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Abstract: Macrophages (MΦ) are highly heterogenous and versatile innate immune cells involved
in homeostatic and immune responses. Activated MΦ can exist in two extreme phenotypes: pro-
inflammatory (M1) MΦ and anti-inflammatory (M2) MΦ. These phenotypes can be recapitulated
in vitro by using ligands of toll-like receptors (TLRs) and cytokines such as IFNγ and IL-4. In recent
years, human induced pluripotent stem cells (iPSC)-derived MΦ have gained major attention, as they
are functionally similar to human monocyte-derived MΦ and are receptive to genome editing. In
this study, we polarised iPSC-derived MΦ to M1 or M2 and analysed their proteome and secretome
profiles using quantitative proteomics. These comprehensive proteomic data sets provide new
insights into functions of polarised MΦ.

Keywords: iPSC; macrophages; polarisation; secretome; proteomics

1. Introduction

Macrophages (MΦ) are innate immune cells that have gained increasing attention in
basic and biopharmaceutical research. They play crucial roles not only in homeostasis,
immune regulation, and pathogen defence, but also in the pathogenesis of an increasing
number of diseases. MΦ display remarkable plasticity and can exist in a broad spectrum of
activation states in response to a plethora of internal and external stimuli. At the extreme
ends of the spectrum are the ‘classically activated’ or proinflammatory (M1) MΦ and the
‘alternatively activated’ or anti-inflammatory (M2) MΦ, as described in the literature [1].

For human MΦ research, peripheral blood monocyte-derived MΦ (MDM) and mono-
cytic cell lines are commonly used. However, there are limitations to the use of MDM
due to donor-to-donor variability and restricted availability of donors. Also, MΦ derived
from transformed monocytic cell lines are not able to completely recapitulate all aspects of
MΦ physiology, as they exhibit limited plasticity and often carry unknown mutations [2,3].
More recently, iPSC-derived MΦ (iPSDM) have emerged as a valuable platform for the gen-
eration of unlimited numbers of MΦ that are functionally similar to MDM [4]. In addition,
the genetic manipulation of iPSCs to knock out genes of interest has paved the way for a
better understanding of MΦ biology and has provided a platform for testing drug concepts
that interfere with MΦ function [5,6].

There are extensive transcriptomic data available that have provided valuable insights
on the expression profiles of polarised MΦ and of specific cell surface markers. However,
mRNA levels do not always correlate with protein abundance due to post-transcriptional
processing, mRNA stability, and post-translational modifications. In addition, the MΦ
secretome cannot be fully described by transcriptomics. Comprehensive proteomics is a
powerful approach to gain important functional insights into the MΦ immune response
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to different stimuli [7]. Therefore, we determined changes in both cellular (proteome)
and extracellular (secretome) responses of differentially polarised iPSDM using label-free
quantitative proteomics. The resting MΦ (M0) that were polarised using toll-like receptor
(TLR) ligand, lipopolysaccharide (LPS), and interferon gamma (IFNγ) are referred to as M1,
while MΦ polarised using interleukin-4 (IL-4) are referred to as M2, for simplification [8].
We demonstrate that ~5% of proteins are expressed differentially between M1 and M2 and
show that, by principal component analysis, M1 are more distinct from M0 than M2 are
from M0. In addition, novel cell surface proteins preferentially expressed on polarized
iPSDM were identified that had not previously been associated with MΦ polarisation. In
order to investigate their potential as polarisation markers, their expression was validated
by FACS using iPSDM and donor-derived MDM. Furthermore, our secretome analyses
identified a large number of proteins released from differentially polarised iPSDM.

2. Materials and Methods
2.1. Antibodies and Reagents

RPMI medium, DPBS without Ca2+ and Mg2+, penicillin-streptomycin, Glutamax,
microplate BCA protein assay, trypsin-EDTA, and TEAB were from Thermo Scientific,
Waltham, MA, USA; trypsin protease-MS grade, sodium dodecyl sulphate, acetonitrile,
HPLC-grade ethanol, and water were from Sigma, Dorset, UK; human Fc block and Alexa
Fluor® anti-human CD300A Cat# 566342 were from BD Bioscience, Berkshire, UK; PE
anti-human CD68 Cat# 130-118-486 was from Miltenyi Biotec, Surrey, UK; PE anti-human
CD109 Cat# 323305, APC anti-human LILRB2 Cat# 338707, APC anti-human Siglec-10 Cat#
347606, APC anti-human CD206 Cat# 321109, APC anti-human CD80 Cat# 305219, APC
anti-human CD86 Cat# 374208, PE/Cy7 anti-human CD14 Cat# 367112, and recombinant
human M-CSF were from Biolegend, San Diego, CA, USA. X-VIVO15 Serum free medium
Cat# BE02-060Q was from Lonza, Basel, Switzerland. Recombinant human BMP4 (Cat#
120-05), SCF (Cat# 300-07), VEGF (Cat# 100-20) and IL-3 (Cat# 200-03) were from Peprotech,
London, UK. EmbryoMax® 0.1% Gelatin solution was from Millipore, London, UK. Y-27632
(Cat# 1254/10) was from Bio-Techne, Abingdon, UK.

2.2. Differentiation of iPSC Cells to MΦ

Wibj2 is an iPSC line established from fibroblasts of a 55-years old female [9]. These
cells were provided by the HipSci consortium (www.hipsci.org, accessed on 27 November
2021) and maintained and quality controlled by the Human Pluripotent Stem Cell Facility
(University of Dundee). The monocytic lineage differentiation protocol was adapted
from Wilgenburg et al. [10] and Lopez-Yrigoyen et al. [11]. Briefly, Wibj2 iPSC cells were
cultured in mTESR medium. At day 0, embryoid bodies (EBs) were generated by seeding
1 × 104 cells per well in a 96-well Ultralow attachment V-bottomed wells in mTESR medium
supplemented with SCF (20 ng/mL), VEGF (50 ng/mL), BMP4 (50 ng/mL), and Y-27632
(10 µM). The plate was centrifuged at 300× g for 5 min at room temperature. On day 4, EBs
were harvested and seeded at 10 to 15 EBs per well in 0.1% gelatin-coated 6-well plates.
EBs were cultured in X-VIVO15 medium supplemented with IL-3 (25 ng/mL) and M-CSF
(100 ng/mL). The medium was changed every 3 to 4 days. After 21 days, monocyte-like
suspension cells were harvested from the supernatant every 3 to 4 days. The monocytes
were differentiated to MΦ in X-VIVO15 supplemented with M-CSF (100 ng/mL) for 7 days
in non-TC treated plates.

2.3. Peripheral Blood Monocyte-Derived MΦ

Human buffy coats were from the Scottish Blood Transfusion Service, Edinburgh, UK.
Isolation of peripheral blood mononuclear cells (PBMCs) from buffy coats was performed
using density gradient centrifugation according to the manufacturer’s protocol (Lympho-
prep, STEMCELL Technologies, Cambridge, UK). For each donor, 50 × 106 PBMCs were
used to isolate CD14+ monocytes using the EasySepTM human monocyte isolation kit
(STEMCELL Technologies, Cambridge, UK; Cat# 19359) according to the manufacturer’s in-
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structions. Monocytes were differentiated using X-VIVO15 medium containing 100 U/mL
Penicillin-Streptomycin and 1X GlutaMAX supplemented with M-CSF (100 ng/mL).

2.4. Phagocytosis Assay

iPSDM (1 × 106 cells per well) were washed twice with PBS and RPMI medium
without serum was added. Fluorescein (FITC)-conjugated Zymosan A particles (Cat#
Z2841, ThermoScientific) (5 particles per cell) were added and phagocytosis was allowed
to occur at 37 ◦C for 1 h. Cells were then washed with PBS followed by trypan blue
(250 µg/mL) containing PBS to neutralise all the cell-bound Zymosan particles. Cells were
then detached using PBS containing 2 mM EDTA and were analysed by flow cytometry.

2.5. Flow Cytometry

iPSC-derived MΦ and peripheral blood monocyte-derived MΦ were harvested using
PBS containing 2 mM EDTA. Monocytes and MΦ were stained for viability using DAPI
or Zombie Aqua viability dye (Biolegend) for 30 min at 4 ◦C. Cells were then Fc receptor
blocked for 20 min at 4 ◦C using the human BD Fc block and stained with fluorophore-
conjugated antibodies for 30 min at 4 ◦C. Following staining, cells were washed in FACS
buffer (2% BSA in PBS) and analysed by using BD FACSCanto II flow cytometer and FlowJo
(Version 10.7.1, FlowJo LLC, Ashland, OR, USA).

2.6. Processing of Proteome and Secretome Samples

Proteomic samples were processed by using the SP3 protocol [12]. Briefly, 1 × 106 iPSDM
per well were stimulated with IFNγ (50 ng/mL) + LPS (10 ng/mL) (M1 MΦ) or IL-4 (20 ng/mL)
(M2 MΦ) for 48 h. Cells were washed twice with PBS and lysed in buffer containing 4% SDS,
10 mM TCEP and 50 mM TEAB.

For secretome analysis, iPSDM (1 × 106 per well) were polarised to M1 and M2 for
24 h. Cells were then washed twice with PBS, media were changed to RPMI without phenol
red and FBS (Cat# 32404014, Thermo Scientific, Waltham, UK) was supplemented with
100 ng/mL M-CSF and incubated at 37 ◦C. After 14 h, culture supernatants were harvested,
passed through 0.45 µm filters to remove any cell debris, and concentrated 10 times using
Amicon centrifugal filters (Cat# UFC801024, Millipore, London, UK).

Cell lysates/culture supernatants were boiled for 5 min and sonicated (15 cycles, 30 s
on/30 s off). Protein concentrations were determined using a MicroBCA assay kit and
equal amounts of lysates were taken for further processing. The samples were alkylated
using iodoacetamide (20 mM) and incubated at room temperature in the dark for 1 h. To the
alkylated lysates, SP3 beads were added to a final concentration of 0.5 µg/µL of processing
volume, followed by an equal volume of ethanol (1:1 ethanol: cell lysate). The mixture was
incubated at 24 ◦C for 5 min at 1000 rpm and the tubes were placed on the magnetic rack
until the beads settled onto the tube wall. The unbound supernatant was discarded and the
beads were rinsed thrice in 80% ethanol while on the magnetic rack. After removing all the
residual ethanol, the beads were air-dried and resuspended in a digestion solution (100 mM
ammonium bicarbonate) containing LysC and trypsin (at 1:25 wt/wt of protein: proteases)
and sonicated in a water bath. The bead mixture was incubated at 37 ◦C at 1000 rpm
overnight. After the protease digestion was complete, the bead mixture was centrifuged
at 20,000× g for 1 min. The tubes were placed on the magnetic rack and the supernatants
were transferred to fresh tubes. The supernatants were then dried and suspended in 50 µL
of 1% formic acid prior to analysis with LC-MS.

2.7. LC-MS/MS Analysis

LC-MS analysis was performed by the FingerPrints Proteomics Facility (University
of Dundee). Analysis of peptide readout was performed on a Q Exactive™ plus, Mass
Spectrometer (Thermo Scientific) coupled to a Dionex Ultimate 3000 RS (Thermo Scientific).
LC buffers used were the following: buffer A (0.1% formic acid in Milli-Q water (v/v)) and
buffer B (80% acetonitrile and 0.1% formic acid in Milli-Q water (v/v). An equivalent of
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0.75 µg of each sample were loaded at 10 µL/min onto a trapping column (100 µm × 2 cm,
PepMap nanoViper C18 column, 5 µm, 100 Å, Thermo Scientific) equilibrated in 0.1% TFA.
The trap column was washed for 3 min at the same flow rate with 0.1% TFA and then
switched in-line with a Thermo Scientific, resolving C18 column (75 µm × 50 cm, PepMap
RSLC C18 column, 2 µm, 100 Å). The peptides were eluted from the column at a constant
flow rate of 300 µL/min with a linear gradient from 2% buffer B to 5% buffer B in 5 min,
then from 5% buffer B to 35% buffer B in 125 min, and then to 98% buffer B within 2 min.
The column was then washed with 98% buffer B for 20 min and equilibrated for 17 min
with 2% Buffer B The column was kept at a constant temperature of 50 ◦C. Q-exactive plus
was operated in data dependent positive ionization mode. The source voltage was set to
2.7 Kv and the capillary temperature was 250 ◦C.

A scan cycle comprised MS1 scan (m/z range from 350–1600, ion injection time of
20 ms, resolution 70,000 and automatic gain control (AGC) 1 × 106) acquired in profile
mode, followed by 15 sequential dependent MS2 scans (resolution 17500) of the most
intense ions fulfilling predefined selection criteria (AGC 2 × 105, maximum ion injection
time 100 ms, isolation window of 1.4 m/z, fixed first mass of 100 m/z, spectrum data
type: centroid, intensity threshold 2 × 104, exclusion of unassigned, singly and >7 charged
precursors, peptide match preferred, exclude isotopes on, dynamic exclusion time 45 s).
The HCD collision energy was set to 27% of the normalized collision energy. Mass accuracy
was checked before the start of samples analysis.

2.8. Quantification of Proteome and Secretome Data

The raw mass spectrometric data were analysed using MaxQuant software (version
1.5.5.1) [13] and the Andromeda search engine [14]. The false discovery rate (FDR) was set
to 1% for both peptides and proteins. MaxQuant scored peptide identifications based on a
search with a permissible mass tolerance of 7 ppm for precursor ions and 0.5 Da for fragment
ions. The enzyme specificity was set to LysC/Trypsin. Other parameters used were the
following: fixed modifications, cysteine carbamidomethylation; variable modifications,
deamidation, protein N-acetylation and methionine oxidation; missed cleavages, 2; and
minimum peptide length was set to 7. The Andromeda search engine was used to match
MS/MS data against the human Uniprot database. The ‘match between runs’ feature was
activated to transfer identification information to other LC-MS/MS runs based on ion
masses and retention times. Minimum peptide ratio count was set to 2 and the relative
quantitation between the peptides identified across different conditions was based on LFQ
and iBAQ intensities. The normalised peptides intensities across samples were downloaded
as an output file ’proteingroups.txt’.

2.9. Analysis of Proteomic Data

Perseus software version 1.6.7.0 was used for statistical analyses of the proteomic data.
All the potential contaminants, reverse peptides, and peptides ‘only identified by site’ were
removed from the data and the absolute copy number per cell and concentration were
estimated by using a Proteomic ruler [15]. Proteins (reproducible in all biological replicates)
with log intensities of copy number per cell and concentrations greater than 2–fold and
p-value greater than 0.05 were considered differentially regulated across polarised MΦ.

Gene Ontology (GO) over representation enrichment analysis was done by using the
WEB-based GEne SeT AnaLysis Toolkit [16]. Heat maps of estimated protein concentrations
were generated using Broad Institute software Morpheus (https://software.broadinstitute.
org/morpheus, accessed on 27 November 2021).

2.10. Graphs and Statistics

All the graphs (mean ± SEM) were plotted using GraphPad Prism version 9. Statistical
analyses were determined using ANOVA followed by Tukey’s post hoc HSD test for
pairwise comparison; p-values <0.05 were considered significant.

https://software.broadinstitute.org/morpheus
https://software.broadinstitute.org/morpheus
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3. Results and Discussion
3.1. Characterisation of iPSC-Derived MΦ

Wibj2 iPSCs were differentiated to monocytes using a protocol adapted from Wilgen-
burg et al. [10] and Lopez-Yrigoyen et al. [11] as described in the Materials and Methods
section. The monocyte yield was assessed by using monocyte markers, such as CD14
and CD11b (Figure 1A), and a pan-leukocyte marker, CD45 (Figure 1B). Monocyte yield
was around 65 to 80% (Figure 1A,B) which is in line with Lopez-Yrigoyen et al. [11]. The
monocytes were further differentiated into MΦ using X-VIVO15 medium supplemented
with M-CSF for 7 days in non-TC treated plates, with media change at day 4 to remove
other contaminating cells (Figure 1C,D). The adherent M0 iPSDM were CD68-positive
(Figure 1E). Since phagocytosis of pathogens or cell debris is one of the hallmark functions
of MΦ, we investigated the phagocytic activity of M0 iPSDM. After incubation of cells with
FITC-Zymosan particles for 30 min, ~50% of iPSDM were Zymosan-positive (Figure 1F),
confirming functional similarity with MDM [17].
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Figure 1. Induced pluripotent stem cell (iPSC)-derived monocytes and macrophages (MΦ). iPSC-
derived monocytes were tested for the expression of monocyte markers, such as CD14, CD11b (A),
and CD45 (B). iPSC derived monocytes were differentiated into macrophages in X-VIVO15 medium
supplemented with M-CSF (100 ng/mL) for 7 days. Gating strategy for iPSC derived-MΦ (iPSDM)
is shown (C,D). iPSDM were stained for the macrophage marker CD68 (E) and tested for their
phagocytic activity using fluorescein conjugated Zymosan particles (F).

To address whether plasticity of iPSDM is similar to human MDM, we polarised M0
iPSDM to M1- or M2-phenotypes using IFNγ plus LPS or IL-4, respectively. These samples
were processed and analysed by one shot quantitative label-free mass spectrometry (MS).
More than 4000 proteins were identified and copy number per cell was estimated using the
‘proteomic ruler’ method [15]. Principal component analysis (PCA) of the proteins identified
by MS showed that M0 and M2 iPSDM are more closely related to each other compared
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to M1 iPSDM (Figure 2A). These findings are in line with published transcriptomics and
nCounter gene expression analyses of polarised MDM [18,19]. In addition, it has been
shown previously [20] that M-CSF alone polarises MΦ more to a M2-like phenotype.
Histograms of the log-transformed intensities follow normal distributions, which suggests
that the data are of good quality (Figure 2B). Moreover, variability within the replicates was
from 0.89 to 0.96, indicating good reproducibility of MS runs (Figure 2C). Volcano plots
were generated by plotting the p-value against the M1:M2 ratio of log-transformed copy
numbers per cell (Figure 2D) and several established marker proteins for polarized MΦ,
such as IDO1, CXCL9, ALOX15, and CD206, became immediately apparent. To normalise
for the effect of polarisation on cell size, another volcano plot was generated using the
log-transformed values of concentration (in nanomolar) (Figure 2E). When considering
‘differentially regulated’ proteins with a fold change of ≥2 and p-value ≤ 0.05 in the volcano
plots, many proteins were found to be shared between resting and polarised iPSDM, while
only ~5% of proteins were differentially regulated (Figure 2F and Table S1). As reflected in
the Venn diagram, fewer proteins (220) were differentially regulated in M2 vs. M0 iPSDM
as compared to the number of proteins (264) differentially expressed in M1 vs. M0 iPSDM,
corroborating results from transcriptomics analyses of MDM (Figure 2F) [18]. In line with
our expectation, GO analysis of the protein IDs upregulated in M1 iPSDM were found to
be enriched in interferon and immune signalling (Figure 2G).
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3.2. Polarisation-Induced Changes in the Expression of Membrane Proteins

Proteomic data showed that many membrane proteins were differentially expressed in
polarised iPSDM. We observed a good correlation between the changes in concentrations
and copy numbers per cell (Figure 3A–D).

As expected, well-characterised markers such as CD48, CD80, and CD86 were highly
expressed in M1 iPSDM (Figures 3A,B and S1). These membrane proteins function as
costimulatory molecules for T cell activation and effector function [21,22].

TNF receptor superfamily members such as CD40 and FAS were upregulated in M1
iPSDM (Figure 3A,B). Ligation of these receptors has been reported to induce secretion of
pro-inflammatory cytokines and trigger apoptosis [23,24].

CD38 is a multifunctional exoenzyme that has been shown to promote secretion of
pro-inflammatory cytokines in MΦ [25]. As shown previously [26], IFNγ and LPS strongly
induced expression of CD38 in iPSDM (Figure 3A,B).

Proteomic analysis identified substantial downregulation of CD109 expression in M1
iPSDM (Figure 3A,B). FACS staining of M1 iPSDM and MDM confirmed low expression of
CD109, a molecule that was initially identified as a coreceptor for TGFβ and has a role in
inhibiting intracellular TGFβ signalling [27] (Figures 4 and 5).

PD1/PD-L1 (CD274) is an immune checkpoint that dampens immune response medi-
ated by MΦ [28]. As shown previously [29–31], stimulation with IFNγ and LPS increased
expression of CD274 in iPSDM (Figure 3A,B), which could be a mechanism of feedback
inhibition of inflammation in MΦ.

Phagocytosis of pathogens and apoptotic cells is mediated by several receptors such
as CD14, CD36, CD44, FCGR1 (CD64), MSR1, CD206, and CD163, all of which were
highly expressed in M0 iPSDM (Figures 3A,C and S1). We observed a significant increase
in the expression of CD14, FCGR1, and CD44 in M1 iPSDM (Figure 3A,C). As shown
previously for MDM [32], the well-characterised marker CD206 was upregulated in iPSDM
on stimulation with IL-4 (Figure 3A,C).
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Figure 5. Validation of expression of novel polarisation markers in monocyte-derived macrophages
(MDM). Peripheral blood monocyte-derived monocytes were differentiated to MΦ for 7 days and
polarised with IFNγ + LPS or IL-4 for 48 h. Polarised MDM were stained for LILRB2, PILRA, CD300a,
CD109, and Siglec-10 and analysed by FACS Canto. Representative of four independent donors.

CD300a is an inhibitor of phagocytosis of apoptotic cells in MΦ [33]. Stimulation with
IFNγ and LPS markedly reduced expression of CD300a in M1 iPSDM (Figure 3A,C) and this
was validated by flow cytometry (Figure 4). We also observed similar changes in CD300a
expression in polarized MDM, suggesting that this represents a physiologically important
response (Figures 5 and S3). To the best of our knowledge, this is the first demonstration
that CD300a is regulated on polarized MF and may have important implications for its
phagocytic functions.

Furthermore, in the M1 proteome, we observed enrichment of immune-inhibitory
receptors, such as PILRA and LILRB2 (Figure 3A,D). This is in line with the previous
reports demonstrating upregulation in mRNA levels of LILRB2 and PILRA on stimulation
with LPS [34,35]. Most Siglecs (sialic acid binding Ig-like lectins) have an immunoin-
hibitory function. Our analysis showed that IL-4 induced Siglec-10 expression in iPSDM
(Figure 3A,D), consistent with previous studies [36,37]. However, polarisation had little
or no impact on the expression of Siglecs-3 and -9. The differential expression of these
proteins in polarised human MΦ was confirmed by FACS staining of both MDM and iPSDM
(Figures 4, 5 and S3). Of note, the expression of LILRB2 and PILRA was highly restricted
to M1 MΦ by quantitative proteomics and FACS analyses, suggesting that these receptors
are suitable markers for classically activated MΦ. However, we observed donor-to-donor
variations in the expression levels of these novel markers in polarised MDMs (Figure S3).

Further proteomic analysis identified high expression of growth factor receptors
such as CSF1R, PDGFR and TGFBR in M0 MΦ. However, polarisation of iPSDM with
IFNγ and LPS downregulated the expression of these receptors (Figure 3A,D). As shown
previously [38], stimulation with IFNγ significantly reduced the expression of its counter
receptor IFNGR1 and this could be a feedback mechanism to dampen the inflammatory
response in MΦ.

Another key function of MΦ is the processing and presentation of antigens to other
immune cells, via MHC molecules. MHC molecules are heterodimeric cell surface glyco-
proteins and are classified into two groups (MHC-I and -II), depending on the expression
pattern and the type of peptides presented. Consistent with previous studies, the expres-
sion of MHC-I (HLA-A, -B, -C, -E and -F) and MHC-II (HLA-DR -DM, -DP and -DQ) were
upregulated in M1 iPSDM (Figure 6A,B).
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Figure 6. Expression levels of MHC and cell adhesion molecules. Heat map showing concentrations
(in nM) of HLAs (A) and adhesion molecules (C) across biological replicates of differentially polarised
iPSDM. Graphs show the estimated copy numbers per cell of HLAs (B), integrins (D) and cell
adhesion molecules (CAMs) (E) using a Proteomic ruler. p values: ** 0.01, *** 0.001, **** 0.0001.

Integrins are a large family of heterodimeric transmembrane receptors that mediate
phagocytosis, adhesion, and extravasation of MΦ to the sites of inflammation. We observed
an increase in expression of leukocyte integrins, such as CD11b (ITGAM α chain, ITGB2 β

chain), and VLA4 (ITGA4 α chain, ITGB1 β chain), in M2 iPSDM (Figure 6C,D). While the
majority of α and β-chains were downregulated in M1 iPSDM, we observed enrichment of
ITGA5 (α5-chain), which pairs with ITGB1 (β1-chain), and ITGB8 (β8-chain), which pairs
with ITGAV (αV-chain) (Figure 6C,D).

We next analysed the expression of adhesion molecules. As shown previously [39,40],
ICAM was found to be enriched in the M1 proteome. In contrast, stimulation with IFNγ

and LPS downregulated PECAM expression in iPSDM (Figure 6C,E). PECAM has been
reported to negatively regulate LPS/TLR4 signalling, possibly through interaction with its
ligand CD38 [41].

3.3. Expression of Interferon-Regulated Genes

IFNγ and IL-4 bind their cognate receptors and signal through kinases, such as
JAKs, resulting in subsequent activation of transcription factors, such as STATs. Our pro-
teomic analyses showed that JAK3, STAT1-4, and STAT5A were enriched in M1 proteome
(Figure 7A,C). However, polarisation had little impact on STAT6 expression (Figure 7A,C).
Phosphorylated STATs translocate to the nucleus, wherein they bind interferon regula-
tory factors (IRF) and induce transcription of IFN-regulated genes (IRGs). Interestingly,
IRF3, 5, 8, and 9 were highly expressed in M1 iPSDM (Figure 7A,E). Furthermore, we
observed enrichment of IRGs, such as ISG15, ISG20 IFIT1, IFIT2, IFIT2, IFIT5, IFITM, IFIH1,
MX1, EIF2AK2, DDX60, OAS1, OAS2, OAS3, TRIM22, and TRIM25, in the M1 proteome
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(Figure 7A,B). Similarly, IFN-induced GTPases, such as GBP1, 2, 4, and 5, were highly
expressed in M1 iPSDM (Figure 7A).
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Next, we assessed the expression of the components of LPS/TLR4 signalling. NFkB is
the key transcription factor that mediates expression of inflammatory cytokines such as
TNFα, IL12, and IL1B [42]. The NFkB family of transcription factors includes RelA/p65,
RelB, c-Rel, NFkB1/p50, and NFkB2/p52. Interestingly, all the NFkB subunits were upreg-
ulated in M1 iPSDM (Figure 7A,D). However, there was no impact of polarisation on the
expression levels of other downstream effectors of TLR4 signalling, such as MyD88, MAPK,
TRAF6, and AP1 (Figure 7A).
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Furthermore, we observed that the transcription factor SPI1 was enriched in M2 (IL-4)
iPSDM (Figure 7A). SPI1 has been reported to be a crucial regulator of M2 polarisation in
MΦ [43].

Consistent with previous transcriptomic studies [44], the proteins involved in vesi-
cle trafficking such as OPTN (optineurin) and LAMP3 were upregulated in M1 iPSDM
(Figure 7A).

Taken together, our analyses suggest that the mediators of IFNγ and NFkB signalling
are enriched in M1 MΦ.

3.4. Differential Expression of Proteins Involved in Metabolism

Important mediators of inflammation resolution are derived from metabolism of
prostaglandin, arachidonic acid, and retinoic acid (RA). Proteins implicated in metabolism
of prostaglandin, such as PTGS1 [45] and arachidonic acid such as ALOX15 [46], were
found to be enriched in the M2 proteome (Figure 8A,B). In addition, retinol dehydroge-
nase (ALDH1A2), the rate-limiting enzyme for RA biosynthesis [47,48], was also highly
expressed in M2 iPSDM (Figure 8A,B).
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Apolipoproteins are involved in the regulation of cholesterol levels and also function
as effectors of the immune response to pathogens [49]. In the M1 proteome, we found
enrichment of APOL2 and APOL3 (Figure 8A,B), in line with previous studies [50]. Fur-
thermore, APOE, which has immunomodulatory function [51,52], was downregulated in
M1 iPSDM (Figure 8A,B).

Tryptophan (Trp) metabolism is a major mechanism of immunomodulation and deple-
tion of extracellular Trp has been shown to induce apoptosis of T cells [53]. Interestingly, the
proteins involved in catabolism of Trp through the kynurenine metabolic pathway, such as
IDO1 and KYNU, were enriched in M1 iPSDM (Figure 8A,C). In contrast, M1 polarisation-
mediated Trp depletion also induced expression of tryptophanyl-tRNA synthetase WARS
(Figure 8A,C), as shown previously [53].

Nucleotides are extracellular messengers actively secreted during cell stress and have
immunomodulatory functions [54]. Our analyses showed that the enzymes involved in
nucleotide metabolism, such as ADA, AMPD2, and CMPK, were differentially expressed
in polarised iPSDM (Figure 8A,C). CMPK is a mitochondrial nucleoside kinase highly
expressed in M1 MΦ and has a role in inducing ROS production and inflammasome
activation [55]. Interestingly, AMPD2 was found to be enriched in M2 iPSDM (Figure 8A,C).
AMPD2 is an anti-inflammatory mediator that catalyses formation of IMP from AMP [56].

Furthermore, NOS2 is an enzyme that converts arginine to nitric oxide (NO) and
citrulline and was found to be upregulated in M1 iPSDM (Figure 8A,C), as shown previ-
ously [57]. Interestingly, Ass1, an enzyme that recycles Arg from citrulline, was also highly
expressed in M1 iPSDM (Figure 8A,C).

We observed that the rate-limiting enzyme in glycolysis, PFKFB2, was upregulated in
M1 iPSDM (Figure 8A,C). In addition, we also observed enhanced expression of IRG1 on
stimulation with IFNγ and LPS (Figure 8A,C), as shown previously [58]. IRG1 converts
cis-aconitate (TCA cycle intermediate) to itaconic acid, which has been proposed to have
an antimicrobial effect [58]. Interestingly, SHPK, a seduheptulose kinase was found to be
upregulated in M2 iPSDM (Figure 8A,C). SHPK links glycolysis and the non-oxidative
phase of the pentose phosphate pathway (PPP) and its overexpression has been shown to
inhibit inflammatory cytokine production in M1 MΦ [59].

Our findings suggest that there is a shift towards aerobic glycolysis and Trp metabolism
in M1 MΦ, while M2 MΦ rely on fatty acid oxidation for their survival and resolution
of inflammation.

3.5. Differential Expression of Extracellular Mediators in Polarised iPSDM

Polarisation induces release of soluble proteins such as cytokines and chemokines from
MΦ, which orchestrate the immune response. Therefore, we characterised the secretion
profile of polarised iPSDM. For this, a later time point (24 h post-polarisation) was chosen to
allow sufficient time for polarisation-induced protein synthesis and secretion. The culture
supernatants were concentrated, processed, and analysed by using LC-MS/MS. More than
1300 protein hits were identified that were reproducibly released from the polarised iPSDM.
iBAQ intensities were used for analysing secretome data, as that normalises the MS intensity
of each protein by the corresponding number of peptides detected. A volcano plot was
generated by using the iBAQ intensities of M1 and M2 polarised iPSDM and the differentially
secreted proteins were highlighted (Figure 9A and Table S2). PCA analyses of the secretome
showed that the secretory profile of M0 and M2 iPSDM are more similar compared to the M1
iPSDM (Figure 9B), reminiscent of the cell-associated proteome profile. Furthermore, our
proteome analyses (harvested 48 h post-stimulation) also revealed differential expression of
cytokines, chemokines, and ECM proteins in polarised iPSDM (Figure S4).
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(C,D) Histograms showing iBAQ intensities of cytokines/chemokines and other immune modulators.
p values: ** 0.01, *** 0.001, **** 0.0001.

Both proteome and secretome analyses detected C-X-C subfamily chemokines, such
as CXCL8, CXCL9, CXCL10, and CXCL11 in M1 iPSDMs (Figures 9D and S4), which is
in line with previous studies [24,60]. Moreover, C-C motif chemokines, such as CCL1,
CCL2, and CCL3, were also released specifically from M1 iPSDM (Figure 9D). As shown
previously [24], polarisation of iPSDM with IFNγ and LPS increased secretion or expression
of proinflammatory cytokines, such as IL12 (β-subunit) (Figure 9D) and IL1β (Figure S4).

Transmembrane glycoproteins, such as CD40, FCGR1, ICAM1, and HLA molecules
were also found to be enriched in the secretome of M1 iPSDM (Figure 9C). Interestingly,
CSF1R, the receptor for cytokines such as M-CSF and IL-34, was found to be released from
M2 iPSDM (Figure 9A). IL-4 stimulation also induced secretion of the scavenger receptor,
MSR1, from iPSDM (Figure 9A). These membrane proteins could perhaps be released by
proteolytic cleavage or membrane shedding [61–63].

ADAMs are a family of metalloproteinases involved in ectodomain shedding of cell
surface receptors, adhesion molecules, and cytokines. ADAM19 was specifically released
from M1 iPSDM (Figure 9C). In addition, our proteome analyses showed that the expression
of ADAM9 and ADAM10 was downregulated in M1 iPSDM (Figure S4). Interestingly,
TIMP3, an inhibitor of metalloproteinases, was found to be enriched in M2 secretome
(Figure 9A).

Consistent with our proteome analysis, metabolic enzymes such as IDO1 and WARS
were released from M1 iPSDM (Figure 9A,C). In contrast, M2 polarisation induced secretion
of enzymes involved in lipid metabolism, such as LPL and PPT1 (Figure 9A).

Interestingly, GAS6 was found to be released at high levels from M2 iPSDM (Figure 9A).
GAS6 is a ligand for TAM receptors and has an important role in mediating efferocytosis
by MΦ [64].
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In addition to the extracellular mediators reported in the literature, our secretome
analyses identified a number of proteins released differentially from polarised MΦ.

4. Conclusions

This study used unbiased profiling of proteome and secretome changes in differentially
polarised iPSC-derived MΦ to obtain a better understanding of MΦ functions in terms of cell
surface phenotype, intracellular signalling, immune functions, and metabolic signatures.
This study demonstrates that iPSC MΦ are promising tools for understanding MΦ biology,
as they exhibit similar polarisation profiles and functions as monocyte-derived MΦ. We
believe our comprehensive proteome and secretome data set will be a useful resource in
the MΦ field.

In addition to the established surface markers, our study identified novel markers
in differentially polarised MΦ. The alterations in expression of cell surface proteins likely
influence the functions of MΦ in the way they respond to the microenvironment. Our
analyses confirm that M1 MΦ are specialised in pathogen defence by presenting antigens
and priming T cells for activation, while M2 MΦ are efficient at migrating to the sites of
wound healing and mitigate inflammatory response by mediating efferocytosis of apoptotic
cells. We also detected polarisation-induced changes in intracellular signalling, expression
of transcription factors, and secretion of cytokines and chemokines. These phenotypic
and functional changes in MΦ were also accompanied by dramatic shifts in expression
of enzymes and other proteins associated with cell metabolism. M1 MΦ utilise aerobic
glycolysis and breaks in Kreb’s cycle to produce microbicidal products, such as itaconate.
Fatty acid oxidation is pronounced in M2 MΦ, resulting in production of mediators that
resolve inflammation and promote wound healing, while upregulating the non-oxidative
branch of PPP. Overall, this study provides new insights into how polarisation stimuli
differentially regulate MΦ immune function.
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