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Abstract 
Background: Trypanosoma brucei is a protozoan parasite and the 
etiological agent of human and animal African trypanosomiasis. The 
organism cycles between its mammalian host and tsetse vector. The 
host-dwelling bloodstream form of the parasite is covered with a 
monolayer of variant surface glycoprotein (VSG) that enables it to 
escape both the innate and adaptive immune systems. Within this 
coat reside lower-abundance surface glycoproteins that function as 
receptors and/or nutrient transporters. The glycosylation of the 
Trypanosoma brucei surface proteome is essential to evade the 
immune response and is mediated by three oligosaccharyltransferase 
genes; two of which, TbSTT3A and TbSTT3B, are expressed in the 
bloodstream form of the parasite. 
Methods: We processed a recent dataset of our laboratory to visualise 
putative glycosylation sites of the Trypanosoma brucei proteome. We 
provided a visualisation for the predictions of glycosylation carried by 
TbSTT3A and TbSTT3B, and we augmented the visualisation with 
predictions for Glycosylphosphatidylinositol anchoring sites, domains 
and topology of the Trypanosoma brucei proteome. 
Conclusions: We created a web service to explore the glycosylation 
sites of the Trypanosoma brucei oligosaccharyltransferases 
substrates, using data described in a recent publication of our 
laboratory. We also made a machine learning algorithm available as a 
web service, described in our recent publication, to distinguish 
between TbSTT3A and TbSTT3B substrates.
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Introduction
The protozoan parasite Trypanosoma brucei is transmitted to 
humans by the tsetse fly (Glossina species), which is found  
only in sub-Saharan Africa1. The parasite replicates as procy-
clic form (PCF) in the tsetse fly midgut and some differentiate 
during migration to the salivary glands to replicating epimas-
tigote forms. The latter differentiate into non-dividing metacy-
clic trypomastigotes that establish the mammalian host infection  
during a tsetse vector bloodmeal. Once in the host, the para-
sites differentiate into replicating, slender trypomastigotes and 
some of these differentiate into non-dividing stumpy forms that 
are adapted for survival and differentiation into procyclic forms  
once ingested by the vector1. Left untreated in the human host, 
the parasites invade the central nervous system causing neuro-
logical symptoms, coma and death1. The majority of experimen-
tal data on T. brucei have been obtained from either cultured  
versions of the bloodstream form (BSF), or BSF cells from 
rodent infections, and/or from the cultured procyclic form (PCF)  
of the parasite.

Like all eukaryotes, T. brucei modifies most proteins that enter 
its secretory pathway through glycosylation. Since cell sur-
face glycoproteins are at the interface between the cell and its  
environment, they often play central roles in eukaryotic cell biol-
ogy; T. brucei is no exception. The BSF relies on a surface coat 
made of glycosylphosphatidylinositol (GPI) anchored and N-
glycosylated variant surface glycoprotein (VSG) to evade the  
host innate immune system and the acquired immune system 
through antigenic variation2. The BSF also expresses other lower 
abundance glycoproteins including but not restricted to: a novel 
VSG-like transferrin receptor (TfR)2–4, a lysosomal/endosomal 
protein called p675, invariant surface (ISG) and endoplasmic  
reticulum (IGP) glycoproteins6,7, a Golgi/lysosomal glycoprotein 
tGLP-18, a membrane-bound histidine acid phosphatase TbM-
BAP19, flagellar adhesion zone glycoproteins Fla1–310,11, a flag-
ellar pocket/endosomal system haptoglobin-hemoglobin receptor 
(HpHbr)12 and serum resistance antigen (SRA)13, a complement 
factor H receptor (FHR)14 and a metacyclic trypomastigote-spe-
cific ISG15. Some of these are metacyclic and/or BSF specific 
glycoproteins (eg. VSG, TfR, ISG, TbMAP1, HpHbr, SRA, FHR) 
while others are also common to PCF trypanosomes. PCF para-
sites also express unique glycoproteins including but not limited 
to: the abundant GPI-anchored procyclins, some of which are  
N-glycosylated16,17, and a high-molecular weight glycoconju-
gate18,19.

The GPI anchor structures of some BSF VSGs20–23 and the 
TfR24 have been solved, as have those of PCF procyclins16. All  
contain the conserved GPI core but the BSF GPIs contain sn-1,2-
dimyristoylglycerol lipid and sidechains of up to 1 βGal and up 
to 5 αGal residues whereas the PCF procyclin GPIs are inositol-
acylated and contain sn-1-acylglycerol lipid and sidechains of 
branched, N-acetyllactosamine and lacto-N-biose repeats capped  
with α2–3 sialic acid16,25,26. Expression of a BSF VSG gene in 
PCF cells resulted in PCF-type GPI anchor inositol-acylation 
and sidechain structure27. We therefore conclude that T. brucei  

GPI anchors can be categorized as BSF- or PCF-type according  
th the lifecycle stage they are expressed in.

Several of the N-glycan structures expressed by BSF T. brucei 
have been solved and these include conventional oligomannose 
and biantennary complex structures as well as paucimannose  
and extremely unusual ‘giant’ poly-N-acetyl-lactosamine (poly-
LacNAc) containing complex structures28–32. In contrast, only 
oligomannose N-glycans have been structurally described in 
wild type PCF trypanosomes16,33. Eukaryotic oligosaccharyl-
transferase (OST) enzymes responsible for N-glycosylation oper-
ate on asparagine residues in N-glycosylation sequon motifs of  
asparagine, any amino acid except proline, serine or threonine 
(N.^P[S/T]). We showed that two OST enzymes in BSF T. bru-
cei, named TbSTT3A and TbSTT3B, have different accep-
tor and donor substrate specificities33. Thus, TbSTT3A first  
transfers Man5GlcNAc2 from Man5GlcNAc2-PP-dolichol to any 
sequons in acidic peptide environments and TbSTT3B transfers 
Man9GlcNAc2 from Man9GlcNAc2-PP-dolichol to all remain-
ing sequons. The sites modified by TbSTT3A with bi-antennary 
Man5GlcNAc2 can be further processed to paucimannose struc-
tures and a wide array of complex N-glycan structures, while the 
sites modified by TbSTT3B with tri-antennary Man9GlcNAc2  
can be maximally processed to tri-antennary Man5GlcNAc2; 
i.e., these sites are exclusively occupied by oligomannose N-gly-
cans. Using this information, we were able to create a predictor 
to distinguish between N-glycosylation sequons preferentially  
modified by TbSTT3A, leading to paucimannose and/or complex 
N-glycans, or TbSTT3B, leading it oligomannose N-glycans33. 
Experimental proteomics data used to train the predictor exploited 
the sensitivity and resistance, respectively, of oligomannose and 
paucimannose/complex N-glycans. Removal of oligomannsoe  
glycans by endoglycosidase H leaves behind a single N-acetylglu-
cosamine residue and thus marks relevant tryptic peptides  
with a 203 D mass-tag. The endoglycosidase H resistant pau-
cimannose/complex N-glycans were subsequently removed 
with peptide N-glycosidase F in the presence of H

2
18O, leaving  

behind [18O]aspartate in place of asparagine and thus marking  
relevant tryptic peptides with a 3 D mass-tag.

To facilitate the visualisation and analysis of putative T. brucei 
glycoproteins based on their predicted amino acid sequences,  
we have combined the prediction of N-terminal signal peptides 
(that are generally required for protein entry into the secretory 
pathway), C-terminal GPI addition signal peptides, N-glyco-
sylation sequon (classified as experimentally determined and/or  
predicted TbSTT3A or TbSTT3B substrates) transmembrane 
and other protein domains. We have created a free to use web 
service incorporating all these features that we believe will be  
useful to the trypanosome research community.

Methods
We used the mass spectrometry data described in 33 and depos-
ited at the PRIDE database34 with accession numbers: PXD007267 
and PXD007268 to extract the BSF glycoprotein sequons  
preferentially modified by TbSTT3A (and therefore expressing 
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complex and/or paucimannose N-glycans) or TbSTT3B (and 
therefore expressing oligomannose N-glycans). We also  
computed the ratio of the complex/paucimannose modifica-
tions as TbSTT3A modified sites / (TbSTT3A modified sites + 
TbSTT3A modified sites). Similarly, we computed the ratio of  
the oligomannose modifications as TbSTT3B modified sites / 
(TbSTT3B modified sites + TbSTT3A modified sites). We also 
collected transmembrane topology and signal peptide predic-
tions using the Phobius website https://phobius.sbc.su.se/index.
html35 and GPI anchor site predictions using the big-PI Predic-
tor available at https://mendel.imp.ac.at/gpi/gpi_server.html36.  
The machine-learning algorithm to distinguish the sites prefer-
entially modified by TbSTT3B or TbSTT3A in BSF T. brucei is 
the same described in 33. We further collected protein domain  
predictions using the CDART server37. The protein ids, sequences 
and descriptions were retrieved from TriTrypDB version 2838. 
TriTrypDB stores also user-based comments regarding the 
gene of interest and gene ontology (GO) annotation terms that  
were also retrieved and incorporated in the web application.

Implementation
We implemented a web server using the tornado python pack-
age version 4.3 (https://www.tornadoweb.org/en/stable/). The 
user interface was developed in javascript using bootstrap  
version 3.3.7, jquery version 3.1.1 and datatables version 
1.10.11. The feature visualisation panel uses the neXtProt feature  
viewer package version 0.1.4439. The website is hosted at http://13
4.36.66.166:8070/home.

Operation
We recommend hosting the application on a web server with 
1MB of RAM and 50GB of disk space. The application runs 
using the Tornado HTTPServer (https://www.tornadoweb.org/
en/stable/guide/running.html). The application code can be  

cloned from the git repository or downloaded from Zenodo40. 
After creating and activating a conda environment with the pack-
ages listed in requirments.txt40, move to the application folder  
and start the Tornado HTTPServer with “python glyc_web_ 
server.py”

Use cases
The user is presented with a responsive web application with 
two main components: a protein feature browser (Figure 1 and  
Figure 2) and a type of glycans prediction (Figure 3).

Protein feature browser
The protein feature browser can be queried with a protein iden-
tification number (Figure 1.1). After clicking the search but-
ton, the protein description and comments tab are updated  
(Figure 1.2 and Figure 1.3). The comment tab reports on the pres-
ence of: 1) a signal peptide, 2) the presence of occupied N-gly-
cosylation sequons, as determined by mass spectrometry, and 3) 
the presence of a predicted GPI anchoring site. The peptide list 
tab (Figure 1.4) reports all the N.^P[S/T] sequons identified in 
the protein. It reports the peptide sequence (peptide) extracted  
from +/- 6 amino acid surrounding the central asparagine. The 
central asparagine is colour coded blue if predicted to be be modi-
fied by TbSTT3B, and therefore carry olgomannose N-glycans, 
or red if predicted to be be modified by TbSTT3A in BSF cells,  
and therefore carry paucimannose or complex N-glycans, as 
reported in the Prediction column. The table further reports 
the N-glycan occupied site position in the protein sequence 
(Site), the number of peptides detected by mass spectrometry  
indicating they were originally occupied by endoglycosidse  
H-resistant complex/paucimannose glycans (MS_complex / pau-
cimannose), the number of peptides detected by mass spectrom-
etry indicating they were originally occupied by endoglycosidse  
H-sensitive oligomannose glycans (MS_oligomannose). The 

Figure 1. Web Application Layout. Screen shot of the upper half of the web application user interface. 1) Input text to query the web 
server with a protein identification number. 2) Text area reporting the protein description. 3) Text area reporting the presence of three 
protein features: Signal peptide, Glycosylation sites and GPI anchor. 4) Tab reporting the N-glycan peptide sequences identified in the 
protein sequence. 5) Search field for the peptide sequences. 6) Download buttons for the table listing the peptide sequences. 

Page 4 of 13

Wellcome Open Research 2022, 7:33 Last updated: 10 MAR 2022

https://phobius.sbc.su.se/index.html
https://phobius.sbc.su.se/index.html
https://mendel.imp.ac.at/gpi/gpi_server.html
https://www.tornadoweb.org/en/stable/
http://134.36.66.166:8070/home
http://134.36.66.166:8070/home
https://www.tornadoweb.org/en/stable/guide/running.html
https://www.tornadoweb.org/en/stable/guide/running.html


table can be searched by peptide sequence or prediction type 
with the Search input field (Figure 1.5). The table can also be  
downloaded locally with the interaction buttons (Figure 1.6). 

The protein identification number search button (Figure 1.2) 
also updates the visual protein sequence representation in the 
central part of the web page (Figure 2.1) reporting: 1) the pro-
tein sequence (Sequence), 2) the protein region predicted to be  
cleaved off after the addition of the GPI anchoring site (GPI), 
3) The localisation of complex/paucimannose glycans identi-
fied by mass spectrometry, 4) The localisation of oligomannose 
glycans identified by mass spectrometry, 5) the CDART protein  
domain predictions, 6) the proportion of complex/pauciman-
nose modifications and 7) the proportion of of the oligomannose  
modifications.

The full dataset hosted in the web application can be queried 
with the table at the bottom of the web application (Figure 2.2). 
The table can be searched using the search field (Figure 2.3)  
with the protein identification number (Id), gene description 
(Description), user-defined comments (Comments) and GO 
term annotations (GO term). The table can also be downloaded  
locally with the interaction buttons (Figure 2.4).

N-Glycan type prediction
The prediction link opens another user interface where it is  
possible to retrieve the prediction of a machine learning model 

trained to discriminate between sites preferentially modified by 
TbSTT3A (complex/paucimannose) or TbSTT3B (oligoman-
nose) in BSF trypanosomes. The user can input a protein sequence 
in Fasta format (Figure 3.1), or an example sequence in Fasta  
format can be uploaded in the text input area by clicking on the 
Tb927.1.5100 protein id (Figure 3.2). After clicking on the Sub-
mit button (Figure 3.3) a results table is produced (Figure 3.4) 
reporting 1) the protein identification number (Prot), 2) The 
putative N.^P[S/T] sites in the protein as a peptide sequence  
(Seq) centred at the modified asparagine +/- 10 amino acids, 
3) the predictor score (Score) and 4) the type of prediction 
(Prediction); Oligomannose glycans for TbSTT3B modified 
asparagine or Complex/Paucimannose glycans for TbSTT3A  
modified sites. The predictor was developed as a binary classi-
fier for TbSTT3A modified sites using TbSTT3B modified as a 
negative set33. For this reason, a score close to 1 is indicative of 
a site preferentially modified by TbSTT3A. A score close to 0 is  
indicative of a site preferentially modified by TbSTT3B. A cut-
off of 0.5 is used to determine if TbSTT3A or TbSTT3B is  
predicted to preferentially modify the asparagine.

Conclusions
We developed a web application to explore the glycosylation 
modifications mediated by TbSTT3A and TbSTT3B in the BSF 
proteome of T. brucei. It is important to re-emphasise that in wild  
type PCF T. brucei, only oligomannose N-glycans have been 
described and that this is largely controlled by suppression of 

Figure 2. Web Application Layout. Screen shot of the bottom half of the web application user interface. 1) Feature visualization panel for 
the selected protein 2) Protein table listing the protein identification number available in the web application. 3) Search field for the protein 
table 4) Download buttons for the protein table.

Page 5 of 13

Wellcome Open Research 2022, 7:33 Last updated: 10 MAR 2022



TbSTT3A expression in that lifecycle stage. Thus, every occu-
pied N-glycosylation sequon in wild type PCF cells is predicted  
to be of the oligomannose type.

It is also worth noting that the predictions that we present  
classify every asparagine in embedded in a N.^P[S/T] motif, even 
if it is biologically unlikely. For example, the predicted aspar-
agine might reside in a protein that lacks an N-terminal signal 

peptide, or reside in a transmembrane region, in a signal pep-
tide region or in the region excised after GPI modification of a  
protein. For this reason, we augmented our predictions with sev-
eral visualisations of protein sequence properties (signal pep-
tide, topology and GPI) predicted from other web services35–37).  
This should allow the interested user to evaluate both the type 
of glycan modifications and its biological relevance for the  
predicted sites.

Figure 3. Protein Prediction page. Screen shot of the user interface to submit a protein sequence for predictions. 1) Input text area to 
copy\paste a protein sequence in FASTA format. 2) Submit button to start the prediction. 3) Text area to be populated with the prediction 
output.
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Software availability
Source code available from: https://github.com/mtinti/gly 
cosylation-server.

Archived source code at time of publication: https://doi.org/ 
10.5281/zenodo.587870340.

License: MIT.

Zenodo: mtinti/glycosylation-server: v0.1.

This project contains the following data:

•     �asap

       �Python code to extract features from peptide sequence

•     �data

       �Files to store pre-computed protein features

•     �models

       �The model used for the glycosylation prediction

•     �scripts

       �python code to parse protein features

•     �static

       �javascript codes for the web server

•     �templates

       �HTML code for the web server

•     �glyc_web_server.py

       �Python code to start the web server

•     �predict_seq.py

       �Python helper functions for the prediction page of the  
web server

•     �protein.py

       �Python helper functions for the web server

•     �requirements.txt

       �List of python packages to run the web server
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The authors present a web interface to allow users to explore the results of several prediction 
algorithms, including their own to predict N-glycosylation sites and discriminate TbSTT3A and 
TbSTT3B targets. 
  
The web interface is functional and clear to use and will be useful to allow others to explore 
protein features.  
 
The authors describe the use of Phobius, big-PI, and CDART for other predicted protein features. 
The parameters used for these can be included in the methods, even if all defaults were used. 
Which Phobius predictor was used (normal, constrained and homology supported predictions are 
all options on the referenced website).  
 
Discussion of an experimentally validated prediction would be useful to assess the accuracy of 
predicted N-glycosylation sites, and other features. Reference 33 does not appear to have 
experimentally validated N-glycosylation predictions either.  
 
Nevertheless, the web tool presented here has successfully enabled the community to make use 
of these predictions.  
 
Typos:

"TbSTT3A modified sites / (TbSTT3A modified sites + TbSTT3A modified sites)"should these 
all be 3A? 
 

○

"N-glycans" - N is sometimes in italics and sometimes not. ○
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Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Partly
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The submitted manuscript provides a succinct pointer towards a website and software tool 
allowing prediction of potential N-glycosylation sites related to the oligosaccharide transferases 
TbSST3A and TbSST3B in BSF T. brucei. The site is easily accessed and very fast. The code is 
accessible and can be downloaded too. 
 
Very trivially, please correct the spelling of oligomannsoe 5 lines up in paragraph 4 of the Intro. 
 
The one area I think important to consider though, as with any open access software offering, is 
how to future proof it. One solution would be to integrate into TritrypDB and it would be worth 
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contacting the EuPathDB team to discuss doing so. This could also help with another possible risk 
around changing accession numbers. Here TritrypDB version 28 has been used to bring query 
sequences directly through the algorithm. Linking the predictions to existing proteomics datasets 
that have previously been derived to seek for experimentally demonstrated N-glycosylation is a 
very positive addition to the software. However, this can bring problems where accession 
numbers change (and indeed one has to be careful of strain use and also isoform differences).  For 
example, given the previous work Mehlert et al. 2012, PloS Pathogen1) on TfR N-glycosylation, this 
would be a good exemplar with which to see how the software performs.  In haste, I pulled out the 
first visible ESAG6 and ESAG7 entries in tritrypDB and plugged those accession numbers in.  For 
ESAG6, 5 predicted sites came out, but no MS hits were detected.  For EASG7, 2 predicted sites 
came out, and no MS hits.  As there are multiple isoforms of ESAG6 and ESAG 7 and sequences 
from multiple strains are present in tritrypDB matching the published and extracted sequences 
adds a layer of complexity.  This particular example could be a good case study to include in the 
manuscript here to help users know how best to navigate the system. 
 
For the uninitiated, it would also be useful to have a comment in the Introduction about the kinds 
of proteins likely to be N-glycosylated by TbSTT3A and 3B. I checked numerous transporters and 
enzymes in which I have a particular interest and many have predicted sites, but none show up in 
the MS datasets, presumably because it is membrane-destined proteins that originate in the ER 
that are substrates (hence the inclusion of information on the likely presence of signal peptides is 
useful, as are the other parts of information included in the visualisations). However, if, for 
example, potential N-glycosylation via TbSTT3A and B did become a feature in tritrypDB many 
false positive predictions will arise on possible sites, hence some clear qualifying prose here about 
protein types most likely to be true substrates would be helpful. 
 
References 
1. Mehlert A, Wormald MR, Ferguson MA: Modeling of the N-glycosylated transferrin receptor 
suggests how transferrin binding can occur within the surface coat of Trypanosoma brucei.PLoS 
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This short manuscript describes a newly developed website for in silico analyses of N-glycosylation 
in Trypanosoma brucei. The background for this is that the bloodstream form of this parasite adds 
distinct glycan structures (oligo- vs. pauci-mannose) based on two distinct 
oligosaccharyltransferases with different specificity for acidic or neutral/basic sequons. The 
underlying database is populated with experimentally determined site-specific data, and where 
this is absent, predictions based on the above-mentioned OST specificities. This reviewer spent 
several hours test driving the site with the highly glycosylated lysosomal transmembrane protein 
p67. It was very fun. This website will be useful for experienced glycobiologists and novices alike. 
There are several minor comments:

I believe that the passage on page 4 (column 1, first paragraph, lines 4-5) that reads: 
“TbSTT3A modified cites / (TbSTT3A modified sites + TbSTT3A modified sites)” should read: 
“TbSTT3A modified cites / (TbSTT3B modified sites + TbSTT3A modified sites)”. 
 

1. 

Suggestion: Add sequon pI on the ‘features’ list? Not necessary but might correlate with 
sites that are mixed pauci/oligomannose. 
 

2. 

I had a different layout on the p67 ‘features visualization’ section than the one you show in 
Fig 2. There are several extra lines, which I found useful, that are not in the example shown. 
To compare query Tb927.5.1810. May want to replace the example in the figure. 
 

3. 

Zoom: I don’t use double click on my mouse and I found it awkward to zoom in/out. I clicked 
on the sequon link or the position on the linear bars to zoom in (that was nice) but had to 
click on the original input query button to reset and zoom out. None of this is critical once 
you figure it out but perhaps this could be streamlined.

4. 
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Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes
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1) Thanks for spotting this inconsistency. We will fix it in the next version of the paper. 
 
2) I like this suggestion. I will add a polarity score to the feature panel; I'm thinking of using 
a sliding window of 5 amino acids. 
 
3) I used a slighter older screenshot than intended. I will replace the figure in the next 
version of the paper. 
 
4) Unfortunately, I don't think I can do any better for this functionality. I can zoom out with a 
two-finger click on my Mac laptop if it helps.  
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