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Approximation of singular solutions and singular data for
Maxwell’s equations by Lagrange elements

Huoyuan Duan*, Jiwei Cao†, Ping Lin‡, and Roger C. E. Tan§

Abstract

A Lagrange finite element method is proposed for Maxwell’s equations in Lipschitz domains. The
method is suitable for the approximation of singular solutions lying outside (H1(Ω))3 and nonhomoge-
neous singular boundary data in the tangential trace space of H(curl ; Ω) and a singular right-hand side
source term in (H0(curl ; Ω))′ (the dual space of H0(curl ; Ω)). Numerical results are presented to
illustrate the performance and the theoretical results.

Keywords Maxwell equations, Lagrange element, finite element method.

Mathematics Subject Classification(2000) 65N30.

1 Introduction
Let Ω ⊂ R3 be a simply-connected bounded domain, with a connected Lipschitz-continuous boundary
Γ. Let n denote the outward unit normal to Γ. Introduce the curl operator curl v = ∇ × v and the div
operator div v = ∇ · v, with ∇ denoting the gradient operator. Let λ be a given real number, f the source
term and χ the boundary data. We consider the three-dimensional Maxwell equations as follows:

curl curl u− λu = f in Ω, (1.1)

along with the Dirichlet boundary condition:

n× u = χ on Γ. (1.2)

There are many difficulties in the finite element discretizations of the Maxwell equations (1.1)-(1.2). In
this paper, we are concerned with singular solution and singular data. By singular solution we mean that

u 6∈ (H1(Ω))3.

In fact, in the variational setting, the Sobolev space for the solution u is commonly chosen as

H(curl ; Ω) = {v ∈ (L2(Ω))3 : curl v ∈ (L2(Ω))3},

as opposed to the usual (H1(Ω))3 for Poisson equations. Corresponding to the variational spaceH(curl ; Ω)
of the solution, we assume that

f ∈ (H0(curl ; Ω))′, (1.3)
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where (H0(curl ; Ω))′ denotes the dual of H0(curl ; Ω) = {v ∈ H(curl ; Ω) : n × v|Γ = 0}, and that
the boundary data χ lies in the tangential trace space of H(curl ; Ω), denoted as H−

1
2 (div Γ; Γ), i.e.,

χ ∈ H− 1
2 (div Γ; Γ). (1.4)

These data f and χ which may belong to negative-order Sobolev spaces are also referred to as singular.
Even if the domain Ω is of C1,1 class (cf., [2]), these singular data f and χ would still bring about a

singular solution. On the other hand, even if f and χ are smooth enough, say χ = 0 and f ∈ (L2(Ω))3

with div f = 0, the solution u may still be singular whenever the domain Ω is nonsmooth with reentrant
corners and edges (e.g., see [3], [2], [27]). So, it is commonplace that the solution of (1.1)-(1.2) is singular,
namely, not belonging to (H1(Ω))3.

In this paper, we consider a least-squares approach, with the use of the Lagrange elements which are
nodal-continuous and (H1(Ω))3-conforming, dealing with the singular data and the singular solution which
does not belong to (H1(Ω))3. For this purpose, we first note that from (1.3) and (1.4), (1.1) holds in the
dual space (H0(curl ; Ω))′ and (1.2) in the trace space H−

1
2 (div Γ; Γ), and the appropriate space for the

solution is H(curl ; Ω). Keeping this fact in mind, we next identify the dual space (H0(curl ; Ω))′ with a
subspace of the product of (H−1(Ω))3 ×H−1(Ω) in the sense that (H0(curl ; Ω))′ = {f ∈ (H−1(Ω))3 :
div f ∈ H−1(Ω)}, see Lemma 3.1. We then find that (1.1) and (1.3) can be stated as follows: g :=
−λ−1div f (if λ = 0, then g := 0),

curl curl u− λu = f in (H−1(Ω))3, (1.5)

div u = g in H−1(Ω). (1.6)

or in variational setting, for all z ∈ (H1
0 (Ω))3 and q ∈ H1

0 (Ω),

(curl u, curl z)− λ(u, z) = 〈f , z〉, (1.5)

−(u,∇q) = 〈g, q〉, (1.6)

where 〈·, ·〉 denotes the duality between H−1(Ω) and H1
0 (Ω) or between (H−1(Ω))3 and (H1

0 (Ω))3. Fur-
ther, the trace spaceH−

1
2 (div Γ; Γ) is identified as a subspace of the product of (H−

1
2 (Γ))3×H− 1

2 (Γ)(see
Remark 3.1), in the following sense that

n× u ∈ (H−
1
2 (Γ))3, (1.7)

curl u · n ∈ H− 1
2 (Γ). (1.8)

Such characterizations follow from the results in [28] which are not trivial. Thus, in variational setting,
(1.2) and (1.4) can be stated as follows: for all ψ ∈ H1(Ω) and y ∈ (H1(Ω))3,

(curl u,∇ψ) = 〈χ,n× (∇ψ × n)〉Γ,∗, (1.7)

(curl u,y)− (u, curl y) = 〈χ,n× (y × n)〉Γ, (1.8)

where 〈·, ·〉Γ,∗ is the duality between the dual (H−
1
2 (div Γ; Γ))′and H−

1
2 (div Γ; Γ) and 〈·, ·〉Γ the duality

between (H−
1
2 (Γ))3 and (H

1
2 (Γ))3. The statements in (1.5)-(1.8) more explicitly reveal the regularity

of the data f and χ in the usual negative-order Hilbert spaces (H−1(Ω))3 × H−1(Ω) and (H−
1
2 (Γ))3 ×

H−
1
2 (Γ), respectively. Naturally, we propose a least-squares(LS) method by measuring the residuals in

these usual negative-order Sobolev spaces, and a minimization problem for solving u of problem (1.1)-
(1.2) can be stated as follows:

F1(u; f , g,χ) = min
v∈H(curl ;Ω)

F1(v; f , g,χ), (1.9)

2
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where the LS functional is F1(v; f , g,χ) := ||curl curl v − λv − f ||2−1 + ||div v − g||2−1 + ||n × v −
χ||2− 1

2 ,Γ
+ ||curl v ·n−L(χ)||2− 1

2 ,Γ
, where L(χ), which is a scalar linear functional of the trace χ based

on (1.8), will be defined later. Also, naturally, the Lagrange elements which are (H1(Ω))3-conforming and
nodal-continuous are suitable for discretizing the minimization problem (1.9).

A big advantage of this functional (1.9) is that any conforming finite element space of H(curl ; Ω)
can be employed for the solutions, particularly, the classical nodal-continuous Lagrange elements which
are (H1(Ω))3-conforming can be used. Of course, the Nédélec elements([18, 20]) which are H(curl ; Ω)-
conforming but (H1(Ω))3-nonconforming can be used as well. In the discretization of (1.9), by the Riesz-
representation, we lift H−1(Ω) and H−

1
2 (Γ) onto H1

0 (Ω) and H1(Ω), respectively, and then we deal
with it in H1

0 (Ω) and H1(Ω) instead. The approximations of H1
0 (Ω) and H1(Ω) are classical Lagrange

elements, and we only use the linear element to compute the Sobolev negative-order norms in the functional
F1(·; f , g,χ). Of course, a drawback of the method here is that it involves higher computational cost than
the existing methods by additionally numerically solving a number of Poisson equations of Dirichlet and
Neumann boundary conditions while these are done only with linear elements(See Remark 4.1).

Featuring scalar degrees of freedom and nodal continuity, the Lagrange elements are still very useful,
although they have not been used so widely in computational electromagnetism as the Nédélec elements
have. As a matter of fact, there have been a number of methods available with the use of Lagrange elements,
e.g., see [31], [17], [10], [6], [4], [5], [15], [19], [22], [25], [33], [34], [11], and references therein, etc. In
these methods, error estimates of the finite element approximations may not be satisfactory. For example,
some obtained the error estimates in weighted H(curl ; Ω) norm with a geometrical weight function(e.g.,
[25],[4], [5]); some obtained the error estimates in L2 norm and no error estimates in ||curl · ||0-semi-
norm are possible for singular solutions(e.g.,[31], [10], [6], [11], [22]); some obtained error estimates of
low order in H(curl ; Ω) norm(e.g., [15], [17], [19]). Some of these methods involve special Lagrange
elements on composite meshes(e.g., [33], [34], [25]). All these methods do not deal with singular data.

One goal here is to develop a finite element method, with the standard Lagrange elements and with no
special meshes, to obtain the best convergence rate that can be attained in H(curl ; Ω) norm. In fact, to
the authors’ knowledge, in these existing methods, none could reach such goal. The other goal here is to
assume minimal regularity on the solution and on the data of the right-hand side and the boundary data. In
realistic world, due to the complexity of the domain, the issue of the minimal regularity is important and
meaningful. But, we are not aware of these methods which dealt with such issue, even in the literature
of edge element methods, and the discontinuous methods, e.g., see [9], [16], [21], [38], [37], [30], and
references therein. Precisely, we shall deal with only H(curl ; Ω) solution and the data (1.3) and (1.4),
and prove the quasi-optimal error estimates and the convergence in (1.12) and (1.13), which are not known
for other methods(Lagrange element method, edge element method, discontinuous method, etc), to the
authors’ knowledge, and we prove the convergence rate (1.15), which is the best that can be attained, not
known for other Lagrange element methods, in general. In addition, all the techniques and arguments are
new, to the authors’ knowledge, only the proof of Lemma 5.1 follows the technique in [10].

The finite element discretization of (1.9) we propose, although Lagrange elements are used for the
solution, is capable of approximating a singular solution, with u ∈ (Hr(Ω))3, curl u ∈ (Hr(Ω))3, 0 ≤
r ≤ 1. Moreover, the method is suitable for singular data in (H0(curl ; Ω))′ ×H− 1

2 (div Γ; Γ). We prove
that the Lagrange finite element method is coercive, and the convergence and the error bounds are obtained
in the norm of H(curl ; Ω). More precisely, we first establish the H(curl ; Ω)-norm equivalence

c||v||20,curl ≤ F1(v; 0, 0,0) ≤ c−1||v||20,curl ∀v ∈ H(curl ; Ω), (1.10)

and let Fh be the finite element discretization of F1(see section 4), there also holds an H(curl ; Ω)-norm
equivalence on Uh(a Lagrange finite element space Uh ⊂ (H1(Ω))3 of the solution), i.e.,

c||vh||20,curl ≤ Fh(vh; 0, 0,0) ≤ c−1||vh||20,curl ∀vh ∈ Uh. (1.11)

Then, an H(curl ; Ω)-quasi-optimal error estimate is established, namely, for the exact solution u ∈
H(curl ; Ω) and the finite element solution uh ∈ Uh,

||u− uh||0,curl ≤ c inf
vh∈Uh

||u− vh||0,curl . (1.12)

3
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As a result, for u ∈ H(curl ; Ω) with f ∈ (H0(curl ; Ω))′ and χ ∈ H−
1
2 (div Γ; Γ), the convergence

holds:

lim
h→0
||u− uh||0,curl = 0. (1.13)

For a more regular solution but still possibly singular (not in (H1(Ω))3), i.e.,

u, curl u ∈ (Hr(Ω))3, 0 ≤ r ≤ 1, (1.14)

we obtain the convergence rate as follows:

||u− uh||0,curl ≤ ch
r`

`+1 (||u||r + ||curl u||r), ` ≥ 1, (1.15)

where ` stands for the order of approximation of the Lagrange finite element space Uh (i.e., the standard La-
grange element of polynomialP`). If the solution possesses a higher-order regularity, say u ∈ (H1+`(Ω))3,
the convergence rate in H(curl ; Ω)-norm is optimal ` the same as the order of the approximation, i.e.,

||u− uh||0,curl ≤ ch`||u||`+1, ` ≥ 1. (1.16)

Although the rate of convergence in (1.15) is not the desired optimal value r, several observations are
well worth being noted.

(i) The error bound in (1.15) reveals an interesting fact how the order of approximation affects the
convergence rate. As ` becomes greater, the convergence rate will become better, asymptotically
tending to r(the optimal order for singular solution (1.14)).

(ii) If the finite element space Uh could contain the gradient fields of a scalar H1(Ω)-conforming finite
element space, the optimal r order can be recovered1.

When the meshes are composite meshes such as Clough-Tocher/Alfeld macro meshes, then Uh does
satisfy such property(cf. [34]), and as a consequence, (1.15) restores to the optimal r order.

Nevertheless, we note that the optimal error bound (1.16) holds with no need of the gradients of a
scalar H1(Ω)-conforming finite element space.

(iii) As far as the Lagrange elements are concerned, the error bound in H(curl ; Ω)-norm that can be
obtained is at most (1.15) for singular solution, in general.

To the authors’ knowledge, in the regime of Lagrange finite element methods, the proposed method
is the only one that can achieve the error bound (1.15) in the H(curl ; Ω) norm.

Moreover, to the authors’ knowledge, both the quasi-optimal error estimates (1.12) and the conver-
gence (1.13) are not known for other methods in the literature.

The rest of this paper is outlined as follows. In section 2, we give notations and review ofL2-orthogonal
and regular-singular decompositions of L2-vector fields. In section 3, a norm equivalence is proven, and an
LS method of Maxwell equations is formulated. In section 4, the finite element method (FEM) is defined.
In section 5, coercivity is established. In section 6, convergence and error bound are obtained. In section
7, the implementation issue is addressed, and numerical results are given in the last section.

2 Preliminaries
For an open set D ⊆ R3, we shall use the Sobolev spaces Hs(D), for s ∈ R, equipped with norm
|| · ||s,D. Reader may refer to [1] for details. If D = Ω, the subscript D = Ω in || · ||s,D is omitted, i.e.,
|| · ||s = || · ||s,Ω. Particularly, for s = 1, we use |q|1 = ||∇q||0 to denote the H1-semi-norm of H1(Ω).
When s = 0, we use the notation L2(D) = H0(D), with the L2-inner product (p, q)0,D =

∫
D
pq, and

1We note that the reason for why the Nédélec elements can have the optimal r order is because they contain the gradient fields of
a scalar H1(Ω)-conforming finite element space.
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in the case D = Ω, both subscripts 0, D are omitted in the L2-inner product, i.e., (p, q) = (p, q)0,Ω. The
trace space of H1(Ω) is denoted by H

1
2 (Γ), while the dual space is H−

1
2 (Γ), where the duality pairing

between H−
1
2 (Γ) and H

1
2 (Γ) is denoted by 〈·, ·〉Γ. We use Hs

0(D) as the completion of C∞0 (D) with
respect to the norm || · ||s,D, where C∞0 (D) denotes the linear space of infinitely differentiable functions,
with compact support in D. We also use the duality pairing 〈·, ·〉 between H−1(Ω) and H1

0 (Ω), where
H1

0 (Ω) = {v ∈ H1(Ω) : v|Γ = 0}. If η ∈ L2(Γ) then the duality paring 〈η, ξ〉Γ is identified as L2-inner
product (η, ξ)Γ for ξ ∈ H

1
2 (Γ); similarly, if f ∈ L2(Ω) then the duality paring 〈f, v〉 is identified with

L2-inner product (f, v) for v ∈ H1
0 (Ω).

In what follows, referring to [2, 27, 12, 3], we review and collect the Helmholtz-Hodge L2-orthogonal
decomposition and regular-singular decomposition of vector fields on Lipschitz domains. In addition
to H(curl ; Ω) and H0(curl ; Ω) that have been introduced earlier, we introduce H(div ; Ω) = {v ∈
(L2(Ω))3 : div v ∈ L2(Ω)} which is equipped with the norm ||v||20,div = ||v||20 + ||div v||20. Let
H(div 0; Ω) = {v ∈ H(div ; Ω) : div v = 0}, H0(div ; Ω) = {v ∈ H(div ; Ω) : v · n|Γ = 0}, and
H0(div 0; Ω) = H0(div ; Ω) ∩H(div 0; Ω). Denote by ||v||20,curl ,div = ||v||20 + ||curl v||20 + ||div v||20
the norm of H(curl ; Ω) ∩H(div ; Ω). The dual of H0(curl ; Ω) is denoted by (H0(curl ; Ω))′, with the
duality pairing being denoted by the notation 〈·, ·〉∗. The tangential trace space of H(curl ; Ω) is denoted
by H−

1
2 (div Γ; Γ)(see [28]), and the dual of H−

1
2 (div Γ; Γ) is denoted as (H−

1
2 (div Γ; Γ))′, where the

notation 〈·, ·〉Γ,∗ will be used as the duality pairing. About the definition of the trace space H−
1
2 (div Γ; Γ),

since it is quite complicated involving a number of nonstandard Sobolev spaces on Γ, we would rather refer
the readers to [28] for details.

For v ∈ H0(curl ; Ω)∩H(div ; Ω) or v ∈ H(curl ; Ω)∩H0(div ; Ω), we have the following Poincaré
inequality (e.g., see [2], Lemma 3.4 on page 52, Lemma 3.6 on page 53):

c||v||0 ≤ ||v||curl ;div :=
√
||curl v||20 + ||div v||20. (2.1)

For a given v ∈ (L2(Ω))3, a Helmholtz-Hodge L2-orthogonal decompositions of v are as follows (e.g.,
see [2], Theorem 2.7 on page 30, and [27], (3.35)-(3.37) on pages 847-848):

v = v1 +∇q1, (2.2)

where
v1 ∈ H0(div 0; Ω), q1 ∈ H1(Ω)/R, ||v1||20 + ||∇q1||20 = ||v||20, (2.3)

and the following vector potential exists (see [2], Theorem 3.6 on page 48, and [27], Theorem 3.17 on page
844):

v1 ∈ H0(div 0; Ω), v1 = curl v11, v11 ∈ H0(curl ; Ω) ∩H(div 0; Ω), (2.4)

||v11||0,curl ,div = ||v11||0,curl ≤ c||curl v11||0 = c||v1||0, (2.5)

where we have used (2.2) in deriving (2.5). For a more regular v, there are some regular-singular decom-
positions in the following. Letv ∈ H(curl ; Ω). Since curl v ∈ H(div 0; Ω), combining Theorem 3.4
on page 45 and Theorem 2.9 on page 31 in [2], we have the following regular-singular decomposition of
H(curl ; Ω) functions:

v ∈ H(curl ; Ω), v = v∗ +∇q∗, (2.6)

v∗ ∈ H(div 0; Ω) ∩ (H1(Ω))3, q∗ ∈ H1(Ω)/R,

||v∗||1 + ||q∗||1 ≤ c||v||0,curl . (2.7)

It is noted that no boundary condition must be imposed on the vector potential v∗. Otherwise, v∗ would
not belong to (H1(Ω))3, unless the domain boundary Γ is smoother than Lipschitizian (e.g., Γ is of C1,1

class) or Ω is a convex polyhedron, see [2], Theorem 3.5 on page 47 and Theorem 3.6 on page 48. A
second regular-singular decomposition which plays a fundamental role in our argument for characterizing
(H0(curl ; Ω))′ in the next section is that, see the proof in proving Proposition 5.1 on page 2034 in [12],

v ∈ H0(curl ; Ω), v = v♦ +∇q♦, (2.8)

5
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v♦ ∈ (H1
0 (Ω))3, q♦ ∈ H1

0 (Ω),

||v♦||1 + ||q♦||1 ≤ c||v||0,curl . (2.9)

Associated with the curl operator, the Green formula of integration by parts is recalled as follows:

(curl v,φ)− (v, curl φ) = 〈n× v,φ〉Γ (2.10)

for all v ∈ H(curl ; Ω),φ ∈ (H1(Ω))3, where if φ ∈ H(curl ; Ω) only, then the above right-hand side
should be replaced by 〈n × v,n × (φ × n)〉Γ,∗ (see Theorem 3.31 on page 59 in [23] and see also [28]).
From [28] we have

||v × n||
H−

1
2 (div Γ;Γ)

≤ c||v||0,curl ∀v ∈ H(curl ; Ω), (2.11)

||n× (φ× n)||
(H−

1
2 (div Γ;Γ))′

≤ c||φ||0,curl ∀φ ∈ H(curl ; Ω). (2.12)

Associated with the div operator and the gradient operator, the Green formula of integration by parts is also
recalled: for all v ∈ H(div ; Ω), q ∈ H1(Ω),

(v,∇q) + (div v, q) = 〈v · n, q〉Γ. (2.13)

Throughout this paper, all the constants which are denoted by a generic notation c may depend on λ
and may also be different at different occurrences. We assume that if λ > 0, it is not a Maxwell eigenvalue.
All the analysis and theoretical results hold for any such λ.

3 Norm equivalence
In this section, we formulate a norm equivalence, relating the norm of H(curl ; Ω) to the norms of both
the dual (H0(curl ; Ω))′ and the tangential trace space of H(curl ; Ω). The norm equivalence provides an
guidance to design the FEM.

We first characterize (H0(curl ; Ω))′ (the dual of H0(curl ; Ω)).

Lemma 3.1.
(H0(curl ; Ω))′ = {f ∈ (H−1(Ω))3 : div f ∈ H−1(Ω)},

c1(||f ||−1 + ||div f ||−1) ≤ ||f ||(H0(curl ;Ω))′ ≤ c2(||f ||−1 + |||div f ||−1),

where ci, i = 1, 2, are two positive constants which depend on Ω but not on f .

Proof. Let f ∈ (H0(curl ; Ω))′, it is obvious that f ∈ {f ∈ (H−1(Ω))3 : div f ∈ H−1(Ω)}, since
(H1

0 (Ω))3 ⊂ H0(curl ; Ω) and ∇H1
0 (Ω) ⊂ H0(curl ; Ω). Below, we show the converse. Let v ∈

H0(curl ; Ω). From (2.8) and (2.9), for all v ∈ H0(curl ; Ω), we have

v = w +∇q, w ∈ (H1
0 (Ω))3, q ∈ H1

0 (Ω),

||w||1 + ||q||1 ≤ c||v||0,curl .

If f ∈ {f ∈ (H−1(Ω))3 : div f ∈ H−1(Ω)}, letting

〈f ,v〉∗ := 〈f ,w〉 − 〈div f , q〉,

we have

|〈f ,v〉∗| ≤ ||f ||−1||w||1 + ||div f ||−1||q||1 ≤ c(||f ||−1 + ||div f ||−1)||v||0,curl ,

that is to say, f ∈ (H0(curl ; Ω))′.

6
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Just put
||f ||2(H0(curl ;Ω))′ := ||f ||2−1 + ||div f ||2−1,

which is equivalent to the canonical norm of (H0(curl ; Ω))′ defined by sup
06=v∈H0(curl ;Ω)

〈f ,v〉∗
||v||0,curl

. For a

v ∈ H(div ; Ω),

||v · n||− 1
2 ,Γ

= sup
06=ψ∈H

1
2 (Γ)

〈v · n, ψ〉Γ
||ψ|| 1

2 ,Γ

,

and, for a χ ∈ (H−
1
2 (Γ))3,

||χ||− 1
2 ,Γ

= sup
06=y∈(H

1
2 (Γ))3

〈χ,y〉Γ
||y|| 1

2 ,Γ

.

We now study the norm equivalence. This consists of the following two lemmas and one theorem.

Lemma 3.2. Assume that λ is not a Maxwell eigenvalue. For any u ∈ H(curl ; Ω),

||u||0 ≤ c(||curl curl u− λu||−1 + ||div u||−1 + ||n× u||− 1
2 ,Γ

+ ||curl u · n||− 1
2 ,Γ

),

where c depends on λ.

Proof. Let u ∈ H(curl ; Ω) be given. Consider the following auxiliary problem: to find v ∈ H0(curl ; Ω)
such that

curl curl v − λv = u in Ω, v × n = 0 on Γ.

From [23] (Theorem 4.17, page 95) we have

||v||0,curl + ||curl curl v||0 ≤ c||u||0.

It is a trivial fact that

v ∈ H0(curl ; Ω), curl v ∈ H(curl ; Ω) ∩H0(div 0; Ω).

Then
||u||20 = (curl curl v − λv,u).

For curl v, from (2.6) and (2.7) we have a regular-singular decomposition of curl v as follows:

curl v = A +∇φ, A ∈ (H1(Ω))3, φ ∈ H1(Ω),

||A||1 + ||φ||1 ≤ c(||curl v||0 + ||curl curl v||0) ≤ c||u||0.

We have
(curl curl v,u) = (curl A,u) = (A, curl u)− 〈n× u,n× (A× n)〉Γ.

From (2.2), (2.3), (2.4), (2.5), (2.8), (2.9), and (2.1), we further decompose A in the following:

A = curl B +∇ψ, B ∈ (H1
0 (Ω))3, ψ ∈ H1(Ω)/R,

where
||curl B||20 + ||∇ψ||20 = ||A||20,

||B||1 ≤ c||A||0 ≤ c||u||0.

Thus,

curl curl v = curl curl B, curl v = curl B +∇θ, θ := φ+ ψ ∈ H1(Ω),
∂θ

∂n
= 0.

Obviously,
θ = constant, curl v = curl B,

7
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where, since curl (v −B) = 0, from [2, 27], there exists a scalar potential p such that

v = B +∇p, p ∈ H1
0 (Ω),

||p||1 ≤ c(||v||0 + ||B||0) ≤ c||u||0.

Hence,

(A, curl u) = (curl B +∇ψ, curl u) = 〈curl curl u,B〉+ 〈curl u · n, ψ〉Γ,

(−λv,u) = 〈−λu,B〉+ (∇p,−λu),

(∇p,−λu) = λ〈div u, p〉.

Combining the above, we find that

||u||20 ≤ c(||curl curl u− λu||−1||B||1 + ||λdiv u||−1||p||1
+||n× u||− 1

2 ,Γ
||A||1 + ||curl u · n||− 1

2 ,Γ
||ψ||1)

≤ c(||curl curl u− λu||−1 + ||div u||−1 + ||u× n||− 1
2 ,Γ

+ ||curl u · n||− 1
2 ,Γ

)||u||0.

The proof is complete.

Lemma 3.3. Under the same assumption in Lemma 3.2, for any u ∈ H(curl ; Ω),

||curl u||0 ≤ c(||curl curl u− λu||−1 + ||div u||−1 + ||n× u||− 1
2 ,Γ

+ ||curl u · n||− 1
2 ,Γ

).

Proof. From (2.2), (2.3), (2.4) and (2.5), we have

curl u = curl w +∇p, w ∈ H0(curl ; Ω) ∩H(div 0; Ω), p ∈ H1(Ω)/R,

||curl w||0 + ||p||1 ≤ c||curl u||0.

From (2.8), (2.9) and (2.1), we have

curl w = curl z, z ∈ (H1
0 (Ω))3,

||z||1 ≤ c||w||0,curl ≤ c||curl w||0 ≤ c||curl u||0.

Thus, we have
||curl u||20 = (curl u, curl u) = (curl z +∇p, curl u),

where
(curl z, curl u) = 〈curl curl u, z〉 = 〈curl curl u− λu, z〉+ λ〈u, z〉,

〈curl curl u− λu, z〉 ≤ ||z||1||curl curl u− λu||−1 ≤ c||curl u||0||curl curl u− λu||−1,

λ〈u, z〉 = λ(u, z) ≤ c||z||0||u||0 ≤ c||curl u||0||u||0,

(∇p, curl u) = 〈curl u · n, p〉Γ ≤ c||p|| 1
2 ,Γ
||curl u · n||− 1

2 ,Γ

≤ c||p||1||curl u · n||− 1
2 ,Γ
≤ c||curl u||0||curl u · n||− 1

2 ,Γ
,

and we have

||curl u||0 ≤ c(||curl curl u− λu||−1 + ||curl u · n||− 1
2 ,Γ

) + c||u||0,

Hence, combining Lemma 3.2 for ||u||0 and the above, we obtain the desired.

Combining Lemmas 3.2 and 3.3, we obtain the following theorem on the norm equivalence.

Theorem 3.1. Assume that λ is not a Maxwell eigenvalue. For all u ∈ H(curl ; Ω), we have the following
norm equivalence: there are two positive constants c3, c4 such that

c3||u||0,curl ≤ ||curl curl u−λu||−1 + ||div u||−1 + ||n×u||− 1
2 ,Γ

+ ||curl u ·n||− 1
2 ,Γ
≤ c4||u||0,curl .

8
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Proof. From Lemmas 3.2 and 3.3, we have the left-hand side inequality in the stated norm equivalence,
while the right-hand side inequality is obvious, since

〈curl curl u− λu, z〉 = (curl u, curl z)− λ(u, z) ∀z ∈ (H1
0 (Ω))3,

〈div u, q〉 = −(u,∇q) ∀q ∈ H1
0 (Ω),

〈n× u,y〉Γ = (curl u,y)− (u, curl y) ∀y ∈ (H1(Ω))3,

〈curl u · n, ψ〉Γ = (curl u,∇ψ) ∀ψ ∈ H1(Ω).

Remark 3.1. According to [28], for u ∈ H(curl ; Ω), the tangential trace u× n ∈ H− 1
2 (div Γ; Γ), and

equivalently, u× n ∈ (H−
1
2 (Γ))3 and curl u · n ∈ H− 1

2 (Γ).

Corollary 3.1. Assume that λ is not a Maxwell eigenvalue. Let u ∈ H(curl ; Ω) be the solution to problem
(1.1) and (1.2), with f ∈ (H0(curl ; Ω))′ and χ ∈ H− 1

2 (div Γ; Γ). Then, the following stability holds:

c||u||0,curl ≤ ||f ||(H0(curl ;Ω))′ + ||χ||
H−

1
2 (div Γ;Γ)

.

Proof. Since, for u ∈ H(curl ; Ω) with n× u = χ on Γ, from (2.13),

||curl u · n||− 1
2 ,Γ
≤ c sup

06=ψ∈H1(Ω)

〈curl u · n, ψ〉Γ
||ψ||1

= c sup
06=ψ∈H1(Ω)

(curl u,∇ψ)

||ψ||1

where, from (2.10)-(2.12),

(curl u,∇ψ) = 〈n× u,n× (∇ψ × n)〉Γ,∗ = 〈χ,n× (∇ψ × n)〉Γ,∗,

〈χ,n× (∇ψ × n)〉Γ,∗ ≤ ||χ||
H−

1
2 (div Γ;Γ)

||n× (∇ψ × n)||
(H−

1
2 (div Γ;Γ))′

,

||n× (∇ψ × n)||
(H−

1
2 (div Γ;Γ))′

≤ ||∇ψ||0,curl = ||∇ψ||0 ≤ ||ψ||1,

we have
||curl u · n||− 1

2 ,Γ
≤ c||χ||

H−
1
2 (div Γ;Γ)

.

Therefore, combining Theorem 3.1 and Lemma 3.1, we arrive at the conclusion.

Recalling the minimization problem (1.9), we find the solution u of (1.1)-(1.2) to satisfy

F1(u; f , g,χ) = min
v∈H(curl ;Ω)

F1(v; f , g,χ),

where F1(u; f , g,χ) is introduced by (1.9), while L(χ) ∈ H− 1
2 (Γ) is defined by

〈L(χ), ϑ〉Γ := 〈χ,n× (∇ϑ× n)〉Γ,∗ ∀ϑ ∈ H1(Ω).

To formulate the variational problem which is equivalent to the LS minimization problem as stated in
the above and to motivate the design of the FEM, we introduce some Riesz-representation lifting operators
from the negative-order Hilbert spaces onto the usual Hilbert spaces. All these operators are associated
with the H1(Ω) space. Denote the inner product of H1(Ω) by (·, ·)0,∇ = (·, ·) + (∇·,∇·), where (·, ·) is
the L2-inner product, and the norm is || · ||1(i.e., ||q||1 =

√
(q, q)0,∇).

Let f ∈ (H−1(Ω))3. Find R(f) ∈ (H1
0 (Ω))3 such that

(R(f), z)0,∇ = 〈f , z〉 ∀z ∈ (H1
0 (Ω))3. (3.1)

Let χ ∈ (H−
1
2 (Γ))3. Find ΥΓ(χ) ∈ (H1(Ω))3 such that

(ΥΓ(χ),y)0,∇ = 〈χ,n× (y × n)〉Γ ∀y ∈ (H1(Ω))3. (3.2)

9

Page 9 of 35

IMA Journal of Numerical Analysis

IMAJNA - For peer review only - http://mc.manuscriptcentral/imajna

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Let g ∈ H−1(Ω). Find S(g) ∈ H1
0 (Ω) such that

(S(g), q)0,∇ = 〈g, q〉 ∀q ∈ H1
0 (Ω). (3.3)

Let κ ∈ H− 1
2 (Γ). Find ΛΓ(κ) ∈ H1(Ω) such that

(ΛΓ(κ), ϑ)0,∇ = 〈κ, ϑ〉Γ ∀ϑ ∈ H1(Ω). (3.4)

With the above Riesz-representation liftings, instead of the LS functional F1 which is introduced earlier in
(1.9), we define

F (v; f , g,χ) := ||R(curl curl v − λv − f)||21 + ||S(div v − g)||21
+||ΥΓ(n× v − χ)||21 + ||ΛΓ(curl v · n− L(χ))||21.

(3.5)

The advantage of F over F1 is that the norm ||·||1 is easier discretizable and computable than the negative-
order norms, particularly much more convenient than computing the norm || · ||− 1

2 ,Γ
. By the definitions

(3.1)-(3.4), it is not difficult to show that both functionals F (v; f , g,χ) and F1(v; f , g,χ) are equivalent,
and now, minimizing the functional F , we find the solution u of problem (1.1)-(1.2) to satisfy

F (u; f , g,χ) = min
v∈H(curl ;Ω)

F (v; f , g,χ).

Defining

L(u,v) := (R(curl curl u− λu),R(curl curl v − λv))0,∇ + (S(div u), S(div v))0,∇
+(ΥΓ(n× u),ΥΓ(n× v))0,∇ + (ΛΓ(curl u · n),ΛΓ(curl v · n))0,∇,

(3.6)

G(v) := (R(f),R(curl curl v − λv))0,∇ + (S(g), S(div v))0,∇
+(ΥΓ(χ),ΥΓ(n× v))0,∇ + 〈χ,n× (∇ΛΓ(curl v · n)× n)〉Γ,∗,

(3.7)

we find that the variational problem which is equivalent to the above LS minimization problem is to find
u ∈ H(curl ; Ω) such that

L(u,v) = G(v) ∀v ∈ H(curl ; Ω). (3.8)

From the definitions (3.3)-(3.4) and Theorem 3.1, we have the coercivity

L(v,v) = ||R(curl curl v − λv)||21 + ||S(div v)||21 + ||ΥΓ(n× v)||21 + ||ΛΓ(curl v · n)||21
≥ c(||curl curl v − λv||2−1 + ||div v||2−1 + ||n× v||2− 1

2 ,Γ
+ ||curl v · n||2− 1

2 ,Γ
)

≥ c||v||20,curl

and the boundedness
|L(u,v)| ≤ c||u||0,curl ||v||0,curl ,

and we also have, from Corollary 3.1,

G(v) = (R(f),R(curl curl v − λv))0,∇ + (S(g), S(div v))0,∇
+(ΥΓ(χ),ΥΓ(n× v))0,∇ + 〈χ,n× (∇ΛΓ(curl v · n)× n)〉Γ,∗
≤ c(||f ||(H0(curl ;Ω))′ + ||χ||

H−
1
2 (div Γ;Γ)

)||v||0,curl .

Thus, the well-posedness of the variational problem (3.8) directly follows from the classical Lax-Milgram
lemma. The above coercivity and boundedness say that ∀v ∈ H(curl ; Ω),

c||v||20,curl ≤ L(v,v) = F1(v; 0, 0,0) = F (v; 0, 0,0) ≤ c−1||v||20,curl , (3.9)

which is (1.10) in the Introduction section 1. In the next section, we shall design the finite element
method(FEM) to discretize the variational problem (3.8) to preserve the above coercivity or the norm
equivalence in the finite element space.

10
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4 FEM
In this section, we state the finite element problem. The guide for designing the finite element method is to
preserve the norm equivalence in Theorem 3.1 or in (3.9). We need to discretize the Riesz-representation
liftings by (3.3)-(3.4). The replacement by the discrete Riesz-representation liftings brings about the loss
of the coercivity. To remedy such loss we shall use some stabilizations.

We shall assume that Ω is a polyhedral domain, with piecewise planar boundary Γ. This assumption is
only for simplifying the meshes of the finite element method so that the technicalities involved in treating
the curved elements are avoided. Let Th denote the usual conforming and shape-regular triangulation of Ω
into tetrahedra (cf. [7]) , where the mesh size h = maxK∈Th hK , and hK is the diameter of the tetrahedron
K. Let Fh denote the set of all element faces in Th, while FΩ

h ⊂ Fh denotes the set of all interior element
faces in Ω and FΓ

h ⊂ Fh the set of element faces on Γ. It is assumed that FΓ
h which is composed of

straight-sided triangles constitutes a conforming and shape-regular triangulation of Γ. Let hF denote the
diameter of F ∈ Fh. Over K ∈ Th, let P`(K) stand for the space of polynomials of total degree not
greater than the integer ` ≥ 1.

Let λKj ∈ P1(K), j = 1, 2, 3, 4, be the jth local basis of linear polynomial corresponding to the ith
vertex of the tetrahedron element K ∈ Th. For a face F ⊂ ∂K, letting ai, i = 1, 2, 3, be the three vertices
locating on F , we define the face bubble bKF ∈ H1(K):

bKF = λK1 λ
K
2 λ

K
3 .

This face bubble satisfies
bKF |F ∈ H1

0 (F ), bKF |F ′ = 0 ∀F ′ 6= F.

We also introduce the element bubble:

bK = λK1 λ
K
2 λ

K
3 λ

K
4 ∈ H1

0 (K).

Define Lagrange finite element spaces as follows:

Uh = {v ∈ (H1(Ω))3 : v|K ∈ (P`(K))3,∀K ∈ Th}, (4.1)

Zh = {z ∈ (H1
0 (Ω))3 : z|K ∈ (P1(K))3,∀K ∈ Th}, (4.2)

Yh = {y ∈ (H1(Ω))3 : y|K ∈ (P1(K))3,∀K ∈ Th}, (4.3)

Qh = {q ∈ H1
0 (Ω) : q|K ∈ P1(K),∀K ∈ Th}, (4.4)

Ψh = {ψ ∈ H1(Ω) : ψ|K ∈ P1(K), ∀K ∈ Th}, (4.5)

where Uh is used for the solution, while the rest which are always chosen as linear elements are auxiliary
spaces. These two pairs (Zh, Qh) and (Yh,Ψh) will be used respectively for lifting the right-hand side f
and χ to smooth finite element functions, i.e., they are used for discretizing the Riesz-representation lifting
operators in (3.1)-(3.4).

Corresponding to (3.1)-(3.4), define the so-called discrete Riesz-representation liftings as follows:
Let f ∈ (H−1(Ω))3. Find Rh(f) ∈ Zh such that

(Rh(f), zh)0,∇ = 〈f , zh〉 ∀zh ∈ Zh. (4.6)

Let χ ∈ (H−
1
2 (Γ))3. Find ΥΓ

h(χ) ∈ Yh such that

(ΥΓ
h(χ),yh)0,∇ = 〈χ,n× (yh × n)〉Γ ∀yh ∈ Yh. (4.7)

Let g ∈ H−1(Ω). Find Sh(g) ∈ Qh such that

11
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(Sh(g), qh)0,∇ = 〈g, qh〉 ∀qh ∈ Qh. (4.8)

Let κ ∈ H− 1
2 (Γ). Find ΛΓ

h(κ) ∈ Ψh such that

(ΛΓ
h(κ), ϑh)0,∇ = 〈κ, ϑh〉Γ ∀ϑh ∈ Ψh. (4.9)

Remark 4.1. All these discrete Riesz-representation liftings which are in fact the linear finite element
solutions of the Poisson equations with different right-hand sides are also called H1-projections. We
remark that the role of these projections is essentially to lift the singular data f and χ to smooth functions
(finite element functions). In addition, all the computations of (4.6)-(4.9) involve the same coefficient
matrix for linear finite elements, and they can be realized by the same codes up to right-hand sides.

Alternatively, instead of exactly solving these Riesz-representation liftings, we can replace all the linear
element liftings Rh,Υ

Γ
h, Sh,Λ

Γ
h by the associated spectrally equivalent linear element preconditioners.

Such replacement means that we do not need to really solve (4.6)-(4.9); also such replacement will not
affect all the theoretical analysis and results in the sequel. For ease of the presentation, we shall not dwell
on such replacement, since it is a well-known technique in the context of LS methods, e.g., see [36] and
references therein.

Since there occurs a loss of the coercivity due to the discrete Riesz-representation liftings in place
of those continuous ones, below, we shall define some mesh-dependent stabilizations. All of them are
evaluated locally. For that purpose, we need to define some sets of element-bubble and face-bubble poly-
nomials. Firstly, according to the nodes which are chosen as the principal lattice of K (See the definition
of the principal lattice by (A.19) on page 99 in [2]), we introduce

P`(K) = span{ϕ`,Ki , 1 ≤ i ≤ m`}, (4.10)

where m` = (`+1)(`+2)(`+3)
6 and ϕ`,Ki is the ‘canonical’ local basis corresponding to the ith node, satisfy-

ing ϕ`,Ki (aj) = δij . Here aj denotes the jth node, 1 ≤ j ≤ m`, and the notation δij is the Kronecker delta
(i.e., δij = 1 if i = j, otherwise δij = 0 ). For example, P1(K) = span{ϕ1,K

i := λKi , 1 ≤ i ≤ m1 = 4}.
In this example, the set of nodes is just the set of four vertices of the tetrahedron K. Secondly, for any
given F ∈ Fh, we define a so-called macro-element MF , where MF is the union of the two tetrahedra
sharing F as the common face if F ∈ FΩ

h , and MF is KF if F ∈ FΓ
h . Here KF denotes the tetrahedron

with its face F in Γ. For any given F ∈ FΩ
h , corresponding to the macro-element MF = K1 ∪ K2 and

∂K1 ∩ ∂K2 = F , we introduce the macro-element bubble in the following way:

bMF

F =

{
bK1

F in K1,

bK2

F in K2.

Obviously,
bMF

F ∈ H1
0 (MF ), bMF

F |F ∈ H1
0 (F ).

Thirdly, we define
∆`,K = span{φ`,Ki = ϕ`,Ki bK , 1 ≤ i ≤ m`} ⊂ H1

0 (K)

where ϕ0,K
i :≡ 1 and m0 := 1. For macro-element MF = K1 ∪K2 with the common face F , we define

∆`,MF = span{φ`,MF

i , 1 ≤ i ≤ mF
` , φ

`,MF

i |Kj
= ϕ

`,Kj

i bMF

F , j = 1, 2, } ⊂ H1
0 (MF ),

where ϕ`,Kj

i are basis corresponding to the nodes on F and mF
` = (`+1)(`+2)

2 and mF
0 := 1. Put ϕ`,Ki :=

(ϕ`,Ki , ϕ`,Ki , ϕ`,Ki ) and φ`−1,MF

i := (φ`−1,MF

i , φ`−1,MF

i , φ`−1,MF

i ), then define

Q`−1,K = ∆`−1,K = span{φ`−1,K
i = ϕ`−1,K

i bK , 1 ≤ i ≤ m`−1} ⊂ H1
0 (K), (4.11)

Z`,K = (∆`,K)3 = span{φ`,Ki = ϕ`,Ki bK , 1 ≤ i ≤ m`} ⊂ (H1
0 (K))3, (4.12)

12
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Z`−1,MF = (∆`−1,MF )3 = span{φ`−1,MF

i , 1 ≤ i ≤ mF
`−1} ⊂ (H1

0 (MF ))3, (4.13)

Y`,KF = span{ρ`,KF

i = ϕ`,KF

i bKF

F , 1 ≤ i ≤ mF
` } ⊂ (H1(KF ))3, (4.14)

Ψ`−1,KF = span{o`−1,KF

i = ϕ`−1,KF

i bKF

F , 1 ≤ i ≤ mF
`−1} ⊂ H1(KF ), (4.15)

where KF is any of the two elements with the given face F ⊂ ∂KF , and we have

ρ`,KF

i |F ∈ (H1
0 (F ))3, ρ`,KF

i |F ′ = 0 ∀F ′ 6= F, F ′ ⊂ ∂KF ,

o`−1,KF

i |F ∈ H1
0 (F ), o`−1,KF

i |F ′ = 0 ∀F ′ 6= F, F ′ ⊂ ∂KF .

With the above element-bubbles and face-bubbles, we define the following mesh-dependent stabiliza-
tions:

Scurl curl (u,v) =

∑
K∈Th

m∑̀
i=1

((curl u, curl φ`,Ki )0,K − λ(u,φ`,Ki )0,K)((curl v, curl φ`,Ki )0,K − λ(v,φ`,Ki )0,K)

m∑̀
i=1

||φ`,Ki ||20,∇,K
,

(4.16)
where ||v||20,∇,K = ||v||20,K + ||∇v||20,K ,

Rcurl curl (f ,v) =
∑

K∈Th

m∑̀
i=1

〈f ,φ`,Ki 〉K((curl v, curl φ`,Ki )0,K − λ(v,φ`,Ki )0,K)

m∑̀
i=1

||φ`,Ki ||20,∇,K
, (4.17)

where 〈f ,φ`,Ki 〉K is understood as 〈f ,φ`,Ki 〉 after the zero extension of φ`,Ki ∈ (H1
0 (K))3 outside K to

the whole domain Ω,

Scurl curl ,×n(u,v) =

∑
F∈FΩ

h

mF
`−1∑
i=1

((curl u, curl φ`−1,MF

i )0,MF
− λ(u,φ`−1,MF

i )0,MF
)((curl v, curl φ`−1,MF

i )0,MF
− λ(v,φ`−1,MF

i )0,MF
)

mF
`−1∑
i=1

||φ`−1,KF

i ||20,∇,MF

,

(4.18)
where ||v||20,∇,MF

= ||v||20,MF
+ ||∇v||20,MF

,

Rcurl curl ,×n(f ,v) =

∑
F∈FΩ

h

mF
`−1∑
i=1

〈f ,φ`−1,MF

i 〉MF
((curl v, curl φ`−1,MF

i )0,MF
− λ(v,φ`−1,MF

i )0,MF
)

mF
`−1∑
i=1

||φ`−1,MF

i ||20,∇,MF

,
(4.19)

where 〈f ,φ`−1,MF

i 〉MF
is understood as 〈f ,φ`−1,MF

i 〉 after the zero extension of φ`−1,MF

i ∈ (H1
0 (MF ))3

outside MF to the whole domain Ω,

13
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Sdiv (u,v) =
∑

K∈Th

m`−1∑
i=1

(u,∇φ`−1,K
i )0,K(v,∇φ`−1,K

i )0,K

m`−1∑
i=1

||∇φ`−1,K
i ||20,K

, (4.20)

Rdiv (g,v) = −
∑

K∈Th

m`−1∑
i=1

〈g, φ`−1,K
i 〉K(v,∇φ`−1,K

i )0,K

m`−1∑
i=1

||∇φ`−1,K
i ||20,K

, (4.21)

where 〈g, φ`−1,K
i 〉K is understood as 〈g, φ`−1,K

i 〉 after the zero extension of φ`−1,K
i ∈ H1

0 (K) outside K
to the whole domain Ω,

S×n(u,v) =

∑
F∈FΓ

h

mF∑̀
i=1

((curl u,ρ`,KF

i )0,KF
− (u, curl ρ`,KF

i )0,KF
)((curl v,ρ`,KF

i )0,KF
− (v, curl ρ`,KF

i )0,KF
)

mF∑̀
i=1

||ρ`,KF

i ||20,∇,KF

,

(4.22)
where KF ∈ T Γ

h denotes the tetrahedron element which shares the face F with Γ,

R×n(χ,v) =
∑
F∈FΓ

h

mF∑̀
i=1

〈χ,n× (ρ`,KF

i × n)〉F ((curl v,ρ`,KF

i )0,KF
− (v, curl ρ`,KF

i )0,KF
)

mF∑̀
i=1

||ρ`,KF

i ||20,∇,KF

, (4.23)

where 〈χ,n × (ρ`,KF

i × n)〉F is understood as 〈χ,n × (ρ`,KF

i × n)〉Γ = 〈χ,ρ`,KF

i 〉Γ after the zero
extension of ρ`,KF

i outside KF to the whole domain Ω,

S·n(u,v) =
∑
F∈FΓ

h

mF
`−1∑
i=1

(curl u,∇o`−1,KF

i )0,KF
(curl v,∇o`−1,KF

i )0,KF

mF
`−1∑
i=1

||∇o`−1,KF

i ||20,KF

, (4.24)

R·n(χ,v) =
∑
F∈FΓ

h

mF
`−1∑
i=1

〈χ,n× (∇o`−1,KF

i × n)〉F (curl v,∇o`−1,KF

i )0,KF

mF
`−1∑
i=1

||∇o`−1,KF

i ||20,KF

, (4.25)

where 〈χ,n× (∇o`−1,KF

i × n)〉F is understood as 〈χ,n× (∇o`−1,KF

i × n)〉Γ,∗ after the zero extension
of o`−1,KF

i outside KF to the whole domain Ω.

Remark 4.2. The rationale for designing the above stabilizations will be seen respectively in Lemma 5.1,
and Lemma 6.1, Remark 5.1 and Remark 6.1. From the proof of the coercivity of the finite element problem
in the next section, one can see the role of the stabilizations. Also, these stabilizations can accommodate
singular solution u and singular data f and χ.

We are now in a position to state the finite element problem.
Let β be a constant to be determined later. Put
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Sh(u,v) := Scurl curl (u,v)+βScurl curl ,×n(u,v)+Sdiv (u,v)+S×n(u,v)+S·n(u,v), (4.26)

Rh(f , g,χ; v) := Rcurl curl (f ,v) + βRcurl curl ,×n(f ,v) + Rdiv (g,v) + R×n(χ,v) + R·n(χ,v).
(4.27)

The finite element problem reads as follows: Find uh ∈ Uh such that, for all vh ∈ Uh,

Lh(uh,vh) = Gh(vh) ∀vh ∈ Uh, (4.28)

where

Lh(u,v) = (Rh(curl curl u− λu),Rh(curl curl v − λv))0,∇ + (Sh(div u), Sh(div v))0,∇
+(ΥΓ

h(n× u),ΥΓ
h(n× v))0,∇ + (ΛΓ

h(curl u · n),ΛΓ
h(curl v · n))0,∇ + Sh(u,v),

(4.29)

Gh(v) = (Rh(f),Rh(curl curl v − λv))0,∇ + (Sh(g), Sh(div v))0,∇
+(ΥΓ

h(χ),ΥΓ
h(n× v))0,∇ + 〈χ,n× (∇ΛΓ

h(curl v · n)× n)〉Γ,∗ + Rh(f , g,χ; v).
(4.30)

It can be verified from (4.29) and (4.30) that the finite element formulation (4.28) is consistent, or the
error orthogonality property holds, i.e., for the exact solution u and the finite element solution uh,

Lh(u− uh,vh) = 0 ∀vh ∈ Uh. (4.31)

5 Coercivity
In this section, we shall establish the coercivity of the proposed finite element method (4.28). As a con-
sequence, the resulting algebraic linear system is symmetric, positive definite. For that goal, we first give
two lemmas below on the stabilizations defined in the previous section.

Lemma 5.1. For all v ∈ Uh, we have

Scurl curl (v,v) ≥ c
∑
K∈Th

h2
K ||curl curl v − λv||20,K ,

Scurl curl ,×n(v,v) ≥ c5
∑
F∈FΩ

h

hF ||[n× (curl v × n)]||20,F − c6
∑
K∈Th

h2
K ||curl curl v − λv||20,K ,

where [·] denotes the jump across F ,

Sdiv (v,v) ≥ c
∑
K∈Th

h2
K ||div v||20,K ,

S×n(v,v) ≥ c
∑
F∈FΓ

h

hF ||v × n||20,F ,

S·n(v,v) ≥ c
∑
F∈FΓ

h

hF ||curl v · n||20,F .

Proof. For v ∈ Uh, from the construction of the element-bubble and face-bubble spaces in (4.11)-(4.15),
we know that

(curl curl v − λv)bK |K ∈ Z`,K ∀K ∈ Th,

[n× (curl v × n)]bMF

F |F ∈ Z`−1,MF |F ∀F ∈ FΩ
h ,
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(div v)bK |K ∈ Q`−1,K ∀K ∈ Th,

(v × n)bKF |F ∈ Y`,KF |F ∀F ∈ FΓ
h ,

(curl v · n)bKF |F ∈ Ψ`−1,KF |F ∀F ∈ FΓ
h .

Thus, it is not difficult to adapt the argument in [10] (Lemma 4.3 on page 1285) to have the conclusion. For
the sake of completeness and for illustrating the idea and the argument therein, below we give a demon-
stration of the third inequality in the above Lemma 5.1, i.e.,

Sdiv (v,v) ≥ c
∑
K∈Th

h2
K ||div v||20,K ∀v ∈ Uh, (5.1)

using the fact that
(div v)bK |K ∈ Q`−1,K ∀K ∈ Th, ∀v ∈ Uh, (5.2)

where Sdiv (v,v) is defined by (4.20) while Q`−1,K is defined by (4.11). From (4.20) we have

Sdiv (v,v) =
∑

K∈Th

m`−1∑
i=1

(
(v,∇φ`−1,K

i )0,K

)2

m`−1∑
i=1

||∇φ`−1,K
i ||20,K

, (5.3)

and since φ`−1,K
i = ϕ`−1,K

i bK ∈ H1
0 (K), by the Green formula of integration by parts we have

Sdiv (v,v) =
∑

K∈Th

m`−1∑
i=1

(
(div v, φ`−1,K

i )0,K

)2

m`−1∑
i=1

||∇φ`−1,K
i ||20,K

. (5.4)

But, from the construction of Q`−1,K by (4.11)

Q`−1,K = ∆`−1,K = span{φ`−1,K
i = ϕ`−1,K

i bK , 1 ≤ i ≤ m`−1} ⊂ H1
0 (K)

and (5.2) which equivalently says that

div v|K ∈ span{ϕ`−1,K
i , 1 ≤ i ≤ m`−1}, (5.5)

we can write

div v|K =

m`−1∑
j=1

djϕ
`−1,K
j ,

where dj , 1 ≤ j ≤ m`−1, are coefficients. Now, since φ`−1,K
i = ϕ`−1,K

i bK , we have

(div v, φ`−1,K
i )0,K =

m`−1∑
j=1

dj(ϕ
`−1,K
j , ϕ`−1,K

i bK)0,K ,

and we find that
m`−1∑
i=1

(
(div v, φ`−1,K

i )0,K

)2

= dtBd, (5.6)

where dt = (d1, d2, · · · , dm`−1
) ∈ Rm`−1 and

B = (Bij) ∈ Rm`−1×m`−1 , Bij =

m`−1∑
k=1

(ϕ`−1,K
i , ϕ`−1,K

k bK)0,K(ϕ`−1,K
k , ϕ`−1,K

j bK)0,K .
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Since {ϕ`−1,K
i , 1 ≤ i ≤ m`−1} is a group of linearly independent basis, the corresponding Gram matrix

G = (Gij) ∈ Rm`−1×m`−1 , Gij = (ϕ`−1,K
i , ϕ`−1,K

j bK)0,K ,

is symmetric, positive definite, and we have

B = (G)2.

Further, by the well-known scaling argument(cf. [2, page 95]) through an affine mapping x = FK(x̂) from
the reference element K̂ (a unit tetrahedron in the reference x̂-coordinates system) to the physical element
K(a tetrahedron in the x-coordinates system) and by the fact that {ϕ`−1,K

i , 1 ≤ i ≤ m`−1} are concretely
given basis functions, it is not difficult in finding that under the shape-regularity condition of the meshes,
the least eigenvalue of G satisfies

µmin ≥ c|K|, (5.7)

where c depends on {ϕ̂`−1
i := ϕ`−1,K

i ◦FK , 1 ≤ i ≤ m`−1} and on b̂ := bK ◦FK all of which live on the
reference element K̂, but it is independent of K, h and v. On the other hand, we find that

(div v, (div v)bK)0,K = dtGd, (5.8)

and from a similar argument in [2, page 142] that

(div v, (div v)bK)0,K ≥ c||div v||20,K , (5.9)

where c depends on b̂ but it is independent of K, h and v. From any standard textbook of linear algebra, it
is easy to show that

dtBd = dt(G)2d ≥ µmindtGd. (5.10)

Also by the scaling argument, under the shape-regularity condition of the meshes, we find that

m`−1∑
i=1

||∇φ`−1,K
i ||20,K ≤ ch−2

K |K|, (5.11)

where c depends on {ϕ̂`−1
i , 1 ≤ i ≤ m`−1} and on b̂, but it is independent of K, h and v. Summarizing

(5.3), (5.4), (5.5), (5.6), (5.7), (5.8), (5.9), (5.10) and (5.11), we obtain

m`−1∑
i=1

(
(div v, φ`−1,K

i )0,K

)2

m`−1∑
i=1

||∇φ`−1,K
i ||20,K

≥ ch2
K ||div v||20,K , (5.12)

where c is independent of K, h and v. It follows from (5.12) and (5.3) that (5.1) holds. Other coercivity
results in Lemma 5.1 can be similarly shown.

As a consequence of Lemma 5.1, for a suitable value for β, for all v ∈ Uh we have

Scurl curl (v,v) + βScurl curl ,×n(v,v) ≥

c

( ∑
F∈FΩ

h

hF ||[n× (curl v × n)]||20,F +
∑

K∈Th
h2
K ||curl curl v − λv||20,K

)
.

(5.13)

Below, we can prove the coercivity.

Theorem 5.1. For all v ∈ Uh, for a suitable value of β, we have

Lh(v,v) ≥ c||v||20,curl .
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Proof. For v ∈ Uh, From Theorem 3.1, we have

c||v||0,curl ≤ ||curl curl v − λv||−1 + ||div v||−1 + ||curl v · n||− 1
2 ,Γ

+ ||v × n||− 1
2 ,Γ
. (5.14)

In what follows, we show that

||curl curl v − λv||−1 + ||div v||−1 + ||curl v · n||− 1
2 ,Γ

+ ||v × n||− 1
2 ,Γ
≤ c
(
Lh(v,v)

) 1
2

. (5.15)

We first consider the first term in the above left-hand side. Notice that

||curl curl v − λv||−1 = sup
06=z∈(H1

0 (Ω))3

〈curl curl v − λv, z〉
||z||1

.

Denote by Ξh : (H1(Ω))3 → Zh the classical interpolation operator such as the Clément interpolation
operator or the Scott-Zhang interpolation operator(e.g., see [8, 2, 26] ). Choosing zh := Ξhz ∈ Zh so that( ∑

K∈Th

h−2
K ||z− zh||20,h

) 1
2

+

 ∑
F∈FΩ

h

h−1
F ||z− zh||20,F

 1
2

+ ||zh||1 ≤ c||z||1,

we have

〈curl curl v − λv, z〉 = 〈curl curl v − λv, zh〉+ 〈curl curl v − λv, z− zh〉,

where

〈curl curl v − λv, z− zh〉 = (curl v, curl (z− zh))− λ(v, z− zh)
=

∑
K∈Th

(curl curl v − λv, z− zh)0,K +
∑

F∈FΩ
h

∫
F

(n× (z− zh)) · [n× (curl v × n)]

≤

( ∑
K∈Th

h2
K ||curl curl v − λv||20,K

) 1
2
( ∑
K∈Th

h−2
K ||z− zh||20,K

) 1
2

+c

( ∑
F∈FΩ

h

hF ||[n× (curl v × n)]||20,F

) 1
2
( ∑
F∈FΩ

h

h−1
F ||z− zh||20,F

) 1
2

≤ c

( ∑
K∈Th

h2
K ||curl curl v − λv||20,K +

∑
F∈FΩ

h

hF ||[n× (curl v × n)]||20,F

) 1
2

||z||1,

and from (4.6), we have

〈curl curl v − λv, zh〉 = (Rh(curl curl v − λv), zh)0,∇
≤ ||Rh(curl curl v − λv)||0,∇||zh||0,∇
≤ ||Rh(curl curl v − λv)||0,∇||z||1.

Hence,

c||curl curl v − λv||−1 ≤ ||Rh(curl curl v − λv)||0,∇

+

( ∑
K∈Th

h2
K ||curl curl v − λv||20,K +

∑
F∈FΩ

h

hF ||[n× (curl v × n)]||20,F

) 1
2

.
(5.16)

Similarly, for the second-term, we have

c||div v||−1 ≤ ||Sh(div v)||0,∇ +

( ∑
K∈Th

h2
K ||div v||20,K

) 1
2

. (5.17)
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Below, we estimate the two terms ||curl v · n||− 1
2 ,Γ

and ||v × n||− 1
2 ,Γ

. Note that

||curl v · n||− 1
2 ,Γ

= sup
06=ψ∈H

1
2 (Γ)

〈curl v · n, ψ〉Γ
||ψ|| 1

2 ,Γ

.

Let Ψh(FΓ
h ) denote the restriction of Ψh over FΓ

h (the conforming and shape-regular triangulation of Γ).
Denote by Πh : L1(Γ)→ Ψh(FΓ

h ) the Clément interpolation operator (cf., [8, 2]). Choose a ψh := Πhψ ∈
Ψh(FΓ

h ) so that  ∑
F∈FΓ

h

h−1
F ||ψh − ψ||

2
0,F

 1
2

+ ||ψh|| 1
2 ,Γ
≤ c||ψ|| 1

2 ,Γ
.

Denote by E : H
1
2 (Γ) → H1(Ω) the lifting operator. Let Eψh ∈ H1(Ω) be the lifting of the boundary

trace ψh ∈ H
1
2 (Γ), satisfying

||Eψh||1 ≤ c||ψh|| 1
2 ,Γ
≤ c||ψ|| 1

2 ,Γ
.

Now, denote by πh : H1(Ω) → Ψh the Scott-Zhang interpolation operator, and define πhEψh ∈ Ψh,
which preserves the piecewise polynomials on the boundary Γ, satisfying (see [26])

πhEψh|Γ = ψh,

||πhEψh||1 ≤ c||Eψh||1 ≤ c||ψh|| 1
2 ,Γ
≤ c||ψ|| 1

2 ,Γ
.

Since
〈curl v · n, ψ〉Γ = 〈curl v · n, ψh〉Γ + 〈curl v · n, ψ − ψh〉Γ,

where, from (4.9), we have

〈curl v · n, ψh〉Γ = 〈curl v · n, πhEψh〉Γ = (ΛΓ
h(curl v · n), πhEψh)0,∇

≤ ||ΛΓ
h(curl v · n)||0,∇||πhEψh||1 ≤ c||ΛΓ

h(curl v · n)||0,∇||ψ|| 1
2 ,Γ
,

〈curl v · n, ψ − ψh〉Γ =
∫

Γ
(ψ − ψh)curl v · n

≤

( ∑
F∈FΓ

h

hF ||curl v · n||20,F

) 1
2
( ∑
F∈FΓ

h

h−1
F ||ψh − ψ||20,F

) 1
2

≤ c

( ∑
F∈FΓ

h

hF ||curl v · n||20,F

) 1
2

||ψ|| 1
2 ,Γ
,

and we thus have

c||curl v · n||− 1
2 ,Γ
≤ ||ΛΓ

h(curl v · n)||0,∇ +

 ∑
F∈FΓ

h

hF ||curl v · n||20,F

 1
2

. (5.18)

Similarly, we have

c||v × n||− 1
2 ,Γ
≤ ||ΥΓ

h(n× v)||0,∇ +

 ∑
F∈FΓ

h

hF ||v × n||20,F

 1
2

. (5.19)

Summarizing (5.16)-(5.19), we have

c(||curl curl v − λv||−1 + ||div v||−1 + ||curl v · n||− 1
2 ,Γ

+ ||v × n||− 1
2 ,Γ

) ≤
||Rh(curl curl v − λv)||0,∇ + ||Sh(div v)||0,∇ + ||ΥΓ

h(n× v)||0,∇ + ||ΛΓ
h(curl v · n)||0,∇

+

( ∑
K∈Th

h2
K ||curl curl v − λv||20,K +

∑
F∈FΩ

h

hF ||[n× (curl v × n)]||20,F

) 1
2

+

( ∑
K∈Th

h2
K ||div v||20,K

) 1
2

+

( ∑
F∈FΓ

h

hF ||curl v · n||20,F

) 1
2

+

( ∑
F∈FΓ

h

hF ||v × n||20,F

) 1
2

,

(5.20)
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and, hence, combining Lemma 5.1, we conclude (5.15).

Remark 5.1. From Lemma 5.1, all the stabilizations in the finite element problem can be replaced by
simpler forms as follows:

( ∑
K∈Th

h2
K ||curl curl v − λv||20,K +

∑
F∈FΩ

h

hF ||[n× (curl v × n)]||20,F

) 1
2

+

( ∑
K∈Th

h2
K ||div v||20,K

) 1
2

+

( ∑
F∈FΓ

h

hF ||curl v · n||20,F

) 1
2

+

( ∑
F∈FΓ

h

hF ||v × n||20,F

) 1
2

.

(5.21)

The above is much easier to implement.
However, clearly, these stabilizations are only suitable for regular enough f and χ, say f ∈ (L2(Ω))3

and χ ∈ (L2(Γ))3. Moreover, it is easy to define the corresponding right-hand sides, but not for the
stabilization term (

∑
F∈FΓ

h
hF ||curl v·n||20,F )1/2. This term requires that the solution u is smooth enough

so that curl u ·n ∈ L2(Γ). For this term, if χ = 0, then no right-hand side is needed. If χ 6= 0, we cannot
find a corresponding right-hand side, and the property of consistency or error orthogonality will be lost.
Without this property, higher-order elements (i.e., ` > 1) cannot result in higher-order convergence rate
for smooth solution (say, u ∈ (H1+`(Ω))3). Here, why we design the stabilizations as in (4.16)-(4.25) is
explained. See a further explanation in Remark 6.1.

Remark 5.2. Upon the interest of one of the referees, here we consider to use the element-bubbles and face-
bubbles from Z`,K ,Z`−1,MF ,Y`,KF , Q`−1,K ,Ψ`−1,KF to enrich all the auxiliary finite element spaces
Zh, Yh, Qh and Ψh, then, denoting the enriched finite element spaces by Z[+h , Y[+

h , Q[+h , and Ψ[+
h , all

the discrete Riesz-representation liftings Rh,Υ
Γ
h, Sh,Λ

Γ
h are now defined on Z[+h , Y[+

h , Q[+h , and Ψ[+
h ,

respectively. Under such replacements, Theorem 5.1 still holds, while all the stabilizations are unnecessary
and can be dropped. In fact, with Z[+h , in reasoning (5.16), but now choosing a zh ∈ Z[+h , for v ∈ Uh, so
that

〈curl curl v − λv, z− zh〉 = 0,

and as a result, the term ∑
K∈Th

h2
K ||curl curl v − λv||20,K +

∑
F∈FΩ

h

hF ||[n× (curl v × n)]||20,F

 1
2

disappears in (5.16), i.e., (5.16) now reads as follows:

c||curl curl v − λv||−1 ≤ ||Rh(curl curl v − λv)||0,∇.

Thus, the related stabilizations Scurl curl (u,v),Scurl curl ,×n(u,v), together with their corresponding
right-hand sides Rcurl curl (f ,v),Rcurl curl ,×n(f ,v), are unnecessary and can be dropped. Similar
arguments apply if (Q[+h ,Y[+

h ,Ψ[+
h ) are in place of (Qh,Yh,Ψh), and the related stabilizations and their

right-hand sides are unnecessary and can be dropped, too.

6 Convergence and error bound
In this section, we shall establish the H(curl ; Ω)-quasi-optimal error estimate, convergence and error
bound.

We first give the boundedness of the bilinear form Lh and the linear form Gh, and of the stabilizations,
where Lh and Gh are defined in (4.28), and the stabilizations are defined in (4.16)-(4.25).
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Lemma 6.1. Let f ∈ (H0(curl ; Ω))′ = {f ∈ (H−1(Ω))3 : div f ∈ H−1(Ω)} and χ ∈ H− 1
2 (div Γ; Γ)

and g = −λdiv f ∈ H−1(Ω). For all u,v ∈ H(curl ; Ω), we have

Scurl curl (u,v) ≤ c||u||0,curl ||v||0,curl ,

Scurl curl ,×n(u,v) ≤ c||u||0,curl ||v||0,curl ,

Sdiv (u,v) ≤ c||u||0||v||0,

S×n(u,v) ≤ c||u||0,curl ||v||0,curl ,

S·n(u,v) ≤ c||curl u||0||curl v||0,

Rcurl curl (f ,v) ≤ c||f ||(H0(curl ;Ω))′ ||v||0,curl ,

Rcurl curl ,×n(f ,v) ≤ c||f ||(H0(curl ;Ω))′ ||v||0,curl ,

Rdiv (g,v) ≤ c||g||−1||v||0 ≤ c||f ||(H0(curl ;Ω))′ ||v||0,

R×n(χ,v) ≤ c||χ||
H−

1
2 (div Γ;Γ)

||v||0,curl ,

R·n(χ,v) ≤ c||χ||
H−

1
2 (div Γ;Γ)

||curl v||0.

Proof. From the expressions (4.16)-(4.25) of the stabilizations, one can easily obtain the above bounded-
ness.

Remark 6.1. If we adopt the stabilizations in (5.21), we cannot obtain theH(curl ; Ω)-norm boundedness
in Lemma 6.1, and consequently, we cannot establish the H(curl ; Ω)-quasi-optimal error estimate, and
the convergence, the error bound in the sequel.

Lemma 6.2. For all u,v ∈ H(curl ; Ω) and for all f ∈ (H0(curl ; Ω))′ and χ ∈ H− 1
2 (div Γ; Γ), we

have
|Lh(u,v)| ≤ c||u||0,curl ||v||0,curl ,

|Gh(v)| ≤ c(||f ||(H0(curl ;Ω))′ + ||χ||
H−

1
2 (div Γ;Γ)

)||v||0,curl .

Proof. First observe that both Lh and Gh are well-defined on H(curl ; Ω). From the definitions of those
discrete Riesz-representation liftings or projections (4.6)-(4.9), for f ′ ∈ (H−1(Ω))3, g′ ∈ H−1(Ω),χ′ ∈
(H−

1
2 (Γ))3, κ′ ∈ H− 1

2 (Γ), we have

||Rh(f ′)||0,∇ ≤ c||f ′||−1,

||Sh(g′)||0,∇ ≤ c||g′||−1,

||ΥΓ
h(χ′)||0,∇ ≤ c||χ′||− 1

2 ,Γ
,

||ΛΓ
h(κ′)||0,∇ ≤ c||κ′||− 1

2 ,Γ
.

For u ∈ H(curl ; Ω), putting f ′ := curl curl u− λu, g′ := div u, χ′ = n×u and κ′ := curl u ·n, we
have

||Rh(f ′)||0,∇ ≤ c||f ′||−1 ≤ c||u||0,curl ,

||Sh(g′)||0,∇ ≤ c||g′||−1 ≤ c||u||0,

||ΥΓ
h(χ′)||0,∇ ≤ c||χ′||− 1

2 ,Γ
≤ c||u||0,curl ,

||ΛΓ
h(κ′)||0,∇ ≤ c||κ′||− 1

2 ,Γ
≤ c||curl u||0.

For v, we have the same. Combining Lemma 6.1, from (4.29) and (4.30), we conclude.

Combining Theorem 5.1, Lemmas 5.1, 6.1 and 6.2, from the classical Lax-Milgram Lemma (cf., [7]),
we conclude the following theorem on the stability of the finite element solution.
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Theorem 6.1. The finite element problem (4.28) is well-posed, i.e., there exists a unique solution uh ∈ Uh,
and for all f ∈ (H0(curl ; Ω))′ and χ ∈ H− 1

2 (div Γ; Γ), the following stability holds:

||uh||0,curl ≤ c(||f ||(H0(curl ;Ω))′ + ||χ||
H−

1
2 (div Γ;Γ)

).

In addition, under the assumption of quasi-uniform meshes, the condition number of the resulting
algebraic linear system is O(h−2), since

c||v||20,curl ≤ Lh(v,v) ≤ c−1||v||20,curl ∀v ∈ Uh.

The following theorem is about the quasi-optimal error estimates and the convergence.

Theorem 6.2. Let u ∈ H(curl ; Ω) be the exact solution and uh ∈ Uh the finite element solution. We
have the following quasi-optimal error estimates:

||u− uh||0,curl ≤ c inf
v∈Uh

||u− v||0,curl .

Consequently, we have the convergence as follows:

lim
h→0
||u− uh||0,curl = 0.

Proof. From Theorem 5.1, the consistency or error orthogonality property (4.31), and Lemma 6.2, we
have the quasi-optimal error estimates. Since, from Theorem 2.10 on page 34 in [2], the space (D(Ω̄))3 ∩
H(curl ; Ω) is dense in H(curl ; Ω) with respect to the norm of H(curl ; Ω), where D(Ω̄) = {φ|Ω, φ ∈
C∞0 (R3)}, we have a smooth enough function v which approximates u in the H(curl ; Ω) norm. Such v
can be interpolated by the function in Uh, following the argument in [7] (cf. Theorem 18.2 on page 139),
it is not difficult to obtain the convergence.

In order to establish the error bound, we first give an extension result.

Lemma 6.3. For u, curl u ∈ (Hr(Ω))3 with 0 ≤ r ≤ 1, there exists an extension operator E such that
Eu, curl Eu ∈ (Hr(R3))3, and that

Eu = u in Ω,

||Eu||r,R3 + ||curl Eu||r,R3 ≤ c(||u||r + ||curl u||r).

Proof. Since curl u ∈ H(div 0; Ω) and curl u ∈ (Hr(Ω))3, from [2] (see Remark 3.12 on page 47) there
exists a vector potential A ∈ (H1+r(Ω))3 such that

curl u = curl A, ||A||1+r ≤ c||curl u||r.

Thus, we have a scalar potential p ∈ H1(Ω) such that

u = A +∇p.

We may require p ∈ H1(Ω)/R to have a unique p and

||p||0 ≤ c|p|1 ≤ c(||u||0 + ||A||0) ≤ c(||u||r + ||curl u||r).

It also follows that p ∈ H1+r(Ω), satisfying

|p|1+r ≤ c(||u||r + ||A||r) ≤ c(||u||r + ||curl u||r),

and we have
||p||1+r ≤ c(||u||r + ||curl u||r).

In other words, for u, curl u ∈ (Hr(Ω))3, we have the following regular-singular decomposition (cf.
(2.6)-(2.7) for the case r = 0):

u = A +∇p, A ∈ (H1+r(Ω))3, p ∈ H1+r(Ω),
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where
||A||1+r + ||p||1+r ≤ c(||u||r + ||curl u||r).

Let E1p ∈ H1+r(R3) and E1A ∈ (H1+r(R3))3 be the classical extensions of p and A, satisfying (see
[29, 1])

E1p = p in Ω, ||E1p||1+r,R3 ≤ c||p||1+r,

E1A = A in Ω, ||E1A||1+r,R3 ≤ c||A||1+r.

Define
Eu = E1A +∇E1p.

Summarizing the above, we have the conclusion.

Let δ > 0 be a constant to be determined. Introduce the usual mollifier ρδ: ρδ(x) = δ−3ρ(x/δ),
where ρ(x) = c−1

ξ ξ(x), ξ(x) = exp(|x|2 − 1)−1 if |x| < 1, otherwise, ξ(x) = 0, where cξ =
∫
R3 ξ. Let

v ∈ (Hr(R3))3. Assume that v is compactly supported in R3. Define the mollification of v by setting
Jδv := ρδ ∗ v =

∫
R3 ρδ(x − y)v(y)dy. This Jδv ∈ (C∞0 (R3))3. It is not difficult to show the following

commuting property, approximation property and inverse estimate for v, curl v ∈ (Hr(R3))3 (also, cf.,
[1], Theorem 5.33 on page 160):

curl Jδv = Jδcurl v,

||v − Jδv||0,R3 ≤ cδr||v||r,R3 ,

||Jδv||s,R3 ≤ cδt−s||v||t,R3 ,

where 0 ≤ t ≤ s are any two real numbers, and t ≤ r.

Theorem 6.3. Let u ∈ H(curl ; Ω) be the exact solution and uh ∈ Uh the finite element solution. Assume
that u, curl u ∈ (Hr(Ω))3 for some 0 ≤ r ≤ 1. Then,

||u− uh||0,curl ≤ ch
`r

`+1 (||u||r + ||curl u||r).

Proof. From Lemma 6.3, first extend u ∈ (Hr(Ω))3 with curl u ∈ (Hr(Ω))3 from Ω to the whole space
R3, denoted by Eu ∈ (Hr(R3))3 with curl Eu ∈ (Hr(R3))3, satisfying

Eu = u in Ω,

||Eu||r,R3 + ||curl Eu||r,R3 ≤ c(||u||r + ||curl u||r).

Denote by (Eu)δ = JδEu = ρδ ∗Eu ∈ (C∞0 (R3))3 as the mollified counterpart of Eu, satisfying

curl (Eu)δ = (curl Eu)δ,

and
||u− (Eu)δ||0 = ||Eu− (Eu)δ||0

≤ ||Eu− (Eu)δ||0,R3

≤ cδr||Eu||r,R3

≤ cδr(||u||r + ||curl u||r),

||curl (u− (Eu)δ)||0 = ||curl Eu− (curl Eu)δ||0
≤ ||curl Eu− (curl Eu)δ||0,R3

≤ cδr||curl Eu||r,R3

≤ cδr(||u||r + ||curl u||r).

Let Ih denote the classical finite element interpolation operator in Uh, which is determined by nodal-values
(e.g., see [7]). Define

vh = Ih(Eu)δ ∈ Uh,

satisfying
||(Eu)δ − Ih(Eu)δ||0 + h||(Eu)δ − Ih(Eu)δ||1 ≤ ch`+1||(Eu)δ||`+1,

23

Page 23 of 35

IMA Journal of Numerical Analysis

IMAJNA - For peer review only - http://mc.manuscriptcentral/imajna

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



where

||(Eu)δ||`+1 ≤ ||(Eu)δ||`+1,R3 ≤ cδr−`−1||Eu||r,R3 ≤ cδr−`−1(||u||r + ||curl u||r).

Hence,

||u− vh||0,curl ≤ ||u− (Eu)δ||0,curl + ||(Eu)δ − vh||0,curl
≤ cδr(||u||r + ||curl u||r) + ch`δr−`−1(||u||r + ||curl u||r).

Choosing
δr = h`δr−`−1,

from Theorem 6.2, we obtain the error bound as claimed.

Remark 6.2. In the absence of gradient fields of a scalar H1-conforming finite element space, the rate
of convergence in Theorem 6.3 for the finite element solution uh is the best that can be attained in
H(curl ; Ω)-norm for all 0 ≤ r ≤ 1 and for all ` ≥ 1. Unless the finite element spaces contain the
gradient fields of a scalar H1-conforming finite element space, no existing methods in the literature can
reach the optimal rate r in H(curl ; Ω)-norm, to the authors’ knowledge.

To recover the optimal value r, one has to enrich Uh with the gradient fields of an H1-conforming
finite element space. There are four ways for achieving that goal.

The first way is to use the gradients of a scalar H2-conforming C1 element to enrich Uh, and the
enriched is still H1-conforming. Thus, one can construct a finite element interpolation vh = u∗h + ∇p∗h
from the regular-singular decomposition u = u∗ + ∇p∗ for the solution u, curl u ∈ (Hr(Ω))3, where
u∗ ∈ (H1+r(Ω))3 and p∗ ∈ H1+r(Ω). See Lemma 6.3 for an example of this type of regular-singular
decomposition. From Theorem 6.2, then, it is not difficult to establish the optimal error bound O(hr).

The second way is to artificially enrich Uh by the gradient fields of a scalar H1-conforming C0 ele-
ment. The enriched space is no longer H1-conforming, but, of course, it is still H(curl ; Ω)-conforming.
We use again the regular-singular decomposition u = u∗ +∇p∗ to have the optimal error bound O(hr).

The third way is simply to define Uh as the H(curl ; Ω)-conforming only Nédélec element, which
usually contains the gradient fields of a scalar H1-conforming C0 element. The optimal error bound
O(hr) follows, as is a classical result.

The fourth way is to use the composite meshes such as the Clough-Tocher/Alfeld macro meshes. Then,
Uh can contain the gradients of a scalar H2-conforming C1 element, and the optimal r order can be
restored, as done in [34], [33].

Remark 6.3. For smooth u ∈ (H1+t(Ω))3 for t ≥ 0, applying the classical finite element analysis (cf.,
[7]), from Theorem 6.2 one can have the error bound ||u − uh||0,curl ≤ chmin(t,`)||u||1+t, which is
optimal in H(curl ; Ω)-norm for t = `, the same as the order of approximation. No gradient fields are
needed in the above remark.

7 Implementation issue
In this section, we address the implementation of the finite element method proposed in section 4. There
are two ways for solving the finite element problem:

• To realize (4.28)-(4.30) by a symmetric positive definite system.

• To realize (4.28)-(4.30) by a mixed system.

7.1 Implementation by a symmetric positive definite system
We first consider the first way.

We have seen that the finite element method involves the computations of four liftings. Each lifting
needs to solve the linear finite element solution of the Poisson equation.
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7.1.1 How to compute the duality and the liftings

Once the definitions of these functionals f ∈ (H−1(Ω))3, χ ∈ (H−1/2(Γ))3, g ∈ H−1(Ω) and κ ∈
H−1/2(Γ) are given, we solve the corresponding linear finite element problems (4.6)-(4.9). When a func-
tional is given, say g ∈ H−1(Ω), it means that the action on the H1

0 (Ω) space is concretely prescribed, i.e.,
the formula of 〈g, q〉 for q ∈ H1

0 (Ω) is available. Generally, we have

〈g, q〉 = (g0, q) + (g1,∇q),

where g0 and g1 are known L2-functions. For qh ∈ Qh ⊂ H1
0 (Ω), then we have the value of 〈g, qh〉,

and we have the right-hand side vector. Similarly, when we are given a κ ∈ H−1/2(Γ), it means that the
formula of 〈κ, ϑ〉Γ for ϑ ∈ H1/2(Γ) or for ϑ ∈ H1(Ω) is known. Usually,

〈κ, ϑ〉Γ = 〈ξ · n, ϑ〉Γ = (ξ,∇ϑ) + (div ξ, ϑ),

where ξ is a known vector function in H(div ; Ω). We then obtain the right-hand side vector from the
formula of 〈κ, ϑh〉 for ϑh ∈ Ψh ⊂ H1(Ω). For all these functionals f ∈ (H−1(Ω))3, χ ∈ (H−1/2(Γ))3,
g ∈ H−1(Ω) and κ ∈ H−1/2(Γ), the corresponding right-hand side vectors are obtained from the formula
of the definitions of those functionals applying to the finite element spaces.

Solving (4.6)-(4.9), we will obtain four matrix operators of the linear element. The implementation is
as follows. For any vh ∈ Uh, put

f := curl curl vh − λvh ∈ (H−1(Ω))3, g := div vh ∈ H−1(Ω),

χ := n× vh ∈ (H−
1
2 (Γ))3, κ := curl vh · n ∈ H−

1
2 (Γ).

For example, we obtain Rh(f) ∈ Zh by solving the linear finite element problem

(Rh(f), zh)0,∇ = 〈f , zh〉 = (curl vh, curl zh)− λ(vh, zh) ∀zh ∈ Zh.

To see the matrix form of Rh(f), we introduce the finite dimensional basis of Uh and Zh: Uh =
(span{bUi , 1 ≤ i ≤ NU})3 and Zh = (span{bZi , 1 ≤ i ≤ NZ})3, where bUi , b

Z
i denote the global

Lagrange basis functions. Denote by vh =
∑NU

i=1 cib
U
i with ci = (c1i, c2i, c3i) and Rh(f) =

∑NZ

i=1 dib
Z
i

with di = (d1i, d2i, d3i). Set c ∈ R3NU

as the coefficient column vector of v, and similarly, set d ∈ R3NZ

as the coefficient column vector of Rh(f). We have, with M being the left-hand side matrix and N the
right-hand side matrix,

Md = Nc, M ∈ R3NZ×3NZ

, N ∈ R3NZ×3NU

.

Note that M is the resulting matrix from Zh ⊂ (H1
0 (Ω))3, the product of the linear elements. M is

symmetric positive definite. Similarly, we obtain ΥΓ
h(χ) ∈ Yh by solving the linear finite element problem

(ΥΓ
h(χ),yh)0,∇ = 〈χ,n× (yh × n)〉Γ = (curl vh,yh)− (vh, curl yh) ∀yh ∈ Yh,

and obtain Sh(g) ∈ Qh by solving the linear finite element problem

(Sh(g), qh)0,∇ = 〈g, qh〉 = (div vh, qh) ∀qh ∈ Qh,

and obtain ΛΓ
h(κ) ∈ Ψh by solving the linear finite element problem

(ΛΓ
h(κ), ϑh)0,∇ = 〈κ, ϑh〉Γ = (curl vh,∇ϑh) ∀ϑh ∈ Ψh.

7.1.2 A symmetric positive definite system

Letting uh =
∑NU

i=1αib
U
i , with α ∈ R3NU

being the coefficient column vector, from the bilinear form Lh
in (4.29), with the computed liftings in the above, we can obtain

Lh(uh,vh) = c′Aα,

where A ∈ R3NU×3NU

is a symmetric positive definite matrix. Similarly, we can obtain the right-hand
side vector from (4.30), i.e., we have

G(vh) = c′η, η ∈ R3NU

.

From (4.28), the resultant system is Aα = η. This is a symmetric positive definite system.
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7.2 Implementation by a mixed system
Next, we consider the second way: an expanded mixed problem.

This way lies in that all the Riesz-lifting solutions in (4.6)-(4.9) and the solution uh in (4.28) are solved
simultaneously from a mixed problem.

Introduce wh ∈ Zh, ph ∈ Qh,dh ∈ Yh, γh ∈ Ψh, which are defined as follows:

wh := Rh(curl curl uh−λuh), ph := Sh(div uh), dh := ΥΓ
h(n×uh), γh := ΛΓ

h(curl uh ·n),

and introduce fh ∈ Zh, gh ∈ Qh,χh ∈ Yh, ρh ∈ Ψh, which are defined as follows:

fh := Rh(f), gh := Sh(g), χh := ΥΓ
h(χ), ρh := ΛΓ

h(curl u∗ · n),

where u∗ ∈ H(curl ; Ω) is any function that satisfies n×u∗ = χ on Γ. Note that we do not need to really
know what u∗ is. The introduction of u∗ is only for giving the meaning of ρh. Then, from (4.28)-(4.30),
we state the mixed problem: Find

uh ∈ Uh, wh ∈ Zh, ph ∈ Qh, dh ∈ Yh, γh ∈ Ψh

and
fh ∈ Zh, gh ∈ Qh, χh ∈ Yh, ρh ∈ Ψh,

such that

(curl wh, curl vh)− λ(wh,vh)− (vh,∇ph) + (n× vh,dh)Γ + (curl vh · n, γh)Γ + Sh(uh,vh)
−(curl vh, curl fh) + λ(vh, fh) + (vh,∇gh)− (n× vh,χh)Γ − (curl vh · n, ρh)Γ = Rh(f , g,χ; vh),
(wh, zh)0,∇ − (curl uh, curl zh) + λ(uh, zh) = 0,
(ph, qh)0,∇ + (uh,∇qh) = 0,
(dh,yh)0,∇ − (n× uh,n× (yh × n))Γ = 0,
(γh, ϑh)0,∇ − (curl uh · n, ϑh)Γ = 0,
(fh, z̃h)0,∇ = 〈f , z̃h〉,
(gh, q̃h)0,∇ = 〈g, q̃h〉,
(χh, ỹh)0,∇ = 〈χ, ỹh〉Γ,
(ρh, ϑ̃h)0,∇ = 〈χ,n× (∇ϑ̃h × n)〉Γ,∗.

for all vh ∈ Uh, zh ∈ Zh, qh ∈ Qh, yh ∈ Yh, ϑh ∈ Ψh and for all z̃h ∈ Zh, q̃h ∈
Qh, ỹh ∈ Yh, ϑ̃h ∈ Ψh.

In both ways, the total scalar unknowns are 19 (For two-dimensional problem, the total scalar unknowns
are 10), and both ways involve the same computational cost. On the other hand, the coding for the mixed
system is relatively easier.

8 Numerical experiments
In this section, we provide some numerical experiments for illustrating the FEM (4.28) and the theoretical
results of error estimates. For ease of implementation we consider a two-dimensional problem of Maxwell
equations over a square domain Ω = (0, 1)2. We use the mixed formulation as formulated in the previous
section to simultaneously solve all unknowns.

In all the numerical experiments, the exact solutions are known, either singular or smooth. If not
indicated, λ = 1 is chosen. The singular solutions are in (H1/2−ε(Ω))2 and (H2/3−ε(Ω))2, respectively,
for any small ε > 0. The smooth solution is infinitely smooth. Since the exact solution u is known, all the
data f and χ are computed through (1.1) and (1.2), with g := −λ−1div f . If the data are in negative-order
Sobolev spaces, the data should be computed through their dual products in the following way (see also the
previous section):

〈f , z〉 = (curl u, curl z)− λ(u, z), 〈g, q〉 = −(u,∇q), 〈χ,y〉Γ = (curl u,y)− (u, curl y).
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For the singular boundary data and the singular right-hand side data in these examples, we may also use
the Gaussian quadrature rules with sufficiently many Gaussian points in the vicinity of the origin. With
the Gaussian quadrature rules we used fourteen Gaussian points in the computation of the line integrals
and nineteen Gaussian points in the computation of of the triangle element integrals1 If the data are in
L2 spaces, the dual products are replaced by the L2 inner products, e.g., 〈χ,y〉Γ = (χ,y)Γ. Some of
the singular solutions are the gradients of scalar functions while others are not. In fact, any H(curl ; Ω)
function can always be decomposed into the sum of a regular part in theH1 space and a singular part which
is the gradient of a scalar function which is in the H1 space(see section 2 for various decompositions).

We consider the linear element (denoted as P1 element) and the quadratic element (denoted as P2

element) in these experiments, in order to verify the theoretical results as stated in Theorem 6.3 for singular
solution and Remark 6.3 for smooth solution. The mesh consists of uniform triangles.

8.1 Example 1
We take

u = (−1/2ρ−1/2 sin(θ/2), 1/2ρ−1/2 cos(θ/2)),

where (ρ, θ) are the polar coordinates system in the plane, ρ the distance function and θ the opening
angle from the origin. Such u ∈ (H1/2−ε(Ω))2 where ε is any small positive number less than 1/2, and
curl u = 0.

The computed errors of P1 and P2 elements are reported in Table 1 and Table 2, respectively. The
theoretical order in || · ||0,curl -norm for P1 element is r`/(` + 1) = (1/2 − ε)/2 ≈ 0.25, while for P2

element r`/(` + 1) = (1/2 − ε)2/3 ≈ 0.33. From Tables 1 and 2, we see that the computed order is
approximately consistent with the predicted. We also see that for the P2 element, the convergence rate in
Table 2 seems to be close to optimal 1/2. The reason is not clear so far.

Table 1: L2, H(curl ) errors of uh for P1 element: H1/2−ε solution

h 1/4 1/8 1/16 1/32 1/64 1/128
‖u− uh‖0 0.13678493 0.13218979 0.12194860 0.10641319 0.09035986 0.07622981
order — 0.04929857 0.11633749 0.19659624 0.23592299 0.24532686
||curl (u− uh)||0 0.04517498 0.04087683 0.03656654 0.02899549 0.02160393 0.01617408
order — 0.14424071 0.16075919 0.33469559 0.42453508 0.41760948

Table 2: L2, H(curl ) errors of uh for P2 element: H1/2−ε solution

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖0 0.08945654 0.06765027 0.05022329 0.03702763 0.02719256
order — 0.40309141 0.42973904 0.43975442 0.44539005
||curl (u− uh)||0 0.04511309 0.03207375 0.02276016 0.01611810 0.01140330
order — 0.49215306 0.49488262 0.49782858 0.49923029

8.2 Example 2
We take

u = (−2/3ρ−1/3 sin(θ/3), 2/3ρ−1/3 cos(θ/3)).

Such u ∈ (H2/3−ε(Ω))2, and curl u = 0. The computed errors of P1 and P2 elements are reported
in Table 3 and Table 4, respectively. The theoretical order in || · ||0,curl -norm for P1 and P2 elements is
respectively r`/(`+1) = (2/3−ε)/2 ≈ 0.33 and approximately r`/(`+1) = (2/3−ε)2/3 ≈ 0.44. From

1D. A. Dunavant, High degree efficient symmetrical Gaussian quadrature rules for the triangle, Internat. J. Numer. Methods
Engrg., 21(1985), pp. 1129-1148.
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Tables 3 and 4, we see that the computed order is approximately consistent with the predicted. Likewise,
we see again that the convergence rate in Table 4 for the P2 element seems to tend to optimal 2/3.

Table 3: L2, H(curl ) errors of uh for P1 element: H2/3−ε solution

h 1/4 1/8 1/16 1/32 1/64 1/128
‖u− uh‖0 0.08695579 0.08165994 0.07210830 0.05921238 0.04724758 0.03760512
order — 0.09065353 0.17946315 0.28426644 0.32565849 0.32931133
||curl (u− uh)||0 0.02324863 0.02625699 0.02426743 0.01779159 0.01214099 0.00864408
order — -0.17555636 0.11368023 0.44782644 0.55130887 0.49010182

Table 4: L2, H(curl ) errors of uh for P2 element: H2/3−ε solution

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖0 0.04376512 0.02907927 0.01898241 0.01231933 0.00797417
order — 0.58979051 0.61532817 0.62373931 0.62751718
||curl (u− uh)||0 0.01773116 0.01124060 0.00712104 0.00449736 0.00283577
order — 0.65756728 0.65856002 0.66300783 0.66534020

8.3 Example 3
We consider two exact solutions which are not curl -free, i.e., curl u 6= 0. Such solution is not gradient.
To construct such solution, let u = (u1, u2) be the exact solution of subsection 8.1. The first non-gradient
solution is

u∗ := u + (sin(y), sin(x)).

In addition, we consider the second non-gradient singular solution:

u∗∗ := (u2,−u1).

The two functions u∗ and u∗∗ are no longer gradients of scalar functions. They are still singular; both
u∗ and u∗∗ have the same regularity as u. We use the P1 element. With the finite element solutions
respectively denoted by u∗h and u∗∗h , the computed errors are reported in Tables 5 and 6. From these tables,
we see that the computed orders are still approximately consistent with the predicted.

Table 5: L2, H(curl ) errors of u∗h

h 1/4 1/8 1/16 1/32 1/64 1/128
‖u∗ − u∗h‖0 0.15297168 0.13044549 0.12004545 0.10600884 0.09034701 0.07623370
order — 0.22981758 0.11986630 0.17939613 0.23063581 0.24504795
‖curl (u∗ − u∗h)‖0 0.14092891 0.06301626 0.03577231 0.02831519 0.02156276 0.01616831
order — 1.16117151 0.81688082 0.33726693 0.39303439 0.41537315

Table 6: L2, H(curl ) errors of u∗∗h

h 1/4 1/8 1/16 1/32 1/64 1/128
‖u∗∗ − u∗∗h ‖0 0.16383283 0.15626837 0.13598042 0.11231068 0.09415977 0.08000757
order — 0.06819872 0.20062689 0.27590375 0.25431236 0.23497445
‖curl (u∗∗ − u∗∗h )‖0 0.05148881 0.06424895 0.05297506 0.03206539 0.02022473 0.01519387
order — -0.31941398 0.27835953 0.72429652 0.66489654 0.41263111
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8.4 Example 4
We take a smooth solution

u = (− sin(2πy)(cos(2πx)− 1), sin(2πx)(cos(2πy)− 1))

to test the proposed method, and also compare the computational results between the proposed method and
compared with the standard method (curl u, curl v) + (div u,div v)− (u,v) = (f ,v)− (div f ,div v),
still with λ = 1. The computed errors of P1 and P2 elements of the standard formulation are reported in
Table 7 and Table 8, respectively, while for the proposed method by Table 7′ and Table 8′. The theoretical
order in || · ||0,curl -norm for P1 and P2 elements is respectively ` = 1 and ` = 2. From Tables 7 and
8, the computed orders are optimal for the standard method in both L2 norm and H(curl ) norm. From
Tables 7′ and 8′, the computed orders are about one and two, which have confirmed the predicted. In
comparison with the standard method, there is a loss of one order in L2 norm for the proposed method,
but the H(curl ) norm convergence orders are indeed optimal. The reason may be due to the fact that the
standard method provides a much stronger stability in || · ||0,curl ,div norm. It could thus be expected that
the L2 norm convergence order is higher by one order, just like the Poisson Dirichlet problem of Laplace
operator. However, the standard method cannot correctly approximate singular solutions, as is well-known.

Table 7: (Standard method) L2, H(curl ) errors of uh for P1 element: smooth solution

h 1/4 1/8 1/16 1/32 1/64 1/128

‖u− uh‖0 0.43669559 0.13597740 0.03617140 0.00918962 0.00230677 0.00057728
order — 1.68326108 1.91044569 1.97677290 1.99413171 1.99852865
‖curl (u− uh)‖0 4.53862691 2.29056553 1.13284587 0.56400690 0.28166763 0.14079067
order — 0.98655206 1.01575225 1.00616687 1.00171906 1.00044208

Table 7′: (Proposed method) L2, H(curl) errors of uh for P1 element: smooth solution

h 1/4 1/8 1/16 1/32 1/64 1/128

‖u− uh‖0 1.08729924 0.65517320 0.37864667 0.28284629 0.19960536 0.11025138
order — 0.73080081 0.79102409 0.42083400 0.50286781 0.85635372
‖curl (u− uh)‖0 7.33457185 4.46214982 1.99958157 0.75975236 0.30417988 0.13947827
order — 0.71697380 1.15804082 1.39609698 1.32060454 1.12488430

Table 8: (Standard method) L2, H(curl) errors of uh for P2 element: smooth solution

h 1/4 1/8 1/16 1/32 1/64

‖u− uh‖0 0.05274715 0.00674109 0.00084982 0.00010652 0.00001332
order — 2.96803942 2.98774487 2.99610309 2.99891081
‖curl (u− uh)‖0 1.13338784 0.29795247 0.07477305 0.01866310 0.00465970
order — 1.92748753 1.99449191 2.00232993 2.00187800

Table 8′: (Proposed method) L2, H(curl) errors of uh for P2 element: smooth solution

h 1/4 1/8 1/16 1/32 1/64

‖u− uh‖0 0.30669052 0.04445678 0.00552012 0.00098352 0.00023148
order — 2.78630831 3.00963054 2.48868018 2.08708815
‖curl (u− uh)‖0 1.59586550 0.35138165 0.07536291 0.01808351 0.00449989
order — 2.18322831 2.22111233 2.05917953 2.00671427
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8.5 Example 5
In this subsection, we consider different values of λ to know about how λ affects the convergence rate.
We take the exact solution of subsection 8.1 with the use of the P1 element and consider several values
λ = 1, 15, 30, 45. As can be seen from the results in Table 9, the higher the wavenumbers λ are, the
more the convergence orders deteriorate accordingly. Such issue has been well-known for Helmholtz-type
equations with high wavenumber, and it deserves further studies, but it is beyond the scope of this paper.

Table 9: L2, H(curl ) errors of uh for different λs

λ h 1/4 1/8 1/16 1/32 1/64 1/128

1

‖u− uh‖0 0.13678493 0.13218979 0.12194860 0.10641319 0.09035986 0.07622981
order — 0.04929857 0.11633749 0.19659624 0.23592299 0.24532686
‖curl (u− uh)‖0 0.04517498 0.04087683 0.03656654 0.02899549 0.02160393 0.01617408
order — 0.14424071 0.16075919 0.33469559 0.42453508 0.41760948

15

‖u− uh‖0 0.09375371 0.10251241 0.10514734 0.10111516 0.09173078 0.07947803
order — -0.12885093 -0.03661376 0.05641300 0.14052155 0.20684980
‖curl (u− uh)‖0 0.11340742 0.08103533 0.07691022 0.08884497 0.10040281 0.09554489
order — 0.48489215 0.07537557 -0.20811476 -0.17643757 0.07154905

30

‖u− uh‖0 0.07476354 0.08394423 0.08943865 0.09011749 0.08583046 0.07647305
order — -0.16709626 -0.09146730 -0.01090870 0.07031744 0.16653836
‖curl (u− uh)‖0 0.21203683 0.15599929 0.11387433 0.10047165 0.09965822 0.08356459
order — 0.44277543 0.45409687 0.18065411 0.01172779 0.25409704

45

‖u− uh‖0 0.06553182 0.07359882 0.08010152 0.08241766 0.08061779 0.07448523
order — -0.16748707 -0.12214695 -0.04112389 0.03185520 0.11414383
‖curl (u− uh)‖0 0.26848267 0.20101306 0.14180167 0.10771165 0.09697876 0.09547564
order — 0.41753971 0.50341473 0.39670019 0.15143361 0.02253612

8.6 Example 6
We consider a case in which the right-hand side f is singular. We also compute the residual of the diver-
gence of the difference between the finite element solution and the exact solution. For this purpose, let
p = ρ1/2 sin(θ/2) which has the regularity of H3/2−ε(Ω) for any small positive number ε less than 1/2,
and let p♦ := 100 sin(x+ 1) sin(y + 1)p. Consider

u♦ = curl p♦ = (∂p♦/∂y,−∂p♦/∂x).

Then, compute f = curl curl u♦ − u♦, still with λ = 1, and it follows that f ∈ (H−1/2−ε(Ω))2. The
singularity of f can be seen from the figures for the two components of f = (f1, f2) which are shown by
Figures 1a and 1b in Figure 1.

We use the P1 element for the finite element solution denoted by u♦h and report the numerical results in
Table. Upon the interest of one of the referees of this paper, we in addition report the numerical results for
the residuals of the divergence of the difference between the finite element solution and the exact solution

in the norm ||div u♦h ||−1,h :=
√
||Sh(div u♦h )||20,∇ +

∑
K∈Th h

2
K ||div u♦h ||20,K . It can be shown that

||div · ||−1,h is equivalent to the H−1 norm ||div · ||−1 over Uh. Note that the exact solution satisfies
div u♦ = 0. The errors are reported in Table 10. The convergence order is about 0.25 as predicted. In
addition, the ||div · ||−1,h norm of the finite element solution converges with about the same order, namely,
div u♦h converges to div u♦ in the norm || · ||−1 with about the same order.

8.7 Discussion on stabilization
In this subsection, we report some numerical results from the effects of the stabilizations. We take the
exact solution from subsection 8.1. The regularity of the exact solution is 1/2 − ε for any small number
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Figure 1: Singular right-hand side f = (f1, f2) of Example 6 in subsection 8.6

Table 10: L2, H(curl), ||div ||−1,h errors of u♦h with singular right-hand side in Example 6

h 1/4 1/8 1/16 1/32 1/64

||u♦ − u♦h ||0 34.10050339 15.87895996 10.13679246 8.05924726 6.70825614
order — 1.10267661 0.64751520 0.33088422 0.26470732

||curl (u♦ − u♦h )||0 49.43313171 23.46731781 11.18508758 6.54473633 4.21271455
order — 1.07482535 1.06907641 0.77316958 0.63558490

||div u♦h ||−1,h 3.10607212 3.29645872 3.16358151 2.77816480 2.26491114
order — -0.08582569 0.05935825 0.18742658 0.29467773

0 < ε < 1/2. We first consider the case without the stabilizations with the use of P1 element and P2

element. When using the P2 element, for h = 1/2, 1/4, · · · , etc., all the resulting matrices are singular,
and no finite element solutions can be obtained. When using the P1 element, the situation is a little bit
strange. For h = 1/2, 1/4, the resulting matrices are still singular. For h = 1/8, 1/16, 1/32, 1/64, the
resulting matrices are not singular, but the resulting finite element solutions look like clutters. For example,
for h = 1/64, the finite element solution uh = (u1h, u2h) are shown in Figures 2a and 2b in Figure 2.
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Figure 2: Finite element solution of Example 1 in subsection 8.1 without stabilizations

We next report the numerical results with the stabilization in (5.21) in Tables 11 and 12. From these two
tables, the computed convergence orders in ||·||0,curl -norm are approximately consistent with the predicted
r`(`+1) = (1/2−ε)/2 ≈ 0.25 for the P1 element and with the predicted r`(`+1) = (1/2−ε)2/3 ≈ 0.33
for the P2 element. For the P2 element, the computed order seems still to be close to the optimal order 0.5.

Corresponding to Remark 5.2, we report some additional numerical results, where all the discrete Riesz-
representation lifting operators are defined in the enriched finite element spaces as described in Remark 5.2

31

Page 31 of 35

IMA Journal of Numerical Analysis

IMAJNA - For peer review only - http://mc.manuscriptcentral/imajna

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



so that all the stabilizations can be dropped. Here we still consider the exact solution in subsection 8.1
and use the P1 element. The numerical results are reported in Table 13, where the convergence order is
comparable to that in Table 11. We also report the CPU times in Table 13, for example. The computations
are performed in personal laptop using MATLAB codes.

Table 11: L2, H(curl) errors of uh with P1 element and (5.21)

h 1/4 1/8 1/16 1/32 1/64

||u− uh||0 0.15213127 0.13832658 0.12352097 0.10613546 0.089657456
order — 0.13723827 0.16332243 0.21884930 0.24474576
||curl (u− uh)||0 0.02912832 0.03514196 0.03293941 0.02614453 0.01945651
order — -0.27077227 0.09337981 0.33330586 0.42625584

Table 12: L2, H(curl) errors of uh with P2 element and (5.21)

h 1/4 1/8 1/16 1/32 1/64

||u− uh||0 0.10846542 0.07814245 0.05561342 0.03948855 0.02802773
order — 0.47305672 0.49067358 0.49399864 0.49457967
||curl (u− uh)||0 0.02069951 0.01268150 0.00817145 0.00552495 0.00383610
order — 0.70687154 0.63406052 0.56463177 0.52632006

Table 13: L2, H(curl) errors of uh with enriched FE spaces replacing stabilizations

h 1/4 1/8 1/16 1/32 1/64

||u− uh||0 0.12084605 0.10684409 0.09061946 0.07620836 0.06404244
order — 0.17766322 0.23761420 0.24987168 0.25092098
||curl (u− uh)||0 0.03427928 0.04506178 0.04520172 0.04094476 0.03550838
order — -0.39456743 -0.00447348 0.14269888 0.20551923
CPU time(s) 1.59 1.89 3.37 14.13 78.82

Acknowledgements The authors would like to thank the two anonymous referees and the associated
editor for their very valuable and helpful comments and suggestions which have greatly helped to improve
the presentation of the paper.

Appendix
Upon the interest of one of the referees, in this Appendix section, we report some numerical results for the
weighted mixed method in [32] in an L-shaped domain Ω := (−1, 1)2 \ ([0, 1]× [−1, 0]) ⊂ R2. Consider
a two-dimensional problem of Maxwell’s equations in Ω with boundary Γ and unit tangential vector τ , for
given right-hand sides f , κ and boundary data χ, to find the electrical field z such that

curl curl z = f , div z = κ in Ω, z · τ = χ on Γ. (A.1)

With a multiplier introduced, which identically equals zero and is called a dummy variable, for the above
Maxwell’s equations, one obtains a mixed problem. Accordingly, from [32], the weighted mixed finite
element method therein can be formulated as follows: Find zh ∈ Xh ⊂ H(curl ; Ω), θh ∈M∗h ⊂ H1

0 (Ω),
zh · τ = χh where χh is an interpolation of χ, such that, ∀vh ∈ Xh ∩H0(curl ,Ω) and ∀ϑh ∈M∗h ,{

(curl zh, curl vh) + (div zh,div vh)0,γ + (θh,div vh) = (f ,vh) + (κ, div vh)0,γ ,
(div zh, ϑh) = (κ, ϑh),

(A.2)
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where for any two functions p and q, (p, q)0,γ :=
∫

Ω
d2γpq, and d is the distance function to the reentrant

corner (here is the origin) and γ ∈ (γmin, 1] for γmin ∈ (0, 1/2]. In [32], γ is taken as 0.95. In [32, pages
507-508], the finite element space M∗h for the multiplier θh is an unusual subspace of H1

0 (Ω), e.g.,

M∗h := {ϑh ∈ H1
0 (Ω) : ϑh|K ∈ P1(K),∀K ∈ Th, ϑh ≡ 0 in all those elements K with ∂K ∩ Γ 6= ∅}.

(A.3)
In other words, any function ϑh ∈M∗h not only is zero on the boundary Γ and but also is further identically
zero on all the elements in the neighborhood of the boundary Γ.

From [32], for approximating the electrical field z, it is known that Xh cannot be chosen as the linear
element and is instead chosen as the quadratic element. Here, for the weighted mixed method (A.2),
we report the numerical results for the linear element as well as the quadratic element for the Xh, while
M∗h is the same(defined in (A.3)). For comparisons, we also report the numerical results of the proposed
method with the linear element and with the quadratic element for approximating the electrical field z of
the same problem (A.1). From Tables A1 and A2, indeed, the weighted mixed method (A.2) does not give
a convergent solution for the linear element while it gives a convergent solution for the quadratic element,
for both of which M∗h in (A.3) is used. On the contrary, from Tables A3 and A4, for both linear element
and quadratic element, the proposed method gives convergent solutions.

Table A1: L2, H(curl) errors of zh with the method (A.2) of P1 element

h 1/4 1/8 1/16 1/32 1/64

||z− zh||0 0.22165551 0.18326176 0.19059676 0.23653279 0.30914111
order — 0.27441350 -0.05661784 -0.31151659 -0.38622535
||curl (z− zh)||0 0.36614843 0.42006414 0.49855785 0.58966605 0.68718886
order — -0.19818102 -0.24715130 -0.24213723 -0.22080850

Table A2: L2, H(curl) errors of zh with the method (A.2) of P2 element

h 1/4 1/8 1/16 1/32 1/64

||z− zh||0 0.12818975 0.09567879 0.07396757 0.05709418 0.04255315
order — 0.4220099 0.37130631 0.37354915 0.42407779
||curl (z− zh)||0 0.21310929 0.17590991 0.13305225 0.09105296 0.05556513
order — 0.27675668 0.40284385 0.54721506 0.71252623

Table A3: L2, H(curl) errors of zh with the proposed method of P1 element

h 1/4 1/8 1/16 1/32 1/64

||z− zh||0 0.24437197 0.21751288 0.18764186 0.15537776 0.12514313
order — 0.16797800 0.21311909 0.27220169 0.31220098
||curl (z− zh)||0 0.03813998 0.04711603 0.04571838 0.03686610 0.02785113
order — -0.30491384 0.04344382 0.31047929 0.40455892

Table A4: L2, H(curl) errors of zh with the proposed method of P2 element

h 1/4 1/8 1/16 1/32 1/64

||z− zh||0 0.12858677 0.08103176 0.05114443 0.03224953 0.02032916
order — 0.66618284 0.66391026 0.66529913 0.66572721
||curl (z− zh)||0 0.00847390 0.00438290 0.00242808 0.00141754 0.00085666
order — 0.95114146 0.85206869 0.77642730 0.72660164
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