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Laboratory Manual for the Examination and Processing of Human Semen 6th edition
Over the past 40 years, since the publication of the original WHO Laboratory Manual for the Examination and Processing of Human
Semen, the laboratory methods used to evaluate semen markedly changed and benefited from improved precision and accuracy, as
well as the development of new tests and improved, standardized methodologies. Herein, we present the impact of the changes put forth
in the sixth edition together with our views of evolving technologies that may change the methods used for the routine semen analysis,
up-and-coming areas for the development of new procedures, and diagnostic approaches that will help to extend the often-descriptive
interpretations of several commonly performed semen tests that promise to provide etiologies for the abnormal semen parameters
observed. As we look toward the publication of the seventh edition of the manual in approximately 10 years, we describe potential ad-
vances that could markedly impact the field of andrology in the future. (Fertil Steril� 2022;117:258–67.�2021 by American Society for
Reproductive Medicine.)
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W ith the publication of the 6th edition of the WHO
Laboratory Manual for the Examination and
Processing of Human Semen, the advances in the

field of andrology to date are evident and reflect over 40 years
of technical refinement of the routine semen analysis that
improved the precision and accuracy of the procedure as
well as the addition of new tests to evaluate semen character-
istics or sperm function together with the removal of tests that
are no longer widely employed (e.g., the postcoital cervical
mucus penetration test). In this article, we look toward the
future and discuss some of the impacts of this work to date,
the emerging areas for the development of new procedures,
as well as a glimpse of the future and thoughts about where
the field will be headed over the next 10 years of the publica-
tion of this manual and its new editions to come.
DIAGNOSTIC APPROACHES WILL BE
IMPROVED: BASIC SEMEN ANALYSIS WILL BE
STANDARDIZED AND THUS THE RESULTS
COMPARABLE THROUGHOUT THE WORLD
A plethora of data, including that from well-established An-
drology External Quality Assurance schemes, independent of
country of origin, demonstrate that there is considerable vari-
ability in the results of the basic semen analysis (1–3). There
are several reasons for this, for example, lack of adherence
to established methods, poor training, and/or the use of a
variety of methods to perform the analysis (3). This
variability has significant clinical ramifications because a
semen analysis result in 1 laboratory may not be
comparable to that in another. Moreover, it can make
comparisons between data sets difficult. Although these
issues are well documented and have been a continual
source of concern, these challenges remain (4).

A focus of the 6th edition is to provide clear and standard-
ized methods that focus among others on the basic analysis
(Chapter 2 of theWHO Laboratory Manual for the Examination
and Processing of Human Semen [5]). Providing simplified
methods obviates a primary difficulty in performing high-
quality semen analysis and helps address the reproducibility
crisis that has beset semen analysis for a number of years.More-
over, because the basic techniques described are robust and easy
to follow, it is anticipated that this will facilitate higher-quality
training. However, on their own, simplified methods will not be
sufficient. If, in the next 5–10 years, we are to achieve compa-
rable results from semen analysis from different laboratories,
complementary tactics need to be actioned.

There is an absolute need to have a renewed and reinvigo-
rated approach to training andrology laboratorians in these
methodologies. One challenge in improving regional, na-
tional, and global comparability in semen analysis has been
the roadblock in training laboratory personnel in robust
methods. This is slightly surprising because several well-
proven methods for training staff are published (6) and
many courses are available, for example, the European Soci-
ety of Human Reproduction and Embryology (7, 8) and
various courses put forth by the American Association of Bio-
VOL. 117 NO. 2 / FEBRUARY 2022
analysts, American Society of Andrology, and other societies
worldwide.

Therefore, we understand how to train staff; however, in
general, these methods can be expensive and are not widely
used. Hands-on wet laboratory training is optimal. However,
currently, with the travel restrictions in force for many working
in healthcare institutions, this is not an option. Thus, a key lim-
itation with in-person training courses is limited access. There-
fore, we need to develop flexible training systems (on the basis
of well-proven principles) that can be widely implemented. In
this context, the coronavirus disease 2019 pandemic has opened
a new world of learning and opportunity with the development
of teaching methods that can be delivered in the virtual world
using webinars and live, interactive presentations with video
microscopy. There are now awhole host of sophisticated, proven
tools to assist learning. Moreover, as both students and teachers,
we are more familiar with these online approaches and, thus,
more willing to adopt these educational modalities. Embracing,
adapting, and employing these new methods, we can deliver
flexible education and training programs in andrology to suit
all manner of scenarios and requirements. We can be confident
that we will be able to develop sophisticated and effective
training systems for all staff.We envision the rapid development
of a standardized training strategy and pre- and in-service
training curricula in the near future on the basis of the current
protocols published in the World Health Organization (WHO)
6th edition (5). This will be a major achievement in andrology
and radically improve our ability to standardize basic semen
analysis throughout the world.

Another aspect to improving standards in basic semen
analysis is the very recent development of a formal Interna-
tional Organization for Standardization (ISO) standard
(23162:2021) for Basic Semen Examination (9). This is the first
time that this has been achieved. The ISO standards are based
on the same principles as the sixth edition of the manual and
specify the minimum requirements for equipment and critical
aspects of methods for best practice. Adoption of these stan-
dards will support laboratories seeking accreditation. More-
over, because ISO is applicable through the world, adherence
to this standard is likely to be manifested in an overall
improvement in quality of semen assessment globally.

The reproducibility of scientific data is, of course, not a
unique problem for andrology (10–12). Several tools
suggested to address these challenges include the provision
of robust materials and methods and checklist for
publication in journals, for example, STAR methods in Cell
Press journals (13). In andrology, we now have clear robust
methods, and with new educational methods to use for staff
training, we can look forward to a world where a robust
semen analysis is the norm.
PARADIGM SHIFT IN THE PATHWAY FOR
INVESTIGATIONS AND DIAGNOSIS OF MALE
FACTOR INFERTILITY
Semen analysis, along with physical examination and his-
tory, is the cornerstone in the diagnosis of male factor
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infertility (14–17). Currently, the analysis needs to be
performed in a laboratory. However, in the 6th edition,
there is a discussion on emerging technologies (Chapter 4.6
of the WHO Laboratory Manual for the Examination and
Processing of Human Semen [5]), which may widen the
availability of semen analysis into the community. One
aspect identified was the potential use of home assays for
the assessment of sperm motility. With the recent
implementation of widespread telemedicine for several
types of clinical office visits, it is not surprising that home
assays for a variety of clinical diagnostic tests would be
created. At-home testing in andrology has a long history
(18, 19), and several new tests that assess sperm motility
and/or concentration were recently launched (20). A number
of kits commercially available today have yet to be rigorously
evaluated in large-scale trials, including comprehensive com-
parisons with standardized laboratory methods, so their cur-
rent clinical value in diagnosis is limited. However,
technology is rapidly evolving, and as the assays improve,
it is very likely that men assessing their own samples
(providing robust and acceptable diagnostic information)
will be a reality in the next 5 years. Therefore, patients will
have a pivotal role to play in their own health management
as witnessed in several other arenas, for example, blood
glucose levels for diabetes and retinal imaging (21, 22).
Once the technologies are demonstrated to be accurate and
precise, there is a need to determine the role these assays
play in the patient diagnostic pathway, for example, are
they additional, complementary, or replacement tests, and
can they be used to triage patients (23)? The tests may be
cheaper and easier to use than traveling to andrology labora-
tories for semen analysis. They can be used in large-popula-
tion–based studies of lifestyle changes or potential
environmental exposures and may help to identify infertility
in men. Certainly, these at-home or mail-in test kits could
be particularly important for those living in rural or underde-
veloped areas lacking sufficient healthcare, and at the very
least, they may provide the patient with some data on their
semen parameters pointing to the need for a clinical evalua-
tion and diagnostic semen analysis if abnormalities are
present. If positive answers are forthcoming, this will signif-
icantly increase effectiveness and patient satisfaction. The co-
ronavirus disease 2019 pandemic has indicted that we can do
more at-home testing to manage our healthcare than previ-
ously recognized.
TRANSFORMATIVE CHANGES IN QUALITY
AND SPEED OF OBTAINING DATA FOR THE
DIAGNOSIS AND PROGNOSIS OF MALE
FACTOR INFERTILITY
The recent American Society for Reproductive Medicine/
American Urological Association joint publication on the
male factor infertility practice guidelines identified signifi-
cant evidence gaps in both the diagnosis and treatment of
male factor infertility (14–17). Yet, there are a relatively few
clinical trials in the area implying that unless some things
change, these gaps will remain (24, 25) (e.g., https://
clinicaltrials.gov/; https://www.nihr.ac.uk/). However, this
260
scenario is unlikely because real progress in this space will
be made in the next 5 years. This optimism is formatted on
the following 4 themes: first, our knowledge of the
production, formation, and workings of a human
spermatozoon is rapidly expanding. The burgeoning
pipeline of knowledge will significantly facilitate the
development of new diagnostic tools and encourage
individuals to seek clinical evaluation and potential
treatment regimes.

Second, we have new ways of collaborating together.
Global initiatives to link colleagues in our discipline to trans-
form the way we work, formulate, and address key questions
are in place, for example, the Male Reproductive Health
Initiative (https://www.eshre.eu/Specialty-groups/Special-
Interest-Groups/Andrology/MRHI) and International Male
Infertility Genomics Consortia (http://www.imigc.org/) (26).
Moreover, several countries, such as Australia, developed a
coordinated nationwide strategy for male reproductive health
(Healthy Male: https://www.healthymale.org.au/). Male fac-
tor infertility is a substantial global health issue that necessi-
tates a comprehensive and coordinated approach—we are now
at the precipice of achieving this reality.

Third, concomitant with the aforementioned, our para-
digm of how we organize and execute experiments is chang-
ing. This coupled with a global approach to male reproductive
health makes it easier and more efficient to rapidly attain crit-
ical information. For example, Nichols et al. (27) outline ‘‘a
more strategic approach to research focused on the accumu-
lation of evidence via designed sequence of studies.’’ In
essence, they suggest an integrated approach to the design
of studies to address key hypotheses to enable a more rapid
synthesis of evidence than currently feasible.

Finally, there are a number of novel ‘‘artificial-intelli-
gence’’ methods under development aimed at using ma-
chine-learning–based analysis of sperm. The application of
these deep-learning classification methods to sperm was
applied to routinely measured semen parameters, such as
morphology (28–30) and motility (31). Other approaches
used the measurement of sperm parameters critical to key
sperm functions to predict fertilization potential of sperm,
such as intracellular pH to assess capacitation to predict
conventional fertilization success in normozoospermic
patients (32), sperm videos to assess sperm motility (31),
sperm selection for intracytoplasmic sperm injection (ICSI)
in in vitro fertilization (IVF) on the basis of the
classification of the sperm head, and sperm motility and/or
DNA integrity (33). The application of powerful technology
examining single cell heterogeneity and function in other
disciplines is likely to be a fruitful line of investigation, for
example, Cell Painting, which allows the assessment of
several thousand features of each individual cell (34). These
examples described are predicted to provide improved
sperm selection, rather than using the somewhat subjective
interpretation of the WHO criteria for morphology
assessment that varies markedly between laboratories and
even technologists. It is noteworthy to remember that in the
embryology laboratory, strict morphology as described
cannot be used on the sperm to be selected for ICSI on the
basis of the WHO laboratory methods for assessing sperm
VOL. 117 NO. 2 / FEBRUARY 2022
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morphology, and these diagnostic methods were not designed
for that purpose. There are likely to be several emerging
technologies that will substantially affect the future
diagnosis of male factor infertility.

Hence, the identification of other novel criteria of classi-
fication of live, functional sperm will be a powerful advance
in the field. Again, the utilization of these computer-based
technologies will revolutionize the approach to performing
a semen analysis and andrology laboratory procedures.
Adopting such methods, we are likely to rapidly enhance
our understanding of the diagnosis and treatment of male
reproductive failure as well as improve patient outcomes.

ADVANCES IN ‘‘-OMIC’’ TECHNOLOGIES AND
SPERM BIOLOGY WILL PROVIDE SEVERAL
NEW ADVANCED AND EXTENDED ASSAYS
ASSESSING THE FUNCTIONAL COMPETENCE
OF THE SPERMATOZOON
With the advent of various next-generation sequencing
(whole exome and whole genome sequencing) and other
‘‘-omic’’ technologies (array comparative genomic hybridiza-
tion)—transcriptomic, proteomic, metabolomic, lipidomic,
glycomic, epigenomic, and other advanced technologies—we
have witnessed an exponential increase in research reports
on the molecular/cellular/system defects present in a wide va-
riety of male reproductive deficiencies. As the mechanisms of
action of these genetic, genomic, epigenetic, transcriptomic,
proteomic, and metabolomic defects are defined, we will
further define the etiologies of most causes of male reproduc-
tive deficiencies. For example, it is clear that damaging muta-
tions and copy number variants (microdeletions and
microduplications) causing changes in the expression levels
of dosage-sensitive genes may affect reproductive system
development (35–39) and function (40–42), as well as fetal,
childhood, adolescent, and/or adult development and/or
function of other organ systems in the body. Indeed, a
search of the website, GeneCards (43), reveals that >3,600
genes have been reported to be associated with human male
factor infertility when defective. Another >3,200 gene
defects impacting male reproductive development and
function (including encoding some of the proteins involved
in sperm chromatin structure, such as the protamines and
histones, and genes encoding protein ion channel,
exchangers, and transporters, such as CATSPR and Slo3 Kþ
channels, discussed in Chapter 4 of the 6th edition of the
WHO Laboratory Manual for the Examination and
Processing of Human Semen [5]) are mentioned. Although
the biochemical measurement of these later proteins in
sperm is performed in some andrology laboratories
throughout the world using biochemically based assays (5),
the knowledge of the genes encoding these chromatin
structure, ion channel, exchanger, and transporter proteins
allows translation to the medical genetics diagnostic
laboratories (44, 45). The identification of the specific
genetic defects underlying sperm dysfunction will then
allow not only a diagnosis of the defect but also an etiology.

Other gene defects are associated with genitourinary birth
defects (as reviewed by Punjani and Lamb [46]). While some
VOL. 117 NO. 2 / FEBRUARY 2022
but not all of approximately 6,000 genes have undergone
rigorous testing to prove causation beyond an association
and their mechanism of action (needed for a clearer under-
standing of the patient phenotype and, in some instances,
drug discovery for new medical therapies), there is no doubt
that this knowledge will prove to be informative in the future,
as additional studies are performed to allow eventual transla-
tion for use in the evaluation of the male reproductive health.
Thus, there will be improved clinical diagnosis and a person-
alized medicine-based approach to patient treatment.
THE ADVENT OF GENETIC AND GENOMIC
TESTING MAY PARTIALLY REPLACE THE
ROUTINE SEMEN ANALYSIS AND PROVIDE
MORE DEFINED ETIOLOGIES FOR
TERATOZOOSPERMIA,
ASTHENOZOOSPERMIA, AND
SPERMATOGENIC FAILURE
An impressive area of success showing the potential of these
precision medicine-based genetic findings (but by no means
the only one) is in the study of teratozoospermia (predomi-
nantly globozoospermia and macrozoospermia and/or asthe-
nozoospermia [multiple abnormalities of the sperm flagella
and primary ciliary dyskinesia]—sperm defects seen in the an-
drology laboratory during a routine semen analysis). Herein,
the identification of defective genes encoding proteins
involved in cytokinesis during meiosis (resulting in
macrozoospermia [Fig. 1]), sperm flagella formation and
function (Fig. 2) (resulting in a variety of anomalies seen in
a routine semen analysis including absent, short, bent/mis-
aligned, coiled, and irregularly shaped flagella and severe
motility defects with occasional head anomalies) (47, 48),
and globozoospermia (Fig. 3) is used clinically to counsel pa-
tients about their chances for successful ICSI-IVF outcomes or
about other reproductive decisions regarding alternative
paths to parenthood (as reviewed by Coutton et al. [47] and
Wang et al. [48]). Future studies of these genes and the other
>6,000 genes mentioned earlier are expected to have a
powerful impact on improving the diagnosis and perhaps
even medical treatment of some forms of male reproductive
failure as well as providing some useful information about
the probability of successful ICSI-IVF outcome for these and
other male reproductive health concerns. Because many of
these ‘‘male reproductive health’’-related genes are expressed
in select other tissues or even broadly throughout the body, it
is likely that they are associated with additional health risks
for men with reproductive failure (as reviewed by Punjani
and Lamb [49], Brubaker et al. [50], Eisenberg et al. [51], Ei-
senberg et al. [52], Eisenberg et al. [53], Eisenberg et al.
[54], Eisenberg et al. [55], Eisenberg et al. [56], Glazer et al.
[57], and Hanson et al. [58]), the causes of which are currently
largely unknown.

Regarding the area of medical comorbidities associated
with male reproductive failure, current research focuses on
whether infertility is the ‘‘canary in the coal mine’’ that foretells
an increased likelihood of other diseases (49). Given the wide
range of genes required for fertility (59–61), it is not
261



FIGURE 1

Macrozoospermia results from damaging mutations in aurora kinase C (AURKC). When AURKC is mutated, there is premature chromosome
segregation, and cytokinesis is blocked during meiosis, resulting in large, headed multitailed, polyploid sperm formation. The c.144delC
mutation is common in men of European and North African origin with macrozoospermia. For these men, intracytoplasmic sperm injection-
in vitro fertilization is not recommended because the chances of a normal pregnancy are slim. AURKB/C ¼ aurora kinase B/C.
Barratt. The future of male sexual and reproductive health. Fertil Steril 2021.
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surprising to learn that male reproductive failure is associated
with several other conditions. For disorders, such as low
testosterone level or male hypogonadism (62, 63), it may be
difficult to discern whether some associated conditions, such
as malignancies and mortality, are a cause of decreased
androgen action either through its cognate steroid receptor
or signaling via a nongenomic pathway or whether the
associated disease resulted in hypogonadism. Male
hypogonadism is a risk for a number of conditions including
diabetes, metabolic syndrome, cardiovascular disease,
hypertension, and Alzheimer disease, but the reasons for this
may be multifactorial. For some men, low testosterone levels
may reflect poor health, sedentary lifestyles, obesity, or
cardiovascular disease, whereas for others, it may represent
their natural course of aging. The associations of male factor
infertility with mortality (54, 63, 64), malignancies (not only
testis cancer) (51, 58, 65–73) in infertile men and their family
members (58, 64, 74), immune dysfunction (50, 57, 75), and
other nonreproductive disorders (56, 76) remain to be clearly
defined by additional research.

In other areas of medicine, such as nephrology or
oncology, there is an increasing awareness that conditions
thought to be isolated genetic defects (congenital birth defects
and malignancies) are actually syndromic with an array of
associated other anomalies that are present or may arise
throughout the lifespan. There is an increased need for strong
basic and translational research studies to define the molecu-
lar basis of male reproductive failure and identify new drug-
gable targets to bypass or ameliorate deficiencies or impact
protein overexpression that may underlie not only the repro-
ductive failure but also the comorbidities.
262
THE PROMISE OF NOVEL THERAPEUTIC
DEVELOPMENT IN AREAS SUCHAS STEMCELL
REJUVENATION AFTER SPERMATOGENIC
FAILURE OF TOXIC INSULT OR IN VITRO
SPERMATOGENESIS MAY BE REALIZED
Over the past 70 years, the treatments available for male repro-
ductive failure (with the exception of surgical approaches for
obstructive and nonobstructive azoospermia/testicular micro-
dissection with ICSI) remained relatively stagnant. Neverthe-
less, there are novel methods under development to
effectively use spermatogonial stem cells to rejuvenate sper-
matogenesis after gonadotoxin exposures (e.g., chemotherapy)
(77). The initial studies were predominantly performed in ro-
dent models. A challenge with these studies in mouse models
was that only a small fraction of transplanted spermatogonial
stem cells could repopulate the tubules. However, Nakamura
et al. (78) developed a strategy to rejuvenate the host mouse
fertility using transient treatment with a chemical inhibitor
of retinoic acid synthesis. If this therapy works well in humans,
it will greatly enhance the likelihood of successful treatment of
patients with secondary infertility after chemotherapy or radi-
ation therapy by direct treatment of either the host or the cells
in vitro. This advance using mouse models (78), together with
the in vitro reconstitution of male germ cell development from
mouse pluripotent stem cells (79), should result in a paradigm
changes in not only our understanding of spermatogenesis but
the ability to translate these in vivo and in vitro findings to the
human.

Studies on human spermatogonial stem cells such as
those mentioned earlier have been performed, although
VOL. 117 NO. 2 / FEBRUARY 2022



FIGURE 2

Multiple morphological anomalies of the sperm flagella (MMAF) refer to sperm morphology anomalies usually associated with
asthenoteratozoospermia. In men with asthenoteratozoospermia, there is a relatively high frequency of mutations in dynein axonemal heavy
chain 1 (DNAH1), cilia and flagella associated protein 44 (CFAP44), and cilia and flagella associated protein (CFAP43) (these 3 protein defects
account for approximately one-third 3 of MMAF cases) with mutations involving adenylate kinase 7 (AK7), cilia and flagella associated protein
69 (CFAP69), centrosomal protein 135 (CEP135), A-kinase anchoring protein 3 (AKAP3), or A-kinase anchoring protein 4 (AKAP4). As a result,
structural defects of the centriole assembly, peri-axenome structure, and the axenome can be present, affecting the proximal centriole, 9 þ 2
central pairs of microtubules, fibrous sheath and outer dense fibers, mitochondrial sheath, outer and inner dynein arms, radial spokes, and
nexin-dynein regulation complex.
Barratt. The future of male sexual and reproductive health. Fertil Steril 2021.

Fertility and Sterility®
some results are controversial (because of the lack of a func-
tional assay system). Important advances for this field are the
molecular signatures identified in a human testis transcrip-
tional atlas that defined 5 developmental spermatogonial
states (as well as numerous other cell types and lineages in
the testis), including a novel spermatogonial stem cell state
(infant spermatogonial stem cell state 0) with several similar-
ities to adult spermatogonial stem cell state (80, 81).

These human spermatogonial stem cells were also used to
generate embryonic stem cell-like cells thought to have the
VOL. 117 NO. 2 / FEBRUARY 2022
potential to differentiate into the 3 developmental cell line-
ages and eventually functional tissues, which generated great
interest in the lay press. However, reports of continuous cul-
ture of these pluripotent cells remain controversial, in large
part because of methodological issues (81). In addition, even
if the therapeutic use of human spermatogonial stem cell au-
totransplantation in cancer survivors becomes a possibility,
there must be a high bar of safety because concerns remain
regarding the potential for contamination of the spermatogo-
nial stem cells with malignant cells. These cells must be
263



FIGURE 3

Genes encoding the critical proteins required for the acrosome biosynthesis. Globozoospermia is a sperm morphology anomaly that is readily
identified in a routine semen analysis when the sperm appear round-headed with an absent, atrophied, or misplaced acrosome. There are 2
main defective genes commonly present in globozoospermic men. Spermatogenesis associated protein 16 (SPATA16) is highly expressed in
human testis, and damaging mutations are identified in a significant percentage of globozoospermic men. A second gene, DPY19L2, exhibits
either copy number variations (gene dosage changes) or damaging mutations that are more common in men in some different geographic and
ethnic regions who show mainly type I globozoospermia with a high percentage of abnormal sperm. For men with complete globozoospermia,
intracytoplasmic sperm injection with oocyte activation can be attempted, but the likelihood of achieving successful fertilization and live birth is
significantly reduced compared with men with sperm with a normal acrosome.
Barratt. The future of male sexual and reproductive health. Fertil Steril 2021.
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eliminated before autotransplantation to restore spermato-
genesis after recovery in cancer survivors. Other possible ap-
proaches include employing iPS cells where adult somatic
cells are programmed to differentiate into spermatogonial
stem cells and reprograming of somatic cells to become sper-
matogonial stem cells. A method for the in vitro differentia-
tion of human primordial germ cell-like cells from human-
induced pluripotent stem cells and subsequently into M-pros-
permatogonia-like cells and T1 prospermatogonia-like cells
using long-term cultured xenogeneic reconstituted testes
was recently reported (82). These findings came about because
of the rapidly expanding knowledge on the basis of the mech-
anisms of human germ cell development. There is no doubt
that any technical issues that remain can be resolved in the
future to allow eventual translation from the bench to the
bedside to restore spermatogenesis in cancer survivors.

Alternative approaches using organ cultures, organoids,
and other approaches to develop in vitro systems for comple-
tion and maintenance of spermatogenesis in vitro offer addi-
tional promise for the treatment of both secondary infertility
and perhaps some forms of spermatogenic failure. In fact, re-
searchers have tried for approximately 100 years to achieve
complete spermatogenesis in vitro, and despite the recent
marked advances beginning in the 1960s (83), the limited suc-
cesses in recent years using mouse models have not been suc-
cessfully directly applied for humans (84). In the past 20 years,
qualitative but not quantitative spermatogenesis has been
achieved in vitro culminating in live offspring, and various
improvements have been employed including several micro-
fluidic devices and 3-dimensional culture systems. Impor-
tantly, achieving complete spermiogenesis may no longer
be required in vitro. There were significant concerns
regarding the safety of round spermatid or nucleus injection
after the case report from Zech et al. (85) after 4 pregnancies
after round spermatid injection, with 2 cases resulting in ma-
jor malformations. On the other hand, studies in animal
models were encouraging. More recently, Tanaka et al. (86)
reported the successful birth of 90 babies born after round
spermatid injection into oocytes and their normal physical
and cognitive development up to 2 years of age. A clinical
trial is ongoing to further substantiate this earlier observa-
tion. Thus, the need for completion of spermiogenesis
in vitro may not be necessary for the subsequent use of the
spermatids with intracytoplasmic injection. With increasing
knowledge of the delicate and species-specific microenviron-
ments needed for the completion of spermatogenesis, re-
searchers are moving closer to achieving this goal while still
maintaining the genetic, genomic, and epigenomic integrity
of the sperm (84). Despite the steady research advances real-
ized in this field, additional studies will be required before
this is achieved with human samples given the biologic
complexity of spermatogenesis and testis function.
THE IMPACTOF THESE CURRENTAND FUTURE
ADVANCES
In closing, the continued improvement of procedures for the
laboratory evaluation and processing of human semen over
the past >40 years has expanded the knowledge of male
VOL. 117 NO. 2 / FEBRUARY 2022
reproductive function and diagnosis of specific forms of
dysfunction and set the stage for large multinational studies
of semen parameters and characteristics worldwide. The
improved rigor, precision, and accuracy that the current stan-
dardized protocols describe will now set the stage for
advanced clinical trials aimed at filling the significant evi-
dence gaps in both the diagnosis and treatment of male factor
infertility needed to improve clinical care (14–17). In addition,
the genomic revolution now allows the clinical diagnostic
laboratories to realize quantum leaps in improved patient
diagnosis in several areas of medicine. In andrology, we are
on the forefront of vastly improving our diagnostic abilities
to define precise etiologies and comorbidities and
eventually (perhaps) develop medically based treatments for
men with reproductive failure to improve not only their
fertility potential but also their overall health. Translation
of the new technologies described earlier (spermatogonial
stem cell transplantation and spermatogenesis in vitro) to
serve the clinical needs will require additional research. In
the future, these methods should move from the laboratory
to the clinical arena to provide therapeutic options for men
with reproductive health-related conditions. However,
because of the complexity of the systems involved and the
substantial risks that otherwise healthy individual may be
subjected to, there must be a high bar to ensure safety and a
positive outcome. Despite these caveats, certainly, the future
looks promising for improving the health and fertility of the
male with reproductive failure through precision medicine
and the application of advanced technologies for advanced
diagnosis and treatment.
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