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Abstract: Cancer cell mutations occur when cells undergo multiple cell divisions, and these mutations
can be spontaneous or environmentally-induced. The mechanisms that promote and sustain these
mutations are still not fully understood. This study deals with the identification (or reconstruction)
of the usually unknown cancer cell mutation law, which lead to the transformation of a primary
tumour cell population into a secondary, more aggressive cell population. We focus on local and
nonlocal mathematical models for cell dynamics and movement, and identify these mutation laws
from macroscopic tumour snapshot data collected at some later stage in the tumour evolution. In a
local cancer invasion model, we first reconstruct the mutation law when we assume that the mutations
depend only on the surrounding cancer cells (i.e., the ECM plays no role in mutations). Second,
we assume that the mutations depend on the ECM only, and we reconstruct the mutation law in this
case. Third, we reconstruct the mutation when we assume that there is no prior knowledge about
the mutations. Finally, for the nonlocal cancer invasion model, we reconstruct the mutation law that
depends on the cancer cells and on the ECM. For these numerical reconstructions, our approximations
are based on the finite difference method combined with the finite elements method. As the inverse
problem is ill-posed, we use the Tikhonov regularisation technique in order to regularise the solution.
Stability of the solution is examined by adding additive noise into the measurements.

Keywords: inverse problems; mutation identification; Tikhonov regularisation; tumour growth

1. Introduction

The beginning of a primary solid tumour is the result of a single normal cell that is transformed
as a result of mutations in certain key genes. Cells can mutate spontaneously, or mutations can be
environmentally induced. Mutations occur during cell division, and most of the time the immune
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system can recognise mutated cells and eliminate them. When the immune system fails to eliminate
cells with mutations in genes that control cell proliferation, cells become cancerous. It is known that all
cancer cell lines have at least one mutation, with most cancer cell lines having more than one mutation;
e.g., in [1] 137 oncogenic mutations were identified in 14 out of 24 known cancer genes in 60 human
cancer cell lines. Moreover, cancer cells are genetically unstable and cells inside the solid tumours
keep mutating leading to very heterogeneous tumour masses.

The mechanisms behind the mutation pressure are still not fully understood. Experimental studies
have shown that some changes in the extracellular matrix (ECM) can correlate with sustained cell
proliferative signalling and an increased risk of developing cancer [2]. Other studies have shown
that culturing cells for long times in stiff hydrogels can lead to the subclonal selection of genomic
aberrations in cells [3], thus suggesting that the ECM properties could impact the mutation status of
cells in solid tumours. Other studies suggested that the maintenance of cells at high density in the
absence of proliferation leads to an increase in mutagenesis following cell division [4]. Therefore,
there seem to be different mechanisms that can trigger and influence the mutation rate of cells.

Mutated cells not only incur sustained proliferation (see Figure 1), but can also exhibit migrational
and invasion properties [5], eventually leading to cancer metastasis. The invasion of surrounding
tissue is the result of ECM degradation and remodelling by the cancer cells (which can secrete various
proteolytic enzymes, such as matrix metalloproteinases (MMPs)) as well as other cells in the
microenvironment. The last decades have seen the development of numerous theoretical studies based
on mathematical models, which investigate computationally the biological mechanisms behind cancer
cell invasion into the tissue. Most of these models are single-scale models; see [6–11] and references
therein. More recently, multi-scale mathematical models have started to be developed to consider also
the multi-scale aspects of various biological processes occurring during cancer invasion [12–16].

The main issue faced by all these single-scale and especially multi-scale mathematical models for
cancer growth and invasion is parameter estimation. The last few years have seen the publication of
various mathematical studies that try to estimate numerically different model parameters using inverse
problem formulations [17–21]. These studies focus on identifying the magnitude of isotropic [21] and
anisotropic tumour diffusion [18], the magnitude of tumour growth rate [19, 21], the strength/location
of tumour-induced tissue deformation [19], the position of the blood vessels that act as a source for the
oxygen concentration that influences tumour growth [17], the location of the source of tumours [20].

To our knowledge, no studies have tried to estimate the mutation laws for cells inside heterogeneous
tumours. To address this aspect, in this current study we consider a simplified problem with only two
cancer cell populations (one mutating into the second one), that can exhibit both random and directed
haptotactic movement. Moreover, we assume that the cells can degrade and remodel the surrounding
ECM density. Furthermore, the type of interactions among cancer cells and between cells and ECM
is not always very clear: some simpler mathematical models for cancer growth and invasion consider
local cell-cell and cell-ECM interactions [8, 9], while other more complex models consider non-local
cell-cell and cell-ECM interactions [11,16,22,23]. In this study, we consider both type of models, local
and non-local, and estimate the mutation laws for both cases. Finally, we assume here the knowledge
of additional information in terms of both exact and noisy measurements of the tumour constituent
density at some later time in the tumour evolution. We test our inversion approach on several cancer
proliferation laws that are usually used in cancer modelling: logistic and Gompertz proliferation.

This paper is structured as follows. In Section 2 we describe the local mathematical model for the
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dynamics of the two cancer cell sub-populations and the extracellular matrix (ECM). In Sections 3
and 3.1 we formulate the inverse problem for this local model under the assumptions of logistic cell
proliferation and mutation depending only on cancer cell density. In Section 3.4 we formulate the
inverse problem for this local model under the assumption of logistic cell proliferation and mutation
depending on both cell and ECM density. In Section 4 we describe a non-local model for two cancer
cell populations and their interactions with the ECM, while in Section A we present the numerical
approach for this forward nonlocal model. In Section 4.1 we formulate the inverse problem for this
nonlocal model for cancer invasion. We summarise and discuss our results in Section 5.

Figure 1. Schematic of cancer cells proliferation.

2. Mathematical model for two local cancer cell sub-populations

In this study we consider two populations of tumour cells: a primary cell population c1(x, t) that
can mutate into a more aggressive secondary cell population c2(x, t). These cell populations exercise
a spatial redistribution via random movement (with diffusion coefficients D1 and D2) and directed
movement towards extracellular matrix (ECM) gradients v(x, t) (with haptotactic coefficients η1 and
η2). Moreover, the two populations undergo logistic growth (at the same rate µc), up to a carrying
capacity (Kc). We also assume that the ECM undergoes degradation (at a rate ρ) and remodelling (at a
rate µv). The above assumptions are described by the equations:

∂c1

∂t
= D1∆c1︸ ︷︷ ︸

diffusion

− η1∇ · (c1∇v)︸        ︷︷        ︸
haptotactic movement

+ µcc1

(
1 −

c1 + c2 + v
Kc

)
︸                     ︷︷                     ︸

logistic proliferation

− ω(t)︸︷︷︸
mutation
switch

Q(·, ·)︸︷︷︸
unknown
mutation

, (2.1a)

∂c2

∂t
= D2∆c2︸ ︷︷ ︸

diffusion

− η2∇ · (c2∇v)︸        ︷︷        ︸
haptotactic movement

+ µcc2

(
1 −

c1 + c2 + v
Kc

)
︸                     ︷︷                     ︸

logistic proliferation

+ ω(t)︸︷︷︸
mutation
switch

Q(·, ·)︸︷︷︸
unknown
mutation

, (2.1b)
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∂v
∂t

= −ρ (c1 + c2) v︸          ︷︷          ︸
degradation

+ µv (Kc − v − c1 − c2)+︸                     ︷︷                     ︸
remodelling term

. (2.1c)

where (Kc − v− c1 − c2)+ := max{(Kc − v− c1 − c2), 0}. Finally, the unknown term Q(·, ·) represents the
mutation law of cell subpopulation c1 into cell subpopulation c2, which is assumed to be mediated by
a time-dependant mutation enhancement ω(t) that is known a priori and is taken here of the form

ω(t) :=

(
1 + tanh

(
t−t1,2

ts

))
2

,

where t1,2 is the time at which mutations from c1 to c2 start occurring, and ts > 0 is a time-steepness
coefficient for this mutation law.

The mutation law Q(·, ·) is considerd here unknown due to either unknown dependance on the
primary cell population c1, or unknown dependance on the ECM v, or unknown dependance on both
primary tumour cell population and ECM. In this study we investigate three assumptions related to
this mutation term, namely: (i) mutation depends linearly on the density of primary tumour cells as
experimental studies have shown that tumour hypoxia, generated by high tumour cell density, is linearly
correlated with an increase in genomic changes toward more aggressive tumours [24]; (ii) mutation
depends linearly on the density of primary tumour cells, and nonlinearly on the ECM density [3];
(iii) mutation law is very general and depends autonomously on both the primary tumour and ECM,
as suggested by various experimental studies regarding the role of the tumour microenvironment in
cancer cells mutation process [3, 24, 25]. Thus mathematically, these cases correspond to three inverse
problems that seek to identify the unknown mutation law Q(·, ·) in the following three situations:

(i) Mutation depends linearly on the density of primary tumour cell sub-population c1 but does not
depend at all on ECM, and so this is given by the unknown term

Q(c1, v) := Q̃1(c1) = δ0c1, (2.2)

with δ0 representing the unknown mutation rate.
(ii) Mutation depends in a known linear manner on c1 and in an unknown nonlinear way on the density

of ECM. The unknown dependence on v is denoted mathematically by the unknown function
Q̃2(v), and so the entire mutation law is therefore of the form

Q(c1, v) := δ0c1Q̃2(v), (2.3)

with δ0 > 0 here being considered known. A usual choice for Q̃2(v) is of the form [26, 27]:

Q̃2(v) :=


exp

(
−1

κ2−(1−v(x,t))2

)
exp

(
− 1
κ2

) if 1 − κ < v (x, t) < 1,

0, otherwise,
(2.4)

where κ > 0 is a certain level of ECM beyond which mutations can occur.
(iii) Mutation is given by an unknown general nonlinear law Q(c1, v) that is autonomous in c1 and v,

which will be reconstructed from the data available at a specific later time in the tumour evolution.
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To complete the description of the model, we mention that the initial conditions for the cancer-ECM
dynamics described by model (2.1) are:

c1(x, 0) := c1,0(x), c2(x, 0) := c2,0(x) and v(x, 0) := v0(x), for x ∈ Ω. (2.5)

Here, c1,0(·), c2,0(·) and v0(·) give the initial distributions of the primary cell subpopulation, mutated cell
subpopulation and ECM, respectively. Furthermore, we assume that the cells and the ECM components
do not leave the tissue region Ω, and therefore we consider zero Neumann boundary conditions:

∂c1

∂n

∣∣∣∣∣
∂Ω

= 0,
∂c2

∂n

∣∣∣∣∣
∂Ω

= 0 and
∂v
∂n

∣∣∣∣∣
∂Ω

= 0, (2.6)

where n(ξ) is the usual normal direction at any given tissue boundary point ξ ∈ ∂Ω.
Throughout the following sections, we refer to the tumour dynamics model (2.1) together with the

initial and boundary conditions (2.5) and (2.6) as the “forward model”.

3. Inverse problem formulation for the unknown cancer cell mutation

We start with the forward model defined by the tumour dynamics model (2.1) in the presence of
the initial and boundary conditions (2.5) and (2.6). Our goal is to reconstruct the unknown cancer
cells mutation law Q(·) from additional information given by measurements of the cancer cells and
ECM densities taken at some later time t f := T > 0 in the tumour evolution. These measurements are
therefore given in the form of the following functions on Ω, which are considered to be known:

c∗1(·) : Ω→ R for the cancer subpopulation c1, (3.1a)
c∗2(·) : Ω→ R for the cancer subpopulation c2, (3.1b)
v∗(·) : Ω→ R for the ECM density. (3.1c)

In the following, we will explore the reconstruction of the unknown cancer mutation law Q(·) when
the known measurements c∗1(x), c∗2(x) and v∗(x) will be given both as exact (accurate) data and as noisy
data, ∀x ∈ Ω.

3.1. Inverse problem setup: forward solver for the retrieval of mutation laws in Cases (i) and (ii)

In this section we outline in a unitary manner the forward solver involved in the retrieval of the
mutation laws corresponding to Cases (i) and (ii) that require the retrieval of Q̃1(c1) and Q̃2(v),
respectively. To that end, for r = 1, 2, denoting by er either the primary tumour or the ECM, i.e.,
er ∈ {c1, v}, enables us to proceed with addressing simultaneously both cases by simply referring to
the retrieval of the term compactly denoted as Q̃r(er) that is specified by

er :=
{

c1, i f r = 1,
v, i f r = 2,

and subsequently Q̃r(er) :=

 Q̃1(c1), i f r = 1,
Q̃2(v), i f r = 2.

(3.2)

We start by considering a uniform discretisation G
Ω

:= {(xi, y j)}i, j=1...N of step size ∆x = ∆y > 0 for
a square maximal tissue region Ω ⊂ R2 where the tumour exercises its dynamics. At any given time
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t ∈ [0, t f ] the discretisations of cancer cells densities c1 (·, t) and c2 (·, t) as well as the density of ECM
v (·, t) are therefore given by the N × N matrices c̃1 (t) := {c̃1,i, j (t)}i, j=1...N , c̃2 (t) := {c̃2,i, j (t)}i, j=1...N and
ṽ (t) := {ṽi, j (t)}i, j=1...N , with c̃1,i, j(t) := c1((xi, y j), t), c̃2,i, j(t) := c2((xi, y j), t) and ṽi, j(t) := v((xi, y j), t),
∀ i, j = 1 . . .N. Correspondingly, in the following ẽr(t) will denote either c̃1(t) or ṽ(t), i.e., ẽr(t) ∈
{c̃1(t), ṽ(t)}, as required by model (3.2).

Throughout this study we assume that we have a priori knowledge that the cumulated ECM and
cancer densities do not exceed the tissue carrying capacity Kc. Under this assumption, the unknown
mutation law can be written in terms of an unknown (for the moment) function mc∗1,c

∗
2,v
∗

: [0,Kc] →
[0,∞). Moreover, this unknown function mc∗1,c

∗
2,v
∗

will be appropriately identified within a suitable
family of functions M1 such that the corresponding solution for the tumour model (2.1) will match
the measurements given in model (3.1). Thus, denoting by Q̃c∗1,c

∗
2,v
∗

r (·) the unknown mutation term for
which the corresponding solution of model (2.1) matches measurement model (3.1), at each (xi, y j) we
can write this as

Q̃
c∗1,c

∗
2,v
∗

r (ẽmc∗1 ,c
∗
2 ,v
∗

r,i, j (t)) :=M1
i, j(ẽ

mc∗1 ,c
∗
2 ,v
∗

r (t),mc∗1,c
∗
2,v
∗

),

whereM1 (·, ·) := {M1
i, j(·, ·)}i, j=1...N , withM1(·, ·) : RN×N ×M1 → RN×N representing a “trial mutation

operator” that will be specified below alongside the family of functionsM1. Furthermore, ẽmc∗1 ,c
∗
2 ,v
∗

r (t) :=
{ẽmc∗1 ,c

∗
2 ,v
∗

r,i, j (t)}i, j=1..N represents the solution for the density of either the primary cell population (if r = 1)

or the ECM (if r = 2) that is obtained for model (2.1) when, instead of the unknown term Q̃r(er), in the
mutation law we use the trial mutation termM1(·,mc∗1,c

∗
2,v
∗

).
Next, we consider an uniform discretisation for the domain [0,Kc] that is given by an equally spaced

grid G1
M

:= {ηl}l=1...M of step size ∆η > 0. On this discretised domain, the unknown function mc∗1,c
∗
2,v
∗

is identified through a suitable approximation within the following M−dimensional space of functions
associated with G1

M
, namely

M
1 :=

{
m : [0,Kc]→ R

∣∣∣∣∣ m|El
=

∑
p=0,1

m(ηl+p)φl+p, ∀El ∈ G
1,tiles
M

}
with the family of intervals G1, tiles

M
:=

{
El :=

[
ηl, ηl+1

]
| l = 1 . . . M − 1

}
,

and ∀ El ∈ G
1, tiles
M

, {φl+p}p=0,1 describe the usual linear shape functions on El.

(3.3)

Thus, for any candidate function m ∈ M1, the corresponding trial mutation operator M1 has each
of its componentsMi, j, ∀ i, j = 1 . . .N, given by

M1
i, j(ẽ

m
r (t),m) := m|El

(ẽm
r,i, j(t)),

with index l being independent of its choice within the associated set of indices Λi, j, namely:
Λi, j := {l ∈ {1, . . . ,M−1} | ∃El ∈ G

1, tiles
M

such that ẽm
r,i, j(t) ∈ El}.

(3.4)

Here, as per model (3.2), ẽm
r (t) := {ẽm

ri, j(t)}i, j=1...N represents either the solutions for the density of
primary cancer cell population, {c̃m

1,i, j(t)}i, j=1...N , or for the density of ECM, {ṽm
i, j(t)}i, j=1...N , which

alongside the density of mutated cell population, {c̃m
1,i, j(t)}i, j=1...N , are obtained with model (2.1) when

this uses within the mutation law the trial mutation termM1(·,m) := {M1
i, j (·,m)}i, j=1...N given in model

(3.4) instead of the unknown term Q̃r(·). Finally, the trial mutation form for the full mutation law

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3720–3747.



3726

given in models (2.2) and (2.3) for Cases (i) and (ii), respectively, is denoted by
Mr(c̃m

1 (t), ṽm(t),m) := {Mr,i, j(c̃m
1 (t), ṽm(t),m)}i. j=1...N and is given by:

Mr,i, j(c̃m
1 (t), ṽm(t),m) :=

 M1
i, j(c̃

m
1 (t),m), i f r = 1,

δ0c̃m
1,i, j(t)M

1
i, j(ṽ

m(t),m), i f r = 2.
(3.5)

Therefore, in space-discretised form, model (3.4) that usesM1 (·,m) can therefore be written as

∂

∂t


c̃m

1
c̃m

2
ṽm

 =


H1(c̃m

1 , c
m
2 , ṽ

m,m)
H2(c̃m

1 , c
m
2 , ṽ

m,m)
H3(c̃m

1 , c
m
2 , ṽ

m)

 , (3.6)

Here,H1 (·, ·, ·, ·) = {H1
i, j (·, ·, ·, ·)}i, j=1...N represents the spatial discretisation corresponding to Eq (2.1a).

Each of its componentsH1
i, j (·, ·, ·, ·), ∀ i, j = 1 . . .N, are given by

H1
i, j

(
c̃m

1 (t) , c̃m
2 (t) , ṽm (t) ,m

)
:=

D1

(∆x)2

(
c̃m

1,i−1, j (t) + c̃m
1,i+1, j (t) + c̃m

1,i, j−1 (t) + c̃m
1,i, j+1 (t) − 4c̃m

1,i, j (t)
)

−
η1

2 (∆x)2

((
c̃m

1,i, j (t) + c̃m
1,i+1, j (t)

) (
ṽm

i+1, j (t) − ṽm
i, j (t)

)
−

(
c̃m

1,i, j (t) + c̃m
1,i−1, j (t)

) (
ṽm

i, j (t) − ṽm
i−1, j (t)

)
+

(
c̃m

1,i, j (t) + c̃m
1,i, j+1 (t)

) (
ṽm

i, j+1 (t) − ṽm
i, j (t)

)
−

(
c̃m

1,i, j (t) + c̃m
1,i, j−1 (t)

) (
ṽm

i, j (t) − ṽm
i, j−1 (t)

))
+ µcc̃m

1,i, j (t)
(
Kc − c̃m

1,i, j (t) − c̃m
2,i, j (t) − ṽm

i, j (t)
)
− ω(t)Mr,i, j(c̃m

1 (t), ṽm(t),m).
(3.7)

Similarly, H2 (·, ·, ·, ·) = {H2
i, j (·, ·, ·, ·)}i, j=1...N represents the spatial discretisation corresponding to

Eq (2.1b), and each of its componentsH2
i, j (·, ·, ·, ·), ∀ i, j = 1 . . .N, are given by

H2
i, j(c̃

m
2 (t), c̃m

2 (t), ṽm(t),m) :=
D2

(∆x)2

(
c̃m

2,i−1, j(t) + c̃m
2,i+1, j(t) + c̃m

2,i, j−1(t) + c̃m
2,i, j+1(t) − 4c̃m

2,i, j(t)
)

−
η2

2 (∆x)2

((
c̃m

2,i, j(t) + c̃m
2,i+1, j(t)

) (
ṽm

i+1, j(t) − ṽm
i, j(t)

)
−

(
c̃m

2,i, j(t) + c̃m
2,i−1, j(t)

) (
ṽm

i, j(t) − ṽm
i−1, j(t)

)
+

(
c̃m

2,i, j(t) + c̃m
2,i, j+1(t)

) (
ṽm

i, j+1(t) − ṽm
i, j(t)

)
−

(
c̃m

2,i, j(t) + c̃m
2,i, j−1(t)

) (
ṽm

i, j(t) − ṽm
i, j−1(t)

))
+ µcc̃m

2,i, j(t)(Kc − c̃m
1,i, j(t) − c̃m

2,i, j(t) − ṽm
i, j(t)) + ω(t)Mr,i, j(c̃m

1 (t), ṽm(t),m).

(3.8)

Finally, H3(·, ·, ·) = {H3
i, j(·, ·, ·)}i, j=1...N represents the discretisation of the ECM Eq (2.1c), and each

of its componentsH3
i, j(·, ·), ∀ i, j = 1 . . .N, are given by

H3
i, j(c̃

m
1 (t), c̃m

2 (t), ṽm(t)) := −ρ(c̃m
1,i, j(t) + c̃m

2,i, j(t))ṽ
m
i, j(t) + µv(Kc − c̃m

1,i, j(t) − c̃m
2,i, j(t) − ṽm

i, j(t))
+. (3.9)

Consider now a time discretisation {tn}n=0...L with time step ∆t := T/L. For each n ∈ {0, . . . , L}, a
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simple Euler time-marching scheme can be written for model (3.6) via the associated operator

Km : RN×N × RN×N × RN×N → RN×N × RN×N × RN×N

given by

Km



c̃m,n

1
c̃m,n

2
ṽm,n


 :=


c̃m,n

1
c̃m,n

2
ṽm,n

 + ∆t


H1(c̃m,n

1 , c̃m,n
2 , ṽm,n,m)

H2(c̃m,n
1 , c̃m,n

2 , ṽm,n,m)
H3(c̃m,n

1 , c̃m,n
2 , ṽm,n)

 ,
(3.10)

where c̃m,n
1 := c̃m

1 (tn), c̃m,n
2 := c̃m

2 (tn) and ṽm,n := ṽm(tn). The right-hand-side operators are given by

H1(c̃m,n
1 , c̃m,n

2 , ṽm,n,m) := H1(c̃m
1 (tn), c̃m

2 (tn), ṽm(tn),m),

H2(c̃m,n
1 , c̃m,n

2 , ṽm,n,m) := H2(c̃m
1 (tn), c̃m

2 (tn), ṽm(tn),m),

H3(c̃m,n
1 , c̃m,n

2 , ṽm,n) := H3(c̃m
1 (tn), c̃m

2 (tn), ṽm(tn)).

This allows us to formulate the “forward operator” K between the family of functionsM1 (where we
search for the appropriate cancer cells mutation function mc∗1,c

∗
2,v
∗

) and the space where the discretised
measurements model (3.1) are recorded. Hence, the “forward operator” K is defined as

K : S → RN×N × RN×N × RN×N

given by

K(m) := Km ◦ Km ◦ · · · · · · ◦ Km︸                      ︷︷                      ︸
L times



c̃1,0

c̃2,0

ṽ0




(3.11)

where c̃1,0 := {c1,0(xi, y j)}i, j=1,...,N , c̃2,0 := {c2,0(xi, y j)}i, j=1,...,N and ṽ0 := {v0(xi, y j)}i, j=1,...,N are the
discretised initial conditions (2.5) for the governing tumour forward model (2.1). Hence, for each
m ∈ M1, the forward operator K gives the spatio-temporal progression of the initial condition
[c̃1,0, c̃2,0, ṽ0]T under the invasion model (2.1), which is obtained when the cell mutation law at each
instance of time t > 0 involves the corresponding trial mutation operator M(·,m) instead of the
unknown mutation terms Q̃r(·).

3.2. The inverse problem regularisation approach for mutation laws in Cases (i) and (ii)

From models (3.10) and (3.11) we have that our forward operator K is given as a finite composition
of affine functions of the form

M
1 3 m 7−→ Km ∈ `

2(`2(E × E × E); `2(E × E × E)). (3.12)

Here, `2(`2(E × E × E); `2(E × E × E)) is the usual finite-dimensional Bochner space of square
integrable vector-value functions [28] with respect to the counting measure (see [29]) that are defined
on `2(E × E × E) and take values in `2(E × E × E), and E := {Ei, j}i, j=1...N represents the standard basis
of elementary matrices associated with the grid G

Ω
. As a direct consequence, we immediately obtain

that this operator is both continuous and compact, from where we obtain that K is also closed and
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sequentially bounded [28]. Therefore, K satisfies the hypotheses assumed in [30] that ensure
convergence for the nonlinear Tikhonov regularisation strategy given by the functionals {Jα}α>0,

Jα : M1 → R, ∀α > 0,
defined by

Jα (m) :=

∥∥∥∥∥∥∥∥∥K(m) −


c̃∗1
c̃∗2
ṽ∗


∥∥∥∥∥∥∥∥∥

2

2

+ α‖m‖22, ∀m ∈ M1.

(3.13)

The minimisation of these functionals enable us to identify mc∗1,c
∗
2,v
∗

as the limit α → 0 of the
points of minimum mα of Jα (these points correspond to the smallest discrepancy between the data
measurements and the solution of our system that uses mα as a mutation law). The two norms involved
in model (3.13) represent the usual Euclidean norms on the corresponding finite dimensional spaces.
Indeed, while the first is the standard Euclidean norm on RN×N × RN×N × RN×N , the second is also the
Euclidean norm induced on the M−dimensional space of functions M1 via the standard isomorphism
that we establish betweenM1 and RM by which each m ∈ M1 is uniquely represented through its nodal
values {m(ηl)}l=1...M with respect to the linear basis functions {φ̄l}l=1...M associated to GM [31]:

since m =
∑

l=1...M

m(ηl)φ̄l, we therefore make the identification: m ≡ {m(ηl)}l=1...M. (3.14)

Finally, in model (3.13), c̃∗1, c̃∗2 and ṽ∗ represent the discretised measurements of the densities of
cancer cells and ECM given in Eqs (3.1a)–(3.1c), i.e., c̃∗1 := {c∗1(xi, y j)}i, j=1,...,N , c̃∗2 := {c∗2(xi, y j)}i, j=1,...,N

and ṽ∗ := {v∗(xi, y j)}i, j=1,...,N . We assume that these data measurements are either exact or are corrupted
by a certain noise level δ ≥ 0. Thus, maintaining for simplicity the measurements notation unchanged,
these measurements are given by

c̃∗1(x) = c̃∗1exact(x) + δγc1(x), (3.15a)
c̃∗2(x) = c̃∗2exact(x) + δγc2(x), (3.15b)
ṽ∗(x) = ṽ∗exact(x) + δγv(x), (3.15c)

where, ∀ x ∈ Ω, we have that c̃∗1exact(x), c̃∗2exact(x) and ṽ∗exact(x) describe the exact data, and γc1(x), γc2(x)
and γv(x) are signal-independent noise generated from a Gaussian normal distribution with mean zero
and standard deviations σc1 , σc2 and σv, respectively, given by

σc1 := 1
λ(Ω)

∫
Ω

c̃∗1exact(x) dx,

σc2 := 1
λ(Ω)

∫
Ω

c̃∗2exact(x) dx,

σv := 1
λ(Ω)

∫
Ω

ṽ∗exact(x) dx,

(3.16)

with λ (·) being the usual Lebesgue measure. In the numerical results below, we generate the random
variables γc1(x), γc2(x) and γv(x) via MATLAB function normrnd by taking
{γc1(xi, y j)}i, j=1...N := normrnd

(
0, σc1 ,N × N

)
, {γc2(xi, y j)}i, j=1...N := normrnd

(
0, σc2 ,N × N

)
and

{γv(xi, y j)}i, j=1...N := normrnd (0, σv,N × N).
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3.3. Numerical reconstruction of the unknown mutation laws terms in Cases (i) and (ii)

We explore now the inversion approach that we formulated so far in the context of the forward
model (2.1) by proceeding with the reconstruction of the unknown terms involved in the mutation laws
in Cases (i) and (ii), namely Q̃1(c1) and Q̃2(v), respectively.

Initial Conditions The initial conditions (2.5) that we consider in the computations for the forward
model (2.1) are as follows:

c1,0(x) := 0.5
(
exp

(
−
‖x − (2, 2) ‖22

0.03

)
− exp (−9.407)

)
, (3.17a)

c2,0(x) := 0, (3.17b)
v0(x) := 0.5 + 0.3 · sin (4π · ‖x‖2) , ∀ x ∈ Ω. (3.17c)

Here, we assume that c2,0(x) = 0 because this second cell population will arise after a period of time
following mutations of the first cell population c1.

To identify the cancer cells mutation law, we consider both exact and noisy measurement data
model (3.15) as additional information for the forward model (2.1) in the presence of initial conditions
(3.17) and boundary conditions (2.6). Specifically, in each of the two cases, we assume that the exact
data (namely c̃∗1,exact(x), c̃∗2,exact(x) and ṽ∗exact(x)) that appear in model (3.15) are given by the solutions
densities for primary tumour cells population, c̄1(x, t), mutated cells population, c̄2(x, t), and ECM, and
v̄(x, t), evaluated at the final time t f > 0, i.e.,

c̃∗1,exact(x) := c̄1(x, t f ), c̃∗2,exact(x) := c̄2(x, t f ) and ṽ∗exact(x) := v̄(x, t f ), ∀x ∈ Ω, (3.18)

which are obtained from the forward model (2.1) as follows:

• for Case (i): we assume that the mutation law is of the form given in model (2.2) but when
parameter δ0 > 0 is considered known and has the value given in parameter Table 1;

• for Case (ii): we assume that the mutation law is of the form given by model (2.3) with the known
term Q̃2(v) specified in model (2.4).

For each regularisation parameter α > 0 considered here, the minimisation process for Jα is initiated
with m0 = I × 10−3, (where I represents the M vector of ones), and for the actual minimisation we
employed here the nonlinear minimisation MATLAB function lsqnonlin. Finally, since there are no
data to test the trial mutation operators beyond the maximal accessible region Ac and Av defined by
the minimum and maximum values of the solution, i.e.,

Ac := [c̄min
1 , c̄max

1 ], with: c̄min
1 := min

(x,t)∈Ω×[0,T ]

c1(x, t), c̄max
1 := max

(x,t)∈Ω×[0,T ]

c1(x, t), (3.19)

Av := [v̄min, v̄max], with: v̄min := min
(x,t)∈Ω×[0,T ]

v(x, t), v̄max := max
(x,t)∈Ω×[0,T ]

v(x, t), (3.20)

the reconstructions in this section will be attempted only for the restriction of the sought mutation
laws to Ac and Av. We need to emphasise that Ac is used to reconstruct Q̃1(c1), while Av is used to
reconstruct Q̃2(v).
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Figure 2. Reconstruction of the unknown mutation law term Q̃1(c1) that appears in mutation
law given in model (2.2) for model (2.1). First row: (left) the true mutation law, and (right)
the reconstructed mutation law restricted to Ac with no noise and α∗ = 10−12. Second row:
(left) the reconstructed mutation law obtained for 1% noisy data and α∗ = 10−5; and (right)
the reconstructed mutation law obtained for 3% noisy data and α∗ = 10−12. For all plots in this
figure: 1) the first axis represents the the values for c1 ∈ [c̄min

1 , c̄max
1 ]; 2) second axis represents

the values for mutation. The numerical simulations are obtained using the parameters given
in Table 1.

An acceptable numerical reconstruction of the mutation law mc∗1,c
∗
2,v
∗

, i.e.,

mc∗1,c
∗
2,v
∗

:= mα∗ , (3.21)

is obtained for the choice of the regularisation parameter α∗, which throughout this work is selected
based on a standard discrepancy principle argument [32].

Figure 2 shows the reconstruction of the cancer cell mutation law Q̃1(c1) for model (2.1) in the
presence of the measurements given by models (3.15) and (3.18) that are considered here both exact
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and affected by a level of noise δ ∈ {1%, 3%}. The first row of this figure shows from left to right
the true mutation law restricted at the maximal accessible regionAc (where the reconstruction is being
attempted) and the reconstruction of the mutation law equation Q̃1(c1) given by model (2.2) onAc with
no noise, respectively. The second row of the figure show from left to right the reconstruction of the
mutation law onAc with 1%, and 3% of noise in the measured data, respectively.

v v

v v

~

2
Q

~

~
Q

2

Q
~

2

2
Q

Figure 3. Reconstruction of the unknown mutation law term Q̃2(v) (that appears in mutation
law given in model (2.3) for model (2.1). First row: (left) the true mutation law, and (right)
the reconstructed mutation law restricted to Av with no noise and α∗ = 10−12. Second row:
(left) the reconstructed mutation law obtained for 1% noisy data and α∗ = 10−12; and (right)
the reconstructed mutation law obtained for 3% noisy data and α∗ = 10−12. For all plots in this
figure: 1) the first axis represents the the values for v ∈ [v̄min, v̄max]; 2) second axis represents
the values for mutation. The numerical simulations are obtained using the parameters given
in Table 1.

Figure 3 shows the reconstruction of unknown nonlinear cancer cell mutation term Q̃2(v) (that is part
of cell mutation law introduced in model (2.3)) for model (2.1) in the presence of the measurements
given by models (3.15) and (3.18) that are considered here both exact and affected by a level of noise
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δ ∈ {1%, 3%}. Again, the first row shows from left to right the true mutation law restricted toAv where
the reconstruction is attempted, and the reconstruction of the mutation law model (2.3) onAv with no
noise, respectively. The second row of the figure show from left to right the mutation reconstruction
onAv with 1%, and 3% of noise in the measured data, respectively.

From Figures 2 and 3 we observe that when the measurement data is not affected by noise, we
obtain good mutation laws reconstructions in both cases, i.e., (i) mutation depends on primary tumour
only, and (ii) mutation depend on the ECM only. However, as expected, as soon as the level of noise in
the measurements increases, the reconstruction gradually looses accuracy in both cases (i.e., Case (i)
shown in Figure 2 lower panels, and Case (ii) shown in Figure 3 lower panels). This loss in accuracy
increases with the increase in the c1 density (horizontal axis in Figure 2) and in the v density (horizontal
axis in Figure 3).

3.4. Reconstruction of nonlinear mutation law in Case (iii)

In this section, we study the inverse problem of identifying the general mutation law in case (iii),
namelyQ(c1, v), which is unknown and depends nonlinearly in an autonomous manner on both primary
tumour cell density c1 and on ECM density v.

3.4.1. Inverse problem setup: forward solver computational formulation

Maintaining here the same spatio-temporal discretisation notations introduced in Section 3.1 for
the cancer cell populations and ECM, we seek to identify the unknown nonlinear mutation law
Q(c1, v) such that we match the measurements model (3.1). To achieve this, similar to the previous
two cases addressed in Sections 3.1−3.3, within an suitable space of functionsM2 that will be detailed
below, we proceed to identify an appropriate a mutation approximating function defined on the
2-dimensional region where the pair (c1, v) ranges during its spatio-temporal evolution, namely
m c∗1,c

∗
2,v
∗

: [0,Kc] × [0,Kc] → [0,∞). The function m c∗1,c
∗
2,v
∗

will be identified such that this will directly
determine an acceptable “mutation law candidate”, denoted here by Qc∗1,c

∗
2,v
∗

(·, ·), which will enable a
solution in forward model (2.1) that matches the measurements model (3.1). To select this mutation
law candidate Qc∗1,c

∗
2,v
∗

(·, ·), adopting a similar approach to the one in Cases (i) and (ii), we involve
again an appropriately constructed mutation trial operator M2(·, ·, ·) := {M2

i, j(·, ·, ·)}i, j=1...N ,
M2(·, ·, ·) : RN×N × RN×N × M2 → RN×N that will be specified in a moment and will enable us the
express the acceptable mutation law candidate as

Qc∗1,c
∗
2,v
∗

(c̃m c∗1 ,c
∗
2 ,v
∗

1,i, j (t), ṽm c∗1 ,c
∗
2 ,v
∗

i, j (t)) :=M2
i, j(c̃

m c∗1 ,c
∗
2 ,v
∗

1 (t), ṽm c∗1 ,c
∗
2 ,v
∗

(t),m c∗1,c
∗
2,v
∗

) (3.22)

where c̃m c∗1 ,c
∗
2 ,v
∗

1 (t) := {c̃m c∗1 ,c
∗
2 ,v
∗

1 (t)}i, j=1...N and ṽm c∗1 ,c
∗
2 ,v
∗

(t) := {ṽm c∗1 ,c
∗
2 ,v
∗

(t)}i, j=1...N represents the solution for
the density of the primary cell population and of the ECM, respectively, which are obtained for model
(2.1) when, instead of the unknown term Q(·, ·), in the mutation law we use the trial mutation term
M2(·, ·,mc∗1,c

∗
2,v
∗

)
Denoting by G2

M
:= {(ηl, ζk)}l,k=1...M the equally spaced grid given by the uniform discretisation of

the [0,Kc] × [0,Kc] with step size ∆η = ∆ζ > 0, the space of functions where we seek to identify the
function m c∗1,c

∗
2,v
∗

is an M ×M- dimensional space of potential mutation law shape candidates, which is
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given by

M
2 :=

{
m : [0,Kc] × [0,Kc]→ R

∣∣∣∣∣ m|El,k
=

∑
p,q=0,1

m(ηl+p, ζk+q)φl+p,k+q, ∀El,k ∈ G
2, tiles
M

}
with G2, tiles

M
:= {El,k := [ηl, ηl+1] × [ζk, ζk+1] | l, k = 1 . . . M − 1}, and

∀ El,k ∈ G
2, tiles
M

, {φl+p,k+q}p,q=0,1 are the usual bilinear shape functions on El,k.

(3.23)

Therefore, for any m ∈ M2, the trial proliferation operatorM2 is given by

M2
i, j(c̃

m
1 (t), ṽm(t),m) := m|El,k

(c̃m
1 (t), ṽm(t))

with (l, k) ∈ Λi, j :=
{
l, k∈{1, . . . ,M−1}

∣∣∣∃El′,k′ ∈ G
tiles
M

such that (c̃m
1,i, j(t), ṽ

m
i, j(t))∈El′,k′

}
,

and noting also here that (l, k) is independent of its choice within Λi, j.

(3.24)

Here, c̃m
1 (t) := {c̃m

1,i, j(t)}i, j=1...N , c̃m
2 (t) := {c̃m

2,i, j(t)}i, j=1...N and ṽm(t) := {ṽm
i, j(t)}i, j=1...N represent the solutions

at the grid points and time t > 0 for the cancer cells and ECM densities obtained with model (2.1)
when this uses M2

i, j(·, ·,m) as mutation law given in model (3.24). Therefore, in space-discretised
form, model (2.1) can be recasted also in this case as

∂

∂t


c̃m

1
c̃m

2
ṽm

 =


H1(c̃m

1 , c̃
m
2 , ṽ

m,m)
H2(c̃m

1 , c̃
m
2 , ṽ

m,m)
H3(c̃m

1 , c̃
m
2 , ṽ

m)

 , (3.25)

Also in in this case (i.e., case (iii)) we have that H1(·, ·, ·, ·) and H2(·, ·, ·, ·) are correspondingly
defined through Eqs (3.7) and (3.8) when the trial mutation form for the full mutation law (which in
Cases (i) and (ii) was given by operatorMr) is given here byM2

i, j(c̃
m
1 (t), ṽm(t),m). Finally, adopting

again the same time discretisation as in Section 3.1 and using the Euler method, a time marching step
for model (3.25) is given by following operator

Km : RN×N × RN×N × RN×N → RN×N × RN×N × RN×N

given by

Km



c̃m1,n

1

c̃m1,n
2

ṽm1,n


 :=


c̃m1,n

1

c̃m1,n
2

ṽm1,n

 + ∆t


H1(c̃m,n

1 , c̃m,n
2 , ṽm,n,m)

H2(c̃m,n
1 , c̃m,n

2 , ṽm,n,m)

H3(c̃m,n
1 , c̃m,n

2 , ṽm,n)

 ,
(3.26)

where, for any n ∈ {0, . . . , L}, we have c̃m,n
1 := c̃m

1 (tn), c̃m,n
2 := c̃m

2 (tn), and ṽm,n := ṽm(tn), while

H1(c̃m,n
1 , c̃m,n

2 , ṽm,n,m) := H1(c̃m
1 (tn), cm

2 (tn), ṽm(tn),m),

H2(c̃m,n
1 , c̃m,n

2 , ṽm,n,m) := H2(c̃m
1 (tn), cm

2 (tn), ṽm(tn),m),

H3(c̃m,n
1 , c̃m,n

2 , ṽm,n) := H3(c̃m
1 (tn), c̃m

2 (tn), ṽm(tn)).
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Therefore, this allows us formulate “forward operator” denoted here by K defined by

K : M2 → RN×N × RN×N × RN×N

given by

K(m) := Km ◦ Km ◦ · · · · · · ◦ Km︸                       ︷︷                       ︸
L times



c̃1,0

c̃2,0

ṽ0




(3.27)

where c̃1,0, c̃2,0 and ṽ0 are the discretised initial conditions for model (2.1) (as introduced in model
(3.11)).

Similar to the previous two inverse problem cases, the forward operator K will enable us to identify
the mc∗1,c

∗
2,v
∗

∈ M2 such that the solution of the resulting model matches measurements model (3.1).
Thus, similar to Section 3.2, we observe again that K can be written down as

M
2 3 m 7−→ Km ∈ `

2(`2(E × E × E); `2(E × E × E)) (3.28)

Here, `2(`2(E×E×E); `2(E×E×E)) is again the finite-dimensional Bochner space of square integrable
vector-value functions defined on `2(E × E × E) with values in the same space. As in Section 3.2, also
here we have that the mappings defined in model (3.28) are continuous and compact. Therefore, we
obtain that K is also closed sequentially bounded, and as a consequence we have that also in this case
we satisfy the inverse problems hypotheses adopted [30], and thus, the convergence of the subsequent
nonlinear Tikhonov regularisation is ensured. The Tikhonov functionals {Jα}α>0 will have essentially
the same form as in the first two cases, except that the space where these are defined is different (i.e.,
in this case we haveM2 of dimension M × M rather thatM1 of dimension M that we had in Cases (i)
and (ii)), namely:

Jα : M2 → R, ∀α > 0,
defined by

Jα(m) :=

∥∥∥∥∥∥∥∥∥K(m) −


c̃∗1
c̃∗2
ṽ∗


∥∥∥∥∥∥∥∥∥

2

2

+ α‖m ‖22, ∀m ∈ M2.

(3.29)

3.4.2. Numerical reconstruction of the mutation law Q(c1, v) in Case (iii)

Computationally, we address here the reconstruction of the general mutation law Q(c1, v) that
appears in Case (iii) for model (2.1) in the presence of zero flux boundary conditions and the initial
conditions prescribed in Eqs (3.17a)–(3.17c). Furthermore, the inverse problem is addressed in the
presence of both exact and noisy measurements of the form detailed in Eqs (3.15) and (3.16), with the
exact measurements given by

c̃∗1,exact(x) := c̄1(x, t f ), c̃∗2,exact(x) := c̄2(x, t f ), and ṽ∗exact(x) := v̄(x, t f ), ∀x ∈ Ω, (3.30)

where c̄1(x, t), c̄2(x, t) and v̄(x, t) represent the solution densities for primary cell population, mutated
cell population and ECM, respectively, which are obtained when model (2.1) uses as mutation law the
expression given by model (2.3) with the known term Q̃2(v) specified in model (2.4).
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Figure 4. Reconstruction of the general mutation law Q(c1, v) in Case (iii) for model (2.1).
Row a) the true mutation law restricted toAcv; Row b) the reconstructed mutation law onAcv

in the presence of exact and noisy data: (left) exact data and α∗ = 10−8; (centre) 1% noisy
data and α∗ = 10−5; and (right) 3% noisy data and α∗ = 10−5. For all plots in this figure: 1)
first axis shows the values c1 ∈ [c̄min

1 , c̄max
1 ]; 2) second axis shows the values v ∈ [v̄min, v̄max];

and 3) colour bars represent the magnitude of mutation law or its reconstructions at each
(c1, v) ∈ Acv. Numerical simulations are obtained using the parameters given in Table 1.

Although the dimensionality is different with respect to Cases (i) and (ii), the inversion method in
this case follows the same steps and numerical minimisation procedure and steps that were described in
Section 3.3 (reason for which we skip here details already outlined there). Indeed, for any α ∈ {10−i | i =

1, . . . 12}, the minimisation of the Tikhonov functional Jα starts with an initial guess m0 = I × 10−3,
(where I represents the M×M matrix of ones), and leads to the numerical identification of the associated
point of minimum mα that correspond to the smalles mismatch between the associated solution (that is
obtained when model (2.1) uses mα as mutation law) and the measurements . Furthermore, since no
data is available beyond the maximal region maximal accessible regionsAcv given by

Acv := Ac ×Av =[c̄min
1 , c̄max

1 ] × [v̄min, v̄max], withAc and Av described in Eqs (3.19) and (3.20).

the reconstruction of the mutation law is explored only on Acv. Finally, using again an discrepancy
principle-based argument to choose the regularisation parameter α∗ ∈ {10−i | i = 1, . . . 12}, the
reconstructed mutation law will be given by the corresponding M × M matrix m c∗1,c

∗
2,v
∗

:= mα∗, which
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in turn will determine the precise shape of the reconstructed mutation law
Qc∗1,c

∗
2,v
∗

(c̃m c∗1 ,c
∗
2 ,v
∗

1,i, j (t), ṽm c∗1 ,c
∗
2 ,v
∗

i, j (t)) that is defined as per model (3.22). Figure 4 shows the reconstruction of
the most general cancer cell mutation law Q(c1, v), starting from the measurements given by models
(3.15) and (3.18) for exact data as well as data impacted by noise δ ∈ {1%, 3%}. For comparison, the
first row of this figure shows the true mutation law restricted at the maximal accessible region Acv

where the reconstruction is being attempted. The second row of the figure show from left to right the
reconstruction of the mutation law on Acv with no noise (left), with 1% noise (center), and 3% noise
(right) in the measured data. From this figure, we observe that we obtain a good reconstruction of the
mutation law when the measurement data are not affected by noise. However, as expected, as soon as
the level of noise increases in the measurements, the reconstruction gradually looses accuracy.
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Figure 5. Reconstruction of general mutation law Q(c1, v) in Case (iii) for model (2.1),
obtained when using logistic cell proliferation for c1 and Gompertz cell proliferation for c2.
Row a): the true mutation law restricted to Acv; Row b) the reconstructed mutation law on
Acv in the presence of exact and noisy data: (left) exact data and α∗ = 10−4; (centre) 1% noisy
data and α∗ = 10−4; and (right) 3% noisy data and α∗ = 10−4. For all plots in this figure: 1)
first axis shows the values c1 ∈ [c̄min

1 , c̄max
1 ]; 2) second axis shows the values v ∈ [v̄min, v̄max];

and 3) the colour bars represent the magnitude of mutation law or its reconstructions at each
(c1, v) ∈ Acv. The numerical simulations are obtained with the parameters given in Table 1.
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3.4.3. Reconstruction of unknown mutation law Q(c1, v) in Case (iii) for a different cell proliferation
rule for c2

Throughout the previous sections we assumed that both cancer cell populations proliferate
logistically: µcc1,2

(
1 c1+c2+v

Kc

)
. However, the sigmoid shape of tumour growth that is given by the

logistic term can be obtained also with other proliferation rules, such as the Gompertz rule [33–35]:
µcc1,2 log

(
Kc

c1+c2+v

)
. This raises the question as to what happens when different cancer cell populations

use different proliferation laws.
In this subsection we reconstruct the general mutation law Q(c1, v, t) in case (iii) when we assume

that the primary c1 population proliferation proliferates logistically, while the second (mutated) cell
population c2 proliferates according to Gompertz law. In Figure 5 we present the numerical
reconstruction results. We observe that the results are similar to those in Figure 4; this could be
explained by the fact that the mutation starts in the primary tumour which proliferate logistically.

4. A tumour invasion model with nonlocal dynamics

Since various mathematical studies have assumed nonlocal cell-cell and cell-ECM interactions to
explain the invasion of cancer cells [11, 16, 22, 23], in the following we generalise the model (2.1) by
replacing the local haptotaxis towards local ECM gradients with a nonlocal haptotaxis flux generated
by these cell-cell and cell-ECM interactions.

As before, we consider a primary cancer cell subpopulation c1(x, t) and a secondary mutated cancer
cell subpopulation c2(x, t). These cancer cell populations interact with each other as well as with
the extracellular matrix (ECM), v(x, t), which they degrade and remodel. For compact notation, we
consider the combined vector of primary cancer cells c1, mutated cancer cells c2 and extracellular
matrix v defined as

u(x, t) := [c1(x, t), c2(x, t), v(x, t)]T .

We use this vector to describe in a compact manner the flux term generated by the nonlocal cell-cell
and cell-ECM interactions (A1,2(x, t,u·, t)). Therefore the coupled tumour dynamics in this case is
given by:

∂c1

∂t
= D1∆c1︸ ︷︷ ︸

random motility

−∇ · [c1A1 (x, t,u (·, t))]︸                      ︷︷                      ︸
adhesion

+ µcc1

(
1 −

c1 + c2 + v
Kc

)
︸                      ︷︷                      ︸

logistic proliferation

− ω(t)︸︷︷︸
mutation
switch

Q(·, ·)︸︷︷︸
unknown
mutation

, (4.1a)

∂c2

∂t
= D2∆c2︸ ︷︷ ︸

random motility

−∇ · [c2A2 (x, t,u (·, t))]︸                      ︷︷                      ︸
adhesion

+ µcc2

(
1 −

c1 + c2 + v
Kc

)
︸                      ︷︷                      ︸

logistic proliferation

+ ω(t)︸︷︷︸
mutation
switch

Q(·, ·)︸︷︷︸
unknown
mutation

, (4.1b)

∂v
∂t

= −ρ(c1 + c2)v︸         ︷︷         ︸
degradation

+ µv (Kc − c1 − c2 − v)+︸                     ︷︷                     ︸
ECM remodelling

. (4.1c)

As before, D1,2 are the diffusion coefficients, µc is the cancer cell proliferation rate, ρ is the ECM
degradation rate, and µv is the ECM remodelling rate. The flux term Ap (x, t,u (·, t)), p = 1, 2, has
been proposed in [11, 23] to describe the directed movement of cells due to cell-cell and cell-matrix
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adhesion:

Ap (x, t,u (·, t)) :=
1
R

∫
B((0,0),R)

n (y) · K (‖y‖2) · gp (u (x + y, t) , t) χ
Ω

(x + y) dy. (4.2)

Figure 6. Schematic shows the sensing region B(0,R) and radial direction for cell-cell and
cell-matrix adhesion interactions. The left figure describes the process of the cancer cells
adhesion, the ball B(x,R) centred at x and of radius R, the point x+y with the direction vector
n(y) in green. The right figure shows the decomposition of the region using annulus sectors
S ν with barycentres bS ν

, highlighted with red dots, which are defined with full details in the
Appendix Section A where we describe the numerical approach for the nonlocal forward
model (4.1).

By using these notations the approximation for Dp∆cp−∇·[cpAp (x, t,u (·, t))] in (4.1) is as follows:
It is assumed that the interactions between a cell and its neighbouring cells as well as the

components of the ECM occur inside a sensing region B ((0, 0) ,R) ⊂ R, where R > 0 is the sensing
radius, as illustrated in Figure 6. In the above equation, χ

Ω
(·) represents the characteristic function of

Ω. Further, n (y) is the unit radial vector given by

n (y) :=
{

y/‖y‖2 if y ∈ B (0,R) \ {(0, 0)},
(0, 0) otherwise.

(4.3)

Furthermore, gp (u(x + y, t) , t) represents the p−th component of the adhesion function
g (u (x + y, t) , t) that is given by

g (u, t) = [Sccc + Scvv] · (Kc − c1 − c2 − v)+ ,

with Scc =

(
S c1c1 S c1c2

S c2c2 S c2c2

)
and Scv =

(
S c1v 0

0 S c2v

)
.

(4.4)

Here {S cic j}i=1,2 are the non-negative cell-cell adhesion strengths of the adhesion bonds established
between the primary and mutated cancer cell populations, while {S civ}i=1,2 are the non-negative
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cell-matrix adhesion stands for the strengths for the adhesive interactions between each of the two
cancer subpopulation and the ECM. Finally, no overcrowding of the cell population and ECM over
the tumour domain is ensured here through the term (Kc − c1 − c2 − v)+ := max(Kc − c1 − c2 − v, 0).

The nonlocal dynamics model (4.1) is assumed to take place in the presence of the same initial and
boundary condition as those assumed in for the local model and given by models (2.5) and (2.6) in
Section 2. The numerical approximation of the forward cancer invasion model (4.1) is presented in
Appendix Section A. This includes the discretisation of the main spatial operators as well as the off

grid numerical approach for the nonlocal adhesion flux terms Ap (x, t,u (·, t)) whose schematic is
given by the right side of Figure 6. Finally, the general mutation law Q(c1, v) is assumed to be
unknown and its identification will be our main focus in this section.
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Figure 7. Reconstruction of the general mutation law Q(c1, v) for the nonlocal model (4.1).
Row a) the true mutation law restricted toAcv. Row b) the reconstructed mutation law onAcv

in the presence of exact and noisy data: (left) exact data and α∗ = 10−4; (centre) 1% noisy
data and α∗ = 10−4; and (right) 3% noisy data and α∗ = 10−4. For all plots in this figure: 1)
first axis shows the values c1 ∈ [c̄min

1 , c̄max
1 ]; 2) second axis shows the values v ∈ [v̄min, v̄max];

and 3) the colour bars represent the magnitude of mutation law or its reconstructions at each
(c1, v) ∈ Acv. The numerical simulations are obtained using the parameters given in Table 1.
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4.1. Reconstruction of the mutation law in the nonlocal cancer invasion model

Building on the inverse problems approach developed for the local cancer invasion model in Section
3.4 and applying this to the nonlocal model (4.1), we proceed now to address the reconstruction of the
unknown mutation law Q(c1, v) within the nonlocal cancer invasion model (4.1) from exact and noisy
measured data that are considered here again to be of the form prescribed in models (3.15) and (3.16).
Here, the exact measurement data that are given by

c̃∗1,exact(x) := c̄1(x, t f ), c̃∗2,exact(x) := c̄2(x, t f ), and ṽ∗exact(x) := v̄(x, t f ), ∀x ∈ Ω, (4.5)

where c̄p(x, t) p = 1, 2 and v̄(x, t) are the corresponding solution densities of the primary and mutated
cancer cell populations as well as that of ECM that are obtained for model (4.1) obtained when this
uses as mutation law given by model (2.3) with the known term Q̃2(v) detailed in model (2.4). For the
numerical reconstruction we consider here the same initial and boundary conditions as in Section 3.3.
Figure 7 shows the reconstruction of the cancer cell mutation law Q(c1, v) for model (4.1) in the
presence of the measurements given by model (4.5) that are considered here both exact and affected
by a level of noise δ ∈ {1%, 3%}. As for the previous figures, the first row shows the true mutation law
restricted at the maximal accessible region Acv where the reconstruction is being attempted. The
second row of the figure shows, from left to right, the reconstruction of the mutation law on Acv with
no noise, with 1%, and with 3% of noise in the measured data, respectively. From this figure, we
observe that we obtain a good mutation law reconstruction when the measurement data are not
affected by noise. However, as expected, as soon as the level of noise increases in the measurements,
the reconstruction gradually looses accuracy.

4.2. Reconstruction of the mutation law for a different cell proliferation rules for c2 population

As in Section 3.4.3, here we investigate the reconstruction of the general mutation law Q(c1, v) when
cancer cell growth is described by different rules: logistic proliferation for the c1 cells, and Gompertz
proliferation for the second (mutated) cancer cell population c2. Again, we do not see any significant
differences between the reconstruction of mutation law in this case (see Figure 8) and in the previous
case where both cell populations grow logistically (see Figure 7). We believe that is because in both
cases, the population that starts mutating (i.e., the c1 population) grows logistically.

5. Conclusions

In this work we explored a new inverse problem that addresses the reconstruction of the cancer cells
mutation law in two heterotypic cancer invasion models: a model with a local cancer cell haptotaxis
flux towards ECM (see model (2.1)), and a model with a nonlocal haptotaxis flux generated by cell-cell
and cell-ECM adhesion forces (see model (4.1)). For the reconstruction of this mutation law through
an inverse problem Tikhonov regularisation-based approach, we used a numerically-generated spatial
tumour snapshot data assumed to be acquired at a later stage in the tumour evolution (in practice, the
data can be provided through a medical imaging scan).

This inverse problem approach was implemented computationally via a mixed finite differences -
finite element numerical scheme. Specifically, on one hand, we used a Crank-Nicholson-type finite
difference scheme for the discretisation of the forward models that arises in each of the two tumour
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invasion dynamics considered here (i.e., local cancer cell invasion, and nonlocal cancer cell invasion).
On the other hand, we developed a finite element approach involving a bilinear shape functions on
a square mesh for the discretisation of mutation law candidates recruited from a proposed space of
functions S, as well as for their evaluation on a maximal accessible regions where the mutation law
reconstruction was performed. Finally, these two parts were appropriately assembled in an optimisation
solver that sought to reconstruct the cancer cell mutation law by minimising over the space S the
emerging Tikhonov functionals that were formulated in each of the two cases considered.
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Figure 8. Reconstruction of the general mutation law Q(c1, v) for the nonlocal model (4.1)
with mixed proliferation rules for c1 and c2 cells. Row a) the true mutation law restricted
to Acv. Row b) the reconstructed mutation law on Acv in the presence of exact and noisy
data: (left) exact data and α∗ = 10−4; (centre) 1% noisy data and α∗ = 10−4; and (right) 3%
noisy data and α∗ = 10−4. For all plots in this figure we have that: 1) the first axis represents
the values for c1 ∈ [c̄min

1 , c̄max
1 ]; 2) second axis represents the values for v ∈ [v̄min, v̄max]; and

3) the colour bars represent the magnitude of mutation law or its reconstructions at each
(c1, v) ∈ Acv. The parameters used for the numerical simulations are given in Table 1.

Finally, this inversion approach was explored and tested on the reconstruction of different cancer
cell mutation laws used in local and nonlocal cancer modelling: (i) reconstructing the cancer cell
mutation assuming a linear dependence only on the c1 cell population; (ii) reconstructing the cancer
cell mutation assuming a linear dependence on the c1 population and a nonlinear dependence on the
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ECM density, and (iii) reconstructing a very general mutation law, while assuming no prior knowledge
about the mutation. To explore the robustness of the proposed inverse problem approach we used “in
silico” constructed data that mathematically could be expressed in the general form given by models
(3.15) and (3.16), but that were specified individually for each of the cases considered for the local and
non-local models (2.1) and (4.1), respectively. Indeed, while the noise was always added the same way
(as per model (3.16)), the exact measurements considered here were maps given by solutions at the final
time for the densities of the cancer cell populations (i.e, both primary and mutated populations) and
the ECM, namely (c̄1(·, t f ), c̄2(·, t f ), v̄(·, t f )), which were obtained by equipping the local and nonlocal
forward models with a selection of known mutation laws (given either by model (2.2) or by models
(2.3) and (2.4)) considered as appropriate for each of the cases explored in the context of both local
and nonlocal models for tumour dynamics. We note that the results in Figures 4, 5, 7, and 8 look
correspondingly similar because we reconstruct the same mutation law Q(c,v), while for the second
(mutated) cancer cell population, c2, we use logistic proliferation for Figures 4 and 7 and Gompertz
proliferation law for Figures 5 and 8. While there are small numerical differences, these are hard to
be distinguished among the figures without zooming in. Furthermore, this similarity of the results is
not significantly affected when switching between the Logistic and Gompertz proliferation laws for
the second cancer cells population. An explanation for this similarity is that in addition to that fact
that the mutation starts in the primary tumour which proliferate logistically, the logistic and Gompertz
laws considered for c2 are part of the same class of size growth laws [33–35], with similar profiles
on the parts of their domain where these are evaluated by the cancer models (2.1) and (4.1). All
numerical reconstruction results for the local and nonlocal models showed that for exact measurements
we obtained a good reconstruction of the mutation law, while for increasingly noisy measurements
the reconstruction gradually deteriorates. Finally, these in silico reconstruction tests recommend the
inversion framework developed in this work also for the context of real measurements data that come
in the form of imaging data (such as MRI) with levels of noise that may not be a priori known.
Nevertheless, the accuracy of the reconstruction in the real data case is expected to deteriorate for
significant levels of noise.
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Appendix

A. Numerical approach for the forward nonlocal cancer invasion model

In this section, we briefly discuss the numerical methods used to solve the forward models (4.1a)–
(4.1c). To discretise the system in space we use the method of lines approach. For the time-evolution
of the system, we use a predictor-corrector scheme introduced in [16], using the Euler method as
the predictor and a trapezoidal-type rule as the corrector. In the reaction-diffusion models (4.1a) and
(4.1b), the terms Dp∆cp − ∇ · [cpAp (x, t,u (·, t))], p = 1, 2, will be approximated through a second-
order mid-point rule [36] as detailed below. In brief, ∀p ∈ {1, 2}, n = 0, L, i, j = 1,N, these midpoint
approximations are given by:
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Further, the central differences are given by
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(A.3)
Next, we shift our attention to the numerical approach of the adhesive flux Ap (that explores the

effects of cell-cell and cell-matrix adhesion of cancer cells subpopulations). We carry out these
computations off-grid by decomposing the sensing region B (x,R) in s ∈ N∗ annuli centred at x (with
the inner most central circle being of numerically negligible size), and for each annuli k ∈ {1, . . . , s}
(counted from the inner most to the outer most), we consider a radial decomposition of this in 2h+(k−1)

uniformly distributed radial sectors (with h ∈ N fixed), as illustrated in the right side of Figure 6 (for
h = 2). This leads to a collection of sectors {Sν}ν=1,Ns , where

Ns :=
s∑

k=1

2h+(k−1).

Then for each annulus sector Sν, we evaluate the total primary cancer cell population c1, the total
mutated cancer cell population c2 and the total ECM mass distributed on Sν that are given by
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1
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(A.4)
Further, on each sector Sν, we consider the off-grid barycentres of each annulus sector by bSν and

the values of each of the three densities at these barycentres, namely c1(bSν , t) c2(bSν , t) and v(bSν , t),
are obtained via interpolation with bilinear shape functions on the grid rectangles {yi

bSν
}i=1,4 that contain

bSν . Therefore, the approximation of the adhesion integral at each instance of time t > 0 is given by
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where
ũ
(
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)
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and gp(ũ(bSν , t)) is the p−th component of
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B. Parameters used in computations

For all the cancer cells mutation laws reconstructions considered in this work, we use the non-
dimensional parameter set specified in Table 1.

Table 1. Summary of the parameter values that have been used for the two local and nonlocal
sub-population of cancer cells.

Parameter Value Description Reference
D1 0.00675 diffusion of primary tumour [11]
D2 0.00675 diffusion of secondary tumour [11]
η1 2.85 × 10−2 haptotaxis to ECM from c1 [37]
η2 2.85 × 10−2 haptotaxis to ECM from c2 [37]
µc 0.25 proliferation of tumour cells c [38]
Kc 1 tissue carrying capacity [16]
ρ 2 ECM degradation coefficient [39]
µv 0.40 ECM remodelling coefficient [16]

Scc

(
0.5 0
0 0.3

)
cell-cell adhesion function [11]

Scv

(
0.1 0
0 0.5

)
cell matrix adhesion function [11]

t1,2 10 time initiation for mutations [38, 40]
ts 3 time-steepness coefficient [38]
δ0 0.3 mutation from primary tumour [38, 40]
∆x 0.03125 discretisation step size for G

Ω
[16]

∆t 10−3 time step size [16]
∆η 0.0625 mesh size used for G1

M
and G2

M
Estimated
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