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a b s t r a c t

The possibilities of the particle finite element method (PFEM) for modeling geotechnical problems are
increasingly evident. PFEM is a numerical approach to solve large displacement and large strain con-
tinuum problems that are beyond the capabilities of classical finite element method (FEM). In PFEM, the
computational domain is reconfigured for optimal solution by frequent remeshing and boundary
updating. PFEM inherits many concepts, such as a Lagrangian description of continuum, from classic
geomechanical FEM. This familiarity with more popular numerical methods facilitates learning and
application. This work focuses on G-PFEM, a code specifically developed for the use of PFEM in
geotechnical problems. The article has two purposes. The first is to give the reader an overview of the
capabilities and main features of the current version of the G-PFEM and the second is to illustrate some
of the newer developments of the code. G-PFEM can solve coupled hydro-mechanical static and dynamic
problems involving the interaction of solid and/or deformable bodies. Realistic constitutive models for
geomaterials are available, including features, such as structure and destructuration, which result in
brittle response. The solutions are robust, solidly underpinned by numerical technology including mixed-
field formulations, robust and mesh-independent integration of elastoplastic constitutive models and a
rigorous and flexible treatment of contact interactions. The novel features presented in this work include
the contact domain technique, a natural way to capture contact interactions and impose contact con-
straints between different continuum bodies, as well as a new simplified formulation for dynamic impact
problems. The code performance is showcased by the simulation of several soil-structure interaction
problems selected to highlight the novel code features: a rigid footing insertion in soft rock, pipeline
insertion and subsequent lateral displacement on over-consolidated clay, screw-pile pull-out and the
dynamic impact of a free-falling spherical penetrometer into clay.
� 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
1. Introduction

Situations in which soil masses are subject to large displace-
ment, frequently involving contact with structures, are ubiquitous
in geotechnical engineering: sampling, in situ testing, pile
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.

installation, landslides, to name a few. Numerical simulation is
clearly useful to advance understanding in these areas. However,
the numerical simulation of such problems is a complex task, since
the system is full of nonlinearities, contact-related, material-
related, and also geometrical. The finite element method (FEM)
(Zienkiewicz et al., 1999, 2005), which has proven successful for the
numerical simulation of several multiphysics problems, becomes
unreliable once geometric nonlinearities intervene. In Lagrangian
formulations, the mesh generally becomes highly distorted, leading
to inaccurate results, loss of convergence and calculation stoppage
at relatively small displacements (De Borst and Vermeer, 1984).
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY
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In the past decades, several numerical methods to tackle large
strain problems in geotechnical engineering have been proposed to
overcome the problems of classic FEM. The application of FEM-
related numerical techniques to model large strain problems in
geomechanics can be traced back to the arbitrary Lagrangian
Eulerian (ALE) proposal of van den Berg et al. (1996). Subsequently,
several ALE frameworks have been developed, such as the
remeshing interpolation technique by small strains (RITSS) (Hu and
Randolph, 1998) or the efficient ALE (Nazem et al., 2006; Sheng
et al., 2009). Other proposals include those based on the material
point method (MPM) (Sulsky et al., 1994) or even the point in cell
method (Harlow,1964), recently recovered and developed tomodel
problems governed by large movements and deformations with
imaginative solutions (de Vaucorbeil et al., 2020). From a non-
continuum perspective, formulations based on the discrete
element method (Cundall and Strack, 1979) are also applied to
tackling similar problems (e.g. Ciantia et al., 2016; Zhang et al.,
2021), although the computational price of DEM is usually
steeper, particularly if fluid coupling is included.

During the last decade, the particle FEM (PFEM) has been
developed into a viable alternative to deal with large strain prob-
lems in geomechanics. PFEM was originally developed for fluid
mechanics, using a Lagrangean description of the domain instead of
the classical Eulerian approach (Idelsohn et al., 2004; Oñate et al.,
2004, 2006). Treating the finite element nodes as particles, a
finite element mesh is constructed each time-step to evaluate the
solution, thus the mesh is always of good quality. This continuous
reconnection of the domain enables rapid boundary detection, thus
the method can capture the separation of domains, and in fluid
dynamics, detached particles may behave as water drops that may
rejoin the domain again. It is worth mentioning that in PFEM, the
solution is evaluatedwith classical finite elements, which facilitates
the incorporation of a great deal of FEM know-how. The numerical
treatment of the governing equations, boundary conditions and
even contact interaction does not differ from what may be
employed in FEM, thus any development achieved in classical FEM
can be quickly imported into PFEM. Moreover, from an imple-
mentation perspective, PFEM algorithms are highly non-intrusive
and compatible with FEM solvers, to an extent that some imple-
mentation of PFEM even relies on commercial finite element
packages (Sabetamal et al., 2021; Yuan et al., 2021). Another
important precision is related to the use of the term “particles”,
which in PFEM refers to mesh nodes representing “continuum
particles” (Tadmor et al., 2012), i.e. the representative volume ele-
ments (REVs) that underlie points in a continuum. PFEM is a dis-
cretizationmethod to solve equations describing continuummedia,
fundamentally different in this respect from methods based on
direct formulation of element properties and interactions such as
DEM. In DEM, elements may be actually designed to represent in-
dividual physical particles (e.g. Wu et al., 2021), something
excluded by the continuum perspective used in PFEM.

Since its original development, the application of PFEM has
spread to problems in solid mechanics (Oliver et al., 2007), thermo-
mechanics (Rodriguez, 2014; Rodriguez et al., 2016), granular ma-
terials (Zhang et al., 2013, 2014, 2015; Larsson et al., 2020), fluid-
structure interaction (Franci et al., 2016), contact of deformable
bodies (Hartmann et al., 2009; Carbonell et al., 2010, 2013), and
manufacturing processes (Oñate et al., 2014; Hays, 2019), amongst
others. In geomechanics, Zhang et al. (2013, 2014) proposed a PFEM
implementation, using high order elements in conjunction with
variational principles, to discretize the governing equations for
single-phase continuum media and applied it to studying soil flow
problems, including retrogressive landslides in sensitive materials.
This formulation was later extended to fluid-saturated bi-phasic
porousmedia (Wang et al., 2021). A different PFEM implementation
has been recently proposed using smoothed finite element for the
one-phase formulation and applied to the simulation of footings
and retrogressive landslides (Zhang et al., 2018, 2021; Yuan et al.,
2019).

An implementation called G-PFEM (geotechnical-PFEM) was
initially presented by Monforte et al. (2017a). The G-PFEM was
based on low-order linear, stabilized finite elements (Monforte
et al., 2017b), developed to solve quasi-static hydromechanical
problems in fluid saturated porous media (Monforte et al., 2018a)
and later extended for dynamic problems using a full Biot formu-
lation (Monforte et al., 2019b). G-PFEM has been mostly applied to
studying soil-tool interaction problems, such as cone penetration
testing (Monforte et al., 2018b) or soil sampling (Monforte et al.,
2021a). These applications have recently emphasized the use of
realistic constitutive models for brittle (Monforte et al., 2021b) and
structured soils (Monforte et al., 2019a; Hauser and Schweiger,
2021).

In Section 2, we present an overview of some key aspects of the
numerical technology employed in G-PFEM, starting with the
particular ingredients of the method which work in conjunction
with the hydro-mechanical problem. The general equations in the
strong and weak forms are given and discretized for simplicial
finite elements. The numerical examples are developed using an
elastoplastic model for structured materials at large strains to
describe material behavior. This model is implemented using a
nonlocal regularization technique to deal with possible strain
localization that is also described. Section 2 includes some aspects
of the formulations that have not been presented before, such as
the axisymmetric formulation for the field equations or a simplified
approach for dynamic problems.

Section 3 is devoted to outline the contact formulations
employed in G-PFEM. The first one addresses contacts between a
rigid object and deformable media and is the one that has been
employed in most G-PFEM applications. The second � newly
introduced here � addresses the more general case of contact be-
tween two deformable objects and is based on the contact domain
method (CDM) (Oliver et al., 2009; Hartmann et al., 2009). The
formulations presented are particularized for two-dimensional
(2D) problems considering plane-strain and axisymmetric
approaches.

Finally, Section 4 presents a number of numerical analysis cases
to show the possibilities of G-PFEM. They include novel aspects of
problem that have been addressed before, like footing embedment
in structured soils or pull-out of screw anchors, but also novel ap-
plications of G-PFEM, such as embedded pipeline displacements or
free-falling impact of spherical penetrometers in clay.

2. An overview of G-PFEM

2.1. Fundamental aspects of PFEM algorithm

PFEM is a numerical method that combines features of the
meshfree particle method and the FEM. As implemented in G-
PFEM, the method has three main ingredients: the first one is an
updated Lagrangian description of the domain, in which the kine-
matic description uses large displacement and finite strain theory.
The governing equations are then solved using different variational
principles. Most frequently, as in G-PFEM, using mean weighted
residuals (MWRs) like in the Petrov-Galerkin or Ritz-Galerkin
methods. Alternatively, the governing equations may also be cast
as an optimization problem and solved using second order cone
programming (SOCP) (Zhang et al., 2016). The second ingredient is
the use of moving particles, i.e. material tied REVs, to define the
domain. When particles move, they are reconnected via a Delaunay
tessellation (Delaunay, 1934); this supplies a new finite element



Fig. 1. Sequence of steps to update in time a “cloud” of nodes representing, in G-PFEM, a soil mass that is progressively penetrated by a rigid structure.
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mesh for the solution of the governing equations in which the
particles act as nodes. A downside is that Delaunay reconnection
limits the finite element geometry to triangles and tetrahedra for
2D and three-dimensional (3D) models, respectively. The last
feature is related to the accuracy of the domain boundary
description. After the tessellation, the alpha-shape method
(Edelsbrunner and Mucke, 1994) is used to recover the previous
domain contour or to identify new boundaries for the computing
domain. Note that alpha-shape is not the only technique used to
recognize new boundaries, as information on the previous
boundary normal is stored in particles and employed to recover
contour curvature and improve the quality of the reconnected
domain.

In solid mechanics applications, the boundary can be preserved
using a constrained Delaunay tessellation, since it guarantees
mass conservation and avoids a nonphysical increase of the
domain volume. In the examples presented in this work, this
option is used. After remeshing, G-PFEM projects the internal
variables that describe material strength and plastic straining
from old Gauss points to the new ones using a minimum distance
criterion. Such criterion, which minimizes numerical diffusion in
mesh to mesh mapping, is also an improvement with respect to
the original PFEM. Inherited from developments in solid me-
chanics applications, G-PFEM also includes mesh adaptivity. New
particles are inserted in regions where plastic flow takes place in
order to increase the spatial resolution of plastic internal vari-
ables. In particular, elements whose size is larger than a pre-
defined characteristic size may be divided, if the value of a plastic
variable multiplied by the area of the element is larger than a
threshold. This improves the mesh shape used for the computa-
tion and increases solution accuracy. The combination of all these
ingredients allows to model problems in which fluids or plastic
solids flow, surpassing the mesh distortion limitations inherent to
Lagrangian FEM formulations.

A typical solution algorithm of G-PFEM is conceptually illus-
trated in Fig. 1. The scheme illustrates a collection of particles or
cloud of nodes (C) belonging to the analysis domain, as well as the
mesh (M) discretizing the domain with finite elements surrounded
by a predefined boundary, representing the volume (V) of the
computing domain. The basic steps of the algorithm are as follows:

(1) Generate a constrained Delaunay tessellation (Mn meshÞ us-
ing previous mesh nodes as the collection of particles Cn and
the current boundary enclosing volume Vn.

(2) Transfer nodal information to new inserted particles and
elemental information from previous finite elementmesh M0
to the current finite element mesh Mn.

(3) Perform the FE solution loop for i:

(i) Contact search for domain-structure interactions using

the known boundary Vi
n.

(ii) Solve the hydro-mechanical FE problem in a Lagrangian
form using the FE mesh Mi

n.
(iii) Update particle displacements and positions and water

pressures Vi
n;M

i
n/Viþ1

n ;Miþ1
n .

(iv) Check convergence of the solution. If not converged,
perform another iteration i/iþ 1.
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(4) Check mesh accuracy and refine domain inserting new par-
ticles in the collection of particles Cnþ1 and redefining the
boundary of the new volume Vnþ1.

(5) If the analysis is not ended, go to Step 1.
Fig. 2. Axisymmetric triangular element.
2.2. Hydro-mechanical mixed formulation

As already pointed out in Section 1, most PFEM proposals for
geomechanics rely on a one-phase formulation, where only strictly
drained or undrained conditions may be simulated. These simple
models have several advantages, amongst them faster computa-
tion, but their field of application is limited. A fully coupled
formulation modeling bi-phase porous medium extends signifi-
cantly the range of potential geotechnical problems that may be
addressed. Such formulation should also reproduce behavior in
both free draining and undrained conditions as limiting cases.

One of the important characteristics of water-saturated soils is
that they may have a quasi-incompressible behavior. On the one
hand, the application of rapid loads in low-permeability material
results in undrained conditions and the fluid saturated porous
media behave as an incompressible material. On the other hand,
incompressibility may also arise under general drainage conditions
for constitutive models that predict null volume change (for
instance, critical state models) (Sun et al., 2013). These conditions
cause a well-known numerical problem of volumetric locking in
low-order finite elements leading to numerical instability. To avoid
this numerical pathology, more complex but stable second order
finite elements can be used. In G-PFEM, locking is mitigated by the
use of a mixed formulation solved with low-order stabilized ele-
ments. This approach is well adapted to cases where incompres-
sibility may result from the mechanical behavior of the solid phase
itself. It is easily applicable to coupled hydromechanical or single-
phase undrained formulations. Mixed formulations introduce ex-
tra degrees of freedom per node with respect to the primal
formulation, however, in most cases, they offer equal performance
at lower computational cost than the use of higher order elements.
More details on these stabilization techniques are given elsewhere
(Monforte et al., 2017b).

In fluid-saturated porous media, the domain is divided in two
parts: the solid skeleton and the porous fraction, which in a satu-
rated scenario will be filled by fluid water. According to the prin-
ciple of effective stress, the total Cauchy stress tensor, s, is equal to
the sum of the pore pressure, pw, and the effective stress, s0, i.e.

s ¼ s0 þ pw1 (1)

where 1 stands for the second-order identity tensor.
The volume in the current configuration is given by the deter-

minant of the deformation gradient F also known as the Jacobian
J ¼ detðFÞ. The effective Cauchy stress tensor depends on the
strains of the solid skeleton s0 ¼ s0ðF;JÞ. If an approximation of the
Jacobian q is introduced as primary particle variable, in addition to
displacements and water pressure, the effective Cauchy stress can
be evaluated with the assumed deformation gradient bs0 ¼ s0ðbF ; qÞ
defined as

bF ¼ FvFd ¼
�
q

J

�1=3
F (2)

where the deviatoric part of the deformation gradient Fd is pre-
served whereas the volumetric part Fv is replaced with a nodal
approximation (the q variable). Note that, in this formulation, the
Cauchy stress tensor depends on both the displacements and the
Jacobian (Wriggers, 2008). Despite that, usual strain-driven stress
integration schemes are still suitable for this formulation. Although
a 3D version has been also developed (Monforte et al., 2018c), most
G-PFEMwork to date considers either plane strain or axisymmetric
problems. In plane strain conditions, the definition of the assumed
deformation gradient is modified to guarantee that the out of plane
component of the deformation gradient is equal to unity:

bF2D ¼
�
q

J

�1=2

F2D (3)

In the axisymmetric case (Fig. 2), the deformation gradient is
defined as

F2Da ¼

0BBBBBBBB@

dx1
dX1

dx1
dX2

0

dx2
dX1

dx2
dX2

0

0 0
x1

x1 � u1

1CCCCCCCCA
(4)

Consequently, the circumferential effective stress bs0
33 must be

considered in the definition of the effective stress tensor bs0 for an
axisymmetric case:

bs02Da ¼
0@ bs011 bs0

12 0bs012 bs0
22 0

0 0 bs0
33

1A (5)

The balance of mass and linear momentum equations for
multiple-phase deformable porous media using a displacement-
Jacobian-water pressure ðu�q�pwÞ formulation is written in the
current deformed configuration as

V,ðbs0 þ pw1Þ þ b ¼ 0 ðin Ut � ð0; TÞÞ
J � q ¼ 0 ðin Ut � ð0; TÞÞ
_pw
kw

þ V,v þ V,vd ¼ 0 ðin Ut � ð0; TÞÞ

9>>>>=>>>>; (6)

where _pw ¼ dpw=dt is the material time derivative with respect to
the solid phase, kw is the water compressibility, vd is the Darcy’s
velocity, and b is the vectors of external forces which is obtained as

b ¼ � raþ rg (7)

where r is the mixture density, a stands for the acceleration, and g
is the acceleration due to gravity. Because of the inclusion of



Fig. 3. Yield surface in the p0-q plane for axisymmetric triaxial compression.
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acceleration, this formulation covers also dynamic cases. Note that
this is a formulation only suitable in cases where fluid acceleration
is far smaller than that of the solid phase; for different conditions,
other formulations including more variables are necessary
(Zienkiewicz et al., 1999). A full Biot formulation for G-PFEM,
covering all conditions, was presented by Monforte et al. (2019b).
Note also that in quasi-static problems (the case for most of the
simulations reported later), the first term of Eq. (7) is dropped.

The previous equations require appropriate initial conditions at
U0, prescribed displacements u and tractions t for the boundary
domain vUt ¼ GuWGt (Gu XGt ¼ BÞ and fixed water pressure pw
and prescribed water flow g in the saturated media boundary
vUt ¼ GpwWGg (Gpw XGg ¼ BÞ. These are written as follows:

uðX; t ¼ 0Þ ¼ u0 ðin U0Þ
uðX; tÞ ¼ u ðin Gu � ð0; TÞÞ
n,s ¼ t ðin Gt � ð0; TÞÞ

9=; (8)

for the solid domain boundary and

pwðX; t ¼ 0Þ ¼ pw0 ðin U0Þ
pwðX; tÞ ¼ pw

�
in Gpw � ð0; TÞ�

�n,vd ¼ g ðin Gg � ð0; TÞÞ

9=; (9)

for the fluid domain boundary. Further information about more
complex mixed formulations applied to the mechanical and fluid
phase parts can be found in Monforte et al. (2017b).

The finite element discretization of Eq. (8) is presented in
Appendix A, employing linear shape functions for all nodal vari-
ables. The implementation of a numerical stabilization procedure,
i.e. polynomial pressure projection (PPP) (Bochev et al., 2006) in the
equations is also illustrated in Appendix A. For quasi-static prob-
lems, the system of discretized equations is integrated in time using
a completely implicit scheme, whereas a Bossak implicit time
integration scheme (Crisfield, 1991) is employed when dynamic
effects are considered.

2.3. Constitutive description and integration

2.3.1. Constitutive equations
Different constitutive models for soils have been used in G-

PFEM. Some of them are classical reference models such as Tresca
(Monforte et al., 2017a) or Cam Clay (Monforte et al., 2018a). But
more realistic models such as the clay and sand model (CASM) (Yu,
1998) with (Hauser and Schweiger, 2021) or without bonding
(Monforte et al., 2021b) have been also employed. These elasto-
plastic models are adapted for large strains using a multiplicative
decomposition of the deformation into an elastic and plastic part
(Simo and Hughes, 1998). This framework ensures frame indiffer-
ence so that any rigid bodymotion of the deformable body does not
produce spurious stress variations. A hyper-elastic model is typi-
cally employed to define the behavior of the material in the
reversible deformation region, which ensures that energy is
preserved.

In this work, we use a modified Cam Clay model enhanced to
consider the effect of soil structure (Nova et al., 2003). This type of
model is suitable for the description of the behavior of soft rocks,
natural clays or even artificially cemented soils (Gens and Nova,
1993; Rouainia and Muir Wood, 2000; Wheeler et al., 2003; Rios
et al., 2006; Ciantia, 2018). On the other hand, structure results in
an enhanced brittleness and is conductive to strain localization.

The yield surface of the model, which is based on that of
modified Cam Clay, is graphically illustrated in Fig. 3. On the one
hand, the reference unstructured soil has a preconsolidation pres-
sure ps and null tensile strength. On the other hand, pm and pt
account for the effect of structure; the former corresponds to the
increase in the yield stress along isotropic compression paths
whereas the latter is the tensile strength. Although other hypoth-
eses are possible, generally, these two hardening variables are
considered proportional (Ciantia and di Prisco, 2016), being c the
proportionality factor. Mathematically, the yield locus is defined as

f ðs0; ps; pt; pmÞ ¼
� q
M

�2
þ p*

�
p*� p*c

�
(10)

where q ¼
ffiffiffiffiffiffiffi
3J2

p
, inwhich J2 is the second invariant of the effective

deviatoric Kirchhoff stress tensor, s0; M is the slope of the critical
state line in the p0 � q plane, in which p0 ¼ trðs0Þ=3 is the first
invariant of the Kirchoff stress tensor; and p* and p*c can be written
as

p* ¼ p0 þ pt (11)

p*c ¼ pt þ ps þ pm (12)

In correspondence of the modified Cam Clay, the pre-
consolidation pressure of the unstructured soil depends on the
volumetric plastic strains. Due to plastic straining, structure de-
grades; thus, pt decreases due to both volumetric and deviatoric
plastic strains.

_ps ¼ rsps tr
�
lp
�

(13)

_pt ¼ rtpt

 		tr�lp�		þct

ffiffiffi
2
3

r
dev

�
lp
�!

(14)

where rs; rt and ct are the constitutive parameters; and lp is the
spatial plastic velocity gradient.

The elastic response is characterized bymeans of a hyper-elastic
model incorporating a tensile range (Tamagnini et al., 2002), which
is formulated in terms of the Hencky strain and the Kirchhoff stress
tensor. Finally, associated plasticity is assumed.
2.3.2. Stress integration
Elastoplastic models are usually integrated in G-PFEM using an

explicit stress integration technique (Monforte et al., 2014) based
on Sloan et al. (2001). The algorithm includes adaptive sub-
stepping and a yield surface drift correction algorithm. An alter-
native stress integration technique is also employed in this work,
the so-called IMPLEX technique (Oliver et al., 2008), which provides
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extra robustness and computability with respect to usual methods.
The interested reader is referred to Monforte et al. (2019a) for
further details on the application of the IMPLEX technique to this
constitutive model.
2.3.3. Nonlocal regularization
The simulation of brittle materials is conductive to strain

localization (Zienkiewicz et al., 1995) from which mesh de-
pendency of the solution may result (Galavi and Schweiger, 2010).
In the context of finite elements, strain localization is highly
influenced by the mesh: the width of the shear band is typically
related to the element size whereas its direction is sometimes
controlled by preferential alignment of the elements. Therefore, as
the mesh is further refined, the thickness of the shear band de-
creases, and the energy dissipated in the shear band tends to zero.
This pathological mesh-dependence may be mitigated using reg-
ularization techniques, which incorporate a length scale to the
constitutive model thereby enforcing the width of the localized
region.

Among regularization techniques, the nonlocal integral type has
the advantage of not changing the field equations, which in turn
results in a quite straight-forward implementation (Galavi and
Schweiger, 2010; Mánica et al., 2018).

A nonlocal integral type regularization technique is used here to
mitigate the pathological mesh-dependence that exhibit numerical
simulations where softening is encountered.

In this approach, the constitutive model is evaluated replacing
some variables with its nonlocal counterpart, which is a spatial
average in a neighborhood. Therefore, the constitutive response of a
Gauss point is influenced by all the other integration points within
a neighborhood, the size of which is determined with a charac-
teristic length. The expression of a nonlocal variable ~b is

~bðxÞ ¼

Z
U

wðx; jjx� yjjÞbðyÞdU
Z
U

wðx; jjx� yjjÞdU
(15)

wherewðx; jjx�yjjÞ is the weighting function for point x controlling
the influence of its neighbors in terms of their relative distance.

In this work, plastic strains are considered as nonlocal variables;
from these values, ps and pt may be obtained by integrating
analytically Eqs. (13) and (14). The weighting function proposed by
Galavi and Schweiger (2010) is employed here as it has been found
to outperform other weighting functions in removing mesh bias. It
is shown (Mánica et al., 2018) how, using this approach, the
thickness of the shear band is related to a characteristic length scale
enforced through the function weighting the neighbors0 relative
distance.
Fig. 4. Contact forces (red vectors) of deformable domain particles contacting with a
rigid wall.
3. Treatment of the contact interaction

3.1. General aspects

The object of “contact interactions” in G-PFEM are two separate
continuum bodies. As a basic pre-requisite, accurate contact in-
teractions require a precise definition of the domain contour; in
PFEM, this involves continuous tracking of free surfaces of the
domain. In most geotechnical applications, the fragmentation and
re-merging of the domain that is characteristic of PFEM applica-
tions in fluids is not usually necessary. Taking advantage of that, G-
PFEM constrains remeshing to preserve the external boundaries of
the domain during the analysis, thus obtaining a more precise
resolution. This appears somewhat simpler than alternatives
employed with other particle techniques, such as smoothed parti-
cle hydrodynamics (SPH) or MPM (Bardenhagen et al., 2000;
Gonzalez Acosta et al., 2021).

A contact interaction model can be used to capture the me-
chanical forces emerging from the contact of two material sub-
domains. The interaction can also consider not only the mechanical
contact, but also the flux of heat or water between one domain and
another. Usually, there are two main steps to include contact in a
finite element model: (i) the geometrical detection and (ii) the
numerical formulation of the contact constraint that will apply to
the governing equation. A contact model can be considered an extra
challenge for any formulation, in this case for the G-PFEM, as it
introduces the need for the numerical treatment of a mathematical
discontinuity in the numerical analysis. It also allows for the
introduction of nonlinear friction models between contacting sur-
faces, increasing themodeling capabilities and giving more realistic
simulations. Penetration problems that will be presented in this
paper are not going to require the flux of water between the con-
tacting domains, because one of the domains (the structure) is
considered impervious. However, the novel implementation of the
contact domain in G-PFEM, presented later, allows for themodeling
of this interaction for all primary variable fields of the problem,
including the flux of water if needed. In that case, a scalar term
related to the Cauchy water pressure must be considered for the
Darcy flow equation.
3.2. The penalty method

Two different strategies have been developed in G-PFEM to deal
with contact constraints. The first one addresses the
case � frequent in geotechnical applications � of an object that is
much stiffer than the groundwithwhich interacts. For such cases, it
is advantageous to treat that object as a rigid wall applying forces
into a ground domain (Fig. 4). Some objects of interest, e.g. a pipe,
have geometries that allow defining a smooth contour by mathe-
matical parametrization of the wall geometry; in other cases,
several walls may be needed to define the object, e.g. a screw pile.
However, the object is defined, and the mathematical model of the
normal contact constraint is added to the linear momentum bal-
ance equations, as follows.

At each rigid wall surfaces, an outward normal direction (Fig. 5)
for any contacting particle I is defined as nI . When a particle I is in
contact with one of the surfaces, the normal gap gN is calculated by



Fig. 5. Kinematics of a particle contacting with a rigid wall.
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the projection of the exceeding distance vector into the corre-
sponding normal direction:

gNI ¼ �
�
xnþ1
I � xnþ1

I

�
$nI (16)

where xnþ1
I is the current position of the particle I and xnþ1

I is the
corresponding position of the same particle I on the wall surface.
Using a penalty approach, with a penalty parameter kN, if gNI < 0,
the definition of the normal force is given by

FNI ¼ kNgNInICx1 (17)

where C ¼ 2p, and x1 is the radial coordinate in axisymmetric
conditions, whereas C ¼ 1 and x1 ¼ 1 in other conditions.

The contact constraint adds a nonlinear term to the governing
equations, which requires linearization for integration purposes. A
simplified general expression is used in this case, giving the defi-
nition of the contact stiffness matrix as

KNI ¼ � kNðnI 5nIÞCx1 (18)

The tangential contact constraint is generally modeled as
cohesive-frictional in G-PFEM. For a purely frictional case, the
tangent vector, the tangential gap and contact force can be written
as follows:

tI ¼
�
unþ1
I �un

I

�
�
h�

unþ1
I �un

I

�
$nI

i
$nI (19)

gTI ¼ jtI j (20)
Fig. 6. Ancillary triangular mesh used for conta
FTI ¼


Cx1kTgTIbt I ðstickÞ
Cx1mkNgNIbt I ðslipÞ (21)

where bt I ¼ tI=jtI j is the tangent direction, m is the friction coeffi-
cient, and kT is the tangential penalty parameter. A simplified form
for the tangential contact stiffness can be written as

KNI ¼

8><>:
Cx1kTðbt I5bt I þ 1� nI5nIÞ ðstickÞ

Cx1mkN

�
ðbt I5nIÞ þ

gNI
gTI

ð1� nI5nIÞ
�

ðslipÞ
(22)

An elastoplastic analogy can be applied to defining the
tangential counterpart of the contact force. Further details on this
approach can be found in Monforte (2018).
3.3. The CDM

The previous approach minimizes the complexity of the contact
mechanics problem and gives a proper solution for structures in
which deformation can be neglected. A different, more general,
approach to define contact interaction in G-PFEM starts from the
premise that all contacting domains are deformable. Traditional
contact methods can be applied in this case, considering that, at the
computing stage, a finite element mesh is used. However, there is a
technique that was specially designed for PFEM, i.e. the CDM
(Hartmann et al., 2009; Oliver et al., 2009). This technique embeds
contact detection within the remeshing stage of the general PFEM
algorithm. In the CDM, an ancillary contact mesh is created upon
remeshing (Fig. 6). That contact mesh serves two purposes: (i)
detection and definition of the contact surface and (ii) computation
of the contact constraint term.

The “contact-domain” ancillary mesh is generated through a
constrained Delaunay tessellation of the exterior of the deformable
domains after a boundary shrinkage operation. For each one of the
resulting triangular ancillary elements, the normal vector n and the
tangent vector t are defined by its base. As illustrated by the contact
triangle of Fig. 6, contact gaps are defined using the relative posi-
tion and movement of the vertex not in the base (node 3) of the
ancillary contact-domain element. Knowing the magnitudes at
ct detection and computation in the CDM.
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configuration n, the updated definition of the normal and tangen-
tial gaps is given by

gnþ1
N ðx3Þ ¼ gnNðx3Þ$nnþ1½nn þðV ,uÞ ,nn� (23)

gnþ1
T ðx3Þ ¼ gnTðx3Þ$tnþ1½nn þðV ,uÞ ,nn� (24)

whereV,u is thematerial gradient of the incremental displacement
field of the two contacting bodies and the projection of the gradient
to a given direction n is ðV ,uÞ,n ¼ vu=vn. The evaluation of this
term can be reduced to a pure geometrical problem (Hartmann
et al., 2009). From this definition, a local element-wise constraint
enforcement is applied to defining normal and tangential discrete
Lagrange multipliers as

LN ¼ tN þ 1
2s

gnþ1
N ðx3Þ (25)

LT ¼ tT þ
1
2s

gnþ1
T ðx3Þ (26)

where tN and tT are respectively the normal and tangential com-
ponents of the traction vector t ¼ s,n resulting from the stresses
of the base-side domain element; and s is the element-wise con-
stant stability parameter obtained as

s ¼ astab
Emin

L (27)

where Emin is the minimal Young’s modulus of the contacting
bodies; L is the base-side length of the contact domain element
(Fig. 6); and astab˛½1;2� is a dimensionless user-defined parameter,
independent of the mesh size and introduced to reduce the over
constraint derived from the non-smoothed definition of boundaries
with linear finite elements.

After enforcing the contact constraints via the determination of
the discrete Lagrange multipliers, the resulting contact contribu-
tions can be computed. Therefore, the discretized contact virtual
work can be expressed using the introduced approximations for
each four nodded contact patch as

FNI ¼ Cx1
L
2
LNNn (28)

FTI ¼

8>><>>:
Cx1

L
2
LT½gNðx3ÞNnþTnþgNðx3ÞNt � ðstickÞ

Cx1
L
2
msign

h
gnþ1
T ðx3Þ

i
½gNðx3ÞNnþTnþgTðx3ÞNt � ðslipÞ

(29)

corresponding to the normal and tangential counterparts. Using the
of the discretization of the displacement increment uh ¼ Nu, ~u;
vectors Nn; Tn, Nt and T t are defined as

Nn ¼ gnNðx3Þ
�
vN1

vn
,n;

vN2

vn
,n;

vN3

vn
,n;0

�
(30)

Tn ¼ gnNðx3Þ
�
vN1

vn
, t ,

vN2

vn
, t;

vN3

vn
, t;0

�
(31)
Nt ¼
�
vN1

vt
,n;

vN2

vt
,n;

vN3

vt
,n;0

�
(32)

T t ¼
�
vN1

vt
, t;

vN2

vt
, t;

vN3

vt
, t;0

�
(33)

The directional derivatives appearing in the last expressions can
be evaluated using the geometrical characteristics of the contact
domain. Complete expressions for the linearization of the contact
constraints are developed in detail in Hartmann et al. (2009).
4. Representative numerical simulations

In this section, four examples are presented to illustrate the
capacities of G-PFEM. The first set of simulations, i.e. the indenta-
tion of a deformable footing in a porous, soft rock, is used to
showcase the mesh-independence properties of the formulation
for both drained and undrained conditions. The two contact stra-
tegies outlined above are compared in the second analysis which
describes a pipeline seabed interaction problem. In the third
example, i.e. the uplift of a screw pile, the effect of structural
deformability on model response is examined. Finally, the last
simulation illustrates a dynamic application by examining the free
fall of a sphere into a clayey material. Except where otherwise
indicated, the soil-structure contact is assumed smooth in all the
simulations presented.
4.1. Indentation of a rigid strip footing

The first numerical analysis corresponds to the indentation of an
elastic, strip footing in a porous, soft rock. A parametric study of this
problem, focusing on the effect of permeability and using different
numerical settings, was presented in Monforte et al. (2019a). It was
shown there how the failure mode was switched from diffuse
contractive failure to shear-localized bearing capacity failure as
permeability decreased and undrained behavior emerged.

Here only two permeabilities are considered, k ¼ 10�10 m/
d and k ¼ 0.1 m/d, corresponding to undrained and drained con-
ditions, respectively. The footing has a height of 0.5 m and a width
of B ¼ 1 m. Because of the problem symmetry, only half of the
footing is represented. The domain expands 5B in the horizontal
direction and 3:8B in the vertical direction. Null excess water
pressure is prescribed on the upper free surface and at the bottom
of the domain. Null displacements on both directions are pre-
scribed at the bottom of the domain, whereas null horizontal dis-
placements are prescribed on the left and right boundaries. A
constant velocity, equal to B=2 a day, is prescribed on the upper
boundary of the footing. A sketch of the geometry and the
considered boundary conditions are depicted in Fig. 7. The consti-
tutive parameters employed for both footing and soft rock are re-
ported in Table 1. The characteristic length of the non-local model is
set to lc ¼ 0:025B.

During the computation of this problem, h-adaptive techniques
are used: new nodes are inserted in regions where plastic flow is
large. In particular, new nodes are inserted in regions where the
nonlocal plastic deviatoric strain is higher than a threshold, until
the minimum element size attains a predefined length, lmin. As a
result, coarse elements are used in regions still in elastic regime
whereas a fine discretization is applied to zones of intense plastic
straining. The problem is computed repeatedly, setting three
different minimum values of element size as different fractions of
the non-local characteristic length, i.e. lmin ¼ 0.4lc, lmin ¼ 0.1lc and



Fig. 8. Rigid strip footing load-displacement curve for drained and undrained condi-
tions for the three levels of discretization.

Fig. 7. Sketch of the geometry for indentation of a strip footing.
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lmin¼ 0.075lc. These differentmesh refinement controls ensure that
the number of neighboring Gauss points from which non-local
variables are computed is different in the three cases and there-
fore represent a strong test on the mesh-insensitive nature of the
algorithm. Monforte et al. (2019) illustrated the mesh-
independence of this formulation in simplified cases (biaxial
shearing) where the number of elements and nodes in each
simulation was kept constant and all the elements of each mesh
had a similar size. In the more complex problem analyzed here, the
focus is on the effect of h-adaptive techniques and different
element-sizes on the mesh-dependence of the solution.

Fig. 8 presents the footing penetration curves for drained and
undrained conditions for the three levels of initial mesh refine-
ment. It is noticeable how undrained conditions result in a some-
what stiffer elastic response. As noted in Monforte et al. (2019a),
although structural yielding takes place at about the same load
level, the response afterwards is very different for drained and
undrained cases. For the drained condition of diffuse failure, a
smoothly hardening structural response is predicted and the three
curves practically overlap, showing minimal effect of variable mesh
refinement. In undrained conditions, the footing pressure plateaus
after yielding, but then a sudden drop of resistance appears at
0:14B. Monforte et al. (2019a) noted that this fall corresponds to the
moment in which the shear bands define a fully formed plastic
mechanism. There is a slight effect of the different mesh refinement
settings on that response, with the coarsely-limited mesh pre-
dicting a less abrupt post-plateau capacity fall and mobilizing a
somewhat larger residual capacity.

Fig. 9 reports the accumulated plastic shear strain at the final
simulation stage for undrained conditions. The localized shear
bands define a bearing capacity failure mechanism with minimal
effect of the degree of mesh refinement. Fig. 9 also presents the
final finite element mesh. As expected, the mesh adaptation rou-
tines maintain a coarse mesh in areas in elastic regime whereas a
fine discretization appears in the regions where strain localization
takes place.
Table 1
Soil parameters in the example simulations.

Material E (kPa) n M ps (kPa) pt (kPa) c

Footing 50,000 0.2 1.4 500 100 5
Pipeline 5000 0.2 1.5 400
Screw pile 14,400 0.2 1.4 100
Spherical penetrometer 2400 0.2 1 50
4.2. Vertical and horizontal displacement of a pipeline

The second numerical example compares the two contact for-
mulations implemented in G-PFEM, i.e. the one using a penalty
method for rigid walls and themore general one based on the CDM.
A plane strain simulation of vertical embedment and subsequent
lateral displacement of a pipeline is employed to illustrate their
comparative performance. The pipeline has a diameter of 1m and is
initially located just in contact with the seabed. It is then advanced
vertically at a rate of 1 m/d and then fixed vertically and displaced
horizontally, again at 1 m/d rate. The simulation domain is a rect-
angle of 14 m wide and 7 m deep. The pipe initially contacts the
midpoint of the upper boundary. Null displacements are prescribed
at the bottom of the domain and null horizontal displacements are
prescribed at the vertical boundaries (Fig. 10).

The constitutive parameters of both the soil and the pipeline are
presented in Table 1. There is no structure in this material (pt ¼ 0)
but the isotropic preconsolidation pressure is relatively high
(ps ¼ 400 kPa), resulting in overconsolidation ratios of around 20.
For these conditions, the model predicts � for shearing in triaxial
compression � a slightly brittle undrained strength (peak/
critical ¼ 1.5) that is practically uniform in depth. The permeability
and loading rate selected ensure undrained behavior. The com-
parison here is focused on the relative performance of the contact
algorithms and not on the structure deformability, thus in the CDM
simulation, the pipeline is represented by a full section of a high
stiffness elastic material.

Fig. 11a presents the normalized penetration resistance during
the vertical motion of the pipe. Almost coincident results are ob-
tained for the two different contact formulations. The penetration
curve (vertical force normalized by the residual undrained
strength) is very similar to the backbone curve presented by
Chaterjee et al. (2012a) to summarize a series of ALE simulations
with a softening rate-dependent Tresca model. The main difference
lies in the initial slope, which reflects the lower soil stiffness
employed in this simulation (the rigidity index E/su is around 50 in
rs rt ct k (m/s) K0 g (kN/m3)

16.6 �15.5 0.5 1.1 � 10�14�1.1 � 10�6 0.7 20
15 1 � 10�10 0.7 20
60 1 � 10�10 0.7 20
19 1 � 10�5 0.7 20



Fig. 9. Final finite element mesh (upper) and accumulated plastic deviatoric strain (lower) for the three levels of discretization: (a, d) Coarse, (b, e) medium, and (c, f) fine.

Fig. 10. Sketch of the geometry for displacement of a pipeline.
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this simulation, whereas it was 500 in Chaterjee et al. (2012a),
being su the undrained strength of the material).

Fig. 11b presents the evolution of the horizontal and vertical
forces acting on the pipeline during its motion. Because of the
prescribed purely horizontal motion, the vertical force drops
slightly more than 50% once the lateral displacement starts. At large
horizontal displacements, the so-called “friction ratio” of horizontal
to vertical force acting on the pipe rises to 1.1. These results are well
aligned with those obtained in previous ALE simulations of the
same problem (Chatterjee et al., 2012b). Nevertheless, the main
point of interest here is that they seem independent of the contact
algorithm employed in the simulation.

Fig.12 depicts the excesswater pressure and accumulated plastic
shear strain at the end of the problem. Plastic strain delineates shear
localization features. Shear localization takes place at the soil-pipe
contact, but also indicates a vertical bearing capacity failure mech-
anism at the initial pipe location and a series of passive wedges
crossing the soil that accumulates in front of the pipe. There are
some differences in the number and development of the lateral
wedge localization features between the two simulations; these
may be attributed to the slightly different contact forces due to the
different formulations. The excess porewater pressure is negative in
the area vacated by the pipe as a result of unloading, but also in the
displaced passivewedge as a result of dilatant shearing. Again, some
subtle differences between the two contact formulations appear in
the wedge area. These small differences in the development of the
localization patterns do not affect the structural response.

Finally, Fig. 13 illustrates the effect of contact friction. The
increased effect on pipeline vertical resistance of contact friction
agrees with previous work on this topic. Importantly, the example
shows how the very similar performance of the different contact al-
gorithms ismaintained also in cases inwhich the contact is frictional.

4.3. Uplift capacity of a screw pile

Screw piles, generally made of high strength steel, consist of a
shaft with a number of helices attached to it. Screw piles require
less installation effort as they are penetrated into the ground by
applying a turning moment at the head of the pile (Mohajejarni
et al., 2016), and are frequently employed as anchors. Monforte
et al. (2019c) investigated the pull-out capacity of single and
double-helix screw piles using a Tresca single-phase model and
rigid-wall model for the pile. Here the problem is revisited in a
coupled simulation using CDM and the structured soil constitutive
model.

The problem is simplified by assuming axisymmetric conditions.
The pile shaft has 1.7 m length and 0.05 m radius and helices have
0.2 m radius. Two cases are examined with a single helix or two
helices, spaced 0.2 m apart (Fig. 14). Linear elastic behavior is
assumed for the pile (Table 2). The constitutive parameters of the
soil are reported in Table 1. The base case corresponds to a slightly
over-consolidated clay, with no structure (pt ¼ 0Þ. The installation
phase is not modeled and the pull-out is represented by applying a
vertical velocity of 1 radius per hour at the head of the pile. Due to
the low permeability considered, undrained conditions prevail.

Fig. 15a shows the evolution of the pile resistance in terms of
normalized pile uplift for different values of pile stiffness. Although
all curves converge at large displacements, stiffer piles mobilize



Fig. 11. Effect of contact formulation (rigid: object as moving wall; def: CDM) on a pipeline insertion and lateral displacement simulation: (a) Vertical resistance versus normalized
depth, and (b) Evolution of the vertical and horizontal soil-pipeline contact forces.

Fig. 12. Pipeline insertion and lateral displacement simulation: (a, b) Accumulated plastic shear strain, and (c, d) Excess water pressure (kPa) for pipeline as prescribed rigid wall (a,
c), and pipeline as deformable body (b, d).
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higher soil resistance faster as they displace. This effect appears
almost identical for the case with one helix and for the case with
two helices (Fig. 15b). The failure mechanism for a single helix is
one of bearing capacity ahead of the pile to which, in the case of a
double helix, a cylindrical shear surface connecting the helix tips is
added (Fig. 16). This cylindrical shear surface is less sensitive to the
helix wing deflection.

The study of stresses in the structure is also possible thanks to
the use of the contact domain. To showcase this, Fig. 17 reports the
vertical stress on the helices at an uplift of 0.15 m. The stiffer screws
present larger vertical stress as they mobilize a larger resistance.
Also, the vertical stress is much larger in the upper helix with
respect to the lower one.
4.4. Free falling spherical penetrometer

Free falling spherical penetrometers have been recently devel-
oped as a rapid low-cost tool for offshore site investigation (Morton
and O’Loughlin, 2012). The instrument is dropped overboard and
penetrates the seabed employing the kinetic energy acquired by
free falling through the water column. The penetrometer motion
during deployment is recorded by inertial sensors and later inter-
preted to infer soil undrained strength (Morton et al., 2016). A
comprehensive ALE based numerical parametric study of the
problem has been recently presented (Mana et al., 2018). The
problem is here used to illustrate the capabilities of G-PFEM in a
dynamic setting.



Fig. 14. Sketch of the geometry for screw pile.

Table 2
Structure parameters in the example simulations.

Material E (kPa) n

Footing 5� 106 0.1
Pipeline 3� 106 0.2
Screw pile 5� 105e5� 106 0.1
Spherical penetrometer 5� 105 0.2

Fig. 13. Effect of contact friction on pipeline insertion curve.

Fig. 15. Effect of structural stiffness on the pull-out curve of single and double helix screw pi
higher stiffness.
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The sphere diameter is 20 cm and impacts vertically on the soil.
An axisymmetric model is adopted, the simulation domain is a
square measuring 2 m by 2 m in size. Null displacements are pre-
scribed on the bottom boundary of the soil, whereas null radial
displacements are prescribed at the outer radius. Drainage is
allowed at the top and bottom boundaries.

Fig. 18 presents a sketch of the geometry of the problem. The
constitutive parameters of the soil are reported in Table 1: they
describe a rate-independent, slightly over-consolidated unstruc-
tured soft clay. Because of the low operative stiffness of the soil
skeleton, the accelerations of fluid and solid skeleton are presumed
equal and the use of a full Biot formulation (Monforte et al., 2019b)
is not necessary. The properties of the penetrometer are listed in
Table 2; they correspond to an elastic, relatively light-weight and
low-stiffness object, different from the steel penetrometers that are
more frequently employed.

The dynamics of the impacting sphere are illustrated in Fig. 19 for
a series of analyses inwhich the impact velocity is varied. The sphere
suffers a very intense deceleration (up to 20g) that, almost inde-
pendently of initial velocity, stops penetration in about 30 ms.
Because the impacting sphere is elastic no remeshing takes place on
it and the curves are recorded in a node at the top of it; acceleration
curves were slightly smoothed to avoid the clutter caused by elastic
waves on the sphere. A small rebound is visible at the end of the
impact. This rebound reflects elastic energy stored in the soil (Zhang
et al., 2021) and, as observed also by others (Zambrano-Cruzatti and
Yerro, 2020), can be reduced by increasing the elastic modulus.

Penetration curves for two different series of impacts are pre-
sented in Fig. 20 showing how the effect of increased impact velocity
or increased sphere mass increases penetration depths. Both vari-
ables (sphere mass or impact velocity) have a direct effect on the
kinetic energy at impact: plotting this variable versus penetration
depth, a clear relationship appears (Fig. 21a). This agrees with
experimental (O’Loughlin et al., 2013) and numerical (Zhang and
Evans, 2019) studies of dynamic offshore anchors showing a direct
relation between total available energy at impact and penetration
depth. A similar relation also holds for other procedures involving
soil impact, such as the standard penetration test (Zhang et al., 2021).
In general, total available energy at impact includes kinetic and po-
tential terms, but the small penetration achieved in the ball impacts
simulated here makes the potential term negligible.

Mana et al. (2018), in their parametric numerical study of
spherical penetrometers, elaborated on the impact energy versus
depth relation. They defined a dynamic bearing capacity factor, Nd,
to transform Es(z), the fraction of impact energy spent by the
impactor at depth z, into plastic work as
les: (a) Pull-out forces, and (b) Pull-out forces at reduced stiffness normalized by that at



Fig. 16. Effect of structural stiffness on screw pile pull-out. Case with two helices (a, b) and case with a single helix (c, d). Plastic strain at normalized displacement u/D ¼ 0.15 under
(a, c) Young’s modulus of the pile E ¼ 0:5 GPa, and (b, d) E ¼ 500 GPa.
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Fig. 17. Effect of structural stiffness on screw vertical stress (kPa) at uz ¼ 0.15 m: (a, c) Young’s modulus of the pile E ¼ 0.5 GPa, and (b, d) E ¼ 500 GPa. Case with a single helix (a, b)
and case with two helices (c, d).

Fig. 18. Sketch of the geometry for free falling sphere.
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NdðzÞ ¼
EsðzÞZ z

0
Apsudz

(34)

where Ap is the projected area of the sphere in contact with the soil.
They went on to obtain the following envelope for the dynamic
bearing capacity factor at maximum penetration depth:

Ndf ¼ A
�
dp
D

�0:4

(35)

where dp is the penetration depth, D is the sphere diameter, and A is
a coefficient that depends on soil viscous properties and is 5.5 for a
non-viscous case. Fig. 21b compares the results of the G-PFEM
simulations with the Mana et al. (2018) envelope. The values of su
employed correspond to those obtained in triaxial compression
after isotropic compression to confining stress of 10 kPa. It appears
that, despite using different numerical method, constitutive model
and sphere characteristics, the G-PFEM results are very close to the
previously obtained envelope.
Fig. 19. Time evolution of (a) vertical displacement, (b) velocity, and (c) acceleration
for free falling sphere.
5. Conclusions

This work has presented some characteristics of G-PFEM, a
PFEM implementation specially designed for geomechanical



Fig. 20. Penetration curves of free falling sphere for (a) different impact velocities at fixed mass (m0) and (b) for different sphere masses at fixed impact velocity (3 m/s).

Fig. 21. (a) Relation between impact energy and depth of penetration, and (b) Evolution of dynamic bearing capacity factor for impacts (red curve: limit envelope from Mana et al.
(2018)).
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problems involving large deformations and soil-structure interac-
tion. PFEM adopts a particle description of the domain, relying on
the FEM to solve the balance equations and Delaunay tessellation
for remeshing. In G-PFEM, an updated Lagrangian description of
motion, using large displacement and finite strain theory, is
employed. The governing equations are solved using mixed, stabi-
lized finite elements to bypass volumetric locking, resulting from
undrained conditions or from quasi-incompressible response at
critical state. Remeshing minimizes the distortion of the mesh
while preserving the boundary of the domain.

Although not strictly necessary, to use all the potential of G-
PFEM, constitutive models need to be adapted to large strains. This
step is illustrated here for a classic structured soil model, refor-
mulated using a multiplicative split of elastoplastic deformation.
This model is well adapted to represent brittle responses of mate-
rials such as porous rocks or structured clays. Material brittle re-
sponses, conducive to strain localization, are frequent in
geomechanics. This may lead to pathological mesh-dependence. To
deal with this problem, G-PFEM has been equipped with a non-
local regularization technique.

Two contact formulations are presented, one for the contact
between a porous media and a rigid object and another, only
recently included in G-PFEM, to simulate the interaction between
two deformable objects. In the former, a parametric representation
of the rigid object is adopted and contact constraints are imposed
bymeans of a penaltymethod. The latter relies on a virtual mesh for
the interface and Lagrange multipliers to introduce contact
constraints.
A set of simulations has been presented to showcase G-PFEM
performance. We first demonstrate the mesh insensitive nature of
the solution in drained and undrained conditions by examining the
insertion of a deformable footing into a soft, porous rock. When the
object that interacts with the soil is very rigid, both contact for-
mulations give very similar results: this is illustrated using the
interaction of a rigid pipelinewith the seabed. However, sometimes
deformation of the object is itself of interest or may affect the
outcomes of its interactions with the soil, as shown in the case of a
screw-pile pull-out. Finally, the dynamic capabilities of the code are
illustrated by analyzing the impact of a free-falling ball into a clayey
seabed.

To facilitate a wide application of the method, G-PFEM is
currently developed as open-source and the code is available in a
public repository (https://gitlab.com/pfem-research/kratos/).
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