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Abstract

Fault diagnosis of rotating machinery is of considerable significance to ensure high reliability
and safety in industrial machinery. The key to fault diagnosis consists in detecting potential
incipient fault presence, recognizing fault patterns, and identifying degrees of failures in
machinery. The process of data-driven fault diagnosis method often requires extracting
useful feature representations from measurements to make diagnostic decision-making.
Entropy measures, as suitable non-linear complexity indicators, estimate dynamic changes
in measurements directly, which are challenging to be quantified by conventional statistical
indicators. Compared to single-scale entropy measures, multiple-scale entropy measures
have been increasingly applied to time series complexity analysis by quantifying entropy
values over a range of temporal scales. However, there exist a number of challenges in
traditional multiple-scale entropy measures in analyzing bearing signals for bearing fault
detection. Specifically, a large majority of multiple-scale entropy methods neglect high-
frequency information in bearing vibration signal analysis. Moreover, the data length of
transformed multiple signals is greatly reduced as scale factor increases, which can introduce
incoherence and bias in entropy values. Lastly, non-linear and non-stationary behaviors of
vibration signals due to interference and noise may reduce the diagnostic performance of
traditional entropy methods in bearing health identification, especially in complex industrial
settings.

This dissertation proposes a novel multiple-scale entropy measure, named Adaptive
Multiscale Weighted Permutation Entropy (AMWPE), for extracting fault features associated
with complexity change in bearing vibration analysis. A new scale-extraction mechanism -
adaptive Fine-to-Coarse (F2C) procedure - is presented to generate multiple-scale time series
from the original signal. It has advantages of extracting low- and high-frequency information
from measurements and generating improved multiple-scale time series with a hierarchical
structure. Numerical evaluation is carried out to study the performance of the AMWPE
measure in analyzing the complexity change of synthetic signals. Results demonstrated that
the AMWPE algorithm could provide high consistency and stable entropy values in entropy
estimation. It also presents high robustness against noise in analyzing noisy bearing signals in
comparison with traditional entropy methods. Additionally, a new bearing diagnosis method



x

is put forth, where the AMWPE method is applied for entropy analysis and a multi-class
support vector machine classifier is used for identifying bearing fault patterns, respectively.

Three experimental case studies are carried out to investigate the effectiveness of the
proposed diagnosis method for bearing diagnosis. Comparative studies are presented to
compare the diagnostic performance of the proposed entropy method and traditional entropy
methods in terms of computational time of entropy estimation, feature representation, and
diagnosis accuracy rate. Further, noisy bearing signals with different signal-to-noise ratios
are analyzed using various entropy measures to study their robustness against noise in
bearing diagnosis. Additionally, the developed adaptive F2C procedure can be extended to a
variety of entropy algorithms based on improved single-scale entropy method used in entropy
estimation. In the combination of artificial intelligence techniques, the improved entropy
algorithms are expected to apply to machine health conditions and intelligent fault diagnosis
in complex industrial machinery. Besides, they are suitable to evaluate the complexity
and irregularity of other non-stationary signals measured from non-linear systems, such as
acoustic emission signals and physiological signals.
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Chapter 1

Introduction

1.1 Research Background

Rotating machinery has been extensively employed in a variety of modern oil, power and
process industries (shown in Fig. 1.1) to support power generation and transportation of
material processing (e.g., oil and gas). While the machinery is designed to serve in a long-
term in industrial settings, engineering machines are usually operated in complex and harsh
environments, such as high temperature, moisture and variable operating conditions. Fatigue
and damage to key rotating components will cause performance degradation and malfunctions
in the mechanical system [1].

Fig. 1.1 An application of multi-stage centrifugal air pump in the petrochemical plant.

The existence of faulty components can result in unexpected energy waste and perfor-
mance deterioration of the entire system. If the damaged component is not detected and
repaired early, the fault will progress and cause subsequent damages to adjacent components.
Moreover, severe conditions may lead to unplanned breakdowns or unexpected personnel
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injury to first-line workers [2]. The performance deterioration of rotating machinery will
further cause decreased reliability of the system as well as potential safety concerns. So, there
is a necessity to ensure high reliability and safety in the operation of industrial mechanical
systems [3].

According to the structure of the machinery, malfunctions can be attributed to different
root causes. Structural damage is the most commonly seen fault in operation, which is usually
linked to fatigue and overloaded operations. These damages can exist in any components
in the machinery, such as motor, rotating shaft, rolling bearing and gearbox. Among these
components, rolling bearing is the most widely used in mechanical systems. Its primary
function is to support the mechanical rotating body on radial load and reduce friction during
its movement. While its wide application in machinery, rolling bearing is prone to a myriad
of malfunctions in operation.

The normal service life of the rolling bearing is often determined by material fatigue
and wear at the running surfaces. In general, many reasons can lead to early bearing faults,
such as faulty installation, corrosion, poor lubrication, and overload and overspeed during
operation. The occurrence of early faults will accelerate the fatigue to the bearing, thus
greatly reducing the bearing’s service life. Some examples of these typical bearing failures
are illustrated in Fig. 1.2.

Fig. 1.2 Some typical bearing failures: (a) fatigue and spalling, (b) corrosion and pitting,
(c) melted balls with high-temperature.

More importantly, bearing failures not only cause performance degradation in the machin-
ery but also increase maintenance costs and financial losses in manufacturing. For example,
several surveys [4–6] with regard to the proportion of failure types, conducted by the IEEE
Industry Application Society (IEEE-IAS), reported that bearing faults can account for 30-40%
of the total number of failures in the machinery [7]. Moreover, related studies [8, 9] have
revealed that motor and gearbox faults are attributed to bearing faults, which account for
40-50% of the total faults. With respect to the maintenance cost, it is reported that a faulty
bearing worth of $1500 can result in a $100000 gearbox replacement and $70000 spent on
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replacing the damaged components in wind turbines [10]. Consequently, it is paramount
to monitor the health condition of the bearing and troubleshoot bearing failures in an early
stage to ensure the reliable operation and save unnecessary financial losses for the enterprise.
Therefore, how to detect and diagnose bearing health conditions in accurate, effective and
intelligent manners have become a challenge for modern processing industries.

Recent advancements in computer, measurement and communication technologies have
enabled intelligent health condition monitoring and fault diagnosis in the machinery [11].
Condition monitoring and fault diagnosis of rolling bearing has been a research frontier in
the past decades [12], which have attracted considerable attention from both the academia
and industrial fields. Given a system or process, be it natural or man-made, its evolution
can be followed by a finite amount of measurements. Herein, a subject of interest is how to
monitor the machinery and to analyze measurements to make diagnostic decision-making.
There exist various condition monitoring technologies supporting the collection of different
types of measurements (sensor data) in the operation of machinery. The most commonly
used methods include vibration monitoring, acoustic emission monitoring, thermal imaging
monitoring, temperature monitoring and current monitoring [13–15]. Among them, vibration
monitoring is one of the most representative techniques for machinery health monitoring [16–
18]. Under an invariable operating condition, sudden and dramatic changes in vibration
(acceleration) data are often associated with the unexpected changes in the system’s health
condition. For example, when a fault is induced to the inner race in a rolling bearing, the
rolling elements will strike the local fault and excite high-frequency resonance between
the bearing and the acceleration sensor. Due to its applicability and convenience, vibration
monitoring has been widely applied in varied machinery diagnostic systems [19].

The dynamic response of a mechanical system, due to a change of state, is often reflected
in the sensor measurements. The key to fault diagnosis of rolling bearing is to monitor
the consistency between these measurements and the machine operational regime, so it
is possible to predict the operating status of the machine and potential faults. In this
case, operators can carry out corresponding maintenance schemes through the analysis of
measurements, enabling cost-effective maintenance planning (such as repair and replacement
of faulty components), rather than unnecessary and blind maintenance strategies (such as the
replacement of some components just because of age). However, early failures, in the bearing
diagnosis, often exhibit weak and transient failure characteristics that are hard to identify.
Moreover, vibration measurements collected from the practical machinery often contain
noises and become more complex to analyze. These factors will lead to non-linear and
non-stationary characteristics in collected signals that contain periodic components caused by
interactions between rotating components and transient components because of background
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Fig. 1.3 Amplitude of the anomaly measure versus the time point for a real bearing of whole
life [20]

noises. This has further added difficulty in analyzing non-linear and non-stationary signals
and identifying fault patterns in industrial settings.

For instance, Fig. 1.3 shows a real service life of bearing in a run-to-failure experi-
ment [20]. From Fig. 1.3, there are three stages: stage (I), the normal operation stage;
stage (II), early fault stage; stage (III), severe fault stage. In the normal operating stage, the
magnitude of vibration data collected from a healthy bearing is relatively low and steady.
With the occurrence of a failure, the amplitude of vibration signals significantly increases in
line with the progress of failure until it completely fails. Vibration monitoring has demon-
strated its effectiveness in distinguishing between different health states of bearings. A
special subject of interest is to construct a diagnostic decision model that enables inspecting
the consistency between vibration measurements and bearing health conditions, so the fault
type and severity can be qualitatively assessed.

1.2 Present State of Knowledge

Over the past decades, there is a fast-growing development in the field of fault diagnosis
of rolling bearing, and fruitful results have been achieved. Fault diagnosis techniques
can be broadly categorized into model-based methods, signal-based methods, and data-
driven (knowledge) based methods. As early as the 1990s, model-based fault diagnosis
was the mainstream of research [21]. The model-based methodology applies rigorous
theoretical formulas and derives models to assess the health condition of bearings. For
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instance, fundamental fault frequencies can be generated when rolling elements pass over
a surface that has a local fault on either the rolling element or the raceway - inner race and
outer race. For a stationary bearing, when its geometry (shown in Fig. 1.4) is known, the
characteristic bearing defect frequencies can be derived from formulations as described in
Table 1.1.

Fig. 1.4 Schematic diagram of a rolling element bearing.

Table 1.1 Formulae of characteristic bearing defect frequencies.

Bearing fault type Characteristic frequency1

Ball-pass spin frequency (BSF) BSF = D
2d{1−

( d
D cosα

)2}

Ball-pass frequency at outer race (BPFO) BPFO = n fr
2 {1− d

D cosα}

Ball-pass frequency at inner race (BPFI) BPFI = n fr
2 {1+ d

D cosα}

Fundamental train frequency (FTF) FTF = fr
2 {1− d

D cosα}
1 fr is the shaft speed, n is the number of rolling elements, and α is the

angle of the load from the radial plane, d is the diameter of the roller,
and D is the mean diameter of the bearing as shown in Fig. 1.4.

These formulae are however the kinematic frequencies assuming no sliding contact, and
it also assumes the rolling elements only pass over the raceway surfaces. In fact, there must
virtually always be some sliding contact, and the resulting changes will give a fundamental
change in the character of signals, thus leading to a deviation from the calculated fundamental
frequencies. Also, the actual frequencies would have a stochastic variation as for different
types of bearings and operating conditions. Therefore, the actual signals are often more
complicated than simulated signals. Most importantly, model-based diagnostic methods
often require sufficient prior knowledge and expert experience about the machinery. They
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tend to outperform other methods when sufficient knowledge of physical mechanisms about
the machinery is available. However, modern industrial mechanical systems are becoming
larger and more complex; it is not always possible to fully understand the system’s regimes
and predict their behaviors. As a result, the model-based methods are often built case by case.
Their applicability in knowledge transfer is limited, and therefore not suitable to generic
diagnostic applications.

At almost the same period, the fast-growing improvement in digital signal-processing
techniques significantly boosted the development of signal-based fault diagnosis methodology.
Signals measured from machinery not only reflect system operating states but also contain
rich statistical information that is closely associated with machine health conditions. The
analysis of signals thus enable extracting fault-related features or statistical components
from time- or frequency-domain rather than explicit input-output models in model-based
method [22]. These extracted feature representations usually are useful to differentiate
between healthy machine states or fault states, upon which a diagnostic decision is then
made.

For example, a variety of signal-processing methods have been proposed and applied
to machinery fault diagnosis [23]. In general, signal-processing methods can be broadly
classified into three categories according to the signal analysis principles and signal types:
time-domain signal analysis, frequency-domain signal analysis, and time-frequency-domain
signal analysis. With respect to time-domain signal analysis, signals (time series) are consid-
ered as time-domain waveforms. The commonly used methods include autoregressive model,
minimum entropy deconvolution, and spectral kurtosis. For instance, the autoregressive
model is a suitable time-series analysis method assuming that time series are univariate
and stationary. Nevertheless, the intrinsic dynamic nature during machine operation often
leads to non-stationary signals, adding the difficulty in machinery fault diagnosis using
time-domain analysis methods only. In this case, frequency analysis is a suitable tool to
reveal the time-variant features from the spectrum.

In frequency-domain signal analysis, signals are transformed from time-domain to
frequency-domain representations using spectrum analysis techniques. Some commonly
used tools include Fourier transform and Hilbert transform [20]. Spectrum analysis detects
the changes associated with status change or faults in the frequency domain. Feature rep-
resentations can then be obtained from frequency components in the frequency domain.
The spectrum analysis often requires the signals are stationary; otherwise, critical transient
components underlying in non-stationary signals cannot be appropriately captured using
traditional frequency-domain analysis methods. In this case, considering time-varying char-
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acteristics of signals, several modern signal-processing methods - time-frequency signal
analysis methods - have been developed by the researchers.

Time-frequency signal analysis methods take both time- and frequency-domain into
account. They usually decompose signals into a set of transformed components with a
good time- and frequency-domain resolution, thus enabling the examination of transient
components in signals. Several commonly used methods include short-time Fourier trans-
form, wavelet transform and empirical mode decomposition [23]. Time-frequency analysis
methods have been widely applied to identify the constituent components of signals and
their time variation, and thus to analyze non-stationary signals. Signal-based fault diagnosis
methods are suitable tools to inspect the consistency between system measurements and
machine health conditions. For signal-based analysis methods, while there are theoretical
differences between above-presented techniques (i.e., time-domain, frequency-domain, and
time-frequency domain analysis), they have the same goal. That is, they all aim to extract
critical feature representations from original signals and to capture key transient compo-
nents from time- or frequency-domain. These extracted features or components are often
linked to certain machine operating conditions, revealing the underlying correlation between
measurements and machinery health states.

In addition to the model- and signal-based fault diagnosis methods, recent advancements
in the feature engineering and Artificial Intelligence (AI) methods have greatly promoted
knowledge-based fault diagnosis, well known as data-driven based fault diagnosis, for in-
telligent machinery fault diagnosis [24]. Different from signal-based analysis methods, the
basis of data-driven based fault diagnosis lies in building up the statistical model upon previ-
ously observed data with little or no prior expert knowledge. The complicated machinery
behaviors can thus be understood, and machinery health conditions can be inferred and
predicted, by checking the consistency between the constructed model and measurements.
This methodology usually presents satisfactory diagnosis performance when there exist suffi-
ciently abundant data sets and computationally intensive resources. The general framework of
data-driven fault diagnosis methods (as shown in Fig. 1.5) incorporates three main processes:
signal acquisition, feature extraction and representation, and fault pattern classification [25].
In the signal collection stage, various signals - such as vibration and current signals - can
be measured from the machinery via condition monitoring techniques. Feature engineering
methods are then needed to extract features carrying rich information in regard to machine
health states. With these extracted features, advanced machine learning techniques (such
as Support Vector Machine (SVM)) can be applied to learn, refine and summarize domain
knowledge in the high-dimensional feature space [26, 27]. The acquired diagnostic model
can finally be used to detect potential performance degradation and distinguish between
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Fig. 1.5 General flowchart of data-driven based fault diagnosis methodology.

machine health conditions, supporting online diagnostic decision-making. In data-driven
analysis methods, diagnostic performance is highly dependent on the richness of existing
datasets and the type of feature representation. Proper design of fault features is fundamental
to extract useful knowledge and information appropriately from measured signals. Extracted
features can often represent the character of signals, by which the evolution of the state of
the system can be traced and assessed. Therefore, one of the key challenges is to design and
apply proper feature representations and to assess the intended model, so machine operating
conditions can be distinguished accurately, and fault pattern type can be identified effectively.

There exist many statistical features that are suitable to extract characteristic features
from vibration signals. Such features can be generally classified into time-domain and
frequency-domain features [28]. Typical time-domain feature indicators include peak value,
mean value, variance value, kurtosis value, and root-mean-square value. These feature values
often reflect the statistical characteristics of waveforms of signals and are easy to implement.
The time-domain waveform can either be original signals or transformed components via
signal processing techniques. With respect to frequency-domain features, detecting the
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changes in the frequency distribution or magnitude of components can differentiate between
fault states and normal state. Some commonly used frequency feature indicators include
frequency center value, mean-square frequency value, and energy value of the frequency
spectrum.

One of the difficulties with these traditional methods is that they rely on linearity and
signal stationarity assumptions - which may not appropriately extract signal symptoms,
especially under complex environments with interacting components (systems of systems)
and strong background noise. For example, even though sensors are mounted on the location
near to monitored components, the interaction between structural and mechanical components
- such as the interaction between rolling elements and the raceway - can result in interfered
vibration signals by unrelated frequency components. In an actual example, the level of
kurtosis was reduced as damage in the machine bearings increased; when the vibration
pattern became more complex - due to the bearing damage, the kurtosis matched that of
undamaged bearings [11]. In complicated industrial systems, measured signals often exhibit
non-linear behavior due to instantaneous variations in friction, damping, or invariable load
and speed conditions. As a result, quantifying such dynamic changes of system responses is
significant to early fault detection [29].

Complexity analysis of complex systems has received ever-growing attention in the past
decades [30]. Entropy, as a complexity measure, has been widely applied for time series
analysis. The design of machinery condition monitoring and fault diagnosis systems is
one preeminent example [31]. Entropy measures do not rely on linear assumptions, and
are suitable for distinguishing regular, chaotic and random behaviors. Complex systems
with non-linear dynamics often present larger response diversity and uncertainty; thus, it
is sometimes easier to characterize underlying patterns in terms of dynamic changes, than
to analyze the little knowledge base data available. One advantage of entropy measures
is that they can directly measure dynamic changes and quantify the degree of complexity
of a system, which would be challenging to assess by traditional statistical indicators [32].
Since the performance degradation of a machine will present more non-linear characteristics,
the analysis of the complexity of the measurements has revealed that the change in the
complexity value is related to the deterioration of the machine component [33]. Further,
the extensive flexibility of entropy analysis methods is advertised by their all-encompassing
applicability to the analysis of complex systems, be it natural or man-made; besides the
subject of monitoring industrial machines, entropy analysis has been extensively applied for
studying the complexity of dynamical systems in multiple fields. Such areas of research
may be far more complex than mechanical systems, including language [34], biological [35],
financial [36] and other complex systems [37–39].
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Entropy measures can be generally classified into two categories based on their basic
principles: single-scale entropy measures and multiple-scale entropy measures [31]. The
most commonly used single-scale entropy measures include Shannon measure, Approximate
Entropy (ApEn), Sample Entropy (SampEn), Fuzzy Entropy (FuzzyEn), Permutation Entropy
(PerEn), and their variants. A greater entropy value often implies more irregularity and
complexity observed in the measurement and system. By contrast, multi-scale entropy
measures analyze a time series from a range of time scales [40], where the single-scale
entropy measures provide the basis of entropy estimation. The concept of multiple-scale
entropy measures is initially introduced in a modified SampEn method [41], where entropy
values are calculated over a range of temporal scales. Some widely used methods include
Multi-scale Entropy (MSE), Multi-scale Fuzzy Entropy (MFE), and Multi-scale Permutation
Entropy (MPE), and their variants [40]. They have been successfully applied to the analysis
of complex systems, such as in biological analysis [42] and wind turbine fault diagnosis [43].

Despite its wide application, the MSE algorithm, as well as their variants, however,
encounters several limitations in entropy analysis for machinery fault diagnosis [42]. First,
the coarse-graining procedure is similar to the finite-impulse response filter, which is a
low-pass filtering operation. Thus, only low-frequency components are considered in the
coarse-grained time series. In bearing fault diagnosis, the neglect of information in high-
frequency components, however, corresponds to abandoning fault-related symptoms in
high-frequency components. Second, the use of coarse-grained scale-extraction procedure
will lead to dramatically reduced data length in time series, especially with an increasing
scale factor in multiple-scale entropy measures. This may yield biased entropy values with
a large variance when the scale factor is large. Though some improvements have been
achieved, less research work focuses on addressing above-presented problems. There is
still a strong need to investigate the applicability and reliability of fault diagnosis methods
using improved entropy analysis methods. Consequently, this study mainly focuses on
summarizing entropy measures in machine fault diagnosis from a systematic perspective,
developing improved multiple-scale entropy measures for complexity analysis, and designing
bearing fault diagnosis systems using improved entropy measures.

1.3 Research Hypotheses

The research of the dissertation concentrates on developing improved multiple-scale entropy
measures for fault diagnosis of rolling bearing, which is founded on the following hypotheses:

1. The data-driven fault diagnosis method is feasible to detect early faults and assess
fault severity levels in rolling bearings, where entropy measures extract complexity



1.4 Main Research Contributions 11

features from vibration signals, and machine learning techniques classify fault patterns,
respectively;

2. The improved multiple-scale entropy measures can characterize feature representations
associated with complexity change in signals, providing satisfactory and reliable
entropy analysis;

3. The improved scale-extraction mechanisms can generate multiple-scale time series
with rich fault information, yielding consistent and appropriate entropy values via
single-scale entropy analysis;

4. The proposed scale-extraction frameworks can be extended to new entropy measures
where different single-scale entropy algorithms can be used for entropy estimation and
complexity analysis;

1.4 Main Research Contributions

The dissertation systematically reviews the theoretical development of several fundamental
entropy measures in the complexity analysis. In-depth insights into possible applications
of entropy measures to machinery fault diagnosis are presented. This study proposes two
novel multiple-scale entropy measures - Fine-to-Coarse Multiscale Permutation Entropy
(F2CMPE) and Adaptive Multiscale Weighted Permutation Entropy (AMWPE) methods.
They are applied to extract the complexity change from raw signals. Compared to traditional
entropy methods, the proposed entropy algorithms have four advantages: 1) they take into
account both low- and frequency-information in entropy estimation; 2) they reduce the bias
in entropy values on adjacent scales with an increasing scale factor; 3) they present high
computational efficiency in vibration analysis; 4) they exhibit high robustness against noise
in analyzing noisy signals for bearing diagnosis. Also, new bearing diagnosis methods are
developed based on the proposed new entropy measures and multi-class SVM classifier.
The entropy measures characterize the complexity change in measurements, and then fault
features are fed into the SVM for fault pattern recognition. The effectiveness of the proposed
bearing diagnosis method is verified through real experimental examination. Three case
studies are carried out to study the diagnostic performance of the proposed bearing diagnosis
method under different fault types, severity degrees, and noise levels.
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1.6 Thesis Organization

The dissertation consists of six sections. The organization of the thesis is as follows:
Chapter 1 introduces the research background and present sate of knowledge of fault

diagnosis of rolling bearings and briefly summarizes entropy analysis in bearing diagnosis,
and concludes major contributions of the thesis.

Chapter 2 systematically reviews the fundamental concepts of entropy measures and
their theoretical development and summarizes the roles and usages of entropy measures in
machinery fault diagnosis.
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Chapter 3 introduces the principles of some fundamental entropy measures for time series
complexity analysis, including single-scale entropy and multiple-scale entropy methods.

Chapter 4 presents the improved multiple-scale entropy measures and new bearing
diagnosis methods incorporating vibration monitoring, entropy analysis and fault pattern
classification techniques. A numerical study is presented to investigate the performance of
the proposed entropy method in analyzing the complexity change of synthetic signals.

Chapter 5 examines the effectiveness and performance of the proposed diagnosis methods
on fault detection and identification in rolling bearings using laboratory test rigs and real
industrial-scale machinery system. Comparative studies are also carried out to compare
the diagnosis performance of different methods where conventional entropy and improved
entropy algorithms are used for entropy analysis.

Chapter 6 finally concludes the dissertation and proposes suggestions for further research.



Chapter 2

Literature Review of Entropy Measures

Given a system, be it natural or man-made, its evolution can be followed by a finite amount
of observations (measurements). A subject of interest is how to trace the evolution of such
a system by evaluating the complexity change in the measurements. Entropy measures,
as non-linear complexity metrics, are suitable to assess dynamic changes in the system.
In the machinery, the occurrence of failures will often induce non-linear behaviors due
to instantaneous variations in friction, damping, or load and speed conditions [44]. For
instance, when localized failures are introduced to a bearing, sharp force impacts will excite
high-frequency resonances in the bearing and its structure, resulting in the complexity change
of vibration signals. For a roller defect, the defect will contact the surface of the raceways
along with the rotation with shaft frequency, so measured signals are always non-linear and
non-stationary.

One advantage of entropy measures is that they do not rely on linear assumptions, and
are suitable for distinguishing regular, chaotic and random behaviors. It is sometimes
easier to characterize underlying patterns in terms of dynamic changes than to analyze
the little knowledge base data available. Therefore, assessing and quantifying dynamic
changes provide the possibility of detecting faults in the rolling bearing [31]. In this chapter,
the theoretical development of several fundamental entropy measures is first introduced,
followed by a systematic summarization of potential roles and usages of entropy measures
for machinery fault diagnosis.

2.1 Evolution of Entropy Measures

Entropy has been a transcendental and pervasive concept in numerous disciplines, ranging
from logic and physics to biology and engineering. Although the notion of entropy can
be traced back to the nineteenth century, it still attracts interest - due to its applicability
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into different contexts, and to the multiple interpretations of its implications [45]. However,
notions of entropy are defined differently in various contexts (e.g., information theory and
dynamical systems theory), which may confound researchers in the applied sciences. In
order to clarify the applicability of entropy in machinery fault diagnosis, this chapter reviews
the theoretical development of some fundamental entropy measures in different contexts.

Historically, entropy arose after the invention of the heat engine, through pioneering
research works towards clarifying thermodynamical processes [46]. The research led to the
formulation of the Second Law of Thermodynamics, and entropy was defined as the ratio of
energy over temperature 1 in equilibrium [47]. Their works reveal that entropy of an isolated
system can never decrease over time.

Later, Ludwig Boltzmann 2 and Josiah Gibbs 3 independently interpreted the definition of
entropy as a measure of the number of states that a physical system can adopt from a molecular
perspective, giving rise to statistical mechanics [48]. They observed that macrostates with
a higher number of possible microstates are more likely and exhibit larger entropy values
- from a molecular perspective. More importantly, Gibbs revealed that entropy could be
described in terms of statistical quantities, such as probabilities and their logarithms – setting
the path towards the usage of entropy as a tool for non-linear time series analysis.

Subsequent research by Hartley, Wiener and Shannon resulted in the introduction of
a parallel entropy formulation, which lies at the center of information theory – known as
information entropy or Shannon entropy (ShanEn) [49]. ShanEn was proposed to quantify
the amount of information content conveyed by messages from an information source [50].
Moreover, it interprets the uncertainty and randomness of the system’s events – i.e., its
behavior – from a probability viewpoint. That is, the examined system is understood as
a random variable as well as its observations. Inspired by ShanEn, various concepts of
entropy were later developed within complexity theory, particularly in the study of dynamical
systems. One example is the Kolmogorov-Sinai (KS) entropy measure [51]. KS entropy
occupies center stage in chaos theory - a mathematical theory of deterministic dynamical
systems that may exhibit unpredictable and irregular behaviors. Specifically, in the phase
space, the deterministic chaos is understood as the trajectories of a dynamic system whose
initial conditions are extremely approximate, but their evolution will diverge exponentially
fast. Such an exponential rate at which trajectories evolve - information is processed - is
measured by the KS entropy. However, it was reported that KS entropy is not easy to

1H = Q
T where Q is energy (heat), and T is temperature.

2Boltzmann entropy: H = k logW where k is known as Boltzmann’s constant, and W is a measure of the
possible states of nature.

3Gibbs entropy: S =−k ∑
N
i=1 pi log pi where k is known as Boltzmann’s constant, N is the number of states,

pi is the probability of the ith states.
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determine and to obtain from time-dependent measurements because KS entropy is hard to
achieve convergence in the analysis of noisy signals, especially collected from real-world
systems [52]. Though KS entropy is not applicable to short and noisy signals, since its
introduction, many studies have attempted to estimate KS entropy for practical use in applied
science.

Fig. 2.1 Relations between the various entropy definitions found within the contexts of
statistical mechanics, information theory, and dynamical systems (solid line arrows indicate
direct mathematical derivations, while dashed arrows show conceptual association).

During the 1980s, several studies attempted to directly compute KS entropy, among which
Eckmann-Ruelle entropy4 [53] exhibits the greatest potential for practical implementation. A
nonzero Eckmann-Ruelle entropy value assures the deterministic system is chaotic. Inspired
by Eckmann-Ruelle entropy, some other fundamental entropy measures have been developed
for time-series complexity analysis. Later, Pincus modified Eckmann-Ruelle entropy for the
analysis of finite and noisy time series derived from experiments. For instance, Approximate
Entropy (ApEn) was constructed to be thematically similar to KS entropy based on Eckmann-
Ruelle entropy [54]. ApEn estimates dynamical changes of time series by quantifying the
underlying deterministic or stochastic components. Later, Sample Entropy (SampEn) [55]
and Fuzzy Entropy (FuzzyEn) [56] were proposed as improvements of ApEn for entropy
estimation. Besides, Permutation Entropy (PerEn) was put forth by Bandt and Pompe to
measure symbolic dynamic changes encoded in ordinal patterns underlying in time series [57].

4Eckmann-Ruelle entropy approximates the KS entropy as limr→0 limm→∞ limN→∞[Φ
m(r)−Φm+1(r)], and

it is based on the work by Grassberger and Procaccia [52] and Takens
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An interpretation of PerEn from an information theory perspective is PerEn quantifies the rate
of generation of new permutation patterns in time series. Fig. 2.1 outlines the mathematical
and conceptual interrelationships between different entropy definitions. All these complexity
metrics are referred to as single-scale entropy measures because entropy values are calculated
from the raw - one temporal scale - signal. Apart from the above-presented methods,
there exist other concepts of entropy measures for time series complexity analysis, such as
distribution entropy [58], increment entropy [59], symbolic entropy [60], frequency band
entropy [61].

By contrast, multiple-scale entropy measures are derived from the above and lies in
analyzing a time series from different time scales. The concept of multiple-scale entropy was
initially introduced by Costa et al. [41]. A modified entropy definition, named Multiscale
Entropy (MSEn), was proposed where entropy values are calculated over a range of scales
by using a coarse-graining procedure [62]. Fig. 2.2 illustrates the calculation procedure of
multiple-scale entropy algorithms.

Fig. 2.2 Schematic diagram of the calculation procedure of multiple-scale entropy algorithms.

Since then, many modified scale-extraction procedures were put forth, corresponding to
numerous new multiple-scale entropy measures [40]. In general, these methods improve from
two aspects: one is the improved scale-extraction procedure, and another one is the improved
single-scale entropy algorithm. Some fundamental multiple-scale entropy measures include
Multiscale Fuzzy Entropy (MFEn) [63], Multiscale Permutation Entropy (MPEn) [64],
Composite Multiscale Entropy (CMSEn) [65], Generalized Multiscale Entropy [66]. In these
methods, single-scale entropy measures provide the basis of entropy estimation under the
multiple-scale framework [42]. Continuing advancements in sensor networks, computing
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systems, and AI techniques have led to a growing number of data-driven fault diagnosis
systems. Such diagnostic systems are based on large amounts of sensor data and knowledge
mining techniques [26].

2.2 Entropy Measures in Machinery Fault Diagnosis

Various reasons may cause the occurrence of faults and damages to mechanical and electrical
components in the machinery. Such damages include fatigue, corrosion, excessive tempera-
ture, and lack of lubrication. For example, spalling or pitting are mostly seen in a bearing in
its early operation stage. Although extensive research has been conducted on single-point fail-
ure models to calculate basic frequency components, the diagnosis of multiple-point failures
or compound failures in bearings is still very difficult and challenging [67]. These signals
are often non-stationary caused by instantaneous variances due to friction and damping.

Data-driven analysis of system performance has shown that changes in complexity are
often linked to machine degradation and failure emergence. Entropy measures are suitable
to detect and quantify underlying dynamic changes in system response. These changes in
complexity allow for machine condition monitoring, and for distinguishing among various
operational regimes. The entropy measures facilitate the usage of machine health condition
monitoring in diagnostic applications. With advanced signal analysis and AI techniques,
entropy measures have assisted in detecting early faults in machinery and in improving
maintenance decision-making for fault diagnosis [31]. With these applications in mind,
entropy analysis can be classified into three categories: entropy measure as a feature indicator,
entropy criterion for parameter selection, and entropy usage in pattern recognition.

2.2.1 Entropy Measure as a Feature Indicator

In data-driven fault diagnosis, entropy measures are mostly employed as complexity indica-
tors. Different from conventional time-frequency features, entropy measures are popularly
used as non-linear feature indicators by directly estimating the complexity degree of time
series. Since existing faults often introduce non-linear characteristics in the measurements,
changes in the complexity of a system are correlated with its failure rate. Thus, entropy mea-
sures are suitable for machine condition monitoring and can detect performance degradation
in machinery [68]. A schematic of the entropy-based feature extraction in machinery fault
diagnostic systems is presented in Fig. 2.3.

Entropy measures are generally divided into two categories: single-scale entropy mea-
sures and multi-scale entropy measures. Specifically, several widely used single-scale entropy
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metrics include ShanEn, ApEn, SampEn, FuzzyEn, PerEn, and their variants. Multi-scale
entropy measure is a generalized entropy method under a specific scale extraction framework
where the single-scale entropy metric is the basis. Their applications are introduced in the
following, respectively.

Fig. 2.3 Schematic of the usage of entropy measure as a feature indicator towards machine
fault diagnosis.

Shannon Entropy based Feature Extraction

ShanEn was initially proposed to quantify the amount of information content conveyed
by messages in information sources. It depicts the degree of surprise or uncertainty that
information can give. As uncertainty is always linked to complexity and irregularity, ShanEn
has been widely applied to complexity analysis in observations or measurements processed
by a system. Various diagnostic systems have examined the applicability of ShanEn to
machinery fault diagnosis. For example, Niu et al. [69] proposed a motor diagnosis method
based on current signal analysis. ShanEn values are extracted from wavelet coefficients
decomposed from current signals via wavelet analysis. Besides ShanEn, other statistical
features are used to construct motor diagnostic models based on several machine learning
methods. Tran et al. [70] applied ShanEn and statistical features to characterize fault features
from vibration and current signals, respectively. Fault features are assembled using extracted
features and are then input into Adaptive Neuro-Fuzzy Inference System (ANFIS) for fault
pattern identification. Experimental results showed that vibration-based analysis performs
better in diagnosing failures in the motor in contrast to current-based analysis. Apart from
model diagnosis, ShanEn is also applied to bearing fault diagnosis. For instance, Elforjani et
al. [71] conducted a fault diagnosis in slow-speed bearings with natural failures using
Acoustic Emission (AE) monitoring. The real run-to-fail experimental results (shown in
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Fig. 2.4) reveals that ShanEn indicator is more sensitive and representative to periods of high
transient AE measurements than kurtosis and crest factor, especially for fault detection in
natural degrading bearings.

Fig. 2.4 Comparison between ShanEn, kurtosis and crest factor results related to the observa-
tion of AE signals collected from a bearing continuously running for 20 hours [71].

Additionally, there exist two generalized concepts of ShanEn based on time- and frequency-
domain. That is, energy entropy and spectrum entropy, respectively. When failures exist in
the machinery, instantaneous variances caused by faulty components will both change the
waveforms and alter the spectrum of vibration signals. Energy entropy and frequency entropy
are introduced to capture such changes in the time domain and frequency domain. These two
indicators have been widely applied in various diagnosis systems. More specifically, energy
entropy enables extracting the uncertainty properties based on the probability distribution of
the power energy of signals. For instance, Yu et al. [72] applied energy entropy to capture
energy changes in vibration signals for bearing diagnosis. In their study, vibration signals are
first decomposed to Intrinsic Mode Functions (IMFs) through empirical mode decomposition.
The energy entropy values of transformed components are fed into ANN for fault pattern
identification. Similarly, Xie et al. [73] proposed a bearing diagnosis model where energy
entropy features of IMFs are combined with several traditional time- and frequency-domain
features. Assembled feature vectors are fed into Support Vector Machine (SVM) for fault
detection in the bearing. Further, Yuan et al. [74] examined the performance of energy
entropy in capturing weak and transient signatures to detect performance degradation in the
bearing and gearbox components, respectively.

Different from energy entropy, spectral entropy extracts entropy values from the power
spectrum of signals. For instance, Fei et al. [75] applied spectral entropy to motor fault
diagnosis based on vibration signals via the Fourier transform. Results demonstrated that
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spectral entropy features, combining with the SVM classifier, apply to distinguish between
various motor states. Similarly, Jiang et al. [76] applied spectral entropy features and a
probabilistic neural network for motor fault diagnosis. Moreover, Ai et al. [77] proposed
a feature-level information fusion method using energy entropy and spectral entropy for
bearing diagnosis. Various entropy features are extracted from vibration and AE signals.
Afterwards, information entropy distances are calculated by fusing these obtained features.
The pattern of the unknown fault can thus be determined by comparing the proximity between
the known fault type and the unknown fault type. More specifically, an unknown fault’s type
is more likely to be the type of fault that has the smallest proximity to it.

Approximate Entropy based Feature Extraction

As a suitable complexity measure, ApEn has been widely applied to diagnose structural
defects in the machinery. For example, Yan et al. [29] applied a bearing with a natural defect
and systematically studied the diagnosis performance of ApEn in bearing health condition
monitoring.

A run-to-fail experiment was continually carried out approximately 2.7 million revolu-
tions from an early fault to a severe fault. When reaching 2.34 million revolutions, the defect
size has enlarged to 5.5 mm from the initial 0.27 mm (as illustrated in Fig. 2.5). ApEn values
are then calculated from bearing vibration signals. The results reveal that bearing degradation
at a constant speed will lead to an increase in ApEn value. Similarly, an increase in the
ApEn value is often consistent with the increase in the amplitude of the bearing vibration
signal after it has a failure, as illustrated in Fig. 2.6. Moreover, the ApEn index shows a
certain sensitivity to the speed change in variable speed bearing experiments, providing the
possibility to detect failures under variable speeds.

Fig. 2.5 Test bearing with a 0.27 mm outer race fault [29].

Further, He et al. [78] investigated the effectiveness of ApEn in the analysis of AE
signals for bearing health monitoring. Their study measured various AE signals by using
variable operating conditions, such as the variation of defect severity, rotating speed, and
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Fig. 2.6 ApEn value and vibration magnitude at various stages of the bearing life cycle test
[29].

radial load. Experimental results demonstrated that varying load and speed conditions have
a little influence on ApEn values; however, when a failure occurs in the bearing, the ApEn
value will significantly increase along with the increasing speed. A larger ApEn value often
corresponds to a more serious failure or a degraded bearing component.

Table 2.1 Typical characteristics in ApEn when applied for fault diagnosis of shaft faults [79]

Shaft defects Typical characteristics of ApEn

Crack only Peaks at the rotating speeds of Ω = 1
3 ω0 and Ω = 1

2 ω0

Misalignment only No peaks at the rotating speeds of Ω = 1
3 ω0 and Ω = 1

2 ω0

Crack and misalignment Single broadband peak in the frequency range of Ω = 1
3 ω0 and Ω = 1

2 ω0

In addition to bearing fault diagnosis, ApEn was also suitable for crack fault detection in
the rotating shaft [79]. Vibration signals were collected in the vertical direction of machinery
and then analyzed using ApEn measure. The authors studied the effects of different shaft
fault - such as unbalance, damping and misalignment - on the calculation of ApEn values.
Experimental results verified that if the crack depth is larger than 5% of the shaft diameter,
the ApEn algorithm is suitable for detecting crack faults in the rotating shaft [79]. Moreover,
certain relationships between various shaft defects and ApEn values are summarized, as
described in Table 2.1. Besides, there are other related studies where ApEn was applied as
the complexity indicator in machinery fault diagnostic systems, such as in [80–82].
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Sample Entropy based Feature Extraction

As a refinement of ApEn, SampEn often exhibits consistent and unbiased entropy values
for entropy analysis. SampEn has also widely used as a complexity indicator in machinery
fault diagnosis. For example, Zhu et al. [83] investigated the performance of SampEn in
distinguishing between bearing health conditions. In their experiments, bearing vibration
signals are transformed to IMF envelope, upon which SampEn values are calculated. Then,
SampEn values are input into SVM for bearing fault identification. Similarly, Han et al. [84]
developed a bearing diagnosis method where SampEn and energy entropy are used to extract
features related to complexity change in the system. In addition to bearing fault diagnosis,
Kedadouche et al. [85] studied the application of SampEn in gearbox diagnosis. Their study
considered gear meshing fault and modeled this fault to generate corresponding simulated
vibration signals. The authors first investigate the calculation of SampEn values by changing
different parameters, the values of which are shown in Fig. 2.7, where different data length
and sampling frequency are considered. From the figure, it can be seen that SampEn has the

Fig. 2.7 SampEn values calculated from gearbox vibration signals using different data lengths
and sampling frequency rates [85].

flexibility in data length selection for entropy analysis. Further, results indicate that, with a
faster sampling frequency, its average SampEn value is relatively lower than that of a lower
sampling frequency. The authors also pointed out that ApEn and SampEn are very sensitive
to the strong noise in the machinery operation [85]. Feng et al. [86] developed a novel
method for gearbox diagnosis under non-stationary operating conditions. Their work focuses
on analyzing phase angle data extracted from planetary gearbox vibration signals to reduce
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the complexity of original signals. SampEn values are then calculated from those phase angle
data, and results showed that the SampEn indicator applies to distinguish between gearbox
health conditions (such as crack, broken, wear failures), as illustrated in Fig. 2.8.

Fig. 2.8 Sample values of phase angle data with various fault scenarios for gearbox diagno-
sis [86].

Fuzzy Entropy based Feature Extraction

FuzzyEn is a suitable complexity indicator for analyzing signals towards machinery fault
diagnosis. With respect to contrasting performance, Xiong et al. [87] applied FuzzyEn, ApEn
and SampEn to the analysis of vibration signals. The authors investigated the applicability of
FuzzyEn to fault pattern identification and compared its efficiency with ApEn and SampEn as
well as their multi-scale extensions. The experimental results showed the improved diagnosis
performance of FuzzyEn in analyzing vibration signals comparing with ApEn and SampEn
for bearing diagnosis. Zheng et al. [88] presented a bearing diagnosis approach combining
FuzzyEn and a signal processing method. Vibration signals are first decomposed into a set of
time-frequency components. FuzzyEn values of these components are thus calculated and
then input into the ANFIS for fault pattern identification. For gearbox fault detection, Chen et
al. [89] proposed a combined method, incorporating the local mean decomposition, FuzzyEn
and ANFIS. Similarly, FuzzyEn values of decomposed components are then used to construct
the ANFIS-based diagnostic model. To detect faults in the motor bearing, Deng et al. [90]
applied empirical wavelet transform and Hilbert transform to generate a series of amplitude
modulated-frequency modulated components from vibration signals. FuzzyEn values of
transformed components are then applied to indicate the intrinsic oscillation in signals, and
a model is constructed using extracted features and the SVM. The results validated the
effectiveness of their proposed method in distinguishing between bearing health conditions.
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Permutation Entropy based Feature Extraction

PerEn exhibits prospects in detecting early faults and differentiating between different
machine health conditions. One example is the study in Yan [32], where a comparative study
was performed on the usage of PerEn in bearing diagnosis. The authors carried out several
experiments to investigate the effect of parameter selection on the calculation of PerEn values,
such as data length, embedding dimension, time delay, and computational efficiency. A
run-to-fail experiment was conducted where an early fault naturally progressed to a severe
fault. The results demonstrated that PerEn applies to detect system’s complexity change
when the underlying failure occurs and grows. Benefiting from the complexity analysis
based on PerEn, many works have applied PerEn to bearing signal analysis, where these
signals are derived from signal decomposition using advanced time-frequency signal analysis
methods. Such works refer to [91–93]. Further, Zhao et al. [94] studied the applicability of
PerEn in gearbox diagnosis. PerEn values are calculated from decomposed time-frequency
components and then fed into the SVM as fault feature vectors for identifying gearbox health
conditions.

Due to its advantage in capturing complexity changes, PerEn has also been employed as a
threshold indicator to distinguish between health conditions and fault conditions for bearing
diagnosis. Usually, the occurrence of a fault will introduce coupling frequencies and therefore
increase the amplitude of the bearing vibration signal. Compared to the normal bearing,
vibration signals collected from a bearing with damages will exhibit more complexity degree,
thus yielding a larger entropy value. An example of the usage of PerEn for detecting early
bearing faults was given in Fig. 2.9. Fig. 2.9(a) shows a PT 500 series bearing test rig
benchmark, composed of a motor, a shaft, bearing, and belt drive [31].

Four bearing states are considered, including normal bearing and faulty bearings with
damage in the inner race, outer race, and roller element. Vibration data were collected
with an operation at speed 2000 r.p.m and with a sampling frequency of 8 kHz. PerEn
values are calculated from vibration signals with a data length of 1024. PerEn results are
presented in Fig. 2.9(b); it demonstrates that machine faults can lead to higher complexity
within the system. Also, entropy indicators apply to performance degradation detection and
anomaly detection. More related studies are reported in the literature [95–97]. These studies
collectively concluded that when diagnosing bearing failures in a laboratory environment, a
threshold of around 0.7 PerEn value empirically selected can be used to distinguish between
health and fault bearing states. Moreover, It is worth pointing out that the empirically selected
PerEn value can be slightly different when the experimental subject and operation condition
change. For instance, the PerEn threshold increases from 0.66 to 0.74 when the radial load
increases from 0 to 2hp [98].
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(a) PT 500 test rig
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Fig. 2.9 Comparison of PerEn values between four types of bearing vibration data (with
embedding dimension m= 6 and time delay t = 1). The red line shows a threshold empirically
tuned at PerEn = 6.3.

Multiple-scale Entropy Feature Extraction

The multiple-scale entropy algorithms often earn more satisfactory diagnosis performance
compared to single-scale entropy methods. First, the basis of multiple-scale entropy methods
lies in the scale-extraction procedure, which produces a set of temporal time series. Second,
these multiple-scale time series contain spatial-temporal structure, thus providing more
complexity analysis on hierarchical scales. Many studies have explored their capability as
fault indicators for machinery fault diagnosis.

The concept of MSE was initially proposed by Costa et al. [41], which is an extended
SampEn under the coarse-graining procedure. It was designed to analyze signals from
non-linear systems based on multiple scales. The authors analyzed simulated white and 1/ f
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noise signals using MSE and compared their entropy values over several scales (as presented
in Fig. 2.10). It can be seen that on the first few scales, white noise time series has a higher

Fig. 2.10 SampEn as a function of the scale factor for the coarse-grained time series of white
and 1/f noise [41].

entropy value than the 1/ f time series, but when the scale becomes larger, it becomes smaller
than that of the 1/ f timer series. This result is consistent with the fact that unlike white noise,
1/ f noise contains complex structures across multiple scales [41]. Due to its privilege in
complexity analysis, many studies have applied MSE to a variety of diagnostic applications
in machinery. Zhang et al. [99] investigated the application of MSE to the analysis of
numerical noise signals and experimental bearing vibration signals. A diagnostic model is
constructed based on MSE values and ANFIS to detect and classify fault patterns. Their
results not only proved the effectiveness of the model in bearing diagnosis but also presented
the superiority of MSE to bearing diagnosis compared to ApEn and SampEn [99]. Further,
Wu et al. [100] also applied MSE to bearing diagnosis where MSE values of envelope signals
were calculated based on vibration signatures. Their results proved that the MSE features
give satisfactory diagnosis performance. With respect to motor diagnosis, Pan et al. [101]
presented a diagnosis method using the MSE and SVM. Eight motor faults are considered in
their study, and MSE values are calculated from vibration signals.

Inspired by MSE, many variants of MSE were later developed [42]. For instance, a
modified MSE was applied for bearing fault diagnosis [102]. Li et al. [103] proposed an
improved MFE algorithm where FuzzyEn is applied for time series complexity analysis, upon
which a bearing diagnosis model was built. Zheng et al. [104] proposed the composite MFE
algorithm for detecting failures in rolling bearings based on an ensemble SVM classifier.
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They found that CMFE has anti-noise calculation, and the required data length is shorter for
getting coherent value in comparison with the MFE method. Humeau-Heurtier et al. [105]
presented a refined composite MPE to analyze vibration signals for bearing diagnosis, and Li
et al. [106] also proposed an adaptive MFE concept for bearing diagnosis.

To analyze multi-channel bearing vibration signals, Zheng et al. [107] analyzed noise
signals using a refined composite multivariate MFE method, the results of which were
compared with conventional entropy approaches. Experimental results showed that their
proposed method has improved for multi-channel time series analysis. Also, FuzzyEn exhibit
better diagnosis performance compared to SampEn for bearing health monitoring [107].
More related works using improved multiple-scale methods refer to [108–110].

2.2.2 Entropy Criterion for Parameter Selection

Entropy measures bring up the possibility of specifying desired parameters that characterize
time-frequency representations in signal processing techniques. In the machinery, the occur-
rence of defects in rotating components will excite characteristic amplitudes and frequencies
in both the time- and frequency-domain. Usually, signal time-frequency analysis methods
are used to transform raw signals into time-frequency representations, and then crucial
fault symptoms of interest are characterized with statistical indicators from the obtained
components.

Nonetheless, not all components are directly associated with fault symptoms, and some
components contain redundant information. For example, the wavelet transform is capable
of producing a series of time-frequency representations. By changing time scales, different
wavelet components contain fine-grained resolutions of time and frequency information.
Though obtained wavelet components carry the time and frequency information simulta-
neously, not all of them are closely related to fault patterns. Moreover, the redundant
information in some components may lower the diagnosis efficiency and accuracy. Thus, the
selection of prominent time-frequency components is a necessity. As larger entropy values
usually indicate more irregularity, entropy measures can help to select salient components
whose complexity degree may increase due to the existence of defects. Moreover, instead of
specifying parameters according to prior knowledge, entropy measures facilitate the choice
of the optimal parameters. Fig. 2.11 shows a schematic of entropy-criterion for parameter
selection in signal time-frequency analysis.

One typical example of such entropy methods for parameter selection is wavelet analysis,
that has been extensively applied for fault diagnosis – by transforming signals into wavelet
coefficients in the time-scale domain. Examples of the studied wavelet analysis methods are
Continuous Wavelet Transform (CWT), Discrete Wavelet Transform (DWT), and Wavelet
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Fig. 2.11 Schematic of entropy-criterion for parameter selection in signal time-frequency
analysis for fault diagnosis.

Table 2.2 Entropy-based criteria for optimal parameter selection in wavelet analysis.

Criterion Description Application

Minimum-entropy A node is decomposed if and only if entropy of its two
child nodes is no larger than that of their father node.

Optimal tree selection, suitable for
DWT and WPT [111]

Minimum ShanEn Energy content of a few wavelet coefficients is high with
the occurrence of characteristic frequency components,
resulting in decreased entropy values.

Optimal coefficient selection, suitable
for CWT [112]

Maximum energy to
ShanEn ratio

Desired wavelet usually extracts maximum amount of
energy while minimizing the ShanEn of corresponding
wavelet coefficients.

Optimal coefficient selection, suitable
for CWT [113]

Packet Transform (WPT) [114]. In wavelet analysis, the selection of appropriate mother
wavelet and decomposition scale is the key to capture crucial features from signals; however,
it usually requires prior knowledge to fine-tune these wavelet parameters for any signal.
The most common criteria include minimum ShanEn criterion [112], minimum-entropy
criterion [111], and maximum energy to ShanEn ratio criterion [113]. Some related works
refer to [115–119]. In these works, wavelet analysis using selected wavelet parameters based
on entropy-based criteria are investigated, and its effectiveness is verified in extracting key
time-frequency representations in signal analysis. Table 2.2 summarizes the description and
applicability of three typical ShanEn-based criteria for wavelet analysis.
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(a) Bearing with wear on inner race

(b) Incipient inner race fault (c) Severe inner race fault

Fig. 2.12 (a) Bearing with inner race fault, (b) raw bearing signal with incipient fault and its
wavelet coefficients, and (c) raw bearing signal with severe fault and its wavelet coefficients
based on CWT analysis using maximum energy to ShanEn ratio criterion.

An example of CWT analysis for extracting fault features from the fault-deduced transient
vibration signals is presented (in Fig. 2.12), where an appropriate mother wavelet is selected
using the maximum energy to ShanEn ratio criterion. In this case, a bearing with wear
damage on the inner race was studied with vibration data contributed by the Xi’an Jiaotong
University [120]. The bearing is tested under 2400 r.p.m and continually operated with 25
hours and 15 mins until the vibration amplitude achieves stopping threshold. Fig. 2.12 (a)
shows the tested bearing with inner race fault. For comparison, Fig. 2.12 (b) and Fig. 2.12 (c)
present raw signals and transformed signals of bearings with incipient and severe inner race
faults, respectively. It is apparent that the bearing signal with severe inner race fault has much
greater amplitudes and has more transient components. To better assess fault severity level,
the CWT is applied to extract important fault components. To select optimal wavelet kernel,
the maximum energy to ShanEn ratio values are calculated to generate appropriate wavelet
coefficients. For this purpose, the vibration sensor data is decomposed into 64 sub-signals
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using five different mother wavelets: Meyer, Morlet, Mexican, Daubechies 4, and Haar.
The results showed that the Morlet wavelet performs best and corresponding coefficients
are shown in Fig. 2.12 (b) and Fig. 2.12 (c). The figure suggests that characteristic fault
symptoms that are related to the successive periodic pulses, caused by the inner race defect
frequency in the bearing. This has shown the possibility of entropy-based criterion in wavelet
analysis for machinery fault detection.

In summary, several entropy-based criteria are available for specifying appropriate param-
eters in multi-resolution signal analysis. Through maximizing the total amount of extracted
information, fault detection performance can be enhanced via optimal transformation of raw
signals – and the extraction of characteristic fault features.

2.2.3 Entropy Usage in Pattern Recognition

Various entropy-based methods can be employed for pattern classification and model opti-
mization. In pattern recognition, designing reliable and optimized data-driven models [121]
is the key to guarantee accurate diagnostic decision-making. As ShanEn evaluates the un-
certainty in the variables of a system, based on an empirical probability distribution, it can
be used to describe the closeness of two probability distributions - the ground-truth and
prediction probability distribution. This is done via a generalization of ShanEn known as
cross-entropy. Smaller cross-entropy values indicate that the probability distribution of a
model is closer to the empirical distribution in the data. Fig. 2.13 presents a schematic of
entropy-based pattern recognition techniques towards machine fault diagnosis.

Fig. 2.13 Schematic of entropy measure-based model optimization in pattern recognition for
fault diagnosis.
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For these reasons, cross-entropy has been the most commonly used loss function that has
been commonly used for training and evaluating the performance of artificial neural network
classifiers [122]. Regarding probabilistic classification, the estimation of the effectiveness
of the acquired models is usually required [123], by which hyper-parameters are fine-tuned
through minimizing the cross-entropy over development and a test set not used during the
training phase. The cross-entropy function [124] is expected to perform better at improving
the efficacy of training models compared with traditional square error objective functions.
Related works where cross-entropy is used for the construction of deep learning models refer
to [125–129].
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Fig. 2.14 Illustration of ShanEn in neural networks for industrial gas turbine fault diagnosis.
The dashed lines indicate entropy-based thresholds for warning and a faulty system. LSTM:
Long Short-Term Memory.

Because ShanEn is always smaller or equal than cross-entropy, minimizing cross-entropy
can be understood as estimating ShanEn. The usage of cross-entropy for industrial gas turbine
compressor fault diagnosis is explored in [130]. A regressor recurrent neural network model
was converted into a classifier by bucketing the outputs. An example of this model is presented
in Fig. 2.14. The model consists of two long short-term memory layers, incorporating a gating
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mechanism to control the memory retention operation. The classifier – once trained through
a cross-entropy approach – yields ShanEn estimates, indicating the degree of uncertainty
in the system. After that, the adaptive entropy model is capable of distinguishing between
typical dynamics, corresponding to healthy engines, and anomalous behaviour from faulty
engines. Also, it indicated that changes in the uncertainty values often correspond to machine
health conditions in industrial gas turbine diagnostic systems.

In summary, entropy measures facilitate optimizing the pattern recognition models
- especially for training deep learning neural networks - in data-driven machinery fault
diagnostic systems.

2.3 Summary

The concepts of entropy are defined in different contexts - such as dynamical systems and
information communication system - and exist in a wide range of research fields. Entropy
measures are suitable metrics for time series complexity analysis. They can be broadly divided
into single-scale entropy measures and multiple-scale entropy measures. By extending single-
scale entropy approaches, multiple-scale entropy measures enable extracting more underlying
information from time series under the multiple-scale framework. Many works have studied
the the effectiveness of entropy measures in complexity analysis for machinery fault diagnosis.
Their potential usages and roles in fault detection and diagnosis are summarized into three
categories: entropy measure as a feature or health indicator, entropy criterion for wavelet
parameter selection, and the usage of entropy in pattern recognition. These practices are
complemented with case studies. The literature has shown that the entropy measures and
their extensions are an effective and low-cost method for machine health monitoring and
fault diagnosis, requiring little to none domain knowledge.



Chapter 3

The Principles of Entropy Measures

The concept of entropy has been widely used to measure the complexity of a system, be it
a natural or a man-made system. Its definition encompasses numerous disciplines, ranging
from logic and physics to biology and engineering. Different with traditional statistical
indicators (e.g., mean and kurtosis), entropy measures do not reply on linearity. Due to
its flexible applicability to the analysis of non-linear complex systems, notions of entropy
are defined differently in various contexts - such as information theory and dynamical
systems theory. This chapter reviews the definition of fundamental entropy measures for
time series complexity analysis and clarifies the relations among them, aiming to arrive at an
understanding of these approaches and clarify their relations. Some representative entropy
measures are reviewed and introduced, including ShanEn and related concepts, ApEn and
its variants, PerEn and its improvements, and multiple-scale entropy measures. Table 3.1
comparatively summarizes their representative characteristics in terms of merits, demerits, as
well as algorithmic complexity.

3.1 Shannon Entropy and Related Concepts

ShanEn - devised by Claude Shannon - quantifies the amount of information content con-
veyed by messages from an information source. It is a suitable indicator that quantifies the
uncertainty of a variable. When the random variable is understood as the outcome (obser-
vation or measurement) of a system, ShanEn can be interpreted as the rate of generation
of new information processed by the system [49]. According to Shannon, information and
uncertainty are two sides of the same coin: the reception of a certain amount of information
is equivalent to a reduction in uncertainty. It explains that the more we know about what
messages a process will produce, the less “surprise”, the less uncertainty and the less entropy.
Thus, the uncertainty quantified by ShanEn can be understood as missing information from
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Table 3.1 Advantages and limitations of entropy measures in time series complexity analysis.

Year Entropy Measures Advantages Limitations Algorithmic
Complexity1

1948
ShanEn [49] • foundational measure to estimate the amount of

information content ofa messages from probability
viewpoint

• dependence on the probabilistic model of uncer-
tainty as present in a probabilistic event space

O(n)

• foundational measure to estimate the amount of
information content of messages from probability
viewpoint

• neglect of temporal relationship between values

1991
ApEn [49] • applicable to measuring the complexity change

of deterministic and chaotic dynamical systems
• lack of consistency relative to SampEn O(n)

• suitable to medium-sized data • generation of more similarity than is present

2000
SampEn [49] • better consistency relative to ApEn • discontinuity and mutation at the boundary O(n

3
2 )

• robustness to small noisy data [131] • sensitive to parameter selection and data length

2007
FuzzyEn [56] • better consistency relative to ApEn and SampEn • sensitive to parameter selection O(n

3
2 )

• continuity at the boundary • membership function needs more physical mean-
ing

2002
PerEn [57] • partition naturally derived from ordinal patterns • amplitude difference in values is neglected O(n

3
2 )

• invariance with respect to non-linear
monotonous transformations

• cases with many equal values are not considered

2002
Multiple-scale
entropy [41]

• better classification accuracy relative to single-
scale entropy measure

• efficiency differs depending on applied scale-
extraction mechanism and selected single-scale en-
tropy

O(mn)...O(mn
3
2 )

• more robust to small degree of noise • more time consumption because of computation
of entropy measures via a range of scales

1 The algorithmic complexity of ApEn, SampEn, and FuzzyEn refers to optimized calculation algorithms in [132, 133]. For multiple-scale entropy measures, their
computational efficiency depends on mainly selected scale-extraction mechanism and single-scale entropy method for entropy estimation. Herein, n denotes the input size
in units of bits needed to represent the input, and m is the number of scales in multiple-scale entropy methods.

the information viewpoint. The larger the entropy about a system, the more uncertainty
about its response, and the more information can be gained by observing the outcomes of the
corresponding random variable. The ShanEn value can be obtained as follows:

Giving a random variable X whose probabilities of occurrence are

p(X) = {p(x1), p(x2), · · · , p(xn)} (3.1)

then, ShanEn is defined as:

H(X) =−
n

∑
i=1

p(xi) · log2 p(xi) (3.2)

When the base for the logarithm is selected as 2, H(X) coincides with the average
minimum number of bits per outcome yielded by X. H(X) ranges from 0 to logn

2, and H(X)

has the maximum value when all the outcomes are equally probable. It obtains zero when
the outcome is certain, indicating that there is no information gain from the outcome.

Based on ShanEn, other related formulations were put forth in information theory. Preem-
inent examples are conditional entropy, mutual information, and cross-entropy. Conditional
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entropy can be expressed as H(X |Y ) = H(X ,Y )−H(X), where H(X ,Y ) is the entropy of
the joint probability distribution P(X ,Y ). It measures the missing information and uncer-
tainty about X upon observing another measurement of Y . Mutual information is defined
as I(X ,Y ) = H(X)−H(X |Y ), and it captures the amount of information that two variables
X and Y share [134]. Moreover, cross-entropy is expressed as H(p,q) =−∑x p(x) log2 q(x)
where p(x) and q(x) are typically the ground-truth and estimated probability distributions,
respectively. Cross-entropy minimization has been popularly used in optimization algorithms,
such as model optimization in neural networks. Also, it has been proved that ShanEn is no
larger than cross-entropy1.

In addition to information theory, ShanEn occupies center stage in complexity and chaos
theory. Entropy is often linked to the degree of chaos in an observed dynamical system
because uncertainty can be explained as unpredictability or irregularity in a system. In
dynamical systems theory, KS entropy is a crucial concept, which is a generalization of
ShanEn employed in the study of seemingly random but deterministic dynamical systems
(i.e., deterministic chaotic systems) [135]. KS entropy analyzes how the uncertainty about
a system evolves from its dynamical equations. That is, it yields the rate of generation
of new information by the examined system. From an information-theoretic standpoint,
chaotic behaviors are described by KS entropy through a partition of the state space [136];
thus, it is equally suitable for discrete and for continuous dynamical systems. Positive
values of KS entropy are interpreted as an increase in uncertainty with respect to the system’s
responses [136]. Hence, systems with positive KS entropy can be regarded as chaotic systems
– displaying sensitive dependence on the initial conditions [137].

In the study of non-linear dynamical systems, the Lyapunov exponent is a crucial in-
dicator defined for quantifying the topological characteristics of the dynamics and system
stability. Pesin’s theorem establishes a relationship between the KS entropy and Lyapunov
exponent [138]. Nevertheless, when performing numerical analysis by way of experimental
data, it is usually very hard to calculate Lyapunov exponent and KS entropy directly. Added
difficulty results from the fact that KS entropy relies on arbitrarily fine partitions of the state
space, and from its lack of robustness to noisy measurements. Thus, typically, a large amount
of measured data is required to achieve convergence [54]. In this case, numerous works
concentrate on entropy development and alternative formulations attempting to estimate time-
varying dynamic changes within a system, such as works by Grassberger and Procaccia [52]
and Eckmann and Ruelle [139]. Thus, many entropy measure analysis methods populate the
literature, which are described in this section.

1H(p) =−∑x p(x) log2 p(x)≤−∑x p(x) log2 q(x) = H(p,q).
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Rényi entropy is a generalization of ShanEn, defined as

Hα(p) =
1

1−α
log2

(
n

∑
i=1

pα
i

)
, (3.3)

where α ∈ [0,∞) and α ̸= 1. Eq. 3.3 becomes ShanEn when α → 1.
Rényi entropy is characterized as a continuous family of entropy measures (Hα ) by

way of a bias parameter α [140]; α controls the degree of sensitivity of Hα(p) towards
particular probability distribution functions [140] and makes Hα(p) non-negative for all α .
Fig. 3.1 presents the probability distribution estimation of Rényi entropy for an mutually
exclusive event. Other special cases of Rényi entropy include collision entropy (α = 2) and

Fig. 3.1 Plot of the Rényi entropy for several positive values of parameter α . An increasing
positive α value implies more sensitive to events that occur frequently.

min-entropy (α → ∞). Collision entropy is the negative logarithm of the probability that
two independent and identically distributed random variables present the same outcome or
collide. More likely events are more probable to collide, thus are more conspicuous under
the collision entropy measure than with ShanEn.

As α → ∞, Rényi entropy is increasingly determined by the events of highest probability;
thus, min-entropy is the negative logarithm of the probability of the most likely outcome
only.
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3.2 Approximate Entropy and Its Variants

ApEn, developed by Pincus, is a useful complexity indicator for the analysis of non-stationary
time series [54]. It quantifies dynamic changes underlying in data and estimates its degree of
irregularity, such as for the analysis of irregularity of vibration signals in the machinery [29].
ApEn is suitable for the analysis of data that has small degree of noise and short length.
In [29], experimental results showed that it is applicable to discriminating between different
machinery system states. It shows the prospect in identifying fault patterns in machinery
fault diagnosis. The ApEn is calculated as follows:

1. Given a time series X of data length N, construct a set of m-dimensional vectors
{Xm(i), i = 1,2, · · · ,N −m+1}:

Xm(i) = xi,x(i+1), · · · ,x(i+m−1) (3.4)

2. Let dm
i, j represent the distance between the vector Xm(i) and Xm( j)

dm
i, j = max

k=1,2,··· ,m
(|x(i+ k−1)− x( j+ k−1)|) (3.5)

where i and j range from 1,2, · · · ,N −m+1, respectively, and N is the number of data
points in time series.

3. Define Cm
i (r) is the probability that any vector Xm( j) is within r of Xm(i). The vector

Xm(i) is called the template, and an instance where a vector Xm( j) is within r of it is
called a template match. For each vector Xm(i), Cm

i (r) can be computed as:

Cm
i (r) =

1
N −m+1

N−m+1

∑
j=1

θ
{

r−dm
i, j
}

(3.6)

where m is the embedding dimension, r is the predetermined threshold, and Θ is the
Heaviside function.

θ{x}=

{
1, if x ≥ 0

0, if x < 0
(3.7)

Then, by defining

Φ
m(r) = (N −m+1)−1

N−m+1

∑
i=1

log2Cm
i (r) (3.8)

where Φm(r) is the average of the logarithms of the functions Cm
i (r).
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4. For a finite time series, ApEn is defined:

ApEn(m,r,N) = [Φm(r) − Φ
m+1(r)] (3.9)

There is a connection between ApEn and ShanEn. ApEn can be shown to be closely
related to the notion of conditional entropy. According to the definition, we have

ApEn = Φ
m(r)−Φ

m+1(r)

=−E(log2(C
m+1(r)))− (−E(log2(C

m(r))))

= H(X1, · · · ,Xm+1)−H(X1, · · · ,Xm)

= H(Xm+1|X1, · · · ,Xm), withr < min(|a j −ak|),
where j ̸= k, a j andak are state space values.

(3.10)

Thus, ApEn estimates the uncertainty with respect to future observations of a time series,
given the knowledge of the past observations. It is proposed that, when the behavior of the
process generating the time series becomes irregular – or chaotic, ApEn increases – although
a nonzero ApEn value does not certify that the dynamics are chaotic [141].

Several hyperparameters must be fine-tuned for optimal performance (such as the em-
bedding dimension m and the tolerance r) – although empirical values are offered in the
literature; when m = 2, values of r ranging between 0.1 to 0.25 times the standard deviation
(σ ) of time series can produce reasonable results [54]. For the analysis of rotating machinery,
the values m = 2 and r = 0.4σ have been suggested [29]. In the same publication, it is
claimed that N = 750−5000 is sufficient for achieving consistent results. Lu et al. [142]
have developed an automatic r selection approach that can reduce the computational cost
while fitting the hyperparameter r, and Kaffashi et al. [143] have investigated the influence
of hyperparameter selection on analyzing real-time series with ApEn.

Several modified ApEn algorithms have been proposed with alleged improved perfor-
mance. One example is Cross-ApEn, also developed by Pincus, that measures the statistical
independence of two concurrent time series, by capturing both spatial and temporal irregular-
ity [144]. Another example is SampEn.

Sample Entropy

Richman and Moorman proposed SampEn as a refinement of ApEn [55]. They found the
difficulties in ApEn analysis are attributed to self-matches and undefined matches resulting
in undefined probabilities [145]. Therefore, SampEn refines the ApEn algorithm from
two differing aspects: i) SampEn excludes self-matches while counting template matches
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(Eq. 3.13); ii) in SampEn only the first N −m vectors are considered (Eq. 3.14) – this ensures
that for 1 ≤ i ≤ N −m both xm

k (i) and xm
k ( j) are defined. SampEn is defined as follows:

1. Given a time series X of data length N, construct a set of m-dimensional vectors
{Xm(i), i = 1,2, · · · ,N −m+1}:

Xm(i) = xi,x(i+1), · · · ,x(i+m−1) (3.11)

2. Let dm
i, j represent the distance between the vector Xm(i) and Xm( j), and compute dm

i, j:

dm
i, j = max

k=1,2,··· ,m
(|x(i+ k−1)− x( j+ k−1)|) (3.12)

where i = 1,2, · · · ,N −m+1, j = 1,2, · · · ,N −m. Particularly, to reduce bias, j ̸= i is
applied to exclude self-matches.

3. Similarly, for each Xm(i) and a predetermined tolerance r, define Cm
i (r) as

Cm
i (r) =

1
N −m−1

N−m

∑
j=1,i̸= j

θ{r−dm
i, j} (3.13)

4. θ is the Heaviside function. Define the average of the Cm
i (r) as

Φ
m(r) = (N −m)−1

N−m

∑
i=1

Cm
i (r) (3.14)

where Cm(r) is the probability that two sequences will match for m points.

5. For a finite time series, SampEn is defied:

SampEn(m,r,N) =− log2

[
Φm+1(r)
Φm(r)

]
(3.15)

Consequently, in the computation of SampEn, unlike that of ApEn, the logarithm is
applied after Φm is obtained. Because the quantities Cm

i j(r) act as surrogates of the probabili-
ties p(xi) in (3.2), ApEn is closer to the mathematical formulation of the original entropy.
Nonetheless, it has been verified that SampEn reduces bias and maintains relative consis-
tency as compared to ApEn [131]. That is, if a time series A arising from a more ordered
system than time series B, then ApEn of A has been shown to be smaller than ApEn of B
for all conditions tested [141]. As an example, Yentes et al. comparatively investigated the
performance of ApEn and SampEn in time series analysis. They found that SampEn is less
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sensitive to the change of data length and shows better performance compared to ApEn when
analyzing clinical data sets in pathological populations [146, 147].

There exist enhanced formulations of SampEn algorithm, reducing its algorithmic com-
plexity. For example, Lu et al. [148] presented a method to accelerate the computation of
ApEn and SampEn by exploiting vector dissimilarity. This method omits the computation of
distances between the most dissimilar vectors, which further reduces the time complexity.
Besides, Manis et al. [149] proposed three SampEn algorithms that yield identical values
but are less expensive computationally speaking (by avoiding the similarity check between
points in m dimensional phase space). Some works extend the applicability of SampEn
estimation from one-dimentional time series analysis to two-dimensional time series analysis.
For example, Silva et al. [150] applied SampEn to two-dimensional image data analysis.
SampEn characterizes the irregularity of pixel patterns and texture features from image data.

A potential limitation of ApEn and SampEn resides in Eq. 3.13: the method to select
template matches consists in establishing a crisp boundary. That is, the Heaviside function 2

determines two vectors are similar only when their similarity falls within a specific boundary.
This vector similarity determination method is not often workable, especially when the
boundary is hard to determine. Moreover, it was found that SampEn might be discontinuous
and could rise or fall when the tolerance r slightly changes on account of the Heaviside
function [151]. To address this shortcoming, the concept of fuzzy sets was introduced to
improve the reliability of entropy analysis, which is discussed in the following.

Fuzzy Entropy

Chen et al. presented the notion of FuzzyEn for time series complexity analysis [56]. In
FuzzyEn, the concept of degree of fuzzy membership, inherited from the framework of fuzzy
logic, was introduced to the template matching. As a refinement of SampEn, Fuzzy is define:

1. Given a time series X of data length N, construct a set of m-dimensional vectors
{Xm(i), i = 1,2, · · · ,N −m+1}:

Xm(i) = xi,x(i+1), · · · ,x(i+m−1)−u0(i) (3.16)

where Xm(i) has m consecutive data points, commencing with the ith points and
generalized by removing a baseline

2θ(x) = 1, ifx ≥ 0;θ(x) = 0, ifx < 0.
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u0(i) =
1
m

m−1

∑
j=0

x(i+ j) (3.17)

2. For each Xm(i), define the distance dm
i, j between Xm(i) and Xm( j) as the maximum

absolute difference of the corresponding scalar components

dm
i, j = max

k=1,2,··· ,m
(|(x(i+ k−1)−u0(i))

− (x( j+ k−1)−u0( j))|)
(3.18)

3. Calculation of Cm
i (n,r) as (N −m−1)−1 times the sum of similarity degree between

Xm(i) and Xm( j) where j ̸= i.

Cm
i (n,r) =

1
N −m−1

N−m

∑
j=1, j ̸=i

µ(dm
i, j,n,r) (3.19)

where µ(x) is the exponential function

µ(dm
i, j,n,r) = exp(−(dm

i, j)
n/r) (3.20)

4. Define the average of Cm
i (n,r) as

Φ
m(n,r) =

1
N −m

N−m

∑
i=1

Cm
i (n,r) (3.21)

5. For a finite time series, the FuzzyEn is then defied as follows:

FuzzyEn(m,n,r,N) =− log2

[
Φm+1(n,r)
Φm(n,r)

]
(3.22)

The fuzzy boundary is the main feature of the fuzzy set, so the continuous membership
value - an scalar value between [0,1] - is assigned by the fuzzy membership function. The
difference in similarity measurement using two different membership methods are presented
in Fig. 3.2.

FuzzyEn, initially proposed in [56], employs the membership function exp(−dn/r),
where r and n control the width and gradient of the boundary respectively, and d is the maxi-
mum absolute difference of the corresponding scalar components according to Eq. 3.19. Other
membership functions have been considered in the literature. For example, two exponential
membership functions were developed - exp(−dln(ln2c)/lnr/c) in [87] and exp(− ln2(d/r)n)
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Fig. 3.2 Heaviside function (dotted line) in ApEn and SampEn estimation and fuzzy function
(solid line) in FuzzyEn for similarity calculation. As can be seen, both points p1 and p2 locate
within the boundary (tolerance threshold) by Heaviside function; nevertheless, the point p3
is considered dissimilar, though the p3 is very close to p2. Hence, the Heaviside function
might be discontinuous due to a slight change of r using a binary decision. Comparatively,
the width of the boundary in FuzzyEn is r multiply standard deviation (SD), which provides
a continuous similarity estimation and greatly alleviate this issue.

in [152]. The authors proposed that assigning a value of 0.5 to similarity degree will gain
more physical meaning when Heaviside boundary and fuzzy boundary intersect. Moreover,
other modified FuzzyEn approaches have been developed for improved performance: a
piecewise fuzzy membership function proposed in [153] and a modified FuzzyEn, which
operates by increasing the number of samples during the computation of the entropy [154].

In summary, the notions of ApEn, SampEn and FuzzyEn measures are closely related to
each other, and they individually contain their characteristics. Some works compared the
performance of ApEn, SampEn and FuzzyEn for time series complexity analysis [155, 156],
such as the consistency, dependency on parameter choice, and robustness to noise; results
showed that FuzzyEn offers better consistency and has less dependence on the size of data
on account of its continuous membership function, especially when analyzing real-world
time-series data [156].

3.3 Permutation Entropy

PerEn, developed by Bandit and Pompe [57], measures the complexity of time series by
estimating dynamic changes encoded in the ordinal pattern of a time series. Mathematically,
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PerEn is ShanEn over the empirical probability distribution of the ordinal patterns naturally
originated from the time series data. PerEn is defined:

1. Given a time series X of length N, the time delay λ and the embedding dimension m,
the phase space of a time series can be reconstructed as:

Xi = {x(i),x(i+λ ), · · · ,x(i+(m−1)λ )} (3.23)

where 1 ≤ i ≤ N − (m−1)λ . Then, the m number of real values contained in each Xi

can be rearranged in an increasing order as

x(i+( j1 −1)λ )≤ x(i+( j2 −1)λ )≤ ·· · ≤ x(i+( jm −1)λ ) (3.24)

2. Therefore, any vector Xi can be mapped onto a group of symbols as

πn = ( j1, j2, · · · , jm) (3.25)

where πn is one of the m! symbol permutations having m distinct symbols and
n = 1,2, · · · ,k, k ≤ m! (m! is the largest number of distinct symbols). Suppose
P(π1),P(π2), · · · ,P(πk) denote the probability distribution of each symbol sequences
respectively, and ∑

k
n=1 P(πn) = 1.

3. For each permutation πn, the relative probability distribution can be determined by:

P(πn) =
Number{Xi has type πn | 1 ≤ i ≤ N − (m−1)λ}

N − (m−1)λ
(3.26)

4. Then, the permutation entropy of order m is defined as [157]:

PE =−
m!

∑
j=1

P(π j) ln(P(π j)) (3.27)

Accordingly, PerEn can be interpreted as a measure of the rate at which new permutation
patterns are produced in the process of a system. The PE value ranges between [0, log2 m!].
The larger the PE value is, the more irregular the time series is. The minimum value indicates
that the time series is most likely a periodic signal.

In PerEn, partitions are devised from the order structure - symbolic sequences of adjacent
values in ascending order, rather than apportioning amplitudes according to different levels
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(a) Plot of time series X

(b) Occurrence frequency of each ordinal pattern when
m = 3,τ = 1

(c) Diagram of possible ordinal patterns when m = 3

Fig. 3.3 A schematic illustration of counting ordinal patterns in a time series when embedding
dimension m = 3 and time delay τ = 1. The ordinal patterns are obtained by ordering
neighboring values in an ascending order. For this case, the possible order permutation of a
series, πn (1 ≤ n ≤ 6), is one of the subset in Ω = {[123], [132], [213], [231], [312], [321]}.

in ApEn [158]. For instance, given two series, {xα ,xβ ,xγ} and {xγ ,xβ ,xα}, their symbolic
sequences, [α,β ,γ] and [γ,β ,α] have the possibility of revealing different temporal relation-
ships in the symbolic dynamical system. A schematic illustration of possible ordinal patterns
in a time series is presented in Fig. 3.3.

In the analysis of dynamical systems, PerEn is related KS entropy, when the partition is
defined based on the order of a time series. More specifically, in PerEn, permutation patterns
(i.e., the partitions) result from a map, by translating into a sequence of symbols. In addition,
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PerEn provides an upper bound for KS entropy when m → ∞ [159] and is also related to the
Lyapunov exponents of a dynamical system [57].

While PerEn is a suitable complexity indicator, it has a few limitations in time series
complexity analysis. The main shortcoming is due to it only takes into account the order
of neighboring elements without considering the difference in amplitudes [160, 158]. As a
result, different time series may have the same PerEn value, thus lowering its performance
in distinguishing between measurements that correspond to different system responses.
Also, when repeated values emerge in the sensor data, PerEn assigns their sequential order
according to emergence order. This results in ambiguity in the mapping from sensor data
to permutations, and may introduce bias in the empirical distribution estimates. Typically
repeated values are rare, but this is not the case in quasi-stationary systems or systems in an
stationary operational regime [161].

To overcome these limitations, a number of improved and/or alternate formulations
of PerEn have been proposed. Some of them take into account the amplitude difference
– by using weighting coefficients such that the magnitudes of neighboring elements have
different contribution to the relative frequencies of the permutation types. For instance, Liu
and Wang presented a fine-grained PerEn [162] by adding an extra factor representing the
difference in magnitudes of values in the order patterns. Fadlallah et al. introduced a modified
PerEn, which weights the relative frequency of each ordinal pattern with the variance of
these corresponding (phase-space) series [163]. Keller et al. proposed a robust PerEn
based on counting robust ordinal patterns [164]. Azami et al. proposed an amplitude-aware
PerEn which takes both the average value and differences among neighboring values into
account [165]. Further, in order to tackle the problem of repeated measurements mentioned
above, Bian et al. presented a solution by mapping the repeated values onto the same
symbol [166].

3.4 Multiple-scale Entropy Measures

Multiple-scale entropy measures are generalized entropy methods based on scale-extraction
mechanisms. By using scale-extraction framework, multiple-scale entropy estimates the
complexity or irregularity over a range of temporal scales of time series. These different
scales correspond to different components that contain either fine-grained or coarse-grained
information, which is useful to capture the instantaneous variations in vibration analysis. For
instance, the coarse-grained components usually carry useful low-frequency information in
vibration signals, reflecting intrinsic frequency components. Multiple-scale entropy values
can be obtained by applying single-scale entropy analysis on multiple temporal scales. In
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general, multiple-scale entropy calculation consists two procedures: i) extract multiple-scale
time series of different scales from the original time series; ii) calculate entropy values on
obtained multiple-scale time series via a specified single-scale entropy method.

The basic idea of multiple-scale entropy methods was initially introduced by Costa [41].
A modified SampEn, named MSE, was proposed based on the coarse-graining procedure:

1. Given a time series {xi, i = 1,2,3, · · · ,N} of length N and a scaling factor τ , the
coarse-grained time series, y(τ), is obtained by the relation

y(τ)j =
1
τ

jτ

∑
i=( j−1)τ+1

xi, for 1 ≤ j ≤ N
τ
, N > τ. (3.28)

2. When τ = 1, y(τ) coincides with the original time series x. From y(τ), MSE is defined
as:

MSE(x,τ,m,r) = SampEn(y(τ),m,r). (3.29)

In the MSE algorithm, the raw time series is first separated into non-overlapping windows
of length τ , and then a coarse-graining procedure - an averaging procedure - is used to
generate time series of different scales. The diagram of coarse-graining procedure is presented
in Fig. 3.4.

Fig. 3.4 Illustration of the coarse-graining procedure at the 2nd and 3rd scale in the MPE.

Different from SampEn, MSE can extract a set of entropy values via a range of tempo-
ral scales; thus, more information associated with the complexity of observations can be
characterized [62]. Later, many variants of multiple-scale entropy algorithms were proposed
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where various single-scale entropy algorithms are used for entropy estimation. It is noted
that the single-scale entropy analysis provides the basis of multiple-scale entropy estimation.
When calculating multiple-scale entropy values, the use of improved single-scale entropy
could enhance the entropy analysis of time series. For instance, based on the coarse-graining
procedure, some modified methods were developed, including multiscale approximate en-
tropy [167], Multiscale Fuzzy Entropy (MFE) [152] and Multiscale Permutation Entropy
(MPE) [168]. It reported that the MFE and MPE can achieve better entropy analysis in
comparison with MSE in vibration signal complexity analysis [167]. There are many other
variants of entropy methods based on the coarse-grained procedure [42].

Later, it reported that MSE has a reduced reliability of SampEn values as a time scale
factor increases [65]. To improve MSE, another commonly used method, termed Composite
Multiscale Entropy (CMSE) [65], is put forth:

1. Given an one-dimensional time series {xi, i = 1,2,3, · · · ,N} with data length N, for a
scale factor τ , construct a set of coarse-grained time series y(τ)k =

{
y(τ)k,1 ,y

(τ)
k,2 , · · · ,y

(τ)
k,p

}
.

The kth coarse-grained time series of y(τ)k is defined as

y(τ)k, j =
1
τ

jτ+k−1

∑
i=( j−1)τ+k

xi,1 ≤ j ≤ N
τ
,1 ≤ k ≤ τ (3.30)

2. At a scale factor the sample entropies of all coarse-grained time series are calculated
and the CMSE value is defined as the means of τ entropy values.

CMSE(x,τ,m,r) =
1
τ

τ

∑
k=1

SampEn(y(τ)k ,m,r) (3.31)

Different from MSE, given a certain scale (except the first scale), the CMSE algorithm
first produces a set of coarse-grained time series based on a sliding window. Entropy values of
these extracted time series are calculated and then averaged by the scale factor. By averaging
entropy values at each scale, the CMSE method reduces the standard deviation of entropy
values in analyzing numerical noise signals [65], thus presenting higher reliability in entropy
analysis.

Inspired by the concept of the coarse-graining procedure, many modified and refined scale-
extraction procedures were later developed [42, 40]. They are discussed in the following.
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Fig. 3.5 Diagram of the main categories of multiple-scale entropy measures.

Improved coarse-graining procedure based entropy approaches

The improved multiple-scale entropy measures mainly aim at improving the efficacy of
the scale-extraction procedure used for generating reliable multiple-scale time series in
entropy analysis. Besides traditional coarse-graining procedure based methods, the modified
methods can be broadly classified into three main categories according to the principle of
scale-extraction procedures (shown in Fig. 3.5). Examples include composite MSEn [65],
generalized MSEn [66], and refined composite MSEn [169]. Besides, there are many variants
of improved entropy methods, where improved single-scale entropy algorithms are used in
entropy estimation. The most common methods include Multiscale Permutation Entropy
(MPEn) [168], refined composite MPEn [170], Multiscale Fuzzy Entropy (MFEn) [108], and
modified multiscale symbolic dynamic entropy [60].

Filter-inspired scale-extraction based entropy approaches

The key idea in filter-inspired entropy measures is that the scale-extraction procedure is
regarded as a filtering operation. Therefore, a set of improved multiple-scale time series are
extracted. These extracted signals not only contain rich low- and high-frequency information
but also have fine-grained time- and frequency-domain information. For instance, the
averaging process in MSE is interpreted as filtering a time series by a filter of a piecewise
constant type in [171]. In order to maintain high-frequency information in the multiple-scale
time series, a hierarchical decomposition is proposed in [172].
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Multivariate analysis method based entropy approaches

In order to analyze multichannel data, univariate MSE algorithm is extended to the mul-
tivariate case. The concept of multivariate sample entropy accounts for both within- and
cross-channel dependencies in multiple data channels; entropy values are calculated by eval-
uating it over multiple temporal scales. Typical examples include multivariate MSEn [173],
refined composite multivariate MFEn [107], and refined composite multivariate generalized
MFEn [174].

Continuing advancements in entropy analysis have driven the emergence of more entropy
measures for time series complexity analysis. Based on the notion of the scale-extraction
regime, many multiple-scale entropy methods have been developed. For most of the meth-
ods, they are either based on improved single-scale entropy algorithms or improved scale-
extraction mechanisms.

3.5 Motivation of Developing Improved Multiple-scale En-
tropy Methods

Despite the advantages and wide applications, the MSE and its variants, however, present a
few limitations in time series complexity analysis in bearing diagnosis:

High-frequency information is abandoned

The basis of the MSE consists in the coarse-graining procedure which is similar to a low-pass
filtering operation [42]. This procedure reduces the frequency rate of measurements to a
lower value, as a result of which the high-frequency components are eliminated, thus losing
the high-frequency information. However, for bearing fault diagnosis, critical fault symptoms
may exist in both low-frequency and high-frequency components; thus, the elimination of
high-frequency information greatly diminish the diagnosis performance of MSE for rolling
bearing fault diagnosis.

Multiple-scale time series with reduced data length

The down-sampling operation by the coarse-graining procedure greatly reduces the data
length of the generated coarse-grained time series. Due to the liner smoothing operation, the
number of data points in the coarse-grained time series decreases with an increasing scale
factor. As a result, this operation increases the variance of entropy values calculated from
these extracted time series [65]. Moreover, an added difficulty may also come from potential
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imprecise results with undefined entropy values (when no template vectors are matched to
one another) [40]. Therefore, these factors subside the reliability of entropy measures further.

Reduced performance in analyzing non-stationary signals

The operation of the coarse-grained procedure is equivalent to the application of Finite-
Impulse Response filter (FIR). This filtering is not well suitable to non-linear and non-
stationary signals, especially for complex mechanical signals. The features of the frequency
response of this low-pass filter are poor since it does not eliminate fast temporal scales, and
thus, producing aliasing generating spurious oscillations in the frequency range from 0 to
cutoff frequency. Consequently, the evaluation of the complexity of the downsampled signal
is biased by the inclusion of these artifactual components [175].

3.6 Summary

Entropy measures are well suitable for the analysis of complex systems, especially in
machinery fault diagnostic systems. Considering the principles of entropy measures, they
can be broadly categorized into single-scale entropy measures and multiple-scale entropy
measures. Single-scale entropy measures provide the basis of entropy estimation in time series
complexity analysis. Comparatively, multiple-scale entropy measures enable quantifying
the complexity change from a set of temporal scales. Considering its applicability in
differentiating between health conditions, entropy analysis has achieved great attention
and continuous improvements for machinery fault diagnosis.

Among entropy analysis, PerEn algorithm has theoretical simplicity and could extract
dynamic changes in ordinal patterns from the structure of time series. Multiple-scale methods
based on PerEn estimation have been used in machine early fault detection. Despite its wide
range of applications, more works are still needed to further improve its reliability and robust-
ness of analyzing non-stationary signals, in the circumstance of complex industrial settings,
such as strong noise background, compound faults, and variable operating conditions.



Chapter 4

Improved Multiple-scale Entropy
Measures

Multiple-scale entropy measures are suitable for complexity analysis in bearing fault diagnos-
tic systems. They are non-linear feature indicators that can characterize underlying dynamic
changes in signals collected from machinery. Different from single-scale methods, the core
concept of multiple-scale entropy measures lies in the extraction of a range of temporal
scales from the original signal. However, traditional multiple-scale entropy measures have
several limitations on vibration analysis. For improving the reliability of entropy analysis
in bearing diagnosis, this study presents an improved scale-extraction scheme and a new
entropy method in bearing vibration signal analysis. Also, a new bearing diagnosis method
is put forth based on the proposed entropy method and the SVM classifier. The fundamental
concepts of the proposed improved multiple-scale entropy methods are introduced in the
following.

4.1 Preliminary Study

In conventional multiple-scale entropy measures, the scale-extraction procedure that causes
biased entropy values is due to the coarse-graining procedure. From the signal processing
point of view, the coarse-graining procedure is similar to the low-pass filtering operation as
well as a linear smoothing operation. In this case, advanced filtering operations are alternative
to the low-pass filter to overcome its limitations.

Wavelet Packet Decomposition (WPT) is an advanced time-frequency signal analysis
method. It provides various wavelet kernels that can produce appropriate transformed signals
with rich time and frequency information. For instance, the Haar wavelet can be regarded as
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one kind of extended coarse-graining procedures; it can generate a set of decomposed signals
containing low- and high-frequency information from the original signal. Based on the WPT
analysis, a new scale-extraction mechanism, named Fine-to-Coarse (F2C) procedure, is put
forth, aiming to produce reliable multiple-scale time series from the original signal and yield
appropriate entropy values. The principles of F2C procedure and a preliminary study is
introduced in the following.

4.1.1 Wavelet Packet Decomposition

Wavelet Transform (WT) a fast-evolving mathematical and signal processing tool which
is suitable for the analysis of non-stationary signals [114]. It can transform a signal in
time domain into time-scale representations - wavelet coefficients. For spectrum analysis,
Fourier transform is a widely used signal processing method; however, it cannot provide
local information in the frequency domain and its correlations in the time domain. Short time
Fourier transform is treated as an improved alternative to Fourier transform. Nevertheless, its
disadvantage in the resolution of the frequency limits its applicability in the fault diagnosis
system. In contrast, WT provides good time and frequency resolution. More specifically, it
allows a high frequency resolution at low frequencies and high time resolution at high fre-
quencies, as desired. Traditionally, WT can be categorized as Continuous Wavelet Transform
(CWT), Discrete Wavelet Transform (DWT), and Wavelet Packet Transform (WPT). Among
these, WPT is a multi-resolution signal processing method based on digital filters, which is
an extension of DWT method. The principle of WPT is introduced as follows [176], and an
example of a two-level WPT tree is presented in Fig. 4.1. In each wavelet transformation, the

Fig. 4.1 Illustration of a two-level WPT tree.

raw signal will be decomposed into approximate and detail coefficients, respectively. The raw
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signal is transformed by going through wavelet filters (i.e., low-pass and high-pass filters)
and taking sub-sampling operation. A wavelet tree can thus be constructed by repeating this
procedure until the desired decomposition resolution is achieved. Each node in the obtained
wavelet tree represents wavelet coefficients with a specific range of frequency.

WPT can be implemented by means of a pair of low-pass and high-pass wavelet filters,
denoted as h(k) and g(k) = (−1)kh(1−k). Given wavelet function ψ(t) and scaling function
φ(t), they have the following relationships:

φ(t) =
√

2∑
k

h(k)φ(2t − k)

ψ(t) =
√

2∑
k

g(k)φ(2t − k)
(4.1)

To further extend the two-scale equation, recursive relationships are defined as follows:
w2n(t) =

√
2∑

k
h(k)wn(2t − k)

w2n+1(t) =
√

2∑
k

g(k)wn(2t − k)
(4.2)

where n = 0, w0(t) = φ(t), w1(t) = ψ(t). Then, the input signal is decomposed to a set
of wavelet packet coefficients which have approximation coefficients with low-frequency
information and detail coefficients with high-frequency information. The decomposition of a
time-domain signal x(t) is described as [114]:

C j+1,2n = ∑
l

h(l −2k)C j,n

C j+1,2n+1 = ∑
l

g(l −2k)C j,n
(4.3)

where C j,n denotes wavelet coefficients on the j-th decomposition level, the n-th sub-band,
and l is the number of the wavelet coefficients. To prove the superiority of WPT in generating
appropriate transformed signals, an example is given in Fig. 4.2. The Fig. 4.2 shows the
approximation and detail coefficients decomposed on the first level in the wavelet tree based
on the Haar wavelet.

Further, for comparison, Fig. 4.3 shows the modified coarse-graining procedure in the
CMSE method [65]. These two figures highlight the fundamental difference in frequency in-
formation extraction between wavelet transform and the modified coarse-graining procedure.
The modified coarse-graining procedure, however, neglects the high-frequency components
and only considers the low-frequency components and low-frequency information. Com-
paratively, WPT makes full use of information hidden in both low- and high-frequency
components, thereby extracting more fault information from measurements. Its advantage
earns more reliability in bearing vibration signal analysis.
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Fig. 4.2 Illustration of WPT on the first level based on Haar wavelet (C1,0 and C1,1 are
the approximation coefficient and detail coefficient using low-pass and high-pass filters
respectively).

Fig. 4.3 Illustration of the coarse-graining procedure at the 2nd scale factor in the CMSE
algorithm where only low-frequency components are considered.

In addition to the wavelet decomposition, the reconstruction procedure of the wavelet
transform can be implemented using wavelet packet coefficients [177]:

C j,n = ∑
l

[
h(k−2l)C j+1,2n

]
+∑

l

[
g(k−2l)C j+1,2n+1

]
(4.4)

where h(k− 2l) and g(k− 2l) denote the low-pass and high-pass wavelet reconstruction
filters respectively. h is related to the scaling function and g is related to the wavelet function.

Correspondingly, given a wavelet packet tree at the j-th decomposition level, in total a
set of 2 j wavelet packet coefficients, {C j,n,1 ≤ n ≤ 2 j}, can be obtained where n is the order
of the coefficient in the j-th decomposition level. Then, based on each coefficient vector
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C j,n, a reconstructed signal R j,n, with the same length of the original signal, can be produced
by setting the all the other decomposition coefficients on level j to zero and recursively
implementing the wavelet reconstruction transform in the inverse procedure until j decreases
to zero [178]. Among each reconstruction procedure, the wavelet decomposition coefficient
has nearly 1/2 data points by comparing with the upper level. Finally, for each R j,n, it has an
approximative frequency range with that of C j,n and remains the same length as the original
signal. Therefore, given the sampling frequency Fs, the frequency intervals of each R j,n can
be approximately computed by:(

(n−1)∗2− jFs, n∗2− jFs
]
, n = 1,2, · · · ,2 j (4.5)

Reconstructed signals equally partition the whole frequency spectrum of the signal and
contain frequency information ranging from low to high. Furthermore, the reconstructed
signals have the same data length as that of the original signal, which avoids the large
variance caused by the decreased data length in calculating the MPE and CMPE values [40].
Therefore, the F2C procedure benefits from the advantages of WPT analysis, which makes
the improved entropy method more suitable for entropy analysis under an improved multiple-
scale framework.

4.1.2 Fine-to-Coarse Scale-extraction Procedure

The superiority of WPT allows decomposing non-stationary signals into wavelet coefficients
with good time and frequency resolution. Also, the reconstruction procedure enables the
inversion of each wavelet decomposition coefficient to a reconstructed sub-signal that remains
the same length with the original signal. Owing to the advantages of WPT analysis, the
F2C signals are produced by constructing reconstructed sub-signals with a fine-grained to
coarse-grained approach [7]. To be more specific, in the F2C procedure, when the scale
factor increases, the high-frequency information is consecutively removed from previously
acquired F2C signals at lower scales. Hence, given the F2C signals with increasing scales,
high-frequency and low-frequency information is consecutively refined and obtained from the
original signal through the F2C procedure, which can contribute to appropriately characterize
the dynamic changes associated with fault symptoms in vibration signals. Fig. 4.4 shows the
flowchart of the proposed F2C procedure. The detail calculation procedure is described as
follows:

1. Apply WPT to decompose an original signal to the j-th decomposition level where
only wavelet decomposition coefficients produced from the branch of C1,0 on the 1-th
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Fig. 4.4 Flowchart of the proposed F2C procedure (C j,i is wavelet coefficients, and R j,i is
reconstructed sub-signal from each branch of selected wavelet coefficients C j,i).

level are selected and used. Thereby, there are 2 j−1 sets of wavelet decomposition
coefficients {C j,n, (0 ≤ n ≤ 2 j−1 −1)} are obtained and used in the next step;

2. Reconstruct single branch, R j,n, using each acquired wavelet decomposition coeffi-
cients C j,n on the j-th level, by setting the coefficients of all the other vectors on
level j to zero and recursively implementing the wavelet reconstruction transform in
the inverse procedure until j decreases to zero. Thus, each reconstructed sub-signal
has the same data length as the original signal. Therefore, totally 2 j−1 reconstructed
signals, {R j,n, (0 ≤ n ≤ 2 j−1 −1)}, can be produced using the wavelet reconstruction
procedure;

3. F2C procedure: construct F2C signals by consecutively removing one reconstructed
signal from previously obtained F2C signals, commencing from the accumulation of
all 2 j−1 reconstructed signals. Thereby, F2C signals are produced as

F2C(τ) =
2 j−1−τ

∑
i=0

R j,i, 0 ≤ i ≤ 2 j−1 −1,1 ≤ τ ≤ 2 j−1 (4.6)
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where j is the decomposition level, τ is the scale factor, and the maximum number of τ

is equal to 2 j−1. Herein, the proposed F2C procedure refers to a process that produces
signal branches with fine-grained to coarse-grained time-frequency information refined
from the original signal.

The frequency range of the F2C signals obtained from the original signal is gradually
decreased since high-frequency components are consecutively removed from previously
produced F2C signals. Hence, through the F2C procedure, low-frequency information finally
remains in the F2C signals at high scales. With an increasing scale factor, dynamic changes
hidden in lower-frequency components can thus be characterized in hierarchies.

Similarly, the F2C procedure adopts the half-frequency spectrum of the original signal in
entropy analysis. Previously works [32, 40, 179, 41] have verified the effectiveness of the use
of a half-frequency spectrum in bearing diagnosis, such as the MSE, MPE, and CMPE. Both
of them only apply no more than half frequency spectrum of the original signal commencing
from the 2nd scale, because the coarse-grained procedure is similar to a down-sampling
operation. Besides, vibration acquisition system usually has a high sampling frequency.
Therefore, very high-frequency components typically contain too much detail information
that may be considered as noises to some extent, thus providing less information related to
intrinsic fault symptoms.

The emergence of incipient failures in rolling bearing components typically introduces
impulse waves and finally results in the occurrence of coupling frequency in both lower
and higher frequency components due to periodical friction and strikes between faulty and
healthy components. Thus, the F2C procedure maintains prominent low- and high-frequency
information in bearing diagnosis. By using orthogonal wavelet kernels, the WPT analysis
enables generating wavelet coefficients by applying low- and high-pass filters. Therefore,
both low- and high-frequency information is kept in the F2C signals. Furthermore, by
reconstructing coefficients to signals with the same data length as the original time series,
the F2C signals can give appropriate PE values, especially when the length of the original
data is already too short. For instance, a vibration signal of rolling bearing with Outer Race
Fault (ORF) is analyzed using the F2C procedure, and F2C signals with 8 scales are obtained
given a 4th decomposition level. The F2C signals and their frequency spectrums transformed
using fast Fourier transform are presented in Fig. 4.6. In each wavelet transformation, the raw
signal will be decomposed into approximate and detail coefficients, respectively. The raw
signal is transformed by going through wavelet filters (i.e., low-pass and high-pass filters)
and taking sub-sampling operation. A wavelet tree can thus be constructed by repeating this
procedure until the desired decomposition resolution is achieved. Each node in the obtained
wavelet tree represents wavelet coefficients with a specific range of frequency.
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(a) Time domain waveforms of the Norm and F2C signals

(b) Frequency spectrum of the Norm and F2C signals

Fig. 4.5 (a) Time domain waveforms and (b) frequency spectrums of the original Norm
bearing signal and generated F2C signals, respectively. Herein, the Norm stands for normal
bearing state.

Fig. 4.5 shows raw normal bearing signal and decomposed F2C signals as well as their
spectrums. For comparison, Fig. 4.6 presents time-domain and frequency-domain signals
of ORF bearing, respectively. From Fig. 4.6, it is observed that the F2C signals with
increasing scale factors are becoming more and more smooth and flat because high-frequency
information representing detail changes has been consecutively removed from former F2C
signals according to the F2C procedure. Therefore, only low-frequency information remains
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(a) Time domain waveforms of the ORF and F2C signals

(b) Frequency spectrum of the ORF and F2C signals

Fig. 4.6 (a) Time domain waveforms and (b) frequency spectrums of the original ORF bearing
signal and generated F2C signals, respectively. Herein, the ORF stands for outer race fault in
the bearing.
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in the F2C signals that have high scales. Furthermore, Fig. 4.6 (b) indicates that the frequency
range of each F2C signal is in line with the concept of the F2C procedure. In particular,
both low- and high-frequency information is extracted from the original signal and exists
in F2C signals at small scales. With an increasing scale, low-frequency information mainly
composes the frequency spectrum because of the use of signals reconstructed from low-
frequency coefficients. Besides, the frequency of the F2C signal on the first scale is very
similar to that of the original ORF signal, which verifies that the F2C signals encompass
rich and important frequency information refined from the original signal. For comparison,
Fig. 4.5 presents raw signal and F2C signals of normal bearing.

4.1.3 Preliminarily Proposed Improved Entropy Method

Inspired by the F2C procedure, an improved entropy, named Fine-to-coarse Multiscale
Permutation Entropy (F2CMPE) is proposed in the preliminary study. Its calculation relies
on two procedures: 1) generation of F2C signals with a range of scales; 2) calculation
of PerEn values from obtained F2C signals. The F2CMPE has advantages of considering
low- and high-frequency information in entropy estimation and reduce biases in entropy
calculation in comparison with traditional entropy methods [7].

4.1.4 Parameter Selection in the Generation of F2C signals

The appropriate use of mother wavelet function and decomposition level can significantly
improve the performance of F2CMPE analysis based on the WPT analysis. More specifically,
the desired frequency resolution in F2C signals can be achieved by using a suitable wavelet
kernel and decomposition level, where the latter determines the frequency band in each F2C
signal. Therefore, the selection of wavelet and decomposition level is vital for appropriately
generating the F2C signals. In wavelet analysis, the performance of a mother wavelet is based
on two major factors, namely the support size and the number of vanishing moments. More
specifically, a mother wavelet containing a large number of vanishing moments and small
support size can locate valuable information from the original signal with less redundant
information [180]. Among different mother wavelets, the Daubechies and Symlet family of
wavelets are well-known for their orthogonality and efficiency in filter implementation for
the Mallat fast algorithm. They are considered as available wavelet kernel functions in this
study.

The Relative Wavelet Energy (RWE) method has been widely applied to compare and
select the appropriate mother wavelet [112, 181] in wavelet analysis. The RWE can pro-
vide information regarding relative energy distribution in transformed signals, which is
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also suitable for measuring the energy ratio in the F2C signals. An appropriate mother
wavelet is supposed to extract the most significant amount of energy because failures can
introduce large magnitude in certain wavelet coefficients. Thus, the wavelet kernel having
the highest RWE value is often considered as the optimum mother wavelet for generating
F2C signals. The principle of the RWE method is described below. Given a sets of F2C
signals

{
F2Cτ , τ = 1,2, · · · ,2 j−1}, the energy of each F2C signal can be obtained by:

E(τ) =
N

∑
i=1

|F2Ci,τ |2, 1 ≤ i ≤ N, 1 ≤ τ ≤ 2 j−1 (4.7)

where i is the index of the data point in each F2C signal, N is the data length of the F2C signal
on the scale factor τ . Then, the total energy of F2C signals obtained in the j-th decomposition
level can be obtained as

Esum =
2 j

∑
i=τ

E(τ), 1 ≤ τ ≤ 2 j−1 (4.8)

Finally, the normalized value represents the relative energy of each F2C signal among
overall F2C signals:

RWE(τ) =
E(τ)
Esum

, 1 ≤ τ ≤ 2 j−1 (4.9)

where ∑
2 j−1

τ=1 RWE(τ) = 1, and the energy probability distribution RWE(τ) is considered as
a time-scale density. Besides, the variance of one indicator quantifies to what extent the
indicator varies and fluctuates. Normally, the high variance index also means that there
are extra dynamic changes and possibly additional information existed in this indicator.
Hence, in this study, the variance of RWE is also applied to evaluate optional mother wavelet
functions. The larger variance value of REW is, the greater possibility of extracting useful
information associated with fault symptoms from non-stationary signals [182]. In this study,
the RWE values and their corresponding variance are both applied to evaluate four Daubechies
(“db2”,“db4”,“db6”,“db8”) and four Symlet (“sym2”, “sym4”, “sym6”, “sym8”) wavelets
respectively to select the optimum one for generating F2C signals. Additionally, the wavelet
decomposition level determines the range of sub-frequency band in wavelet coefficients
as well as the reconstructed signals. The larger decomposition level, the higher frequency
resolution in each sub-band can be obtained. Nevertheless, a very high decomposition level
will require more computational time and computing resources. By taking these factors into
account a five-level ( j = 5) or six-level ( j = 6) wavelet tree is suitable for the F2CMPE
analysis.

To select the appropriate mother wavelet, the vibration signals of rolling bearing with
ten conditions are randomly chosen from Case Western Reserve University (CWRU) Data
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Table 4.1 Description of wavelet functions and their maximum RWE and average variance
values (RWE: Relative Wavelet Energy).

Wavelet name Maximum Relative
Wavelet Energy

Variance

Daubechies2 0.110795 0.030126

Daubechies4 0.113272 0.030434

Daubechies6 0.113340 0.030224

Daubechies8 0.112933 0.030026

symlet2 0.110795 0.030126

symlet4 0.113234 0.030539

symlet6 0.113246 0.030303

symlet8 0.112933 0.030026

Center [183]. Eight number of different mother wavelet kernels are then applied to construct
F2C signals. In this study, the fifth-decomposition level is used, and 32 sets of F2C signals
are therefore obtained correspondingly. This experiment is operated 100 times, and the
average maximum RWE values and their average variances are presented in Table. 4.1. It
can be seen that “db4” and “db6” wavelet functions outperform the rest. Besides, the two
indicators (namely RWE and its variance) of “db4” and “db6” wavelets are very similar, and
“db4” is finally selected as the desired mother wavelet in this study.

Additionally, the calculation of PerEn also greatly affects the effectiveness of the
F2CMPE feature extraction. To provide reliable PerEn measurements, the selection of
the embedding dimension m and the time delay λ are necessary. Practically, when m < 4 it
cannot detect the dynamic change of the mechanical vibration signals. Besides, when m > 8,
not only the reconstruction of phase space will homogenize vibration signals but also the
calculation of PerEn is time-consuming; hence, it cannot truly reflect the small varying range.
According to literatures [32, 64], it was recommended to select m = 4−7. Regarding the use
of time delay, when λ > 5, it cannot detect a slight change in the time series. Comparatively,
the effect of time delay λ has small effects on the calculation of PerEn [179], especially when
λ ≤ 4. Moreover, a very short time series cannot produce prominent statistical significance
on PerEn values. Therefore, in this study, m = 4−5 and λ = 1−3, data length of time series
N = 4,096 are considered for calculating PerEn values from the F2C signals.
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4.2 Adaptive Multiscale Weighted Permutation Entropy Mea-
sure

In the multiple-scale entropy method, entropy values are calculated from a range of multiple-
scale time series based on the scale-extraction procedure. In the extraction procedure, a
larger scale factor usually produces more time series that contain certain time-frequency
information in the original signal. For example, the MSE method generates the coarse-
grained time series with a narrower low-frequency bandwidth as the scale factor increases.
Although a larger scale factor can produce more multiple-scale time series, not all extracted
time series are closely related to fault information. That is, on the one hand, some extracted
time series may contain unexpected redundant information that may reduce the efficiency
of the data-driven diagnostic model in bearing diagnosis. On the other hand, an increasing
number of high-dimensional features consume more computation resources, thus increasing
computational burden. As a result, these factors may decrease the efficacy of multiple-scale
entropy analysis in bearing diagnosis. Additionally, many improved single-scale entropy
algorithms are available for entropy estimation. Consequently, there is a necessity to develop
an improved entropy that provides both reliable and efficient entropy analysis in bearing
vibration signal analysis.

For this purpose, a new Adaptive Multiscale Weighted Permutation Entropy (AMWPE)
algorithm is proposed for the analysis of bearing vibration signals. It is an improvement of
the F2CMPE method proposed in the preliminary study. In the AMWPE method, a refined
F2C procedure is proposed, and adaptive F2C signals are produced based on correlation
coefficient analysis. Also, an improved PerEn is applied to entropy estimation, which is
suitable for the analysis of non-stationary vibration signals. The proposed AMWPE algorithm
is introduced below.

4.2.1 Pearson Product-Moment Correlation Coefficient

The Pearson product-moment correlation coefficient is one of the association measures [184].
The correlation coefficient is widely applied to evaluate the similarity between two variables.
Its value ranges between [−1,1], where 1 means that two variables are completely positively
correlated, 0 means they have no correlation, and -1 means they are completely negative
correlated. An example of the correlation relationship is illustrated in Fig. 4.7.

Given two variables X(n) and Y (n), the correlation coefficient ρ is defined as:

ρ(X ,Y ) =
Cov(X ,Y )

σX σY
=

E((X −µx)(Y −µy))

σX σY
=

∑
n
i=1(xi − x̄)(yi − ȳ)√

∑
n
i=1(xi − x̄)2 ∑

n
i=1(yi − ȳ)2 (4.10)
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Fig. 4.7 An example of the correlation relationship.

where µX , σX , µY , σY denote the mean and standard deviation of X and Y , respectively.
Cov(X ,Y ) is the covariance of variables X and Y .

In signal decomposition, transformed signals always have different bandwidths and
maintain low-frequency or high-frequency characteristics of the original signal. Due to the
filter operation, multiple-scale time series have a narrow frequency bandwidth compared
to the original signal. As a result, the waveforms of extracted sub-signals (multiple-scale
time series) that represent prominent fault information should have a high similarity to that
of the original signal. In this case, appropriate multiple-scale time series that carry crucial
fault information should have a high correlation with the original signal in the time domain.
Therefore, in the AMWPE algorithm, the extracted sub-signals that have high correlation
coefficients with the original signal in the time domain are applied to construct adaptive F2C
signals for further entropy estimation.

4.2.2 Weighted Permutation Entropy

Although the wide application of PerEn measure, its major disadvantage lies in neglecting
the amplitude difference between neighboring elements. Fig. 4.8 illustrates possible motifs
that correspond to the same order permutation type when m = 3. The PE considers the order
structure of time series merely, which inevitably results in that different amplitudes in the
motif cannot differently contribute to the probability distribution of order permutations. That
is, the amplitude information is neglected, and different time-series may have the same PerEn
value.

In order to overcome this shortcoming, Fadlallah et al. [185] proposed an improved
PerEn method - Weighted Permutation Entropy (WPerEn). The definition of WPerEn retains
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Fig. 4.8 Three possible motifs corresponding to the same permutation pattern πn = [1,2,3]
when m = 3 by comparing neighboring values in an embedding vector.

most of PerEn’s properties. The most significant difference consists in the definition of the
relative frequency of symbol sequences. The WPerEn can distinguish vectors that have the
same ordinal patterns but different amplitude elements. It takes into account the amplitude
difference in different motifs. Therefore, different motifs will differently contribute to the
probability distribution of permutation patterns. The WPerEn applies the concept of the
variance of neighboring elements as the weighting factor wi. The weighted relative frequency
of each permutation πn is calculated as

Q(πn) =
∑

k
i=1 1∗wi | whenXi has typeπn

∑
m!
n=1 ∑

k
i=1 1∗wi | whenXi has typeπn

(4.11)

where k is no greater than N − (m−1)λ , and Q(πn) = 0 only when there are no vectors Xi

belonging to the given permutation type πn. The weight wi is obtained from the corresponding
vector Xi by

wi =
1
m

m

∑
k=1

[
xi+(k−1)λ − x̄i

]2
(4.12)

where x̄i is the arithmetic mean of the Xi. Then, the WPerEn is obtained as

WPerEn(m,λ ,N) =
m!

∑
j=1

Q(π j) log2(Q(π j)) (4.13)

The value of WPerEn is also in the interval of [0, log2 m!]. The WPerEn measure has
been examined in many studies and shown better entropy estimation performance in bearing
diagnostic systems [186–188]. In the AMWPE method, the WPerEn is applied to calculate
entropy values from adaptive F2C signals.
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4.2.3 Multi-class Support Vector Machine

Support Vector Machine (SVM) is a statistical machine learning technique proposed by
Vapnik in 1995 [189]. The concept of SVM is intuitive, and it requires less prior knowledge
and is computationally easy. Compared to traditional classifiers, SVM is robust and easy to
use which is suitable for low-dimensional samples. It is a deterministic algorithm that has
been extensively used for pattern recognition. The basic idea of SVM is to find the optimal
linear separating hyperplane of labeled dataset. Fig. 4.9 shows a series data points for two
different classes of data - red squares represent negative class and blue circles represent
positive class. The SVM attempts to place a linear boundary between the two different classes.
For this purpose, it minimizes the upper bound of the generalization error by maximizing the
margin between the separating hyperplane and the nearest sample points. The goal of SVM
is to generate a model - based on training samples - which can predict the label of testing
samples based on their data features.

Fig. 4.9 Different separating hyperplane resulted from different algorithms: (a) the hyperplane
based on liner classification algorithms; (b) the hyperplane based on the SVM algorithm.

Given a training dataset with l samples (xi,yi, i = 1,2, · · · , l), where xi is an input sample
and yi ∈ {+1,−1}. Through a non-linear mapping φ(x), the input data xi is mapped into
a higher dimensional feature space by the function φ(x). SVM finds a linear separating
hyperplane with the maximal margin by solving the following optimization problem [190]:

min
1
2
||w||2 +C

l

∑
i=1

ξi (4.14)

subject to yi(wT xi +b)≥ 1−ξi, and ξi ≥ 0. (4.15)
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where ξi estimates the distance between the margin and the examples xi that lying on the
wrong side of the margin and C is the penalty parameter. By introducing Lagrange multipliers
αi , the training procedure amounts to solving a convex quadratic problem. By projecting the
original sample space into a high-dimensional with a kernel function K(xi,x j), the nonlinear
separable problem becomes linearly separable in the eigenspace. Some possible kernel
functions are available in the Table. 4.2.

Table 4.2 Several possible kernel functions and types.

Type of classifier Kernel function

Gaussian RBF K(xi,x j) = exp(−γ||xi − x j||2)

Polynomial of degree d K(xi,x j) = (xT xi +1)d

Multi-layer perceptron K(xi,x j) = tanh(xT xi +θ)

When the SVM is trained, the decision function is given by

f (x) = sign

(
l

∑
i, j=1

αi yi K(xi,x j)+b

)
(4.16)

Taking into account different fault patterns, the rolling bearing fault pattern recognition is
a multi-class classification. The multi-class classification strategy - one-against-one strategy -
is applied in this study. One-against-one approach constructs k(k−1)/2 classifiers where
each one is trained on data from two classes. For the training data from the i th and the j th
classes, the following binary classification problem is solved:

min
1
2
||wi j||2 +C∑

t
ξ

i j
t (wi j)T (4.17)

subject to (wi j)T
φ(xt)+bi j ≥ 1−ξ

i j
t , if yt = i

(wi j)T
φ(xt)+bi j ≤−1+ξ

i j
t , if yt = j

ξ
i j
t ≥ 0, j = 1,2, ..., l

(4.18)

The classification decision is made using the following strategy: if sign (wi j)T φ(xt)+bi j

says x is in the i th class, then the vote for the i th class is added by one. Otherwise, the
j th is increased by one. Then x is predicted in the class using the largest vote. The voting
approach described above is also called as Max Win strategy. In this study, the LIBSVM
Matlab Toolbox [191] is used for bearing fault pattern recognition.
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4.2.4 The Proposed AMWPE Algorithm

In the AMWPE algorithm, an improved F2C procedure is developed to construct adaptive
F2C signals [192]. The advent of failures in the bearing will introduce coupling frequencies
and change amplitude magnitudes in bearing vibration signals. Crucial components extracted
from raw signals should maintain characteristic symptoms in the waveforms and thus have
a high similarity to raw signals in the time domain. Considering this, the adaptive F2C
procedure in the AMWPE algorithm selects salient reconstructed sub-signals based on
correlation coefficient analysis. These selected sub-signals are closely related to the raw
signals and have a high correlation in the time domain. Then, adaptive F2C signals are
constructed based on these selected sub-signals, and entropy values are calculated from
obtained F2C signals. The improved F2C procedure has two merits. On the one hand, these
adaptive F2C signals could incorporate more crucial fault information and less redundancy.
On the other hand, the improved F2C procedure can achieve higher computational efficiency
compared to the F2CMPE in time series complexity analysis.

In this study, correlation coefficients are used to evaluate the similarity between recon-
structed signals R j,n and the raw signal x in the time domain. Fig. 4.10 presents the diagram
of the AMWPE algorithm, and its detailed calculation steps are described below:

Fig. 4.10 Procedure of the AMWPE algorithm.
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1. Decompose a vibration signal x into the j-th decomposition level using WPD. Select
the wavelet coefficients {C j,i,(0 ≤ i ≤ 2 j−1 −1)} that are decomposed from the ap-
proximate coefficients at the first decomposition level in the wavelet tree. Reconstruct
these selected wavelet coefficients to sub-signals that have the same data length to
x. Thus, totally 2 j−1 number of reconstructed signals {R j,i,(0 ≤ i ≤ 2 j−1 −1)} are
obtained correspondingly.

2. Compute correlation coefficients between the reconstructed sub-signal and raw signal
in the time domain ρ(Rk,i,x) as

ρ(R j,i,x) =
E
[
(R j,i −µ(R j,i))(x−µ(x))

]
σ(R j,i)σ(x)

(4.19)

where µ(R j,i),µ(x),σ(R j,i),σ(x) denote the mean and standard deviation of the
reconstructed sub-signal and the original signal, respectively.

3. Contribution rates are calculated based on the correlation coefficients by

Si =
ρ(R j,i,x)

∑
2 j−1−1
i=0 ρ(R j,i,x)

∗100% (4.20)

where 0 ≤ i ≤ 2 j−1 −1, and a larger Si indicates that the corresponding sub-signal has
higher correlation with the original signal in the time domain.

4. Rank the contribution rates in descending order. For each signal, refer to n as the
maximum number of its reconstructed sub-signals, which satisfies that the sum of the
first n largest contribution rates is no less than 90%, namely ∑

n
i=1 Si ≥ 90%,(n ≤ 2 j−1).

Record the index of the selected n number of sub-signals and denote them as {Ui,(1 ≤
i ≤ n)}.

5. Apply obtained sub-signals Ui to construct adaptive F2C signals accordingly, com-
mencing from the accumulation of all n number of selected sub-signals

F2C(τ) =
n−τ

∑
i=1

Ui (4.21)

where 1 ≤ i ≤ n, and 1 ≤ τ ≤ n.

6. Calculate the WPerEn value over each F2C signal, the AMWPE values are finally
obtained by

AMWPE(x,τ,m,λ ) = WPerEn(F2C(τ),m,λ ) (4.22)
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The AMWPE analysis consists in wavelet analysis and WPerEn estimation. In wavelet
analysis, appropriate parameters - mother wavelet and resolution of decomposition scale
- can produce time-frequency components containing crucial fault information. Given a
j-level wavelet tree, there are 2 j−1 number of wavelet coefficients are totally obtained
according to the Step 1) in the AMWPE algorithm. Also, a “db4” wavelet is applied as the
Daubechies family of wavelets is well-known for their orthogonality and efficiency in filter
implementation [193]. Besides, regarding entropy parameter configuration in the WPerEn
measure, many studies have examined the performance of embedding dimension m and time
delay λ in the calculation of PE values [160]. Researchers recommended that parameters,
m = 4-7 and λ = 1-3, apply for bearing health monitoring [179].

Fig. 4.11 The procedure of transferring nmax obtained from the training stage to testing stage.

4.2.5 A New Bearing Diagnosis Method based on the AMWPE and
SVM

Based on the AMWPE and SVM, the proposed fault diagnosis method for rolling bearing is
presented as follows:

1. Collect vibration signals from rolling bearings with various health conditions. For each
condition, split raw data sets into training and testing data sets, respectively;

2. Calculate the AMWPE values from the training data samples. In this study, a j-level
decomposition tree is used and thus τ = 2 j−1. For each training sample, calculate the
value of n; thus, a vector of n values can be obtained from all training samples. Then,
specify the maximum n, denoted as nmax, as the number of features for constructing
training feature vectors as Ftrain

nmax
;
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3. Calculate the AMWPE values from the testing data samples and construct testing
feature vectors Ftest

nmax
where nmax is acquired from the training data samples;

4. Apply training feature vectors Ftrain
nmax

to train the SVM-based multi-class model for
classifying bearing fault types. This procedure of transferring nmax parameter to testing
procedure is shown in the Fig. 4.11;

5. Input testing feature vectors Ftest
nmax

into the obtained model to predict the health label.
Thus, the fault pattern of the testing sample can be recognized. The flowchart of
the proposed method based on the data collection, data analysis, and fault pattern
classification is described in Fig. 4.12.

Fig. 4.12 Flowchart of the proposed bearing fault diagnosis method based on the AMWPE
and SVM.
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4.3 Numerical Evaluation

4.3.1 Analysis of Gaussian White Noise and 1/f Noise

For investigating the performance of the AMWPE in entropy analysis, Gaussian white noises
and 1/f noises with different data lengths (N = 512, 1024, 2048, 4096, and 8192) are analyzed
in this study. Gaussian white noise is a random signal having equal intensity at different
frequencies. 1/f noise, also termed pink noise, is a signal that its power spectral density is
inversely proportional to the frequency of the signal. 1/f noise commonly exists in biological
systems. The waveforms of white noise signals and 1/f noise signals are shown in Fig. 4.13.
For comparison, the CMPE is also adopted for analyzing these signals, in which an improved
coarse-graining procedure is applied. The scale factor τ = 32, m = 5 and λ = 1 are set to
calculate entropy values in these two entropy measures. In the calculation of AMWPE values,
nmax is set to 32 as there is no training dataset for each type of noisy signal in the numerical
study. Fig. 4.14 and Fig. 4.15 present calculated entropy values over 32 scales in the analysis
of Gaussian white noise signals and 1/f signals, respectively.

(a) Gaussian white noise signal (b) Spectrum of Gaussian white noise
signal

(c) 1/f noise signal (d) Spectrum of 1/f noise signal

Fig. 4.13 Waveforms and spectrums of Gaussian white noise and 1/f noise signals.
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From Fig. 4.14, it can be seen that the CMPE values sharply decrease over 32 scales
with an increasing data length. The five curves representing different data length have a
very large variance, which is due to the down-sampling operation in the coarse-graining
procedure. In contrast, the AMWPE values exhibit stable entropy estimation under different
data length, and the five feature curves have a very small deviation. This proves the advantage
of the AMWPE in reducing bias in entropy values and the flexibility of choosing data length
of time series according to the application scenario. Additionally, it is observed that the
complexity of feature curves in two methods both decrease with an increasing scale, which
can be explained that the extracted time series are becoming more and more smooth and
regular, so presenting decreased irregularity and complexity degree. As a result, the larger
the scale factor is, the smaller the entropy value is.

(a) CMPE values (b) AMWPE values

Fig. 4.14 Comparison of CMPE and AMWPE values of Gaussian white noise signals over
32 scales.

Similarly, from Fig. 4.15, one can observe that in the analysis of 1/f noise signals, the
CMPE and F2CMPE feature curves present the same tendency. In the CMPE analysis, if a
time series has less data length, its feature values will decrease to a low value more quickly
with an increasing scale. However, the simulation results reveal that the AMWPE could
provide consistent and stable values in entropy estimation under different data lengths.

4.3.2 Entropy Analysis of Signals with Different SNRs

Numerical mixed signals are applied to study the complexity analysis of the AMWPE and
CMPE in feature representation. Gaussian white noise is added in a sinusoidal signal with
a frequency 80 Hz, and the signals with SNRs: -5, 0, 5, 10, and 15 are considered in this
analysis. The waveforms of noisy signals with different SNRs are illustrated in Fig. 4.16.
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(a) CMPE values (b) AMWPE values

Fig. 4.15 Comparison of CMPE and AMWPE values of Gaussian 1/f signals over 32 scales.

Fig. 4.16 Waveforms of the original sinusoidal signal and its noisy signals with different
SNRs.

The AMWPE and CMPE values of mixed signals are then calculated, the results of which
are presented in Fig. 4.17. For both AMWPE and CMPE feature curves, entropy values
of signals with small SNRs are greater than that of signals with large SNRs, because the
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former always has strong noise. The AMWPE and CMPE values of mixed signals are then
calculated, the results of which are presented in Fig. 4.17. In regards to SNR signals, the
smaller SNR value, the more noise in the signal. Thus, signals with small SNR values exhibit
severe irregularity, and their waveforms have more unpredictability. As a result, for both
AMWPE and CMPE feature curves, in the first several scales, entropy values of signals with
small SNRs are greater compared to signals with large SNRs. However, the CMPE feature
curves are very close to each other and are hard to identify. Also, their values fluctuate up
and down over 32 scales and lack consistency in adjacent scales. That is, a signal with a
larger scale often presents present less complexity degree and a smaller entropy value as
their signal is becoming more regular. In contrast to the CMPE, the AMWPE exhibits abetter
ability to distinguish between various noisy signals - their feature curves are separated from
each other. It presents higher consistency over 32 scales - feature values of six signals stably
decrease with an increasing scale. Therefore, the numerical analysis results demonstrate
that the proposed AMWPE method has the stability of analyzing time series with different
data lengths. It also has advantages of distinguishing between signals with different noise
levels and producing consistent and stable entropy values as scale factor increases. Thus,
the AMWPE measure has improved entropy estimation and is thus suitable for time series
complexity analysis.

(a) CMPE values over 32 scales (b) AMWPE values over 32 scales

Fig. 4.17 Comparison of CMPE and AMWPE values of synthetic noisy signals with different
SNRs.
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4.4 Summary

To provide reliable entropy estimation in bearing signal analysis, an improved multiple-scale
entropy measure, named AMWPE, is proposed in the study. The AMWPE algorithm is aimed
at providing reliable and stable entropy estimation based on the improved F2C procedure.
It extracts not only low- and high-frequency information from the signal but also provides
consistent entropy values with small variance as scale factor increases. Also, a new bearing
fault diagnosis method is proposed based on the AMWPE and SVM classifier. Numerical
studies are carried out to investigate the performance of entropy estimation in analyzing
synthetic signals. Results demonstrate that the proposed AMWPE measure is robust to
noise and can present satisfactory entropy values with high consistency and stability in
differentiating between noisy signals.



Chapter 5

Case Studies for Fault Diagnosis of
Rolling Bearing

To experimentally evaluate the proposed multiple-scale entropy measures, bearing vibration
signals collected from three different machinery test rigs are analyzed, and the results are
presented and discussed below. In three bearing datasets, two were measured from laboratory
test rigs, and another one was acquired from an industrial-scale multistage centrifugal fan
equipment. Three case studies are carried out, and their experimental setup and results are
introduced for each case study, respectively. Moreover, to study the robustness of entropy
analysis against noise, each bearing dataset is added with Gaussian white noise to construct
noisy signals with different Signal-to-Noise Ratios (SNRs). Further, comparative experiments
are carried out to compare the bearing diagnosis performance using traditional and improved
entropy measures, respectively. Each case study starts with the description of the test rig and
experiments, followed by diagnosis analysis using original and noisy bearing signals. Finally,
experimental results and discussions are presented.

5.1 Bearing Health Diagnosis using Lincoln Dataset

5.1.1 Test Rig and Data Acquisition

In the first case study, bearing vibration signals were measured from a laboratory test rig,
named PT 500 machinery diagnostic system [2], provided by the University of Lincoln,
UK. The layout graph of this diagnostic system is shown in Fig. 5.1. This PT 500 test rig
provides a roller bearing fault kit, which allows simulating various bearing health conditions
and collecting vibration signals from the accelerometer sensor. This bearing fault kit is
composed of motor assembly, motor control unit, shaft, four types of bearings, belt drive kit,
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and computerised vibration analyser. The control unit is used to collect speed and horsepower
data. The piezo-electric sensor and measuring amplifier are used for vibration measurement.

In this research, four states of roller bearing are considered, which are bearing A with the
normal condition, bearing B with outer race damage, bearing C with inner race damage, and
bearing D with rolling element damage, respectively. The type of roller bearing used in this
study is NU204-E-TVP2. The inside diameter is 20 mm, the outside diameter is 47 mm, the
width is 14 mm, and the number of rollers is 12. During the experiment, bearing vibration
signals were collected under a sampling frequency of 8 kHz and a speed of 1500 r.p.m.
Fig. 5.2 shows the original bearing signals with four health states. For each bearing state,
there are 180 samples, and each sample contains 4,096 data points. Therefore, this bearing
dataset contains 720 samples. The entire dataset is then split into two categories, namely 360
samples for training and 360 samples for testing, respectively. Fig. 5.3 shows the waveforms
of original bearing signals with four states as well as their spectrums after FFT analysis.

(a) PT 500 test rig (b) Layout graph of the test rig

Fig. 5.1 PT 500 experimental test rig and its layout graph.

(a) Bearing A (b) Bearing B (c) Bearing C (d) Bearing D

Fig. 5.2 Four bearing health states with normal condition (A) and damages on the outer race
(B), inner race (C), and roller element (D).
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Fig. 5.3 Waveforms and spectrums of original bearing signals.

5.1.2 Experimental Analysis and Results

This experiment investigates the effectiveness of bearing diagnosis methods based on multiple-
scale entropy measures. For comparison, the diagnosis performance of improved entropy
measures is compared with conventional methods. First, the computation time of each
entropy measure in the procedure of feature extraction is calculated and compared. A PC
is used with the configuration (Intel Core i7-3770 Quad 3.40 GHz with 8GN of RAM on a
Windows 7 operating system platform). Table 5.1 shows the average cost time of computing
entropy values. In each entropy algorithm, PerEn or WPerEn values are calculated with
specified parameters - embedding dimension m = 5, time delay λ = 1, scale factor and
τ = 32. From Table 5.1, it is observed that as the data length increases, the cost time of
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Table 5.1 Cost time (s) of different entropy measures for feature extraction with m = 5, λ = 1,
and τ = 32 under different data length.

Data
Length

TMPE TCMPE TF2CMPE TAMWPE

512 0.1764 0.9606 1.0951 0.7673

1,024 0.2682 1.9614 1.8006 1.4398

2,048 0.4622 3.4939 3.1046 2.3976

4,096 1.0103 6.7844 5.7357 5.1682

Fig. 5.4 Mean and standard deviation values of entropy features using the MPE, CMPE,
F2CMPE, and AMWPE methods, respectively.

all entropy measures increases. On the one hand, when the data length is large, it will take
more time to sort the adjacent values when calculating the PerEn value. On the other hand,
when the m and λ are specified, the calculation time of the PerEn value is almost the same;
thus, the calculation efficiency mainly depends on the scale-extraction procedure. For the
traditional MPE method, the PerEn value is calculated based on a linear smoothing operation
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so that the shortest calculation time can be obtained. The CMPE consumes more time than
MPE because the PerEn value is an average value obtained from multiple time series on one
scale - except the first scale; therefore, the larger the scale, the more time it takes. Also, since
the low- and high-frequency information is extracted, the F2CMPE value consumes a little
more time than that of the MPE and CMPE. In contrast, calculating AMWPE values save
time compared to the CMPE and F2CEMP algorithms because a smaller number of F2C
signals are applied to calculate PerEn values.

For evaluating the capability of distinguishing between different bearing health states,
vibration signals are analyzed using entropy measures, and entropy feature values are obtained
(m = 5, λ = 1, and τ = 32). The mean and standard deviation values of four entropy
features are shown in Fig. 5.4. From the figure, it can be seen that the MPE feature curves
- representing four bearing conditions - are mixed with each other, which is difficult to
distinguish. As the scale factor increases, the four curves change up and down and intersect
each other. Moreover, the CMPE feature curves are similar to the MPE feature curve over
32 scales. In comparison, the F2CMPE feature curves can be distinguished from each other
when the scale factor is small. The number of AMWPE features in this case study is 24
(nmax = 24) because the improved F2C procedure selects the F2C signals that are most
relevant to the original signal from the training datasets. As the scale factor increases, the
F2CMPE and AMWPE entropy values gradually decrease, which can be explained as the
F2C signal becomes more and more smooth with a larger scale factor, so its complexity
degree decreases. It is obvious that when the scale factor is small, the AMWPE feature
curves are separated from each other, so the health condition of rolling bearing can be easily
identified by observing these waveforms directly. After feature extraction, the feature vectors
obtained using different entropy measures are then input into a multi-class SVM for fault
pattern recognition. Table 5.2 lists accuracy results for bearing fault diagnosis using original
vibration signals.

Table 5.2 Comparison of diagnosis performance on Lincoln bearing dataset using entropy
measures and the SVM classifier.

Method MPE CMPE F2CMPE AMWPE parameters

Accuracy (%) 98.3 99.3 99.7 100 m = 5, λ = 1

Accuracy (%) 96 98.3 99.3 100 m = 5, λ = 2

Accuracy (%) 99.3 100 100 100 m = 5, λ = 3
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Fig. 5.5 Gaussian white noise added bearing signals with inner race fault under different
SNRs: -4, -2, 6, 10.

In practical applications, rotating machinery usually operates in a noisy working environ-
ment. It is necessary to study the robustness of the diagnosis model to external disturbance
and noise using different entropy measures. To further compare the robustness of various en-
tropy measures to noise, the original bearing vibration signals are added with Gaussian white
noise. The SNR is defined as the ratio of the power of a signal to the power of background
noise in decibels (dB):

SNR = 10log10(
Psignal

Pnoise
) (5.1)

The constructed noisy bearing signals are with different SNRs from -4 to -14 dB. Fig. 5.5
presents waveforms of bearing signals with various SNRs. Obviously, when the SNE
decreases (the noise level is high), the waveform of the signal will be more complicated, and
it will be more difficult to extract fault information accurately. For example, the important
characteristics of the original signal are contaminated servery by the noise in the signals with
SNR = -4 compared to signals with SNR = 10.

For comparison, an example is given here where bearing signals with SNR = -2 are
considered. First, the MPE, CMPE, F2CMPE, and AMWPE algorithms are used to calculate
the entropy features over 32 scales from the noisy signals, respectively. Fig. 5.6 shows the
visualized features in a two-dimensional feature space using the t-SNE method. The t-SNE
technique visualizes high-dimensional data by mapping it to a two-dimensional feature space
while still preserving the high dimensional clustering relationship. [194]. From Fig. 5.6,
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(a) MPE (b) CMPE (c) F2CMPE (d) AMWPE

Fig. 5.6 Reduced 2-D feature space of bearing signals with SNR = 2 using t-SNE.

(a) MPE (b) CMPE

(c) F2CMPE (d) AMWPE

Fig. 5.7 Confusion matrix results based on different entropy measures.

it can be seen that the samples of bearing A and C are easy to distinguish, but bearing B
and D are mixed together in the feature space of MPE and CMPE. In contrast, the feature
space of F2CMPE and AMWPE can clearly differentiate between different bearing states,
thereby providing higher accuracy of bearing fault diagnosis. Further, after feature extraction,
the entropy feature vectors are input into the SVM classifier for fault pattern identification.
The accuracy results of diagnosis methods using different entropy measures are presented
in Fig. 5.7 based on the confusion matrix. The confusion matrix indicates the number of
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correct and incorrect predictions when classifying bearing conditions. From Fig. 5.7, it is
apparent that the accuracy of the diagnosis method using different entropy measures is in
accordance with the performance of its feature space. That is, if a method can more easily
separate different bearing health states in the t-SNE feature space, its diagnosis accuracy is
higher.
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(a) Results with m = 5,λ = 1
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(b) Results with m = 5,λ = 2
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(c) Results with m = 5,λ = 3

Fig. 5.8 Fault diagnosis performance on noisy signals with various SNRs using entropy
methods under m = 5 and λ = 1−3.

To further verify the robustness and stability of improved entropy measures in the analysis
of noisy signals, three more experiments were performed, where λ ranges from 1 to 3, and
m = 5. Fig. 5.8 shows the accuracy results. When the noise level is very high, the bearing
vibration signals are severely contaminated and their complexity level increases, resulting in
a reduced diagnosis performance. From the figure, when SNR = -4, the diagnosis accuracy
rates of diagnosis methods using traditional entropy algorithms are about 85%. In contrast,
the improved entropy methods, F2CMPE and AMWPE, can achieve more than 95% accuracy.
It is obvious that the diagnosis method using the improved entropy measures is robust to
signals with strong noise.
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In summary, the improved entropy measures apply to the fault diagnosis of rolling bearing.
In this case study, the improved entropy measures exhibit high diagnostic performance and
are suitable for distinguishing between four fundamental bearing health conditions. Through
the validation of noisy signal analysis further, experimental results demonstrated that the
improved entropy measures have high robustness against noise. Moreover, as the noise
level in the bearing signal increases, the diagnosis performance using the improved entropy
measure is still satisfactory and relatively stable.

5.2 Bearing Health Diagnosis using CWRU Dataset

5.2.1 Test Rig and Data Acquisition

In the second case study, the experimental rolling bearing dataset is provided by Case Western
Reserve University (CWRU) [195] bearing data centre. The schematic of the CWRU test
rig is shown in Fig.5.9. This test rig comprises a 0 to 3 horsepower electric motor, a torque
transducer, a dynamometer, control electronics, and SKF deep-groove ball bearings with the
type of 6205-2RS JEM. In data acquisition, bearing vibration data was collected from the
drive end channel. Ten health states of the rolling bearing are considered, including four
conditions of bearing fault and three different fault severity levels. Single point failures were
introduced into SKF bearings using electro-discharge machining with local fault diameters
of 0.1778 mm, 0.3556 mm, and 0.5334 mm and fault depth of 0.2794 mm.

Torque transducer/encoder 
self-aligning coupling

DynamometerFan-end
bearing

Drive-end
bearing

Induction motor

Base

Fig. 5.9 CWRU bearing test rig
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Table 5.3 Description of the bearing state and its class label in the CWRU bearing dataset.

States Fault diameter Class label States Fault diameter Class label

IR1 0.1778 1 OR3 0.5334 6

IR2 0.3556 2 BE1 0.1778 7

IR3 0.5334 3 BE2 0.3556 8

OR1 0.1778 4 BE3 0.5334 9

OR2 0.3556 5 Norm 0 10

In this experiment, vibration data of rolling bearing include ten conditions, i.e., the normal
condition (Norm), and the damages on the inner race (IR), the outer race (OR) at 6 o’clock,
and the ball element (BE). In this study, three defect sizes (namely, 0.1778 mm, 0.3556 mm,
and 0.5334 mm) of single-point fault were considered as fault states. The rotating speed
is 1730 r/min with Load 3 HP, and the sampling rate is 12 kHz. These ten conditions are
labelled as Norm, IR1, IR2, IR3, OR1, OR2, OR3, BE1, BE2, and BE3, respectively. Then,
these vibration signals were split into a set of non-overlapping segments with a specified
data length (N = 4,096). The detail specification of each rolling bearing state is presented in
Table 5.3. Fig. 5.10 shows the original vibration signals of rolling bearing under ten health
conditions.

5.2.2 Experimental Analysis and Results

The experiment first compares the computation time of four entropy measures in analyzing
the CWRU bearing vibration signal in the second case study. The average cost time results
are shown in Table 5.4. As with the first case study, the MPE algorithm consumes the
least time. Compared with CMPE and F2CMPE, the AMWPE entropy measure has higher
computational efficiency.

For detecting and identifying bearing health conditions, vibration signals were analyzed
using four entropy measures for feature extraction. Further, to compare the performance
of fault feature extraction, entropy feature values are visualized in Fig. 5.11. It can be
seen that most of the MPE and CMPE features are mixed with each other on 32 scales,
and their features have large standard deviation values. In comparison, both F2CMPE and
AMWPE feature values have relatively small standard deviation values. Moreover, the feature
curves of the ten bearing states over the first 10 scales can be distinguished by observing
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Fig. 5.10 Time-domain waveforms of bearing vibration signals with ten conditions of rolling
bearing.

the AMWPE features. Later, feature vectors were input into the SVM for fault pattern
recognition. Diagnosis results using the four entropy measures based on the CWRU bearing
dataset are shown in Table 5.5.

The robustness of the improved entropy measures to noise is further investigated in the
second case study (where ten bearing states are considered). Noise signals are produced
where their SNR ranges from -4 to -14 dB. A comparison of the original and noisy signals
is given in Fig 5.12. From the figure, the overall trend of the noisy signal (with SNR =
-2) and its several peak values can still be identified by observing the waveform. However,
when the noise level increases to SNR = -4, the IR signal will be seriously contaminated
by high-frequency components, which makes it difficult to correctly diagnose the health
condition of rolling bearings.

For comparison, an experiment was carried out where bearing signals with SNR = 2 are
considered in analyzing CWRU bearing data. Entropy features were extracted from noisy
signals using entropy measures with parameters of m = 5,λ = 1,scale = 32. The obtained
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Table 5.4 Cost time (s) of different entropy measures for feature extraction with m = 5, λ = 1,
and τ = 32 under different data length.

Data
Length

TMPE TCMPE TF2CMPE TAMWPE

512 0.1665 0.8352 1.0103 0.5272

1,024 0.2520 1.7130 1.6416 1.0647

2,048 0.4251 3.1223 2.9379 2.0959

4,096 0.7965 6.2057 5.5404 4.0092

Fig. 5.11 Mean and standard deviation values of entropy features over 32 scales.

feature values are displayed in reduced 2-D feature space, as shown in Fig. 5.13. From the
figure, most of the bearing samples represented by the MPE and CMPE feature values are
mixed and cannot be easily distinguished. In comparison, the samples in the feature space of
F2CMPE and AWMPE are relatively separated and are easy to identify.

Besides, several more experiments were performed to study the robustness of various
entropy measures to different noise levels. To be more specific, a set of bearing signals
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Table 5.5 Comparison of diagnosis performance on CWRU bearing dataset using entropy
measures and the SVM classifier.

Method MPE CMPE F2CMPE AMWPE parameters

Accuracy (%) 98.3 99.3 100 100 m = 5, λ = 1

Accuracy (%) 96 98.3 99.3 100 m = 5, λ = 2

Accuracy (%) 99.3 100 100 100 m = 5, λ = 3

Fig. 5.12 Original and noisy bearing vibration signals with inner race fault in the CWRU
bearing dataset.

were tested where their SNR levels range between -4 and 14. Moreover, the diagnosis
performance using entropy measures is compared where entropy feature values are calculated
using different time delay parameters - m = 5,λ = 1, 2, 3, respectively. The diagnosis results
are presented in Fig. 5.14.

In summary, the improved entropy measures apply to detect and diagnose ten bearing
health conditions. Feature values calculated using the improved entropy measures not only
have small standard deviation values but also can differentiate between different bearing
states. In addition, diagnosis results with high accuracy rates demonstrated the effectiveness
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(a) MPE (b) CMPE (c) F2CMPE (d) AMWPE

Fig. 5.13 Reduced 2-D feature space of bearing signals with SNR = 2 based on t-SNE.

(a) Results with m = 5,λ = 1

(b) Results with m = 5,λ = 2 (c) Results with m = 5,λ = 3

Fig. 5.14 Fault diagnosis performance on noisy signals with various SNRs using entropy
features under m = 5 and λ = 1−3.

of the proposed method for bearing diagnosis, where features are extracted from the improved
entropy measures and the SVM is used for fault pattern recognition, respectively.
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5.3 Bearing Health Diagnosis using GDUPT Dataset

5.3.1 Test Rig and Data Acquisition

In the third case study, the bearing dataset [196] is collected from an industrial-scale multi-
stage centrifugal air pump unit at the Guang Dong University of Petrochemical Technology
(GDUPT), China. The schematic of this equipment is shown in Fig. 5.15. This unit comprises
a base, electrical motor, torque converter, gearbox, rolling bearing, and air compressor. The
specification of the multistage centrifugal air compressor unit is described in Table. 5.6.

Fig. 5.15 Multistage centrifugal air pump unit in the GDUPT.

Table 5.6 Detailed specification of the tested multistage centrifugal air compressor unit.

Device Model Parameters

Inverter motor YP-50-112 Triangular junction Circuit 380V, rated voltage 24.8 A, motor
rated power 11 kw

Air compressor C8-2000 Rated power = 11 kw, maximum speed 2970 r/min, blowing
rate 8 m3/min

Torque converter CYT-302 Rated torque 100N·m, speed range 0 3000 r/min, temperature
coefficient -0.027% \ ◦C, precision ± 0.2% FS

Data collector EMT 390 Acceleration 0.1 199.9 m/s2, acquisition frequency 10
Hz-10 kHz, number of groups 1 100, sampling rate:
512,1024,2048Hz

In this case study, two experiments are carried out to study the diagnosis performance
of the proposed method for single-fault bearing fault diagnosis and multi-fault bearing fault
diagnosis, respectively. In the single-fault bearing diagnosis test, four bearing health states
are considered, including the normal bearing (Norm), bearing with inner race (IR) fault,
bearing with outer race (OR) fault, and bearing with a rolling ball lacked (BL). Fig. 5.16
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(a) Four types of bearings (b) Bearing house

Fig. 5.16 Four types of rolling bearings and bearing house in the multistage centrifugal air
pump equipment.

Fig. 5.17 Waveforms of bearing and gearbox vibration signals.

shows four types of bearings and bearing house. In the multi-fault bearing diagnosis, six
machinery health conditions are considered including three bearing faults, one gearbox fault,
and two compound faults. Specifically, three bearing health states include normal bearing
(Norm), bearing with inner race (IR) fault, bearing with outer race (OR) fault. Gearbox with
one missing teeth (MT) fault is considered. There are two compound faults that combine
bearing fault and gearbox fault together - IR fault with MT fault, and OR fault with MT fault,
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Fig. 5.18 Mean and standard deviation values of entropy features over 32 scales.

respectively. In the two experiments, vibration signals were collected from the multistage
centrifugal air pump equipment using an EMT390 data collector with a sampling rate of
1,024Hz. The speed of rotation is 1000 r.p.m, and the motor rated power is 11kW. Measured
signals are analyzed using the proposed diagnosis methods.

5.3.2 Analysis and Results of Single-fault Bearing Diagnosis

The waveforms of single-fault bearing vibration signals are shown in Fig. 5.17. As can
be seen, signals collected from real industrial-scale equipment are far more complicated
compared to the small-scale test rig (Lincoln and CWRU test rig). Measured signals have a
high-level noise caused by background noise and additional vibrations generated by coupling
components.

In this case study, bearing vibration signals are first analyzed using entropy measures
with specific parameters (m = 5,λ = 1, and scale = 32). Extracted entropy values of four
types of bearing signals are presented in Fig. 5.18. It is obvious that the MPE and CMPE
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(a) MPE (b) CMPE (c) F2CMPE (d) AMWPE

Fig. 5.19 Reduced 2-D feature space of original vibration signals using different entropy
measures based on t-SNE.

Table 5.7 Comparison of diagnosis performance on GDUPT single-fault bearing dataset
based on entropy measures and the SVM classifier.

Method MPE CMPE F2CMPE AMWPE parameters

Accuracy (%) 98 98.3 100 100 m = 5, λ = 1

Accuracy (%) 95.6 96 98 99.3 m = 5, λ = 2

Accuracy (%) 96 98 99.3 100 m = 5, λ = 3

feature curves representing four types of bearings are mixed together and are difficult to
identify. With an increasing scale factor, these four curves gradually overlap, making it
difficult to provide valuable feature information. Comparatively, the proposed F2CMPE
and AMWPE feature curves can better distinguish between four bearings when the scale
factor ranges in the middle value. When the scale factor increases from 1, the high-frequency
information is gradually stripped from the signal, and the low-frequency signal containing the
fault information can gradually distinguish different bearing fault characteristics. Fig. 5.19
plots the reduced 2-D feature space of four entropy feature values. One can see that the
way data sample distributes in the feature space is in line with feature curves presented
in Fig. 5.18. The proposed F2CMPE and AMWPE feature values properly separate four
health states of bearings in the feature space. Diagnosis accuracy results using four entropy
measures (under m = 5 and λ = 1−3, and scale = 32) and SVM are presented in Table. 5.7.

5.3.3 Analysis and Results of Multi-fault Bearing Diagnosis

In the multi-fault bearing diagnosis, an additional gearbox fault states is considered, and it
is combined with bearing inner race fault and outer race fault, respectively. Compared to
single-fault diagnosis, multi-fault diagnosis has the difficulty in classifying single faults and
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Fig. 5.20 Waveforms of bearing and gearbox vibration signals.

compound faults. The waveforms of multi-fault vibration signals are shown in Fig. 5.20.
With the gearbox fault, waveforms of compound faults are always more complicated than
single-fault bearing signals. Also, the coupling components will exhibit more non-linear
characteristics, thus making it more difficult to appropriately extract fault information and
identify fault patterns correctly.

In this case research, vibration signals are analyzed using four different entropy measures
(m = 5,λ = 1, and scale = 32). The mean and standard deviation values of entropy feature
values, respectively, extracted from four entropy algorithms are shown in Fig. 5.21. It can be
observed that the MPE and CMPE feature values still present irregular and chaotic waveforms
over 32 scales. However, the F2CMPE and AMWPE feature values exhibit more separated
feature curves that can distinguish six bearing health states. Compared with single-fault
bearing diagnosis, the feature values of bearings with compound faults are mixed with the
feature values of single faults. For example, in the F2CMPE features, IR feature curve and
“IR + MT” curve are intertwined and thus are difficult to distinguish. In contrast, with the
AMWPE algorithm, feature values of bearing signals under six conditions have relatively
lower standard deviation values. Also, these six machinery states can be separated from the
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Fig. 5.21 Mean and standard deviation values of four different entropy measures.

feature curves, thus it can give a higher fault classification accuracy in multi-fault machinery
diagnosis. The feature spaces of four types of entropy features are displayed in Fig 5.22.

To verify the effectiveness of entropy measures for bearing diagnosis, feature vectors
were then input into the SVM for fault pattern classification. Table 5.8 shows the diagnosis
performance results using four different entropy measures for comparison. It is observed that
the improved entropy measures gain higher accuracy rate compared to the MPE and CMPE.
Their diagnosis performance is stable when the time delay parameter λ ranges from 1 to 3.

(a) MPE (b) CMPE (c) F2CMPE (d) AMWPE

Fig. 5.22 Reduced 2-D feature space of original vibration signals using different entropy
measures based on t-SNE.
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Table 5.8 Comparative performance on GDUPT multi-fault bearing diagnosis using different
entropy measures and SVM classifier.

Method MPE CMPE F2CMPE AMWPE parameters

Accuracy (%) 94.6 95.3 96.6 98.3 m = 5, λ = 1

Accuracy (%) 86.3 91.3 93.3 98 m = 5, λ = 2

Accuracy (%) 83.6 86.3 92.6 96.6 m = 5, λ = 3

5.4 Summary

In this chapter, three case studies are carried out to investigate the effectiveness of the
proposed multiple-scale entropy measures for bearing fault diagnosis. The experiments
examined the performance of the proposed entropy measures in analyzing bearing vibration
signals in terms of cost time of calculating entropy values, mean and standard deviation
values, and the robustness against noise, respectively. The advantage of the proposed multiple-
scale entropy algorithms was seen by the fact that they save calculation time than traditional
methods, but they can give more reliable and robust diagnosis performance. On the one hand,
the feature values of the proposed entropy measures on a given scale have a small variation,
and their waveforms over a set of scale factor can clearly differentiate between various
bearing health states. Also, the reduced 2-D feature space demonstrated the advantage of the
proposed methods in classifying bearing states. However, the feature values of traditional
methods are mixed and are difficult to identify a certain bearing state by observing feature
curves. On the other hand, the analysis of noise signals with various SNRs verified that the
proposed entropy measures are robust to noise and can accurately identify bearing states,
even with a certain strong noise level. In the study of bearing faults in the industrial-scale
multistage centrifugal air compressor equipment, the advantage of the proposed entropy
algorithms was seen by the fact that they provide satisfactory diagnosis accuracy in detecting
both single-fault and multi-fault bearing fault in the unit. The developed entropy measures
and diagnosis methods will contribute to developing improved and reliable bearing diagnosis
techniques, thus preventing costly breakdowns and saving financial losses.





Chapter 6

Conclusions and Future Works

This chapter summarizes the research presented in this dissertation and outlines potential
future work for intelligent data-driven methods in machinery fault diagnosis using entropy
measures.

6.1 Summary

Entropy measures have exhibited practical effectiveness in time series complexity analysis
and wide application to fault detection and diagnosis in rotating machinery. The goal of this
dissertation is to develop new multiple-scale entropy measures and diagnostic techniques
for fault diagnosis of rolling bearings. The research particularly aims to bridge an existing
gap between the state-of-the-art entropy analysis in the academia and current practice on the
factory floor.

Chapter 1 introduced the research background of this dissertation and discussed the
motivations and contributions of this research work on bearing fault diagnosis. Bearing fault
diagnosis methodologies were systematically reviewed, including model-based, signal-based,
and data-driven-based fault diagnosis techniques. Limitation of traditional statistical features
on analyzing bearing vibration signals measured from non-linear machinery systems was
discussed. The research on multiple-scale entropy measures for analyzing vibration signals
was reviewed, aiming at improving the efficiency and reliability of the scale-extraction
mechanism in entropy estimation. The lack of systematic research in entropy analysis using
reliable and improved scale-extraction mechanisms was identified.

While the wide application of entropy measures to the analysis of complex systems,
their notions are defined differently in various contexts. To locate the gap between entropy
analysis in the academia and fault diagnostic application in industrial-level machinery,
chapter 2 systematically reviewed the theoretical development of some fundamental entropy
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measures. Then, typical usages and applications of entropy analysis for machine fault
diagnosis are summarized, including entropy as a feature indicator, entropy criterion for
parameter selection, and entropy usage in pattern recognition. Further, insights into potential
applications of entropy measures are explained, as to where and how these measures are
useful for data-driven fault diagnosis methodologies. Based on the systematical survey,
limitation of traditional entropy measures on estimating complexity change of bearing signal
analysis was identified.

Chapter 3 presented the principles of typical single-scale and multiple-scale entropy
measures and clarified the relations between different notions of entropy algorithms, respec-
tively. This helps researchers arrive at an understanding of some of the most significant
principles of entropy measures. The research summarizes representative characteristics of
entropy measures in time series complexity analysis in terms of their merits, demerits, and
algorithmic complexity. Through systematic survey work, it was found that despite the wide
application of traditional multi-scale entropy measures, they have some limitations in the
analysis of non-stationary time series from the non-linear system, particularly for bearing
vibration signal analysis. On the one hand, high-frequency information is abandoned in
traditional scale-extraction procedures. On the other hand, extracted multiple-scale time
series with greatly reduced data length lead to inconsistent and biased entropy values with
large variance, consequently resulting in reduced diagnosis performance in bearing diagnosis.
These critical motivations drive the presented research in this dissertation in continually
developing new entropy measures with improved and reliable diagnosis performance in
bearing diagnosis, especially towards real industrial diagnostic applications.

Chapter 4 proposed a novel Fine-to-Coarse (F2C) mechanism for generating improved
multiple-scale signals in the scale-extraction stage. The selection of appropriate wavelet
kernels used to generate the F2C signals was evaluated using the relative wavelet energy
criterion. Based on the F2C procedure, a preliminary study was carried out and a novel Fine-
to-Coarse Multiscale Permutation Entropy (F2CMPE) was put forth. Further, an improved
entropy measure - Adaptive Multiscale Weighted Permutation Entropy (AMWPE) - was
proposed for bearing vibration signal analysis. Also, a new bearing diagnosis method is
developed based on the AMWPE and SVM classifier for bearing fault pattern identification.
Numerical evaluation study demonstrated that the proposed AMWPE measure offers coherent
and stable entropy values in entropy analysis in comparison with traditional entropy methods.

In chapter 5, three case studies were carried out to verify the effectiveness of the proposed
entropy algorithms in bearing fault diagnosis. Original signals and noisy signals were
analyzed using entropy measures, respectively. Results demonstrated that the proposed
algorithms have higher computational efficiency in comparison with traditional modified
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entropy methods. Feature values of the improved entropy measures have smaller variance
and higher consistency over a range of scale factors. Also, their feature waveforms enable
distinguishing between various bearing health states in the feature space, corresponding to
higher diagnostic accuracy compared to traditional methods. Particularly, with respect to
the CWRU dataset with ten bearing states, the proposed methods can detect and identify
different fault types and fault severity levels in the bearing. Also, results demonstrated
that the proposed diagnosis methods have high robustness to noise. Even if there is strong
noise interference, they can accurately identify fault patterns and fault severity levels. These
advantages make the proposed entropy measures and their applications suitable for bearing
diagnosis in industrial-scale machinery equipment.

In addition, bearing signals measured from an industrial-level multistage centrifugal air
pump unit were analyzed, where studies of single-fault and multi-fault bearing diagnosis are
considered, respectively. Experimental results demonstrated that for both single-fault and
multi-fault bearing diagnosis, the proposed methods exhibit satisfactory diagnostic perfor-
mance, such as in feature representation and bearing classification accuracy rate. Improved
abilities of entropy estimation and robustness against noise verified the effectiveness and
reliability of the proposed entropy measures in bearing signal analysis for machinery fault
diagnosis. It is worth mentioning that, in this thesis, a few fault patterns and severity levels
are considered and simulated. Data sets may vary due to different operating conditions,
experimental environments and applications. The proposed diagnostic models are suitable
for detecting known fault types and severity levels. Once new fault patterns added, the fault
detection model need updates by training new data sets.

As a summary, this dissertation systematically reviews state-of-art entropy measures in
machinery fault diagnosis and summarizes potential usages and roles of entropy measures
in diagnostic applications. Limitation of traditional multiple-scale entropy measures on
bearing signal analysis is identified. For providing improved and reliable entropy analysis
in bearing diagnosis, this research proposes a new F2C scale-extraction procedure and an
improved entropy measure - AMWPE, as well as another improved method proposed in the
preliminary study. A new bearing diagnosis method is developed based on the AMWPE and
SVM classifier. Considering three case studies as benchmarks, the presented work has three
main advantages:

1. The proposed entropy measures can characterize fine-grained fault information incor-
porating both low- and high-frequency information from the original signal. This merit
earns the proposed entropy measures better ability in detecting incipient faults in the
bearing and distinguishing between various bearing health conditions.
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2. The improved F2C scale-extraction procedure enables yielding coherent entropy values
with small variance and slowly reduced values with an increasing scale factor, thus
avoiding incoherent and biased entropy values and improving entropy analysis in
bearing diagnosis.

3. Through the analysis of three case studies, experimental results verified the effective-
ness of the improved entropy methods in bearing diagnosis. For single-fault bearing
diagnosis, they are capable of identifying various bearing conditions, defect sizes, and
severity levels with satisfactory performance, such as less computational cost, higher
fault classification accuracy and higher robustness to noise, in comparison with tradi-
tional entropy methods. With respect to multi-fault bearing diagnosis, the proposed
methods also exhibit the applicability to identify compound faults with satisfactory
diagnostic performance, where interferences due to coupling components and strong
background noise exist.

6.2 Future works

In addition to the work presented in this dissertation, some other researches need to be carried
out in the future, which are listed in the following.

1. The presented work aims to analyze bearing vibration signals using permutation
entropy estimation under the F2C scale-extraction scheme for bearing diagnosis. Since
different single-scale entropy algorithms estimate different types of dynamic changes
in the time series, it is possible to design various multiple-scale entropy methods under
the framework of the F2C procedure. They may produce more comprehensive fault
information using improved single-scale entropy algorithms for bearing signal analysis.

2. In three experimental case studies, a single wired acceleration sensor was used to
collect bearing vibration signals from the machine. Therefore, accurate diagnostic
performance entirely depends on the normal operation of a single sensor, but the
premise is that the sensor node works without malfunction, so it can collect sensor
data without abnormal values. Once the sensor fails, relying on the sole sensor node
may lead to greatly reduced reliability of fault diagnostic systems and erroneous
diagnostic decisions. To overcome this shortcoming, a multivariate entropy algorithm
is a suitable tool to analyze the complexity of multichannel data using multiple sensor
nodes. Therefore, the proposed entropy measures are expected to generalize to the
multivariate entropy algorithm further in the future.
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3. Feature representation is one of the critical procedures in the data-driven bearing
diagnosis methodology. Considering the advantage of entropy measures in complexity
analysis, various entropy feature indicators can be applied to extract fault information
from signals. After that, extracted feature values can be fused, on the feature level,
using information fusion techniques, after which advanced fault pattern classifiers are
available for diagnostic decision-making. On the other hand, a variety of classifiers
can be applied to make decisions, and their predicted results can be fused on the
decision-level further; thus, more robust and accurate diagnostic decision-making is
achieved by incorporating the advantages of different artificial intelligence-based fault
pattern classifiers.

With these potential future works, more advanced techniques can further enhance the
robustness of data-driven fault diagnostic systems, thus improving the reliability and safety
of mechanical systems in industrial settings.
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