distance between an input test sample and the

k nearest training samples in its features space, performing

a majority vote between the closest neighboring points to

assign the test sample to a specific class. The training,

validation and testing processes were implemented using

MATLAB. Different ways of calculating the distance

between points or vectors in features spaces can be used,

starting from the simplest Euclidean distance.

The datasets obtained using FMCW radar for all nine

locations and 1453 observations were divided into 70%

(1017 observations) for training and 30% (436 observa-

tions) for testing on the basis of per class. The undesired

Fig. 5 Three-layer AE, where encoder layers have 200–100–50 neurons and decoder layers have 50–100–200 neurons
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biases found in the results are minimized using this

deterministic method that would be encountered in

imbalance datasets between training and test classes.

Initially, we have selected the optimum features such as

mean, root-mean-square, median, skewness, variance,

standard deviation and kurtosis of centroid and bandwidth

extracted from micro-Doppler signatures for each activity

[5].

The KNN classification algorithm with optimized

hyperparameters was obtained from estimated objective,

distance and total number of neighbor’s functions as in

Fig. 6. The distance function, namely ‘Mahalanobis’ and

number of nearest neighbors as 10 were used as optimum

hyperparameters, where the value of estimated objective

function was 0.1971 and estimated function evaluation

time was 0.056 s. We have used ‘holdout cross-validation’

that splits the data into training and test parts where there

were no common data points between the two. The

Mahalanobis distance is a measure of the distance between

a point P and a distribution. It has advantage of using

multi-dimensional generalization of the idea of measuring

how many standard deviations away P is from the mean of

D. This distance is zero for P at the mean of D and grows as

P moves away from the mean along each principal com-

ponent axis. If each of these axes is re-scaled to have unit

variance, then the Mahalanobis distance corresponds to

standard Euclidean distance in the transformed space. The

Mahalanobis distance is thus unitless, scale-invariant, and

takes into account the correlations of the dataset.

An example of confusion matrix obtained from the 11th

trial for six human activities for all nine locations using

KNN is shown in Table 3. A1, A2, A3, A4, A5, and A6 refer

to walking, sitting down, standing up, pick up object. The

test accuracy in this case is nearly 86% where there was

misclassification between picking up object from the

ground and pick up glass from the table to drink water.

These were similar activities; that is, why the classifier was

not able to fully discriminate between the human actions.

The average accuracy for all trials was 81.18., drink water

and fall event, respectively. The comparable confusion

matrix for the KNN is shown in Table 4.

Figure 7 (orange) shows the percentage accuracy of

KNN and SVM classification algorithms when training and

testing were performed for 30 number of trials. In this

scenario, the training and test data (unseen to the classifier)

were divided 30 times and both procedures were performed

using the same optimized hyperparameters. Table 4

describes the confusion matrix for SVM algorithm. In this

case, radial basis kernel function was used as the features

were linearly non-separable after they were mapped to a

high-dimensional feature space. The maximum accuracy

obtained was nearly 80% for trial number 4, and the

average accuracy was 77.71% as in Fig. 7 (blue). The

misclassification rate between activity 4 (picking up object)

and activity 5 (drinking water) was higher than KNN

classifier. We have chosen random number of itera-

tions/trials. For instance from iteration number 30 up until

100 and even till 150, the result and graph obtained was

almost identical. The only trials number from 1 to 30, we

obtained different result as indicated in Figs. 7, 8, 9.

(b) Training and test on younger people datasets

Figure 8 shows the percentage accuracy for processing data

of younger subjects, i.e., employing the data that were

obtained inside the University of Glasgow involving

mostly students and staff aging 21 to 37 years. A common

split technique known as the hold-out method was used

where 70% of data for training and the remaining 30% of

the data for testing were selected.

Table 5 shows the confusion matrix for KNN classifier.

The algorithm was able to classify walking and sitting

down activity with no misclassification. On only two

instances, standing up was misclassified, and fall event was

adequately identified as well. However, the classifier could

not properly discriminate between two similar activities

such as picking up object from the ground and pick up

glass and drink water. The percentage accuracy obtained in

this case varied between 76 and 86 with an average accu-

racy of 83.31 for 30 trials. The SVM classification algo-

rithm performed worse as compared to the KNN, with

confusion matrix provided in Table 6. The misidentifica-

tion rate was much higher; for instance, walking, sitting

down, standing up, pick up object drink water and fall were

not properly determined 1, 4, 5, 20, 7 and 2 times,Fig. 6 Optimized k-nearest neighbor fitted classifier
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respectively, as seen in Table 7 and Fig. 9 (blue). The

performance of this classifier fluctuated between 70 and

82% with an average accuracy of 77.57, that decreased by

nearly 6% as compared to performance of KNN.

(c) Training and test on mature individuals dataset

The speed at which mature subjects move or perform

activities is relatively slower as compared to younger ones

as evident from speed profile in Fig. 3. The spectrograms

obtained for the younger individuals are very similar to

each other as they move almost in similar fashion, hence

there is less misclassification; this is no longer true when

data from the older cohort of subjects is considered, where

individual mobility issues, health conditions, and presence

of walking aids can produce very diverse signatures even

for the same activity. This can generate some challenges

for the classification algorithm. Figure 9, with Tables 7 and

8, shows the confusion matrices and percentage accuracy

Table 3 Confusion matrix for

KNN (combined data, %)
Actual/predicted A1 (%) A2 (%) A3 (%) A4 (%) A5 (%) A6 (%)

A1 100 0 0 0 2 0

A2 0 99 0 2 4 0

A3 0 0 97 2 6 4

A4 4 4 2 89 19 0

A5 0 4 9 15 92 2

A6 2 0 0 0 4 61

The significance of bold indicated correctly classified activities

Table 4 Confusion matrix for

SVM (combined data, 100)
Actual/predicted A1 (%) A2 (%) A3 (%) A4 (%) A5 (%) A6 (%)

A1 50 0 0 0 1 0

A2 0 47 0 1 0 0

A3 0 0 49 2 2 0

A4 0 1 1 25 9 0

A5 0 2 1 22 36 2

A6 0 0 0 0 13 26

The significance of bold indicated correctly classified activities

Fig. 7 Test accuracy for 30

trials with combined datasets
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Fig. 8 Test accuracy for 30

trials with healthy people data

Fig. 9 Test accuracy for 30

trials with mature people data

Table 5 Confusion matrix for

KNN (younger data)
Actual/predicted A1 (%) A2 (%) A3 (%) A4 (%) A5 (%) A6 (%)

A1 100 0 0 0 2 0

A2 0 100 0 2 4 0

A3 0 0 96 2 6 4

A4 4 4 2 87 19 0

A5 0 4 9 15 91 2

A6 2 0 0 0 4 90

The significance of bold indicated correctly classified activities
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for data obtained on mature people at residential and ser-

vice care homes. The training (70%) and testing (30%)

were performed on mature individuals datasets. It should

be noted that we have 5 activities, excluding falls that for

obvious reasons could not be performed involving mature

subjects. The average percentage accuracy obtained using

KNN with optimized hyperparameter was 73.27. The SVM

classifier performed slightly better (by 1%) with an average

accuracy of 74.20 as compared to the KNN.

(2) Results with transfer learning

(a) Training on healthy individuals and test on

mature people

Transfer learning focuses on exploiting knowledge of one

machine learning model from a given classification prob-

lem to solve a similar problem but in a different domain. In

this work, AlexNet pre-trained on optical images has been

used to extract features from the micro-Doppler spectro-

grams of human ADL, where the spectrograms are used as

input images. The deep network can convert the relevant

information to discriminate the different classes into fea-

tures that would not be otherwise easily extracted with

simple, handcrafted procedures as the centroid and band-

width used in previous sections. These new, deeper and

less obvious features are then used to train and test the

SVM and KNN classifiers.

In this case, a more challenging yet realistic testing

approach was implemented, where data for each individual

subject were used as the testing set, while all the other

subjects’ data were used to train the classification algo-

rithm. This ‘leave-one-subject-out’ test aims to validate the

system and classification algorithms in case new, unknown

subjects have to be monitored, with the additional chal-

lenge of the training data coming from an average much

younger cohort of subjects collected in controlled univer-

sity environment.

The primary aim of using different machine learning

classifiers (KNN, SVM, transfer learning, and autoencoder)

is to investigate which algorithms would be best fit for data

portability, where radar data acquired in different locations

can be can trained and testing performed in a separate and

different locations. It was concluded that the autoencoder

worked best among all the aforementioned in the particular

scenario of importing data for generalization purpose.

The accuracies in terms of percentage obtained for each

individual are presented in Fig. 10, referring to the data

collected at the North Glasgow Housing Association. The

person with ID 20 aged 78 had limited ability to move;

hence, the challenge in classification accuracy, while per-

son with ID 23, aged 50 had percentage accuracy of nearly

80%. The overall accuracy using transferring learning

method for KNN classifier was 62.92. Similar approach

was adopted for SVM algorithms as well, that provided the

accuracy for each individual and can be seen in Fig. 11.

Contrary to KNN, the SVM provided the lowest accuracy

for person having ID 23 and 34, while the average accuracy

obtained in this case was 56.19%. It should also be noted

that three of the individuals (person ID 19, 21, and 29)

Table 6 Confusion matrix for

SVM (younger data)
Actual/predicted A1 (%) A2 (%) A3 (%) A4 (%) A5 (%) A6 (%)

A1 90 0 0 0 0 0

A2 0 83 0 0 0 0

A3 0 0 80 0 3 0

A4 0 0 3 43 3 0

A5 3 10 10 50 100 5

A6 0 0 0 0 13 82

The significance of bold indicated correctly classified activities

Table 7 Confusion matrix KNN (mature subjects))

Actual/predicted A1 (%) A2 (%) A3 (%) A4 (%) A5 (%)

A1 100 0 0 0 0

A2 0 100 0 0 0

A3 0 0 96 13 9

A4 4 0 4 39 26

A5 0 17 4 87 70

The significance of bold indicated correctly classified activities

Table 8 Confusion matrix SVM (mature subjects)

Actual/predicted A1 (%) A2 (%) A3 (%) A4 (%) A5 (%)

A1 100 0 0 0 0

A2 0 96 4 0 0

A3 0 0 96 13 4

A4 0 0 0 33 21

A5 0 0 0 50 71

The significance of bold indicated correctly classified activities
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carried walking sticks and one (person ID 20) was using a

walker while performed activities.

Figures 12 and 13 show the results obtained for indi-

viduals using KNN and SVM, respectively, when the

testing subjects’ data were collected at the Age UK West

Cumbria Daily Centre; the training data were still the same

collected at the University of Glasgow with younger sub-

jects. The KNN algorithms classified two persons’ activi-

ties with 100% accuracy (person ID 40 and 51). The lowest

accuracy, less than 20% was recorded for person ID 52.

The average accuracy obtained was 74.38%. On the other,

the performance of SVM classifier was for worse than the

counterpart, presenting an average accuracy of 57.19%.

(a) Training and test on mature individuals

Contrary to training on healthy people and test on mature

people, a great improvement in performance of both clas-

sifiers was observed when training and test procedures

were performed on mature individuals’ datasets. For

instance, one dataset of mature people (Age UK West

Cumbria) was used for training and another dataset (North

Glasgow Homes) for test and vice versa. The KNN and

SVM classifiers provided average accuracy of 73.26% and

Fig. 10 Performance of the

mature individuals at North

Glasgow Housing Association

Residential Centre (KNN) —

train on younger people, test on

mature ones

Fig. 11 Performance of the

mature individuals at North

Glasgow Housing Association

Residential Centre (SVM)—

train on younger people, test on

mature ones

Neural Computing and Applications

123



Fig. 12 Performance of the

mature individuals at Age UK

West Cumbria Daily Centre

(KNN)—train on younger

people, test on mature ones

Fig. 13 Performance of the

mature individuals at Age UK

West Cumbria Daily Centre

(SVM)—train on younger

people, test on mature one

Fig. 14 Performance of the

mature individuals at Age UK

West Cumbria Daily Centre—

train on mature individuals (Age

UK West Cumbria), test on NG

Homes KNNj j
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82.64%, respectively. The improvement in individual

classifiers can be seen in Figs. 14 and 15. The average

performance of both classification algorithms was almost

similar when training was performance on Age UK West

Cumbria dataset (mature individuals) and test on NG

homes (mature people). The performance of SVM classifier

decreased by 8% where both classifier presented average

accuracies of 74%.

(3) Results with convolutional neural network

The convolutional neural network is specially designed to

process images (spectrograms in our case) and extract

features. The CNNs comprise various layers including

image layer, convolutional layer, pooling layer, max

pooling, fully connected and output layers. The inputs

consist of pixels that are plugged into the input layer where

a feature layer is formed that is convolved over the pixels

resulting in a convolutional layer. To minimize the total

number available features and introduce high correlation

between the adjacent pixels, a pooling layer is introduced.

Next, a max pooling layer is formed to down sample the

elements and to extract the most relevant set of features

such as circles and edges. We have used two convolution

layers along two max pooling. The 2D convolutional layer

scaled down the original input 582 9 872 image into 256 9

256. A rectified linear unit (ReLU) is used to as an acti-

vation function. Advantages of rectified linear unit are

sparse activation: For example, in a randomly initialized

network, only about 50% of hidden units are activated

(have a nonzero output). Better gradient propagation:

Fewer vanishing gradient problems compared to sigmoidal

activation functions that saturate in both directions. Effi-

cient computation: Only comparison, addition and multi-

plication (Table 9).

The first convolution layer used 32 size filters with 3 by

3 feature detector matrix. The filter sizer in second con-

volution layer was increased to 64 with same size of the

feature detector. The max pooling layer, right after the first

convolution layer used 4 by 4 feature, the one after second

convolution layer was reduced to 2 by 2 matrix. The output

received from two convolution and two max pooling layers

formed a single column matrix that contains all the values

and is termed as the flattening layer and is fed into the input

to the neural network for classification tasks. The results

we have obtained for training and test on mature datasets

are shown in Figs. 16 and 17. The average accuracy of

81.41% obtained when training was performed on mature

dataset of North Glasgow Homes (mature people data), test

on Age UK West Cumbria, while for the test accuracy of

North Glasgow Homes of 84.20% was achieved.

Table 10 shows the confusion matrix, when training was

performed by Age UK West Cumbria and test was done on

North Glasgow homes. The accuracy in this case was

86.2%. On the other hand, when training was performed on

North Glasgow homes datasets and test was done on Age

UK West Cumbria, an accuracy of 88.3% was obtained.

(4) Result with autoencoder

This section discusses the classification results using an

autoencoder. We have used the fine-tuning algorithm

Fig. 15 Performance of the

mature individuals at Age UK

West Cumbria Daily Centre—

train on mature individuals (Age

UK West Cumbria), test on NG

Homes SVMj j

Table 9 Confusion matrix North Glasgow Homes

Actual/predicted A1 (%) A2 (%) A3 (%) A4 (%) A5 (%)

A1 92 0 0 0 0

A2 0 96 0 0 0

A3 0 0 84 20 0

A4 4 8 4 100 16

A5 05 4 8 4 80

The significance of bold indicated correctly classified activities
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selected cross-entropy instead of mean square error as the

loss function. An autoencoder can be piled up hierarchi-

cally such that the deepest layers get input values from the

output of initial layers. The value of KL divergence sued

for sparsity regularization is chosen as 2 and the value of b
as 0.1.

The ADAM algorithm, an adaptive moment estimation

is used to compute the pretraining and fine tuning as in

Kingma and Ba [14] with an initial learning rate of 0.001.

We have used grid search to identify the optimal width and

depth as in Table 11 and implemented a three-layer

autoencoder having 200,100, and 50, respectively. The

results show the test results obtained when training was

performed on mature individuals at North Glasgow homes

and test was performed on Age UK West Cumbria care

center. This classifier provided best classification accuracy

of 88.1% when width of 40–80-160 and depth of 1 was

used. Adam is a replacement optimization algorithm for

stochastic gradient descent for training deep learning

models. Adam combines the best properties of the CNN,

SVM, and KNN to provide an optimization algorithm that

can handle sparse gradients on noisy problems. Adam is a

method for efficient stochastic optimization that only

requires first-order gradients with little memory require-

ment. The method computes individual adaptive learning

rates for different parameters from estimates of first and

second moments of the gradients; the name Adam is

derived from adaptive moment estimation.

To summarize the performance of training/testing across

rooms and environments, we have enlisted all the accura-

cies for different scenarios in Table 12

7 Conclusion

This paper presented a generalized and portable system to

detect fall events in healthy and mature individuals using

an FMCW radar exploiting micro-Doppler signatures and

images. In this context, an extensive experimental cam-

paign was conducted in nine different locations with 99

volunteers. Machine learning algorithms such as SVM and

KNN, transfer learning techniques, CNN and autoencoder

were used to classify the data and identify different activ-

ities such as walking back and forth, sitting down on chair,

standing up from chair, picking up object from the ground,

drinking water from a glass and fall events. Different

combination of datasets acquired in different environments

and with different subjects were used for training and

testing, focusing in particular on training on healthy indi-

viduals with data collected in university environment, and

Fig. 16 Performance of the

mature individuals at on NG

Homes—train on mature

individuals (NG Homes), test on

NG Homes CNNj j
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then testing on mature people or vice versa. This was done

to develop portable algorithms for ADL classification and

fall detection, i.e., algorithms able to maintain good per-

formances when exposed to data and radar signatures for

similar activities but performed by different subjects in

different environments. Among all classifiers explored in

this work, the autoencoder outperformed other classifica-

tion algorithms by providing an accuracy of 88% for

training and test on different data of mature people. The

Fig. 17 Performance of the

mature individuals at Age UK

West Cumbria—train on mature

individuals (NG Homes), test on

Age UK West Cumbria CNNj j

Table 10 Confusion matrix for Age UK West Cumbria

Actual/predicted A1 (%) A2 (%) A3 (%) A4 (%) A5 (%)

A1 100 0 0 0 0

A2 0 83 4 4 4

A3 0 8 92 0 4

A4 0 4 4 88 13

A5 0 0 0 4 79

The significance of bold indicated correctly classified activities

Table 11 Autoencoder results—

training on North Glasgow

homes and test on age UK West

Cumbria Daily center

No Width Depth Acc. (%) No Width Depth Acc. (%)

1 20 1 71.2 8 50–100–200 3 82.5

2 50 1 73.0 9 20–50–100–200 3 81.4

3 100 1 75.3 10 40–100–200–400 4 79.2

4 20–50 2 78.0 11 20–50–100–200–400 4 81.3

5 50–100 2 80.2 12 20–50-100–200–400–800 4 82.1

6 20–50-100 2 82.8 13 20–50–100–200–400–800–1600 5 78.2

7 40–80-160 3 88.1 14 40–100–200–400–800–1600 5 80.1
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autoencoder is used to reduce the number of feature

dimensions under consideration. The main advantage of

dimensionality reduction techniques such as autoencoder is

to obtain a set of principal variables to improve the per-

formance of the approach as compared to state-of-the-art

methods such as SVM, KNN and random forest. The

transformation of data from high dimensional to low

dimensional can be carried out using autoencoder. This

process through densely connected layers extracts the

important features in data that can be conveniently utilized

for further processes. The high-level representation of data

is learned through autoencoder which is normally missed

by traditional methods such as SVM, RF and KNN. Other

than that, the computational complexity is reduced once the

data are transformed to low dimensions. In addition, the

autoencoder networks perform better than other classifiers

used in this work because they compress large amount of

radar data we have obtained from the input layer into a

shorter code and then uncompress that code into whatever

format best matches the original input. This process learns

to encode features for similar activities such as bending

down to pick up object and fall activities. The similar

human activities are at times misclassified by other algo-

rithms as they only rely on time-domain or frequency-

Table 12 Accuracies (%) of different possible combination in cross-room scenarios

Train Locations Test Technique Accuracy

(%)

Combined datasets

(healthy ? mature people)—70%

1,2,3 and 4 Combined datasets

(healthy ? mature people)—

30%

K-nearest neighbor 81.18

Combined datasets

(healthy ? mature people)—70%

1,2,3 and 4 Combined datasets

(healthy ? mature people)—

30%

SVM 77.71

Healthy people datasets (University

of Glasgow)—70% training

1,2,3 and 4 Healthy people dataset

(University of Glasgow)—30%

training

KNN 83.31

Healthy people datasets (University

of Glasgow)—70% training

5,6,7,8, and 9 Healthy people dataset

(University of Glasgow)—30%

training

SVM 77.57

Mature people dataset (elderly care

homes)—70% training

5,6,7,8, and 9 Mature People Dataset (elderly

care homes)—30% training

KNN 73.27

Healthy people datasets (University

of Glasgow)—all available data

Train on datasets

of 1,2,3 and 4

Test on datasets of 5,6 and 7 Transfer learning—feature extracted

using AlexNet—test on KNN

62.92

Test on datasets of 8 and 9 56.19

Healthy people datasets (University

of Glasgow)—all available data

Train on datasets

of 1,2,3 and 4

Test on datasets of 5,6 and 7 Transfer Learning—feature

extracted using AlexNet—Test on

SVM

74.38

Test on datasets of 8 and 9 57.19

Mature people datasets (location 5,

6, and 7)

Test on datasets of 8 and 9 Transfer learning—feature extracted

using AlexNet—test on KNN

73.26

Mature people datasets (location 5,

6, and 7)

Test on datasets of 8 and 9 Transfer Learning—feature

extracted using AlexNet—test on

SVM

82.64

Mature people datasets (location 8

and 9)

Test on datasets of 5, 6, and 7 Transfer learning—feature extracted

using AlexNet—Test on KNN

74

Mature people datasets (location 8

and 9)

Test on datasets of 5,6 and 7 Transfer learning—feature extracted

using AlexNet—Test on SVM

74

Mature people datasets (location 5,6

and 7)

Test on datasets of 8 and 9 CNN 81.41

Mature people datasets (location 8

and 9)

Test on datasets of 5,6 and 7 CNN 84.20

Mature people datasets (location 5,6

and 7

Test on datasets of 8 and 9 Autoencoder 86.6

Mature people datasets (location 8

and 9)

Test on datasets of 5, 6, and 7 Autoencoder 88.3
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domain statistical features and do not accurately detect

intricate but similar activities. That is why, autoencoder has

capability to identify very small difference for similar

features/activities as compared to other classifiers.
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