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Purpose: Routinely collected real world data (RWD) have great utility in aiding the novel coronavirus disease (COVID-19) pandemic
response. Here we present the international Observational Health Data Sciences and Informatics (OHDSI) Characterizing Health
Associated Risks and Your Baseline Disease In SARS-COV-2 (CHARYBDIS) framework for standardisation and analysis of COVID-
19 RWD.
Patients and Methods: We conducted a descriptive retrospective database study using a federated network of data partners in the
United States, Europe (the Netherlands, Spain, the UK, Germany, France and Italy) and Asia (South Korea and China). The study
protocol and analytical package were released on 11th June 2020 and are iteratively updated via GitHub. We identified three non-
mutually exclusive cohorts of 4,537,153 individuals with a clinical COVID-19 diagnosis or positive test, 886,193 hospitalized with
COVID-19, and 113,627 hospitalized with COVID-19 requiring intensive services.
Results: We aggregated over 22,000 unique characteristics describing patients with COVID-19. All comorbidities, symptoms,
medications, and outcomes are described by cohort in aggregate counts and are readily available online. Globally, we observed
similarities in the USA and Europe: more women diagnosed than men but more men hospitalized than women, most diagnosed cases
between 25 and 60 years of age versus most hospitalized cases between 60 and 80 years of age. South Korea differed with more
women than men hospitalized. Common comorbidities included type 2 diabetes, hypertension, chronic kidney disease and heart
disease. Common presenting symptoms were dyspnea, cough and fever. Symptom data availability was more common in hospitalized
cohorts than diagnosed.
Conclusion: We constructed a global, multi-centre view to describe trends in COVID-19 progression, management and evolution
over time. By characterising baseline variability in patients and geography, our work provides critical context that may otherwise be
misconstrued as data quality issues. This is important as we perform studies on adverse events of special interest in COVID-19 vaccine
surveillance.
Keywords: OHDSI, OMOP CDM, descriptive epidemiology, real world data, real world evidence, open science

Introduction
The World Health Organization (WHO) declared the coronavirus disease 2019 (COVID-19) pandemic on 11 March 2020
after 118,000 reported cases in over 110 countries.5 By the end of 2021, the number of COVID-19 cases increased to
over 278 million cases globally, and the death toll exceeded 5 million.6 Thousands of publications have attempted to aid
our scientific understanding of this public health emergency.7,8

Characterisation studies, called descriptive epidemiology, provide an important context into our understanding of
disease by describing the basic attributes of who gets sick and in what context. The initial body of COVID-19
characterisation work gave researchers information on the stark difference in the perception of the novel coronavirus
compared to flu-like illnesses: patients were male, younger, and with fewer concurrent comorbidities and less docu-
mented prior medication use.9

Utilising routinely collected real world data (RWD) can be a powerful asset for understanding an evolving pandemic
response.1,2 Each data source provides novel information, be it the geographic variability of COVID-19, the impact of
varying government strategies to contain spread or the evolution of treatment protocols. With extensive heterogeneity in
public health strategies and clinical care across the world,10 a large repeated multi-center study to describe disease across
locations, practices, and populations, but that holds data analysis constant would go far in determining what factors
impact observed differences.

RWD networks are vital in helping to understand the magnitude of the problem, and developing possibly mitigating
strategies both globally and locally.11,12 Here we present the global Observational Health Data Sciences and Informatics
(OHDSI) community, an international open-science initiative of more than 3500 collaborators from 34 countries,
response to the COVID-19 pandemic.3 Founded in 2015, the OHDSI data network enabled a rapid baseline under-
standing of COVID-19 in emerging hotspots (United States of America [USA], Spain and South Korea).9 Our work
evolved into a systematic framework for analysing and reporting COVID-19 RWD that we call Characterizing Health
Associated Risks, and Your Baseline Disease In SARS-COV-2 (CHARYBDIS).
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CHARYBDIS offers multiple insights into COVID-19 clinical presentations, management and progression. Herein
we aim to describe baseline demographics, clinical characteristics, treatments received, and outcomes among individuals
diagnosed and hospitalized with COVID-19 in actual practice settings in nine countries from three continents. These
data reflect an international community of research collaborators who are working to advance retrospective database
research in RWD for COVID-19. Our body of research is freely available, foundational result set that can provide
benchmarks in how COVID-19 manifests over time including its inevitable evolution as we roll-out additional vaccines
and treatments.

Methods
Study Design, Setting and Data Sources
We conducted a descriptive retrospective database study using a federated network of data partners in the USA, Europe
(the Netherlands, Spain, the UK, Germany, France and Italy) and Asia (South Korea and China). Each data partner
mapped their source system to the Observational Medical Outcomes Partnership (OMOP) Common Data Model
(CDM).13–15 The use of a CDM ensured shared conventions, including consistent representation of clinical terms across
coding systems. We assessed the plausibility, conformance and completeness of each contributing database using
a common data quality tool for repeated assessment and monitoring the adherence to conventions across the
network.16,17 We ensured technical reproducibility by using the same package of analytical code for all contributing
data partners.18

The study protocol and analytical package were released on 11 June 2020 and iterative updates have continued to be
released via GitHub: https://github.com/ohdsi-studies/Covid19CharacterizationCharybdis.4 23 real world healthcare
databases contributed to the CHARYBDIS study (Supplementary Table 1). Contributing institutes ranged from major
academic medical centers to small community hospitals from across three continents. Date capture ranged from
December 2019 to as recent as January 2021 (site specific dates in Supplementary Table 1). Prior to performing these
analyses, all the data partners obtained Institutional Review Board (IRB) or equivalent governance approval. Each data
partner executed the study package locally on their OMOP CDM. Only aggregate results from each database were
publicly shared. Minimum cell sizes were determined by institutional protocols. All data partners consented to the
external sharing of the result set on data.ohdsi.org.

Study Population and Follow-Up
We focused on three non-mutually exclusive COVID-19 cohorts: i) diagnosed with COVID-19 (a positive SARS-CoV-2
laboratory test or clinical diagnosis code documenting COVID-19 - earliest event served as the index date); ii)
hospitalized with COVID-19 and; iii) hospitalized with COVID-19 and requiring intensive services. Due to variability
in access to diagnostic testing, we specifically looked for the presence of a PCR or antigen laboratory test OR the use of
clinical diagnosis codes documenting COVID-19 presentation.19 The codes used to identify cohorts and more detail on
the definitions of the above cohorts can be found in Supplementary Table 2. These cohorts were generated both with
a requirement of at least 365 days of data availability prior to the index date, and without any requirement for prior
observation time. Databases created specifically for COVID-19 tracking may be unable to support extensive lookback
periods and thus, we used multiple definitions to ensure inclusiveness in our approach. Cohorts were followed from their
cohort-specific index date to the earliest of death, end of the observation period, and up to 30 days post-index.

Stratifications
Each cohort was analyzed by the overall study population and stratified by additional available characteristics including:
follow-up time; socio-demographics, baseline comorbidities, pregnancy status (yes/no), and flu-like symptom episodes
(yes/no). Detailed definitions of each stratification are available in Supplementary Table 2.
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Baseline Characteristics, Symptoms, Medication Use and Outcomes of Interest
Information on socio-demographics was identified at or before baseline (index date). All conditions, symptoms and
medications were identified and described at four different time intervals (1 year prior, 30 days prior, at index and up to
30 days after index). The definition of each symptom and outcome is provided in Supplementary Table 2.

Statistical Analysis
We built this analysis using Health Analytics Data-to-Evidence Suite (HADES), a set of open source R packages for
large scale analytics.20 Proportions, standard deviations (SD), and standardized mean differences (SMD) within each
subgroup were tabulated as pre-specified in our study protocol. This analysis was descriptive in nature with the explicit
intention of building an initial, repeatable framework for constructing prevalent rates of disease. Only cohorts or stratified
sub-cohorts with a minimum sample size of 140 subjects were characterized. This cut-off was deemed necessary to
estimate with sufficient precision the prevalence of a previous condition or 30-day risk of an outcome affecting ≥10% of
the study population. SMDs were plotted in Manhattan-style plots, a type of scatter plot designed to visualize large data
with a distribution of higher-magnitude values. Scatter plots were also created to compare the described conditions,
symptoms and demographics of patients diagnosed (Y axis) to those hospitalized (X axis) with COVID-19.

Results
Patient Characteristics
Overall, we identified three non-mutually exclusive cohorts of 4,537,153 individuals with a clinical COVID-19 diagnosis
or positive test, 886,193 hospitalized with COVID-19, and 113,627 hospitalized with COVID-19 requiring intensive
services (Figure 1). Of these, the cohorts including patients with the requirement of at least of 365 days before index:
3,279,518 with a clinical COVID-19 diagnosis or laboratory positive test, 636,810 hospitalized with COVID-19, and
63,636 hospitalized with COVID-19 requiring intensive services (Supplementary Tables 3 and 4).

Figure 1 COVID-19 cases across the OHDSI COVID-19 network.
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Geographic Distribution
The USA data partners contributed 96% of the diagnosed with COVID-19 cohorts, including the single largest diagnosed
cohort from IQVIA Open Claims (n=2,785,812). Europe contributed 4% of the diagnosed with COVID-19 cohorts,
owing the single largest regional diagnosed cohort to SIDIAP-Spain (n=124,305). Asia contributed less than 1% of
diagnosed with COVID-19 cohorts, with the single largest regional diagnosed cohort contributed from Daegu Catholic
University Medical Center (n=599).

Demographic Distribution
In the USA, the proportion of diagnosed cases generally decreased with age, with most diagnosed cases being within the
25 to 60 age group. The proportion of cases hospitalized and intensive services increased with age, with the highest
proportions of cases of hospitalized, or intensive cases in the 60 to 80 year age group (Figure 2). A slightly higher
proportion of women were diagnosed than men but a greater proportion of men were hospitalized (and where available,
required intensive services) than women in the USA databases. In Europe, databases captured diagnosed or hospitalized
cohorts but had limited information on intensive services. In Europe, databases capturing hospitalized cases (HMAR,
HM-Hospitales, SIDIAP, and SIDIAP-H) showed a similar trend to the USA databases in that there was a higher
proportion of men were hospitalized than women (Supplementary Figure 1). Unlike the USA and European databases,
there was also a higher proportion of women in hospitalized cases in the South Korean database (HIRA). Age-wise trends
in the European and Asian databases were similar to those in the USA databases, in that the bulk of the diagnosed cases

Figure 2 Distribution of diagnosed, hospitalized and requiring intensive services COVID-19 cases by age and sex across the OHDSI COVID-19 network in the United
States.
Notes: In each subplot, the x-axis represents what proportion of all women (left) and all men (right) fall in each age category. No prior observation period required in the
cohorts shown in this figure Cohorts must be ≥140 people to be reported in this analysis.
Abbreviations: diag, diagnosed; hosp, hospitalized; i.s., hospitalized and requiring intensive services; CU-AMC-HDC, U of Colorado Anschutz Medical Campus Health Data
Compass; CUIMC, Columbia University Irving Medical Center; IQVIAHospitalCDM, IQVIA Hospital Charge Data Master; OHSU, Oregon Health and Science University;
OPTUM-EHR, Optum© de-identified Electronic Health Record Dataset; OPTUM-SES, Optum®De-Identified ClInformatics® Data Mart Database – Socio-Economic Status
(SES); STARR-OMOP, Stanford Medicine Research Data Repository; TRDW, Tufts MC Research Data Warehouse; UWM-CRD, UW Medicine COVID Research Dataset;
VA-OMOP, Department of Veterans Affairs.
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were in the 25 to 60 year age group, whilst the majority of the hospitalized cases were in the 60 to 80 year age group
(Supplementary Figure 1).

Comorbidities
Overall, the proportion of patients with type 2 diabetes mellitus, hypertension, chronic kidney disease, end stage renal
disease, heart disease, malignant neoplasm, obesity, dementia, auto-immune condition, chronic obstructive pulmonary
disease (COPD), and asthma was higher in the hospitalized cohort as compared to the diagnosed (Tables 1 and 2). Data
on tuberculosis, human immunodeficiency viruses (HIV), and hepatitis C infections were sparse, and where available the
proportions were generally low (≤1%). In the US databases, the proportion of pregnant women was generally higher in
the hospitalized cohort than in the diagnosed, but not so in two European databases (HM and SIDIAP). The remaining
five European and one of the Asian databases had data on pregnant women only in the hospitalized cohort, the proportion
of which was < 2%.

Other Analyses
Dyspnea, cough, and fever were the most common symptoms in diagnosed and hospitalized cohorts globally
(Supplementary Table 5). Where recorded, the proportion of dyspnea and malaise/fatigue was consistently higher in
the hospitalized cohort as compared to the diagnosed. Anosmia/hyposmia/dysgeusia was present in less than 1%
individuals in all but one database and more common in the diagnosed than the hospitalized cohorts (Supplementary
Table 6).

We further described a total of 19,222 conditions and 2973 medications registered during the year prior to the index
date (Supplementary Figure 2). The same information is also described for 30 days prior to the index date, at index date,
or during the first 30 days after index date (Supplementary Tables 4–6) The full result set of comorbidities, presenting
symptoms, medications and outcomes are reported by each cohort in aggregate counts, and are available in an interactive
website: https://data.ohdsi.org/Covid19CharacterizationCharybdis/.

Discussion
CHARYBDIS is the world’s largest open science aggregate result set aimed at describing the baseline demographics,
clinical characteristics, treatments received, and outcomes among individuals diagnosed and hospitalized with COVID-
19. To accomplish this, we aggregated over 22,000 unique characteristics creating a multi-centre view to describe trends
in COVID-19 progression, management and evolution over time. Globally, we observed similarities in the USA and
Europe in gender (more women diagnosed than men but more men hospitalized than women) and age (most diagnosed
cases between 25–60 years of age versus most hospitalized cases between 60–80 years of age) distributions. Similar to
previous studies, we observed South Korea differed with more women than men hospitalized. We found similarities in
comorbidities and presenting symptoms. The large, diverse sample size allows also for the identification of populations of
great interest, including children and adolescents,25 pregnant women,26 patients with a history of cancer,27 patients with
a history of autoimmune disorders,28 or patterns of drug utilization in COVID-19 treatment,21 and which were the focus
of additional in-depth investigations.

Summary of Key Findings
We described characteristics of 4,537,153 individuals with a clinical COVID-19 diagnosis or positive test, 886,193
hospitalized with COVID-19, and 113,627 hospitalized with COVID-19 requiring intensive services from 9 countries. Up
to 22,200 unique aggregate characteristics have been produced across databases, with all made publicly available in an
accompanying website. The evidence framework is a method for systematically understanding cohort-level differences in
COVID-19 from different regions and different points in the pandemic. In the months since we started this effort, our
network has already aided in rapid study for coagulopathy and adverse of events of special interest for COVID-19
vaccines to inform regulatory bodies.22 This research community can be a public health utility to guide in 1) better
patient characterization and stratification, 2) identifying areas of gap in knowledge/evidence, and 3) generating hypoth-
eses for future research.
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Table 1 Characteristics of Persons with a COVID-19 Diagnosis or SARS-CoV-2 Positive Test Across the OHDSI COVID-19 Network*

Asia United States Europe

DCMC NFHCRD Health

Verity

Premier OPTUM-

EHR

OPTUM-

SES

STARR-

OMOP

TRDW VA-

OMOP

IQVIA-

OpenClaims

IQVIA

Hospital

CDM

CUIMC CU-

AMC-

HDC

UWM-

CRD

OHSU SIDIAP IPCI CPRD IQVIA

LPD

France

IQVIA

DA

Germany

IQVIA

LPD

Italy

COVID-19 Cases (N) 559 403 587,683 66,132 160,613 7863 4788 1250 57,937 2,785,812 153,477 10,437 9481 3245 11,187 124,305 3306 3864 23,592 11,500 4816

Persons Tested NR 397 3,898,593 219,230 1,025,584 41,673 56,881 6950 521,814 6,520,151 719,596 22,094 120,661 83,921 109,434 173,957 NR 5551 NR NR NR

Tested Positive, n (%)* NR 392 (97.3) 425,610

(72.4)

NR 73,113

(45.5)

NR 1880

(39.3)

1035

(82.8)

32,847

(56.7)

NR NR 6959

(66.7)

NR 3,140

(96.8)

8764

(78.3)

39,047

(31.4)

NR 2098

(54.3)

NR NR NR

Full 30-day follow up 162

(29.0)

276 (68.5) 67,071

(11.4)

3902

(5.9)

84,073

(52.3)

1269

(16.1)

2703

(56.5)

641

(51.3)

44,661

(77.1)

1,882,950

(67.6)

21,145

(13.8)

2008

(19.2)

8755

(92.3)

1,199

(36.9)

3760

(33.6)

81,914

(65.9)

2601

(78.7)

2723

(70.5)

9819

(41.6)

5588

(48.6)

3570

(74.1)

< 30-day follow up 397

(71.0)

127 (31.5) 520,612

(88.6)

62,230

(94.1)

76,540

(47.7)

6594

(83.9)

2085

(43.5)

609

(48.7)

13,272

(22.9)

902,862

(32.4)

132,332

(86.2)

8429

(80.8)

706

(7.4)

2046

(63.1)

7427

(66.4)

42,391

(34.1)

705

(21.3)

1141

(29.5)

13,773

(58.4)

5912

(51.4)

1246

(25.9)

Comorbidities, n (%)**

Type 2 Diabetes

Mellitus

108

(19.3)

9 (2.2) 20,922

(3.6)

10,783

(16.3)

26,897

(16.7)

2673

(34.0)

555

(11.6)

179

(14.3)

19,083

(32.9)

724,991

(26.0)

35,576

(23.2)

1977

(18.9)

1396

(14.7)

391

(12.0)

603

(5.4)

9941

(8.0)

500

(15.1)

545

(14.1)

1318

(5.6)

1089 (9.5) 452

(9.4)

Hypertension 154

(27.5)

19 (4.7) 34,090

(5.8)

19,008

(28.7)

54,678

(34.0)

4393

(55.9)

1319

(27.5)

307

(24.6)

34,357

(59.3)

1,260,816

(45.3)

60,495

(39.4)

3771

(36.1)

2708

(28.6)

735

(22.7)

1065

(9.5)

21,337

(17.2)

688

(20.8)

779

(20.2)

3522

(14.9)

2611

(22.7)

1659

(34.4)

Heart disease 106

(19.0)

7 (1.7) 19,016

(3.2)

11,533

(17.4)

39,510

(24.6)

3726

(47.4)

977

(20.4)

245

(19.6)

24,699

(42.6)

936,271

(33.6)

33,846

(22.1)

3236

(31.0)

1871

(19.7)

440

(13.6)

778

(7.0)

17,759

(14.3)

470

(14.2)

722

(18.7)

1213

(5.1)

2007

(17.5)

1013

(21.0)

History of cancer 32 (5.7) NR 6107

(1.0)

3157

(4.8)

18,536

(11.5)

1491

(19.0)

887

(18.5)

106

(8.5)

10,792

(18.6)

317,479

(11.4)

11,237

(7.3)

1480

(14.2)

843

(8.9)

184

(5.7)

469

(4.2)

8872

(7.1)

262

(7.9)

296

(7.7)

674

(2.9)

661 (5.7) 547

(11.4)

Hepatitis C NR NR 740 (0.1) 410 (0.6) 1395 (0.9) 112 (1.4) 61 (1.3) 35 (2.8) 3075

(5.3)

40,101 (1.4) 1966 (1.3) 144

(1.4)

90 (0.9) 54 (1.7) 88 (0.8) 648

(0.5)

NR NR 40 (0.2) 31 (0.3) 53 (1.1)

Obesity 29 (5.2) NR 15,072

(2.6)

7298

(11.0)

71,076

(44.3)

2468

(31.4)

1246

(26.0)

325

(26.0)

25,128

(43.4)

740,430

(26.6)

28,757

(18.7)

3729

(35.7)

3136

(33.1)

233

(7.2)

945

(8.4)

36,557

(29.4)

629

(19.0)

1428

(37.0)

2287

(9.7)

1345

(11.7)

674

(14.0)

Dementia 6 (1.1) NR 4255

(0.7)

3697

(5.6)

5360 (3.3) 851 (10.8) 38 (0.8) 29 (2.3) 4019

(6.9)

219,062 (7.9) 7776 (5.1) 483

(4.6)

235

(2.5)

116

(3.6)

97 (0.9) 6013

(4.8)

64

(1.9)

327

(8.5)

55 (0.2) 339 (2.9) 81 (1.7)

Autoimmune

condition

49 (8.8) NR 7291

(1.2)

1678

(2.5)

13,396

(8.3)

1464

(18.6)

418 (8.7) 133

(10.6)

10,103

(17.4)

433,259

(15.6)

8965 (5.8) 1388

(13.3)

720

(7.6)

140

(4.3)

409

(3.7)

8260

(6.6)

476

(14.4)

394

(10.2)

1467

(6.2)

1183

(10.3)

636

(13.2)

Chronic obstructive

pulmonary disease

(COPD) without

asthma

NR NR 8160

(1.4)

3335

(5.0)

12,067

(7.5)

1449

(18.4)

231 (4.8) 89 (7.1) 12,665

(21.9)

297,269

(10.7)

12,008

(7.8)

809

(7.8)

733

(7.7)

112

(3.5)

249

(2.2)

15,819

(12.7)

213

(6.4)

294

(7.6)

696

(3.0)

868 (7.5) 350

(7.3)

Asthma without

COPD

17 (3.0) NR 10,458

(1.8)

3972

(6.0)

21,076

(13.1)

1125

(14.3)

521

(10.9)

112

(9.0)

6278

(10.8)

438,892

(15.8)

12,936

(8.4)

1376

(13.2)

1100

(11.6)

176

(5.4)

567

(5.1)

7567

(6.1)

322

(9.7)

494

(12.8)

2327

(9.9)

1097 (9.5) 420

(8.7)

Pregnant women NR NR 3543

(0.6)

1192

(1.8)

3917 (2.4) 109 (1.4) 52 (1.1) 27 (2.2) 86 (0.1) 41,329 (1.5) 2944 (1.9) 382

(3.7)

212

(2.2)

32 (1.0) 156

(1.4)

689

(0.6)

32

(1.0)

11

(0.3)

212

(0.9)

39 (0.3) 63 (1.3)

(Continued)

C
linicalEpidem

iology
2022:14

https://doi.org/10.2147/C
LEP.S323292

D
o
v
e
P
r
e
s
s

375

D
o
v
e
p
r
e
s
s

K
ostka

et
al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 1 (Continued).

Asia United States Europe

DCMC NFHCRD Health

Verity

Premier OPTUM-

EHR

OPTUM-

SES

STARR-

OMOP

TRDW VA-

OMOP

IQVIA-

OpenClaims

IQVIA

Hospital

CDM

CUIMC CU-

AMC-

HDC

UWM-

CRD

OHSU SIDIAP IPCI CPRD IQVIA

LPD

France

IQVIA

DA

Germany

IQVIA

LPD

Italy

Chronic kidney

disease broad

156

(27.9)

NR 7535

(1.3)

5711

(8.6)

17,531

(10.9)

1829

(23.3)

398 (8.3) NR 10,239

(17.7)

364,857

(13.1)

16,250

(10.6)

1181

(11.3)

723

(7.6)

213

(6.6)

277

(2.5)

8144

(6.6)

197

(6.0)

478

(12.4)

194

(0.8)

562 (4.9) 192

(4.0)

End stage renal

disease

155

(27.7)

NR 1683

(0.3)

1062

(1.6)

3008 (1.9) 359 (4.6) 122 (2.5) NR 3273

(5.6)

96,555 (3.5) 5155 (3.4) 600

(5.7)

166

(1.8)

51 (1.6) 52 (0.5) 8 (0.0) NR 17

(0.4)

NR 27 (0.2) NR

Human

immunodeficiency

virus infection

NR NR 829 (0.1) 357 (0.5) 763 (0.5) 67 (0.9) 20 (0.4) NR 817

(1.4)

24,808 (0.9) 1309 (0.9) 163

(1.6)

56 (0.6) 45 (1.4) 43 (0.4) 290

(0.2)

NR NR 83 (0.4) 18 (0.2) 19 (0.4)

Notes: *Proportions presented among diagnosed patients with a COVID-19 diagnosis or SARS-CoV-2 positive test by database (column percentage); since SIDIAP_H includes a subset of SIDIAP, results were not included in this table; -
data not available or below the minimum cell count required (5 individuals); no prior observation time was required. **Prevalent conditions at index date.
Abbreviations: CU-AMC-HDC, U of Colorado Anschutz Medical Campus Health Data Compass; CUIMC, Columbia University Irving Medical Center; IQVIAHospitalCDM, IQVIA Hospital Charge Data Master; OHSU, Oregon Health
and Science University; OPTUM-EHR, Optum© de-identified Electronic Health Record Dataset; OPTUM-SES, Optum®De-Identified Clinformatics® Data Mart Database – Socio-Economic Status (SES); STARR-OMOP, Stanford Medicine
Research Data Repository; TRDW, Tufts Research Data Warehouse; UWM-CRD, UW Medicine COVID Research Dataset; VA-OMOP, Department of Veterans Affairs; NR, not reported by data partner.
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Table 2 Characteristics of Persons Hospitalized with a COVID-19 Diagnosis or SARS-CoV-2 Positive Test Across the OHDSI COVID-19 Network*

Asia United States Europe

HIRA NFHCRD HealthVerity Premier OPTUM-
EHR

OPTUM-
SES

STARR-
OMOP

TRDW VA-
OMOP

IQVIA
Open
Claims

IQVIA
Hospital
CDM

CUIMC CU-
AMC-
HDC

UWM-
CRD

OHSU HM
Hospitales

SIDIAP HMAR

COVID-19 Cases (N) 7599 304 22,887 36,019 29,061 4336 744 326 10,951 533,997 57,062 3439 1874 733 627 2544 18,369 2686

Hospitalized with positive test,
n (%)

NR 125 (41.1) 13,262 (57.9) NR 13,817
(47.5)

NR 128
(17.2)

232
(71.2)

8623
(78.7)

NR NR 3075
(89.4)

NR 676
(92.2)

344
(54.9)

NR 13,685
(74.5)

773
(28.8)

Full 30-day follow up 7359
(96.8)

284 (93.4) 10,333 (45.1) 2361
(6.6)

18,555
(63.8)

851 (19.6) 657
(88.3)

NR 8548
(78.1)

412,537
(77.3)

11,876
(20.8)

943
(27.4)

1810
(96.6)

400
(54.6)

484
(77.2)

109 (4.3) 12,290
(66.9)

1254
(46.7)

< 30-day follow up 240
(3.2)

20 (6.6) 12,554 (54.9) 33,658
(93.4)

10,506
(36.2)

3485
(80.4)

87 (11.7) NR 2400
(21.9)

121,460
(22.7)

45,186
(79.2)

2496
(72.6)

64 (3.4) 333
(45.4)

143
(22.8)

2435 (95.7) 6079
(33.1)

1432
(53.3)

Comorbidities, n (%)**

Type 2 Diabetes Mellitus 1760
(23.2)

NR 3880 (17.0) 8899
(24.7)

9531
(32.8)

1844
(42.5)

157
(21.1)

83
(25.5)

5839
(53.3)

254,505
(47.7)

16,480
(28.9)

1120
(32.6)

677
(36.1)

226
(30.8)

177
(28.2)

428 (16.8) 3295
(17.9)

294
(10.9)

Hypertension 1943
(25.6)

NR 6410 (28.0) 15,216
(42.2)

16,427
(56.5)

2977
(68.7)

389
(52.3)

123
(37.7)

9087
(83.0)

390,171
(73.1)

26,262
(46.0)

1770
(51.5)

1073
(57.3)

398
(54.3)

283
(45.1)

1139 (44.8) 5645
(30.7)

653
(24.3)

Heart disease 1271
(16.7)

NR 5178 (22.6) 10,384
(28.8)

13,274
(45.7)

2634
(60.7)

297
(39.9)

109
(33.4)

7421
(67.8)

319,842
(59.9)

16,165
(28.3)

1534
(44.6)

802
(42.8)

286
(39.0)

258
(41.1)

606 (23.8) 5148
(28.0)

362
(13.5)

History of cancer 410
(5.4)

NR 1132 (4.9) 2811
(7.8)

4939
(17.0)

1065
(24.6)

277
(37.2)

47
(14.4)

3401
(31.1)

106,805
(20.0)

5524 (9.7) 588
(17.1)

300
(16.0)

90
(12.3)

154
(24.6)

286 (11.2) 2616
(14.2)

179
(6.7)

Hepatitis C 61
(0.8)

NR 134 (0.6) 394 (1.1) 469 (1.6) 77 (1.8) 17 (2.3) 13 (4.0) 1037
(9.5)

14,408
(2.7)

1050 (1.8) 81 (2.4) 37 (2.0) 25 (3.4) 37 (5.9) 15 (0.6) 135
(0.7)

38 (1.4)

Obesity 16
(0.2)

NR 2238 (9.8) 6678
(18.5)

15,497
(53.3)

1626
(37.5)

312
(41.9)

126
(38.7)

5677
(51.8)

191,071
(35.8)

10,735
(18.8)

1651
(48.0)

988
(52.7)

138
(18.8)

167
(26.6)

149 (5.9) 8428
(45.9)

259
(9.6)

Dementia 436
(5.7)

NR 1815 (7.9) 3428
(9.5)

2376 (8.2) 637 (14.7) 17 (2.3) 17 (5.2) 2087
(19.1)

81,638
(15.3)

4044 (7.1) 373
(10.8)

140
(7.5)

95
(13.0)

25 (4.0) 108 (4.2) 1102
(6.0)

75 (2.8)

Autoimmune condition 813
(10.7)

NR 1215 (5.3) 1432
(4.0)

3320
(11.4)

931 (21.5) 89 (12.0) 54
(16.6)

3156
(28.8)

136,735
(25.6)

4205 (7.4) 570
(16.6)

226
(12.1)

67 (9.1) 83
(13.2)

121 (4.8) 1706
(9.3)

93 (3.5)

Chronic obstructive pulmonary
disease (COPD) without asthma

145
(1.9)

NR 2213 (9.7) 3016
(8.4)

5176
(17.8)

1066
(24.6)

102
(13.7)

52
(16.0)

4641
(42.4)

118,421
(22.2)

7071 (12.4) 469
(13.6)

333
(17.8)

77
(10.5)

90
(14.4)

173 (6.8) 4848
(26.4)

138
(5.1)

Asthma without COPD 1560
(20.5)

NR 1004 (4.4) 2677
(7.4)

3746
(12.9)

628 (14.5) 127
(17.1)

39
(12.0)

1153
(10.5)

82,087
(15.4)

3825 (6.7) 498
(14.5)

245
(13.1)

58 (7.9) 101
(16.1)

112 (4.4) 957
(5.2)

99 (3.7)

Pregnant women 121
(1.6)

NR 341 (1.5) 682 (1.9) 1550 (5.3) 30 (0.7) 18 (2.4) 13 (4.0) NR 12,748
(2.4)

2029 (3.6) 158
(4.6)

111
(5.9)

22 (3.0) 73
(11.6)

7 (0.3) 108
(0.6)

20 (0.7)

Chronic kidney disease broad 421
(5.5)

NR 2622 (11.5) 5339
(14.8)

6596
(22.7)

1357
(31.3)

162
(21.8)

NR 3958
(36.1)

164,710
(30.8)

8827 (15.5) 691
(20.1)

375
(20.0)

152
(20.7)

112
(17.9)

157 (6.2) 2658
(14.5)

186
(6.9)
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Table 2 (Continued).

Asia United States Europe

HIRA NFHCRD HealthVerity Premier OPTUM-
EHR

OPTUM-
SES

STARR-
OMOP

TRDW VA-
OMOP

IQVIA
Open
Claims

IQVIA
Hospital
CDM

CUIMC CU-
AMC-
HDC

UWM-
CRD

OHSU HM
Hospitales

SIDIAP HMAR

End stage renal disease 30
(0.4)

NR 826 (3.6) 948 (2.6) 1506 (5.2) 296 (6.8) 31 (4.2) NR 1520
(13.9)

53,747
(10.1)

3333 (5.8) 371
(10.8)

101
(5.4)

43 (5.9) 29 (4.6) 7 (0.3) NR 91 (3.4)

Human immuno-deficiency virus
infection

NR NR 96 (0.4) 275 (0.8) 222 (0.8) 33 (0.8) NR NR 239
(2.2)

7009
(1.3)

516 (0.9) 73 (2.1) 14 (0.7) 11 (1.5) 11 (1.8) NR 47 (0.3) 14 (0.5)

Notes: *Proportions presented among diagnosed patients with a COVID-19 diagnosis or SARS-CoV-2 positive test by database (column percentage); - data not available or below the minimum cell count required (5 individuals); no prior
observation time was required. **Prevalent conditions at index date.
Abbreviations: CU-AMC-HDC, U of Colorado Anschutz Medical Campus Health Data Compass; CUIMC, Columbia University Irving Medical Center; IQVIAHospitalCDM, IQVIA Hospital Charge Data Master; OHSU, Oregon Health
and Science University; OPTUM-EHR, Optum© de-identified Electronic Health Record Dataset; OPTUM-SES, Optum® De-Identified Clinformatics® Data Mart Database – Socio-Economic Status (SES); STARR-OMOP, Stanford Medicine
Research Data Repository; TRDW, Tufts Research Data Warehouse; UWM-CRD, UW Medicine COVID Research Dataset; VA-OMOP, Department of Veterans Affairs; HM-Hospitales, HM-Hospitales Madrid; SIDIAP, Information
System for Research in Primary Care; HMAR, Hospital del Mar; NR, not reported by data partner.
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Comparison to Other Multi-Centre COVID-19 Consortia
We began our deep phenotyping work through an initial investigation of persons hospitalized with COVID-19 compared
to prior flu seasons in our global federated network.9

The National COVID Cohort Collaborative (N3C) is a NIH NCATS funded initiative collecting centralizing patient-
level data to study patterns in COVID-19 patients.23 This effort has over 80 participating institutions contributing 4.5M
COVID-19 patients to date to a centralized harmonized repository. The consortia has enabled many US institutions in
adoption of common data models in COVID-19 research. 4CE is another multi-site data-sharing collaborative of 342
hospitals in the US and in Europe, utilizing i2b2 or OMOP data models.24 The hospitalization cohorts presented in 4CE
cohorts remain smaller than the scope of CHARYBDIS with only 36,447 hospitalized patients with COVID-19 as of
August 2020.24 Even when adjusting for cohort overlap, our work to date with CHARYBDIS is nearly triple the
diagnosis and double the hospitalized cohorts represented in prior research. Our results also have more international
representation across the cascade of hotspots over the course of the pandemic’s spread. As we continue our research, we
are working with researchers to create inpatient-outpatient linkages and understand COVID-19 patient trajectories across
care settings.

Study Strengths
Our study has several strengths. This study is unique in its approach to characterizing COVID-19 cases across an
international network of healthcare systems with varied policies enacted to combat this pandemic. This allows better
understanding of the implications of the pandemic for different countries and regions, in the context of an international
comparison. Particularly, it provides visibility into the variability of patient characteristics across healthcare settings. This
study is the most comprehensive federated network of healthcare sites in the world, creating the single largest cohort
study on diagnosed and hospitalized COVID-19 cases to date. The large, diverse sample size allows for extensive
investigation on subgroups of interest. CHARYBDIS is the framework for additional in-depth investigations on children
and adolescents,25 pregnant women,26 patients with a history of cancer,27 patients with a history of autoimmune
disorders,21 or patterns of drug utilization in COVID-19 treatment.21 The size of these results are so large, we have
hundreds combinations of subgroups of interest that remain unreported. There is significant opportunity for this frame-
work to inform additional research.

Study Limitations
We recognize there are limitations in our approach. First, this study is descriptive in nature. Further analyses are needed
to utilize these findings in clinical application. The observed differences between groups (eg diagnosed versus hospita-
lized) should therefore not be interpreted as causal effects without further statistical scrutiny. Answering causal questions
is especially difficult in COVID-19 because of the varying processes by which patients were screened, tested, admitted,
and treated; the critical importance of knowing the exact timing of treatments and outcomes in severe cases; and the lack
of appropriate comparison groups. Simple multivariable models by themselves will not sufficiently address bias for
multiple questions and were purposely not applied here. This study was carried out using data recorded in routine clinical
practice and based on electronic health records (EHRs) and/or claims data. The analysed data are therefore expected to be
incomplete in some respects and may have erroneous entries, leading to potential misclassification. We have selectively
reported database-specific outcomes to minimise the impact of incompleteness. We are aware that this may mean the
network assembled is not inherently valuable for every follow-on analysis as each data partner may have different
elements missing. Hospital encounters may be unable to ascertain outcomes experienced in an outpatient data. Our EHR
partners rely on structured data and may be missing key findings from clinical notes. Additionally, the under-reporting of
symptoms observed in these data is a key finding of this study, and should be taken into consideration in previous and
future similar reports from “real world” cohorts. Differential reporting in different databases is likely a function of
differential coding practice as well as of variability in disease severity, with milder/less symptomatic cases more likely
presenting in outpatient and primary care EHR, and more severe ones in hospital databases. Finally, the current result
submissions are prejudiced to data in the initial wave of COVID-19 cases. Further analysis using this network requires
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stratification by calendar month. Lastly, we currently lack data partners in low to middle income countries and recognize
these data are lacking representation of some of the hardest hit areas in the world (eg Brazil, India). As data are
accumulated over time, future updates of the results will provide the opportunity to study more recent cohorts of COVID-
19 patients, who seem to have a better prognosis overall compared to those diagnosed in the first half of the pandemic.

Conclusion
We constructed a global, multi-centre view to describe trends in COVID-19 progression, management and evolution over
time. By characterising baseline variability in demographics across geography, our work provides critical context to the
reliability of the insight we generate. In retrospective database studies, one can struggle to identify whether heterogeneity
occurs because of patient variability or because of the variability in source systems we use to capture patient data. Here
we use a network of retrospective databases standardised to the same data model adhering to a shared ontology and data
quality processes. Our study provides a comprehensive view into the first year of the pandemic at a scale unlike most
retrospective research. Our work sheds light on the natural history of millions of COVID-19 patients from the USA, 6
European countries and 2 Asian countries. This framework is open source and available for re-use enabling a repeatable,
reproducible method to capture the evolving natural history of this novel coronavirus and can be extended to other
disease of international interest. We believe it is critically important to repeat and reproduce the findings we produce in
real world studies. Leveraging this global federated network to corroborate single center findings can provide context to
national database findings in the presence of regional variability in COVID-19 management including vaccine rollout and
treatments.
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