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Abstract

As a key regulator of the tumour suppressor protein p53, MDM2 is involved in various types of cancer and
has thus been an attractive drug target. So far, small molecule design has primarily focussed on the N-
terminal p53-binding domain although on-target toxicity effects have been reported. Targeting the cat-
alytic RING domain of MDM2 resembles an alternative approach to drug MDM2 with the idea to prevent
MDM2-mediated ubiquitination of p53 while retaining MDM20s ability to bind p53. The design of RING inhi-
bitors has been limited by the extensive aggregation tendency of the RING domain, making it challenging
to undertake co-crystallization attempts with potential inhibitors. Here we compare the purification profiles
of the MDM2 RING domain from several species and show that the MDM2 RING domain of other species
than human is much less prone to aggregate although the overall structure of the RING domain is con-
served. Through sequence comparison and mutagenesis analyses, we identify a single point mutation,
G443T, which greatly enhances the dimeric fraction of human MDM2 RING domain during purification.
Neither does the mutation alter the structure of the RING domain, nor does it affect E2(UbcH5B)–Ub bind-
ing and activity. Hence, MDM2-G443T facilitates studies involving binding partners that would be ham-
pered by the low solubility of the wild-type RING domain. Furthermore, it will be valuable for the
development of MDM2 RING inhibitors.
� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license (http://creativecom-

mons.org/licenses/by/4.0/).
Introduction

The importance of the ubiquitin ligase murine
double mutant 2 (MDM2) as a key negative
regulator of the tumour suppressor protein p53
has been studied extensively. MDM2 keeps p530s
activity low under normal conditions, and since
p53 induces the expression of MDM2, both
proteins are kept at low concentrations.1,2 Mouse
studies underlined the importance of this feedback
loop mechanism: MDM2 knockout is embryonic
lethal due to uncontrolled p53 activity levels and
can be rescued by simultaneous p53 knockout.3–
5 Upon cellular stress such as DNA damage, p53
or(s). Published by Elsevier Ltd.This is an op
is uncoupled from MDM2, allowing it to carry out
its anti-tumour functions by inducing the gene
expression of proteins involved in DNA repair and
apoptosis, depending on the type and degree of
stress. p53 knockout mice have a low life expec-
tancy as they lack the ability to respond to DNA
damage and are thus highly prone to develop
tumours at an early stage. Likewise, p53 mutations
that disrupt DNA binding are highly cancerogenic.
In fact, half of all human tumours carry a corre-
sponding p53 mutation.6 On the other hand, in
tumours where p53 is not mutated, MDM2 levels
are often found to be elevated, which impairs
p530s activity.7
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MDM2 regulates p53 by two distinct mechanisms.
First, it binds p53 through its N-terminal p53-binding
domain, which blocks the transcriptional activity of
p53. Second, it promotes the proteasomal
degradation of p53 by recruiting Ub conjugating
enzyme (E2) thioesterified with ubiquitin
(E2~Ub; ~ indicates thioester bond) via its RING
domain and mediates ubiquitin (Ub) transfer from E2
to p53,8 whereUb is preferentially conjugated to lysine
residues located in the C-terminal lysine rich region of
p53.9 Although the relative importance of thesemech-
anisms is context dependent, in vivo mouse studies
with ligase defective MDM2 resulted in the same
lethality as MDM2 knockout experiments.10 The
importance of the interplay between MDM2 and p53
is demonstrated by the co-evolution of these proteins,
and the high sequence conservation of both MDM20s
p53-binding domain and the RING domain.11 Thus,
evenMDM2 from jawless vertebrates is able to recog-
nize and ubiquitinate human p53 despite 500 million
years of evolutionary difference.12

MDM2 has been an attractive anti-cancer drug
target, especially in tumours where p53 is wild-type
with abnormal expression of MDM2.13,14 The N-
terminal binding interface between MDM2 and p53
was proven to be a promising drug target and the crys-
tal structure for the N-terminal MDM2-p53 complex
provided a starting point for structure-guided design
of small molecules followed by successful co-
crystallization attempts.15 A variety of small molecules
including imidazolines, oxindoles and benzodi-
azepines aswell as stapled peptides have been devel-
oped, which all bind MDM2 in the p53-binding pocket,
thereby disrupting p53 binding.16 Although advanced
derivatives of the imidazoline Nutlin have successfully
been tested in clinical trials, negative side-effects have
been reported, which are associated with MDM2-
mediated off-target ubiquitination andMDM20s inability
to restrict p530s transcriptional activity.17,18

The RING domain of MDM2 has been discussed
as an alternative target to stabilize p53.19 The ratio-
nale for this approach lies in MDM20s ability to still
bind and inhibit p53 when MDM2-mediated ubiquiti-
nation is abolished, thereby preventing uncontrolled
activation of p53.8 The RING domain gains its E3
ligase activity through dimerization with either itself
Figure 1. Aggregation of the MDM2 RING domain is specie
C (orange) and MDMX 428-C (dark-gray) (PDB: 5MNJ). Zinc
the RING domain is indicated. (b) Superimposition of the M
monomeric MDM2 RING domains are colored in orange an
heterodimer (PDB: 5MNJ; MDM2 is orange and MDMX is
Sequence alignment of the C-terminal region of MDM2 from
helix in MDM2h and the RING domain are indicated. Sequen
The sequence identity (id.) compared to human MDM2 is indi
MDM2h, MDM2f and MDM2z, respectively (shown in black so
(a: bovine serum albumin, 66 kDa; b: carbonic anhydrase, 29
shown as red dashed line. After removal of GST-tag, the c
applied on a HiLoad 16/600 Superdex 75 column. (e, g, i)
respectively. The position of the fractions within the elution

2

or the RING domain of its catalytic inactive homo-
logue MDMX to form a homodimer or heterodimer,
respectively. The dimeric RING domain arrange-
ment is essential for E2~Ub binding and activation
as demonstrated by co-crystal structures with
UbcH5B–Ub (en dash indicates covalent com-
plex).8,20 To date, the development of small mole-
cules that prevent E2~Ub recruitment is still at an
early stage. Although 5-Deazaflavin compounds
have been introduced as MDM2 RING inhibitors,
their potencies are low and optimization is difficult
as no structural information is available for how
these inhibitors bind MDM2.19,21 A key challenge
for drug design is the pronounced aggregation ten-
dency of recombinant human homodimeric MDM2
RING domain.22 While stable as a GST-fusion pro-
tein, human MDM2 RING domain heavily precipi-
tates upon cleavage and forms supramolecular
complexes, which makes it a poor candidate for
co-crystallization attempts with potential inhibitors.
Here, we show that the aggregation of the MDM2

RING domain is species dependent. By comparing
the aggregation behaviour of the MDM2 RING
domain from several species followed by
systematic alteration of human RING domain
sequence, we identify a single point mutation that
exclusively yields dimeric protein. Structural and
biochemical analyses show that the mutation does
not affect E2~Ub binding and the ligase activity.
These results identify a suitable strategy for
expression and purification of recombinant human
MDM2 RING domain for structural studies and
should enable future structure-guided design of
small molecules that target the RING domain.

Results

Aggregation of MDM2 RING domain is species
dependent

Human MDM2 RING domain is prone to
aggregate upon cleavage from a fusion tag22 and
we observed this behaviour during purification in
our prior studies.8,20 Despite being predominantly
aggregated upon removal of the fusion tag, we
found a small fraction that remained as a dimer.
Although we were able to purify approximately
s dependent. (a) Superimposition of human MDM2 428-
ions are shown as gray spheres. The 310-helix preceding
DM2 RING domain homodimer (PDB: 6SQO; the two

d light orange) and human MDM2-MDMX RING domain
dark-gray). Zinc ions are shown as gray spheres. (c)
different species. The regions corresponding to the 310-
ce deviations from human MDM2 are highlighted in red.
cated on the right. (d, f, h) Superdex 75 elution profiles of
lid line). The elution profile of molecular weight markers
kDa; c: cytochrome C, 12.4 kDa; d: aprotinin, 6,5 kDa) is
leaved MDM2 variants (expressed from 24L LB) were
SDS-PAGE of indicated fractions from panels d, f, h,

profile is indicated by numbers (1–8).

"
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1 mg of human MDM2 RING domain from 100-L
E. coli expression in our prior structural study, this
approach offers low reproducibility and is not practi-
cal. In contrast, the human MDM2-MDMX RING
domain heterodimer predominantly expressed as
a dimer and could readily be purified for structural
studies.8,23 Previously, it was assumed that this dif-
3

ference could be due to structural differences
between both dimers. However, our recent crystal
structure of the MDM2 homodimer (PDB: 6SQO)
showed that the homodimer is structurally very sim-
ilar to the heterodimer (PDB: 2VJF, RMSD:
0.4 �A).20,23 As neither the structural differences
between the MDM2 RING domain and MDMX
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RING domain (Figure 1(a)) nor the structural
differences between the homodimer and the hetero-
dimer (Figure 1(a)) could provide an explanation for
the homodimer specific aggregation, we wondered
whether the aggregation of the homodimer or the
stabilization of the heterodimer by MDMX was
sequence dependent. The E3 ligase activity of the
MDM2 RING domain has been conserved through-
out evolution. Important structural features like zinc
coordinating residues and the length of the C-
terminal tail have been exclusively conserved
throughout evolution.24 Nevertheless, the
sequences of the MDM2 RING domain from differ-
ent species differ by up to 25 % from human
MDM2 (Figure 1(c)). We selected two species,
Xenopus tropicalis (western clawed frog) and Danio
rerio (zebrafish), which showed a comparably high
sequence variation between themselves and
human MDM2. We expressed and purified the
MDM2 RING domain from these species and the
human counterpart (zebrafish MDM2 407-C, frog
MDM2 414-C, and human MDM2 419-C hereafter
denoted as MDM2z, MDM2f, and MDM2h, respec-
tively) with an N-terminal cleavable GST-tag and
applied the cleaved protein on a size-exclusion
chromatography (SEC) column, where protein
molecular weight markers were used to estimate
whether the cleaved MDM2 RING domain was
dimeric (~16 kDa) or aggregated (>66 kDa, the
molecular weight of the largest protein molecular
weight marker, bovine serum albumin) (Figure 1
(d)–(i)). MDM2h precipitated upon removal of the
GST-tag and the remaining soluble supernatant
mainly eluted in the void volume (~0.35 column vol-
ume (CV)), indicating that the protein was heavily
aggregated (Figure 1(d) and (e)), whereas only a
small fraction eluted at ~ 0.6 CV (estimated molec-
ular weight of 17 kDa; Supplementary Figure 1)
consistent of a dimer. Both MDM2f and MDM2z

remained stable upon removal of the GST-tag and
exclusively eluted as a dimeric protein (Figure 1
(f)–(i) and Supplementary Figure 1; estimated
molecular weights of 18 and 13 kDa, respectively).
Notably, the purified dimeric MDM2f could be con-
centrated to 12 mg/mL (1.6 mM) without significant
precipitation.

Structural characterization of MDM2f and
MDM2z

We wondered whether the sequence dissimilarity
induced structural differences that could account for
the different aggregation tendencies of the MDM2
variants and performed protein crystallization for
MDM2f and MDM2z. We obtained crystals for
MDM2z and MDM2f, which diffracted to 2.87 and
2.27 �A, respectively (Table 1). The unit cell for the
MDM2z crystal contains two molecules of MDM2z,
which form a dimer. The overall structure is similar
to MDM2h (RMSD of 0.6 �A), where all secondary
structure elements and the coordination of zinc
ions are conserved (Figure 2(a)). There was no
4

electron density for the first 11 residues (407–417,
corresponding to 423–433 in MDM2h), which are
located N-terminal to the RING domain and partly
involved in the formation of a 310-helix in MDM2h.
Likewise, the asymmetric unit of the MDM2f

crystal contains two molecules of MDM2f, which
form a dimer. Similar to MDM2z, there was no
electron density for residues located N-terminal to
the RING domain (414–424, corresponding to
423–433 in MDM2h) (Figure 2(b)). In comparison
to MDM2h, both MDM2f and MDM2z have a
slightly larger diameter (Figure 2(a)–(c)).
Nonetheless, there is no obvious structural
change in the RING domain (Figure 2(d)) that
could explain the reduced aggregation observed in
MDM2f and MDM2z.
The major difference is the absence of electron

density for the 310-helix preceding the RING
domain. The 310-helix in MDM2h (residues 432–
436) was shown to be important for E2~Ub
recruitment. In particular, N433 is involved in a
hydrogen bond network with the second MDM2h

protomer and the donor Ub.20 As there was no elec-
tron density for the corresponding residue in MDM2f

and MDM2z, it is unclear how this would impact on
their ability to recruit E2~Ub for catalysis. Before
further examination of the relationship between
structure, sequence and protein aggregation, we
wanted to ensure that both MDM2f and MDM2z

are competent E3s. To assess the ability of MDM2f

and MDM2z to bind E2~Ub, we performed binding
analyses using Surface Plasmon Resonance
(SPR). Stable E2–Ub conjugate was obtained by
mutating UbcH5B’s catalytic C85 to lysine followed
by covalent conjugation of the C-terminus of Ub to
the catalytic lysine to form a stable isopeptide link-
age that mimics the thioester linkage.25 We used
the sequence of human UbcH5B, which is identical
in western clawed frog, and very similar in zebrafish
where it only differs by two residues within the
a1-helix that are distal from the MDM2 binding site.
MDM2f and MDM2z bind UbcH5B–Ub with a
comparable binding affinity, albeit 2.5-fold reduced
compared to MDM2h (Figure 3 and Table 2). Next,
we performed autoubiquitination assays to verify
that MDM2f and MDM2z possess ligase activity.
We used GST-tagged proteins to provide lysine
residues, since we could not detect autoubiquitina-
tion products using cleaved MDM2h, presumably
due to the lack of acceptor lysine sites for ubiquitina-
tion.20 Both, MDM2f and MDM2z were competent in
generating ubiquitinated products in a time depen-
dent manner and are thus catalytically active (Fig-
ure 2(e)). Nevertheless, their activity was reduced
compared to MDM2h, which could be attributed to
the lower binding affinity for UbcH5B–Ub. To eluci-
date their E2~Ub binding mechanism, we assem-
bled MDM2f in complex with UbcH5B–Ub for
crystallization and obtained crystals that diffracted
to 1.82 �A (Table 1). The asymmetric unit contains
two copies of dimericMDM2f with each dimer bound
to two molecules of UbcH5B–Ub (Figure 2(f)). All



Table 1 Data collection and refinement statistics

MDM2 MDM2z MDM2f MDM2f-UbcH5B–Ub MDM2hGT-UbcH5B–Ub (crystal form 1) MDM2hGT-UbcH5B–Ub (crystal form 2)

Data collection

Space group P21 P21 P21 P61 P212121
Cell dimensions

a, b, c (�A) 23.8, 46.1, 54.2 42.6, 23.7, 55.5 55.0, 153.2, 82.1 129.5, 129.5, 70.8 56.3, 80.7, 135.9

a, b, c (�) 101.7, 90, 90 90, 101.2, 90 90, 107, 90 90, 90, 120 90, 90, 90

Resolution (�A) 45.21–2.87

(2.92–2.87)1
41.75–2.53

(2.60–2.53)

52.62–1.82

(1.85–1.82)

70.75–1.56

(1.59–1.56)

135.91–2.07

(2.11–2.07)

Rmerge (%) 27.9 (83.1) 14.4 (73.3) 4.7 (98.9) 12.4 (84.3) 12.7 (73.9)

Completeness (%) 100 (100) 99.8 (100) 98.1 (97.2) 100 (98.3) 100 (99.1)

Multiplicity 3.2 (3.3) 3.1 (3.1) 3.4 (3.4) 17.3 (9.7) 6.4 (6.7)

I/rI 6.3 (2.4) 3.7 (0.8) 13.8 (1.2) 13.8 (2.0) 9.0 (2.0)

CC(1/2) 0.949 (0.667) 0.983 (0.529) 0.998 (0.652) 0.999 (0.518) 0.997 (0.584)

Wilson B (�A2) 26.5 45.4 39.8 15.1 27.2

Refinement

Resolution (�A) 53.19–2.87 41.74–2.53 52.62–1.82 64.85–1.56 69.48–2.07

No. reflections 2813 3830 113,660 95,993 38,312

Rwork (%) 20.7 21.7 19.5 13.4 21.2

Rfree (%) 28.1 27.9 23.0 18.5 26.6

No. atoms

Protein 868 822 8803 4620 4472

Water 12 4 356 662 278

Ligand / ion 4 4 9 25 14

B-factors

Protein 26.35 49.01 53.25 20.63 35.61

Water 13.09 47.24 53.94 36.43 34.63

Ligand / ion 19.92 37.94 39.10 32.48 30.04

RMSD

Bond lengths (�A) 0.0055 0.0050 0.0085 0.0148 0.0075

Bond angles (�) 1.429 1.377 1.462 1.773 1.473

Ramachandran

Favoured (%) 95.54 88.99 97.63 97.31 96.41

Outlier (%) 0 0 0 0 0

1 Values in the parentheses are for highest-resolution shell.
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Figure 2. Structural characterization of MDM2f and MDM2z. (a–c) Crystal structures of MDM2z (a; purple/light purple),
MDM2f (b; blue/light blue) and MDM2h (c; orange/light orange, PDB: 6SQO). Zinc ions are shown as gray spheres. The
diameter of the dimer was calculated by measuring the distance between the Ca atoms of R471 (human nomenclature) of
both protomers. (d) Superimposition of (a–c) in ribbon form. (e) Reduced SDS-PAGE showing autoubiquitination reactions
catalyzed by GST-MDM2 variants using fluorescently-labeled Ub and visualized by an Odyssey CLx Imaging System (top
panel) or stained with Coomassie Blue (bottom panel). (f) Crystal structure of the MDM2f-UbcH5B–Ub complex. UbcH5B
and Ub are colored in cyan and yellow, respectively. MDM2f is colored as in b. (g,h) Close-up views of the key interactions
between MDM2f and UbcH5B involving MDM2f’s I431 (g) and R470 (h),

H.M. Magnussen and D.T. Huang Journal of Molecular Biology 433 (2021) 166807
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Figure 3. SPR analyses of GST-MDM2 variants and UbcH5B–Ub binding affinities. Representative sensorgrams
(left) and binding curves (right) for (a) MDM2z and UbcH5B–Ub, (b) MDM2f and UbcH5B–Ub, (c) MDM2h and
UbcH5B–Ub and (d) MDM2hGT and UbcH5B–Ub. n = 2 for each binding curve.

Table 2 Dissociation constants Kd of MDM2 variants for
UbcH5B–Ub. The corresponding sensorgrams and bind-
ing curves are shown in Figure 3

Ligand Analyte Kd (lM)

MDM2f UbcH5B–Ub 42.0 ± 0.6

MDM2z UbcH5B–Ub 37.0 ± 1.1

MDM2h UbcH5B–Ub 13.5 ± 0.6

MDM2hGT UbcH5B–Ub 16.3 ± 1.9

H.M. Magnussen and D.T. Huang Journal of Molecular Biology 433 (2021) 166807
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UbcH5B–Ub molecules bind MDM2f in a similar
manner as observed in the MDM2h-UbcH5B–Ub
structure,20 where key interactions are fully con-
served. This includes the hydrophobic interactions
between MDM2f’s V430 and I431 and UbcH5B’s
F62 and P95 and stabilization of the
C-terminal tail of Ub by hydrogen bonds initiated
by MDM2f’s R470 (Figure 2(g) and (h)). Like in the
crystal structures of free MDM2f, there was only
little electron density for residues preceding the
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RING domain. These structural data suggest that
the N-terminal region preceding the RING domain
of MDM2f is inherently flexible and the presence
of E2~Ub does not restore the 310-helical conforma-
tion observed in MDM2h. The lack of 310-helices
could explain the reduced UbcH5B–Ub binding
affinity. Nonetheless, MDM2f binds UbcH5B–Ub in
the closed conformation suggesting that it utilizes
the same RING E3 mechanism to activate E2~Ub
for catalysis.
A single point mutation abrogates MDM2 RING
domain aggregation

It is unclear to which extent the disordered N-
terminal region preceding their RING domains or
Figure 4. Systematic analysis of MDM2 RING domain ag
elution profiles of MDM2h, MDM2f, opossum MDM2 421-C,
G443T and MDM2h P491S, respectively (shown as black s
bovine serum albumin, 66 kDa; b: carbonic anhydrase, 29 kD
as red dashed line. GST-MDM2 variants (expressed from 2
Increase 10/300 column. (b, d, f, h, j, l, n, p) SDS-PAGE sho
to release the GST-tag (labeled ‘–’ and ‘+’, respectively) and
panels a, c, e, g, i, k, m, o, respectively. The position of the fr

8

sequence variations in the RING domain
contribute to the reduced aggregation. In order to
get a better understanding of MDM2 RING
domain aggregation, we selected a few species
that were closer to MDM2h than MDM2z and
MDM2f (Figure 1(c)). GST-tagged MDM2 RING
domain was incubated with TEV protease to
cleave the GST-tag and the cleaved products
were then applied on an analytical SEC column to
assess the aggregation state of the MDM2 RING
domain. Monodelphis domestica (opossum)
MDM2 RING domain eluted mainly at ~ 0.6 CV
consistent of a dimer, and only a small fraction
eluted as aggregate. In contrast, a substantial
fraction of Otolemur galettii (galago) MDM2 RING
domain aggregated (Figure 4(a)–(h)). When we
gregation across species (a, c, e, g, i, k, m, o) Superdex 75
galago MDM2 425-C, MDM2h A434S, MDM2h I435V, MDM2h

olid line). The elution profile of molecular weight markers (a:
a; c: cytochrome C, 12.4 kDa; d: aprotinin, 6,5 kDa) is shown
L LB) were treated with TEV then loaded on a Superdex 75
wing the GST-MDM2 variants before and after TEV treatment
single fractions of the corresponding SEC experiments from

actions within the elution profile is indicated by numbers (1–5).
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compared their sequences against MDM2h, MDM2f

and MDM2z, we found that only A434, I435, G443
and P491 were unique to galago MDM2 and
MDM2h. A434 and I435 are located within the N-
terminal region preceding the RING domain,
whereas G443 and P491 are located within the
RING domain. We hypothesized that these
residues might promote aggregation and
converted MDM2h into MDM2f by introducing
single point mutations, where we replaced these
residues with the corresponding residues of
MDM2f and analyzed their aggregation state on
an analytical SEC column (Figure 4(i)–(p)).
MDM2h A434S, MDM2h I435V and MDM2h P491S
behaved like wild-type MDM2h, where removal of
the GST-tag caused precipitation and the SEC
elution profiles of the soluble supernatant were
comparable to wild-type MDM2h, In contrast,
MDM2h G443T (hereafter referred to as
MDM2hGT) was stable upon removal of the GST-
tag and the SEC elution profile showed reduced
aggregation with bulk of MDM2hGT eluting at ~0.6
CV consistent of a dimer.

Structural and functional characterization of
MDM2hGT

MDM2h’s G443, or the corresponding residue in
MDM2f, T434, is solvent exposed and located
within a loop. None of the available crystal
structures could explain why a glycine at this
position would cause the MDM2 RING domain to
aggregate and that a threonine would prevent it.
The corresponding residue in MDM2 from
zebrafish and opossum, which both predominantly
form stable dimers, is serine, suggesting that the
polar side chain at this site could reduce
aggregation. Since the G443T substitution
produced a stable MDM2h dimer, we wanted to
understand its impact on MDM2h’s structure and
function. We purified MDM2hGT on a large scale
with the aim to crystallize it in complex with
UbcH5B–Ub. The SEC elution profile (Figure 5(a)
and (b)) and the yield were comparable to the
purification of MDM2f (Figure 1(f) and (g)). We
obtained diffracting crystals in two different forms
(Table 1), of which one is isomorphous to the
crystal form of the MDM2h-UbcH5B–Ub complex
(PDB: 6SQO). Both unit cells contain a single
MDM2hGT dimer bound to two UbcH5B–Ub
molecules (Figure 5(c)). The structure of
MDM2hGT and the orientation of UbcH5B–Ub are
indistinguishable from the structure of wild-type
MDM2h bound to UbcH5B–Ub, indicating that the
point mutation did not affect the ability of the
RING domain to recruit UbcH5B–Ub. G443T is
located near the UbcH5B binding site and is in
proximity to UbcH5B’s K4. However, in all
MDM2hGT-UbcH5B–Ub complexes in the
asymmetric units of both datasets, the G443T
sidechain is not within hydrogen bond distance of
UbcH5B’s K4 and in one instance UbcH5B’s K4
9

sidechain could not be modelled due to poor
electron density. Based on these observations,
the G443T substitution impacts neither the RING
domain fold nor UbcH5B–Ub binding. Indeed,
SPR binding analysis showed that the G443T
substitution had minimal effect on UbcH5B–Ub
binding (Figure 3(d) and Table 2). Consequently,
the autoubiquitination activity of MDM2hGT is
comparable to the wild-type MDM2h (Figure 5(d)
and (e)). These results demonstrate that the
G443T variant is fully functional and exhibits a
similar RING E3 property as MDM2h.
Discussion

p53 and its main negative regulator MDM2 have
co-evolved since their first appearance in single
cell organisms over a billion years ago.11 In
MDM2, both the p53-binding domain and the RING
domain show a high degree of sequence conserva-
tion and are crucial for p53 regulation. The struc-
tural characterization of the p53-binding domain of
MDM2 in complex with p53 peptide has paved the
way for the development of small molecules and
stapled peptides that are currently in clinical trial
to reactivate p53 activity in cancer patients.26 In
contrast, structural analysis of MDM2 RING domain
remains challenging as recombinant human MDM2
RING domain predominantly aggregates. Here, we
show that MDM2 RING domain aggregation is spe-
cies specific. By comparing the structures and
sequences of MDM2 from different species in com-
bination with mutagenesis analyses, we identify a
single substitution G443T that stabilizes MDM2h

predominantly in the dimeric state. Biochemical
and structural analyses show that MDM2hGT does
not alter MDM2RING domain structure and exhibits
similar E2~Ub binding affinity and activity as
MDM2h. These findings demonstrate that MDM2hGT

can serve as a valuable tool for future structural
characterization of potential binding partners of
MDM2 RING domain and aid the development of
small molecule inhibitors of MDM2 ligase activity.
Ancestral MDM2 was shown to bind and

ubiquitinate human p53 in cells.12 Here, we report
crystal structures of MDM2 RING domain from
two different species, western clawed frog and zeb-
rafish. The fold of the RING domain and its ability to
recruit UbcH5B–Ub in the closed conformation are
conserved; supporting the hypothesis that MDM20s
function as a ubiquitin ligase has been conserved
from an evolutionary point of view. However, the
binding affinity is reduced compared to the human
counterpart. A possible explanation for this obser-
vation could be the sequence difference for resi-
dues preceding the RING domain, which form a
310-helix in MDM2h but lack electron density in all
MDM2f and MDM2z structures reported in this
study. The helices are stabilized by a tight
hydrophobic packing arrangement involving resi-
dues A434 and F490 of each protomer (Figure 6



Figure 5. Functional and structural characterization of MDM2hGT. (a) Superdex 75 elution profile of MDM2hGT from
a large-scale purification (shown as black solid line). The elution profile of molecular weight markers (a: bovine serum
albumin, 66 kDa;b: carbonic anhydrase, 29 kDa; c: cytochrome C, 12.4 kDa; d: aprotinin, 6,5 kDa) is shown as red
dashed line. (b) SDS-PAGE showing the purity of single fractions from a. The position of the fractions within the
elution profile is indicated by numbers (1–13). The large absorbance in fraction 1 is due to the presence of other
contaminants. (c) Crystal structure of the MDM2hGT-UbcH5B–Ub complex. The two MDM2hGT monomers are colored
in orange and light orange. Zinc ions are shown as gray spheres. UbcH5B and Ub are colored in cyan and yellow,
respectively. A representative close-up view of the local environment of G443T including the sidechain of UbcH5B’s
K4 are shown. (d,e) Reduced SDS-PAGE showing autoubiquitination reactions catalyzed by GST-MDM2h and GST-
MDM2hGT using fluorescently-labeled Ub and visualized by an Odyssey CLx Imaging System (d) or stained with
Coomassie Blue (e). Asterisk in d indicates non-reducible E1–Ub product.
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(a)). In MDM2f and MDM2z, A434 is replaced with
serine and cysteine, respectively (Figure 1(c)). Both
serine and cysteine would likely cause a steric clash
and their polar side chains would disrupt the
hydrophobic packing, thereby precluding a similar
helical arrangement (Figure 6(b)). The 310-helices
in MDM2h contribute to the stabilization of
UbcH5B–Ub in the closed conformation and their
absence in MDM2f and MDM2z might be responsi-
10
ble for the reduced binding affinity for UbcH5B–
Ub. Although early vertebrate MDM2 RING domain
was an active ubiquitin ligase, the 310-helices might
have evolved to enhance MDM20s ligase activity in
placental mammals where A434 is conserved
(Figure 1(c)). In other animal classes, it is replaced
with serine, threonine, isoleucine or cysteine
(Figure 1(c)), which will likely disrupt the hydropho-
bic packing due to bulky or polar side chains. What



Figure 6. 310-helix precedes the RING domain in MDM2. (a) Close-up view of the 310-helix that precedes the RING
domain in MDM2h. Location of A434 within MDM2h is indicated. (b) Close-up view of the corresponding region in
MDM2f. No electron density was observed in this region.

H.M. Magnussen and D.T. Huang Journal of Molecular Biology 433 (2021) 166807
might the consequences of this structural dissimilar-
ity be? The residues N-terminal to the RING domain
were suggested to be important for XIAP IRES
mRNA binding,27 which could thus be a species
dependent MDM2 feature. The absence of the
310-helices might also affect MDM20s posttransla-
tional regulation. We showed that DNA-damage-
induced phosphorylation of S429 enhances the
autoubiquitination activity of MDM2h, and this effect
was abolished by a helix-disrupting mutation
(A434R).20 Species lacking the 310-helices
potentially respond differently to S429-
phosphoregulation compared to MDM2h. Various
phosphorylation sites near the RING domain have
been identified28 and a serine at position 434 could
not only be responsible for the disruption of the
310-helices but might also serve as a phosphoryla-
tion site itself and thereby alter E2~Ub recruitment.
We identified G443 as a single residue being

responsible for the pronounced aggregation of
MDM2h, which could be eliminated by a single
point mutation G443T. As the structures of
MDM2h and MDM2hGT are indistinguishable, it
remains unclear why the wild-type aggregates. It
is noteworthy that in the human MDM2-MDMX
heterodimer G443 is present in MDM2 but we did
not observe aggregation, suggesting that the
symmetric nature of MDM2h homodimer might
contribute to the initiation of this process. The
formation of supramolecular assemblies has been
observed for other RING E3s,29 but only little is
known about the molecular mechanism of their for-
mation. DNA damage-induced phosphorylation of
MDM2 was shown to reduce the size of MDM2 oli-
gomers suggesting that while the RING domain
has a tendency to oligomerize, post-translational
modification at other regions of MDM2 could regu-
late its oligomeric state.28 It would be interesting
to know whether the G443T mutation changes the
oligomeric state of MDM2 in cells and how this
affects its function. It is worthwhile to note that
G443 is only present in placental mammals and
11
might thus be an evolutionary fine-tuning tool to reg-
ulate MDM2.
Methods

Protein purification

MDM2 constructs were cloned into pGEX-4 T1
and expressed with an N-terminal GST-tag
followed by a TEV cleavage site, human UBA1
was cloned into pET21d with an N-terminal 6xHis-
tag,30 UbcH5B was cloned into pRSFDuet-1 and
Ub was cloned into pRSFDuet-1 with an N-
terminal 6xHis-tag followed by a TEV cleavage site
and a GGS linker to enhance the cleavage effi-
ciency.20 All UbcH5B proteins in this study con-
tained the S22R mutation to block backside
binding of Ub.31 For UbcH5B–Ub conjugates used
for crystallization and SPR binding analyses, the
catalytic cysteine was mutated to lysine (C85K) to
obtain a stable UbcH5B–Ub conjugate with
isopeptide-linked Ub.32 All proteins were expressed
in Escherichia coli BL21(DE3) GOLD. Cells were
grown in LB medium to OD600 = 0.6–1.0 at 37 �C,
induced with 0.2 mM Isopropyl-b-D-1-thiogalacto
pyranoside and protein expression was conducted
for 16–20 h at 20 �C. Cells were resuspended and
lysed in the corresponding wash buffer of the first
purification step supplemented with 2.5 mM phenyl-
methylsulfonyl fluoride. UBA1, UbcH5B, Ub and
MDM2 were purified as described previously.20,25

UbcH5B–Ub and fluorescently labeled Ub were
generated as described previously.20,32 For SPR
and ubiquitination assays, GST-MDM2 variants
were purified by glutathione Sepharose affinity
chromatography followed by gel filtration chro-
matography. For crystallization, GST-MDM2 vari-
ants were treated with TEV to release the GST-
tag and the cleaved MDM2 variants were subjected
to HiLoad 16/600 Superdex 75 gel filtration chro-
matography (GE Healthcare). The oligomeric state
of the MDM2 variants was assessed by comparison
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with molecular weight markers (Sigma-Aldrich). All
MDM2 variants were stored in buffer containing
25 mM Tris-HCl, pH 7.6, 0.4 M NaCl and 1 mM
DTT. Protein concentrations were determined by
absorbance at 280 nm for Ub and Bio-Rad protein
assay with BSA as a standard for other proteins.
Crystallization

Crystals were grown at 19 �C using sitting drop
vapour diffusion technique (drop volume: 0.4 lL)
and where required optimized by hanging drop
vapour diffusion techniques (drop volume: 2.0 lL).
All proteins were mixed with reservoir solution at
1:1 ratio.
MDM2z (3 mg/mL) crystals were obtained in

condition containing 0.1 M imidazole, pH 6.5,
0.12 M monosaccharides, 37.5 % (w/v)
MPD_P1K_P3350 (Morpheus, Molecular
Dimensions) and flash-frozen in the same
condition.
MDM2f (5–9 mg/mL) crystals were obtained in

condition containing 0.1 M PCTP, pH 7.0, 25 %
(w/v) PEG 1500 (PACT premier, Molecular
Dimensions) and flash-frozen in the same
condition containing 30 % (v/v) MPD.
MDM2f-UbcH5B–Ub crystals were obtained by

mixing MDM2f (5–9 mg/mL) and UbcH5B–Ub
(15 mg/mL) at 1:1 molar ratio in condition
containing 0.1 M HEPES, pH 7.0, 10 % (w/v) PEG
20,000 and flash-frozen in the same condition
containing 25 % (v/v) ethylene glycol.
MDM2hGT-UbcH5B–Ub crystals were obtained by

mixing MDM2hGT (11 mg/mL) and UbcH5B–Ub
(15 mg/m) at 1:1 ratio. Crystal form 1 was
obtained in condition containing 0.1 M Tris, pH
8.0, 0.075 M NaOAc, 0.1 M NaCl, 15 % (w/v)
PEG Smear Medium and flash-frozen in the same
condition containing 25 % (v/v) ethylene glycol.
Crystal form 2 was obtained in condition
containing 0.1 M HEPES, pH 7.5, 0.2 M (NH4)
NO3, 20 % (w/v) PEG Smear Broad. Both crystal
forms were flash-frozen in the same condition
containing 25 % (v/v) ethylene glycol.
Structure determination

Diffraction data were collected at beamlines I03,
I04 and I04-1, Diamond Light Source (DLS). Data
were processed by automated XDS33 and reduced
with fast_DP (MDM2f-UbcH5B–Ub), autoPROC
(MDM2z)34 or Xia2 package (all other datasets).35

The structures were solved by molecular replace-
ment using PHASER,36 followed by consecutive
rounds of refinement with REFMAC537 and model
building with COOT.38 Refinement statistics are
shown in Table 1.
SPR analysis

SPR binding experiments were performed at
25 �C on a Biacore T200 instrument using a CM-5
12
chip (GE Healthcare) with coupled anti-GST
antibody as described previously.20 Briefly, GST-
tagged MDM2 variants were coupled on the chip
and a serial dilution of UbcH5B–Ub in running buffer
containing 25 mM Tris-HCl, pH 7.6, 150 mM NaCl,
1 mM DTT and 0.005% (v/v) Tween-20 was used
as analyte. Two technical replicates were per-
formed and data were analyzed with BIAevalution
(GE Healthcare) and Scrubber2 (BioLogic
Software).
In vitro autoubiquitination assay

UbcH5B (5 lM) was pre-charged for 20 min with
UBA1 (0.2 lM) and fluorescently-labeled Ub
(70 lM) in 50 mM Tris, pH 7.6, 50 mM NaCl,
5 mM MgCl2, 5 mM ATP at 23 �C. The reaction
was started by adding GST-MDM2 variants (5 lM;
in 50 mM Tris, pH 7.6, 400 mM NaCl) and
stopped at the indicated time point with 4X LDS
Loading dye containing 400 mM DTT followed by
separation on SDS-PAGE. The ubiquitinated
products were visualized with an Odyssey CLx
Imaging System (LI-COR Biosciences) and
staining with coomassie. Parentheses indicated
final concentration of proteins in the reaction.
Analytical size-exclusion chromatography

GST-tagged MDM2 variants were concentrated
to 3 mg/mL and incubated with 1:10 TEV protease
for 16–20 h at 4 �C to cleavage the GST-tag.
Cleavage was confirmed by SDS-PAGE. The
soluble fraction of the cleaved products was
applied on a Superdex 75 Increase 10/300 SEC
column (GE Healthcare) and the elution profiles
were analyzed by comparison with molecular
weight markers (Sigma-Aldrich) and by SDS-
PAGE.
Accession numbers

PDB: 7AH2, 7AHY, 7AHZ, 7AI0 and 7AI1
Data availability

Atomic coordinates and structure factors are
deposited in the Protein Data Bank with ascension
codes 7AH2 (MDM2z), 7AHY (MDM2f), 7AHZ
(MDM2f-UbcH5B–Ub), 7AI0 (MDM2hGT-UbcH5B–
Ub, crystal form 1), 7AI1 (MDM2hGT-UbcH5B–Ub,
crystal form 2).
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