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  Abstract
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Response evaluation criteria in solid tumours (RECIST) v1.1 are currently the reference standard for evaluating efficacy of
therapies in patients with solid tumours who are included in clinical trials, and they are widely used and accepted by regulatory
agencies. This expert statement discusses the principles underlying RECIST, as well as their reproducibility and limitations.
While the RECIST framework may not be perfect, the scientific bases for the anticancer drugs that have been approved using a
RECIST-based surrogate endpoint remain valid. Importantly, changes in measurement have to meet thresholds defined by RECIST for
reponse classification within thus partly circumventing the problems of measurement variability. The RECIST framework also
applies to clinical patients in individual settings even though the relationship between tumour size changes and outcome from
cohort studies is not necessarily translatable to  individual cases. As reproducibility of RECIST measurements is impacted by reader
experience, choice of target lesions and detection/interpretation of new lesions, it can result in patients changing response
categories when measurements are near threshold values or if new lesions are missed or incorrectly interpreted.
There are several situations where RECIST will fail to evaluate treatment-induced changes correctly; knowledge and understanding
of these is  crucial for correct interpretation. Also, some patterns of response/progression cannot be correctly documented by
RECIST, particularly in relation to organ-site (e.g. bone without associated soft-tissue lesion) and treatment type (e.g. focal
therapies). These require specialist reader experience and communication with oncologists to determine the actual impact of the
therapy and best evaluation strategy. In such situations, alternative imaging markers for tumour response may be used but the
sources of variability of individual imaging techniques need to be known and accounted for. Communication between imaging
experts and oncologists regarding the level of confidence in a biomarker is essential for the correct interpretation of a biomarker
and its application to clinical decision-making. Though measurement automation is desirable and potentially reduces the variability
of results, associated technical difficulties must be overcome, and human adjudications may be required.
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questions and controversies, that have been debatted over time about RECIST criteria. How were RECIST thresholds established? Do
RECIST categories predict outcome? How reproducible is RECIST? How reproducible are other biomarkers? What are common RECIST
limitations? When is RECIST response assessment misleading? Should (could) RECIST be automated? RECIST in novel drug development
RECIST: only as good as its users?

   

   

  Funding statement

 
no funding

   

  Data availability statement

Generated Statement: The original contributions presented in the study are included in the article/supplementary material,
further inquiries can be directed to the corresponding author/s.

   

In review



 

1 
 

Twenty years on: RECIST as a biomarker of response in solid tumours 1 

An EORTC Imaging Group – ESOI joint paper 2 

 3 
AUTHORS AND AFFILIATIONS  4 
 5 
 6 
 7 
Fournier L (1, 2, 3), de Geus-Oei L-F (1,4,5), Regge D (2, 6, 7), Oprea-Lager D.E (1, 8), Danastasi M (2, 9), Bidaut L (1, 10), Baeuerle T (2, 11), Lopci E (1, 12),  8 
Cappello G (6, 7), Lecouvet F (1, 13), Mayerhoefer M E (2, 14, 15), Kunz W G (1, 2, 16), Verhoeff J (1, 17), Caruso D (2, 18), Smits M (1, 19, 20), Hoffmann R-9 
T (2, 21), Gourtsoyianni S (2, 22), Beets-Tan RGH (2, 23, 24), Neri E (2, 25), de Souza N (1, 26, 27, 28), Deroose C M (1, 9), Caramella C (1, 30) 10 
 11 
 12 

1- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium. 13 
2- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria. 14 
3- Université de Paris, AP-HP, Hopital europeen Georges Pompidou, Department of Radiology, PARCC UMRS 970, INSERM, Paris, France. 15 
4- Department of Radiology, Leiden University Medical Center, Leiden (NL) 16 
5- Biomedical Photonic Imaging Group, University of Twente, Enschede (NL) 17 
6- Department of Surgical Sciences, University of Turin, 10124 Turin, Italy.  18 
7- Radiology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy. 19 
8- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers (VU University), Am sterdam, The 20 

Netherlands 21 
9- Medical Imaging Department, Mater Dei Hospital, University of Malta, Msida, Malta. 22 
10- College of Science, University of Lincoln, Lincoln, LN6 7TS, UK  23 
11- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.  24 
12- Nuclear Medicine Unit, IRCCS – Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano (MI), Italy 25 
13- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Universi té Catholique de Louvain 26 

(UCLouvain), B-1200, Brussels, Belgium 27 
14- Dept. of Radiology, Memorial Sloan Kettering Cancer Center, USA 28 
15- Dept. of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria 29 
16- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.  30 
17- Department of Radiotherapy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands 31 
18- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome.  32 
19- Dept. of Radiology & Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam (NL) 33 
20- Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam (NL) 34 
21- Institute and Policlinic for Diagnostic and Interventional Radiology University Hospital Carl-Gustav-Carus Technical University Dresden 35 
22- Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital 36 

In review



 

2 
 

23- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.  37 
24- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands. 38 
25- Diagnostic and Interventional Radiology, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 39 

56126, Italy. 40 
26- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK. 41 
27- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria.  42 
28- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA. 43 
29-  Nuclear Medicine, University Hospitals Leuven; Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven; both  in 44 

Leuven, Belgium 45 
30- Radiology Department, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph. Centre International des Cancers Thoraciques, Univers ité 46 

Paris-Saclay, Le Plessis-Robinson, France. 47 
 48 
 49 
Corresponding author: Laure Fournier. Laure.fournier@aphp.fr 50 
 51 
 52 
 53 
 54 
 55 
Key words: tumour, response, biomarker, imaging, RECIST  56 

In review



 

3 
 

Abstract 57 

Response evaluation criteria in solid tumours (RECIST) v1.1 are currently the reference standard for evaluating efficacy of therapies in patients with solid 58 

tumours who are included in clinical trials, and they are widely used and accepted by regulatory agencies. This expert statement discusses the principles  59 

underlying RECIST, as well as their reproducibility and limitations.  60 

While the RECIST framework may not be perfect, the scientific bases for the anticancer drugs that have been approved using a RECIST-based surrogate 61 

endpoint remain valid. Importantly, changes in measurement have to meet thresholds defined by RECIST for reponse classification within thus partly 62 

circumventing the problems of measurement variability. The RECIST framework also applies to clinical patients in individual settings even though the 63 

relationship between tumour size changes and outcome from cohort studies is not necessarily translatable to  individual cases. As reproducibility of RECIST 64 

measurements is impacted by reader experience, choice of target lesions and detection/interpretation of new lesions, it can result in patients changing 65 

response categories when measurements are near threshold values or if new lesions are missed or incorrectly interpreted.  66 

There are several situations where RECIST will fail to evaluate treatment-induced changes correctly; knowledge and understanding of these is  crucial for 67 

correct interpretation. Also, some patterns of response/progression cannot be correctly documented by RECIST, particularly in relation to organ-site (e.g. 68 

bone without associated soft-tissue lesion) and treatment type (e.g. focal therapies). These require specialist reader experience and communication with 69 

oncologists to determine the actual impact of the therapy and best evaluation strategy. In such situations, alternative imaging markers for tumour response 70 

may be used but the sources of variability of individual imaging techniques need to be known and accounted for. Communication between imaging experts 71 

and oncologists regarding the level of confidence in a biomarker is  essential for the correct interpretation of a biomarker and its application to clinical 72 

decision-making. Though measurement automation is desirable and potentially reduces the variability of results, associated technical difficulties must be 73 

overcome, and human adjudications may be required.  74 

  75 
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Introduction 76 

Imaging plays a major role in the evaluation of tumour response to cancer treatments. It provides an objective in-vivo measurement of tumour burden,  77 

and helps oncologists determine whether a treatment should be pursued, interrupted or adapted.  78 

Response evaluation criteria in solid tumours (RECIST) v1.1 currently is the reference standard for evaluating efficacy of therapies in patients with solid 79 

tumours who are included in clinical trials, and it is widely used and accepted by regulatory agencies(1). However, many publications question both the 80 

reproducibility and the clinical relevance of RECIST. This paper is an expert statement aiming to answer some of the questions regarding the principles  81 

underlying RECIST and its reproducibility compared to other biomarkers, as well as the limitations to its application and continued role in an era where 82 

other biomarkers exist that are more explicitly geared towards tumour-specific properties. 83 

 84 

How were RECIST thresholds established? 85 

RECIST has instituted several overarching principles underpinning its approach to tumour response evaluation. Primarily, RECIST defines which lesions 86 

are measurable in a reliable manner. Among these, it defines a maximal number of lesions (‘target lesions’) to be measured to yield a quantitative value 87 

representative of tumour burden. The remainder are considered ‘non-target lesions’ and are evaluated qualitatively. On follow-up scans, new lesions 88 

indicate progression (Table 1). The threshold for response is defined as a decrease of at least 30% of sum of diameters (SOD) of target lesions compared 89 

to baseline, AND no progression of non-target lesions AND no new lesions. The threshold for progressive disease (PD) is defined as an increase of at 90 

least 20% of SOD of target lesions compared to nadir AND/ OR unequivocal progression of non-target lesions AND/OR appearance of new lesions. 91 

 92 

The first publication addressing thresholds for determining treatment efficacy was published by Moertel and Hanley in 1976(2). In this study, 16 observers  93 

were asked to measure by clinical examination using a caliper the diameters of solid spheres of variable sizes arranged randomly underneath a mattress. 94 

Authors suggested the product of two diameters should be used, as this would be more reliable if lesions were not spherical. For this ‘clinical’ estimate, a 95 

50% reduction in the product of two diameters was shown to have an acceptable measurement error estimated between 7-8%. Interestingly, the authors  96 

specifically stated that “the purpose was not to predict long-term efficacy but to determine what change in bidimensional size could be confidently  97 

considered a change”. Progression, on the other hand, was defined as an increase in the product of diameters  25%, but the authors could not justify 98 

this cut-off, other than by specifying it “should not necessarily be regarded as influencing the management of the patient”. 99 
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In 1979, the World Health Organization (WHO) provided recommendations for the evaluation of cancer treatments in clinical trials on imaging. Criteria 100 

were based not only on the bidimensional measurement of lesions on clinical examination, but also CT or standard radiography (3), transposing results 101 

of Moertel and Hanley’s study and setting cut-offs for definition of response to -50% and of progression to +25%. However, many technical aspects were 102 

not detailed, such as the number of lesions to be measured or what constituted a measurable lesion. 103 

In 2000, a working group of European, American and Canadian cancer research organizations (EORTC, NCI, NCIC) defined the Response Evaluation 104 

Criteria In Solid Tumours – RECIST(4). They used data from over 4,600 patients enrolled in 14 clinical trials to formulate criteria based on imaging.  105 

RECIST used unidimensional measurement of lesions, justified by an extensive comparison of methods of measurement (1D vs. 2D)(5). Moreover, this 106 

working group specified conditions of measurement, number of lesions, and detailed how to document progression. Regarding cut -off values for response 107 

and progression, the -50% value for response for bidimensional measurement was altered to -30% for unidimensional measurements, and the +25% 108 

value for progression for bidimensional measurement was altered to +20% for unidimensional measurements (table 2).  109 

RECIST was then revised in 2009 (version 1.1)(1), introducing specific rules for measurement of small axis of lymph nodes and reducing the number of 110 

target lesions to five per patient. This new version was also based on data analysis, including a literature review and a simulation using a database of 111 

over 6,500 patients and 18,000 lesions. The number of target lesions for example, was chosen by determining the minimum number for which response 112 

rates and time to progression were not altered from RECIST 1.0 results(6,7).  113 

Statement #1: RECIST thresholds were chosen to produce a comparable classification of patients in a given category of response when comparing trials 114 

or even when comparing patients, tak ing into account tumour measurement variability. 115 

Table 2: relationship between diameter and corresponding volume  116 

Diameter (“long axis”) Percentage of variation Corresponding volume Percentage of variation 

20 mm  4.2 cm3  

26 mm +30% 9.2 cm3 +120% 

34 mm +30% 20.6 cm3 + 120% 

27 mm -20% 10.3 cm3 -50% 

 117 
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Do RECIST categories predict outcome? 118 

RECIST criteria were originally tested and validated to provide an objective and reproducible assessment of treatment effect in cancer patients, without  119 

any references to patient outcome(8). Yet it seems intuitive that when a tumour decreases in size, a patient will have a better outcome, and vice versa.  120 

There is evidence to support this, including some large studies, which pool data from various trials. In over 500 patients with metastatic colorectal cancer 121 

treated with combination chemotherapy, a decrease in size resulted in a decreased hazard ratio for overall survival (OS) (9). In a meta-analysis of 24 122 

phase I trials, a linear relationship was shown between change in tumour size and survival (10). In a pooled analysis of over 2,700 patients with metastatic 123 

renal cell carcinoma treated with anti-angiogenic agents, tumor shrinkage of ≥30% resulted in improved OS and progression-free survival (PFS) (11). In 124 

addition, the authors demonstrated that tumour shrinkage between 60% and 100% at 6-month follow-up represented an independent prognostic factor 125 

for OS. Litière et al also demonstrated in an even larger pooled analysis of over 23,000 patients treated with targeted agents, chemotherapy or a 126 

combination thereof(12), that a decrease in tumour size was consistently associated with a lower hazard ratio, while an increase in size was associated 127 

with a higher hazard ratio. 128 

Tumour response according to RECIST can only be quantified by a decrease in size or number of target lesions, as non-target lesions are not taken into 129 

consideration for partial response (PR). Regarding progression however, it is important to consider non-target lesions, as unequivocal progression of non-130 

target lesions or emergence of new lesions defines tumour progression. In over 3,700 patients from 13 trials in the RECIST trial database, the presence 131 

of new lesions and progression of non-target lesions were most strongly associated with worse OS (hazard ratios range 1.5–2.3) regardless of tumour 132 

type, whereas percentage tumour growth in target lesions contributed less in a multivariate model of OS (13). 133 

Finally, in two separate studies (14,15), An et al. compared the predictive ability of RECIST categories vs. longitudinal tumour measurement–based 134 

continuous metrics and alternative categorical response metrics such as slope (absolute change in tumour size) and percent change (relative change in 135 

tumour size) to predict OS. The databases consisted respectively of almost 2,100 patients from 13 trials and over 1,500 patients from 3 trials with breast  136 

cancer, non–small cell lung cancer (NSCLC) or colorectal cancer. Although there seemed to be a slightly better performance for continuous variables, it 137 

was not statistically significant, which led the authors to conclude there was no evidence that growth rate or a continuous evaluation of percent change 138 

would improve prediction of outcome. However, it may be noted that timing of evaluations, particularly when considering non-continuous variables, may 139 

have an impact on their performance and results. 140 

Statement #2: Tumour size changes correlate to outcome at a statistical (cohort) level. 141 

 142 
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How reproducible is RECIST? 143 

When considering whether RECIST evaluates tumour response correctly, metrology principles guide us to consider two aspects(16): is the measurement 144 

“true” (when compared to a “real” value, which defines its accuracy), and is the measurement “precise” (i.e. repeatable and reproducible)? 145 

Assessing accuracy of change in size measurements would require obtaining “true” values of change in size. As it is not possible to surgically excise all 146 

tumours for comparison with imaging, and often inaccurate to compare ex vivo with in vivo measurements, the true value of an imaging biomarker must 147 

be derived from data obtained through a combination of primary tumour excision and phantom studies. 148 

Precision refers to the variability of the measurement process and can be evaluated by repeatability (when measurement conditions do not change) and 149 

reproducibility (when measurement conditions vary). The precision of RECIST and of response categories has been studied extensively. Table 3 lists the 150 

documented reproducibility of RECIST and factors that may impact it. Overall, SOD reproducibility is in the order of +/-20% in multi-observer studies, and 151 

+/-10% in single observer studies(17). Important factors associated with RECIST measurement reproducibility  are the choice and number of target lesions 152 

(Figure 1) and the experience of the reader(s). Where multiple target lesions are used, their selection affects variability: agreement ranges from 0.58 when 153 

different targets are chosen to 0.97 when the same targets are used(18). Variability also increases with the number of target lesions selected. For this 154 

reason, it has been recommended that a central review in clinical trials should include two readers and one adjudicator(19). Finally, reader experience 155 

has major impact on variability, from the selection of the correct reference examination (baseline vs. previous CT) to the detection and proper interpretation 156 

of new lesions(20–23). Measurements of well-demarcated lesions and bigger lesions are also more reproducible(17,24,25), which vindicates RECIST 157 

recommendations for the choice of target lesions. 158 

Statement #3: RECIST reproducibility is impacted by reader experience, choice of target lesions, lesion characteristics, and detection/interpretation of 159 

new lesions. At an individual level, this can result in patients being categorised incorrectly when values of SOD are near thresholds or when new lesions 160 

are either missed or incorrectly interpreted. 161 

 162 
 163 
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Figure 1 :Selecting target lesions in a 58 yo patient with metastatic renal cell carcinoma. Multiple lung, lymph node, pancreatic and adrenal 165 
metastases are present. Lymph nodes should be sampled from different locations where possible. Selection of target lesions at baseline from 166 
multiple organ sites is important for response evalation at a patient level. 167 

How reproducible are other biomarkers?   168 

Table 4 summarises repeatability and reproducibility of some of the other biomarkers suggested or used as alternatives to RECIST for evaluating 169 

response. With the abundance of suggested candidate biomarkers in the published literature, the purpose here is not to be comprehensive, but to give a 170 

general overview of some of the most frequently explored options for providing a level of comparison with RECIST. 171 

A first alternative to measuring a single size dimension as a response biomarker, would be to measure volume of a single or several lesions as an indicator 172 

of tumour bulk. This seems particularly important when lesions are irregular in shape, or when they change orientation and are therefore not identically 173 

represented on standard axial follow-up scans. Volumetric response on first follow-up CT has been shown to better predict OS than RECIST response 174 

(26). Tumour volume response has been utilised in lung (27), cervical (28), and other solid malignancies (29). Despite a trend towards better intra- and 175 

inter-observer reproducibility, the routine use of volume has been hampered by the need for manual segmentation, which is user-dependent and time-176 

consuming and does not improve the discrepancies linked to the choice of target lesions (30,31). Aside from tumour bulk, metabolic activity of tumours  177 

through functional imaging (e.g. positron emission tomography - PET)) is highly predictive of response in lymphoma(32), lung cancer (33), and metastatic 178 

melanoma(34). Other radioligands are utilised for response or recurrence detection, e.g. 18F-fluoroestradiol (FES) in hormone-dependent breast cancer 179 

(35) and 18F- or 68Ga Prostate-Specific Membrane Antigen (PSMA) ligands in prostate cancer(36). Additionally, radiolabelled ligands of various metabolites  180 

and biologically active molecules can assess proliferation, hypoxia, angiogenesis, apoptosis and gene transfection(37).While parameters used for the 181 

quantification and measurement of tumour metabolism by PET are generally based on semi-quantitative assessments, these can be made relatively  182 

reproducible and harmonised throughout the world through standardised imaging protocols and dedicated initiatives promoted by the international 183 

scientific societies(38,39), such as the accreditation program developed by the EANM Research Ltd. (EARL)(40,41). 184 

Other alternate imaging biomarkers include perfusion and diffusion imaging. As tumours are commonly characterised by neo-angiogenesis, perfusion and 185 

permeability derived from dynamic-contrast enhanced studies (e.g. with MR or CT) have been contenders for measuring early response(42), and  186 

vascularity can be quantified using most imaging techniques, such as MRI, CT, ultrasound and PET. The utility of biomarkers of vascularity has been 187 

demonstrated particularly where anti-angiogenic agents such as bevacizumab have been part of the therapeutic strategy(43). However, their quantitation,  188 

which depends on measuring or estimating an arterial input function, is susceptible to large potential variations(44), and the reproducibility of such data 189 

is often low, thus limiting their clinical utility(45). Another biomarker reflecting tissue cellularity, the apparent diffusion coefficient (ADC) from DW-MRI, has 190 
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proven a robust quantitative measure with good repeatability and reproducibility across vendor platforms(46), and has the potential to detect therapeutic  191 

response earlier than size measurements. It is increasingly being introduced routinely into scanning protocols, as it does not require injection of an extrinsic 192 

contrast agent and is simple and fast to acquire and analyse. Increasing automation with artificial intelligence (AI) systems may aid the translation of 193 

biomarkers indicative of tumour characteristics other than bulk into routine clinical workflows . Unfortunately, tightened legal rules are slowing down the 194 

process of their adoption (47). 195 

Although historically dependent on imaging, response assessment for malignancies may now also include liquid biopsies  (quantification of circulating 196 

tumour cells or DNA [CTC, ctDNA]), as well as histological sampling. ctDNA shedding is influenced by the overall tumour burden (cells) and may thus 197 

inform the use of imaging in relation to likely tumour size (48), because ctDNA estimations require less workflow and infrastructure than repeated 198 

monitoring with imaging. Initial clinical evaluations showed that ctDNA detected response earlier than imaging-based assessment(49). The simplest 199 

clinical implementation of ctDNA may be in postoperative monitoring of disease recurrence(50) but even here reproducibility and standardisation issues 200 

remain limiting. In one study, ctDNA quantities based on measurement of some target genes (e.g. TERT) were, on average, more than two-fold higher 201 

than those of other assays (e.g. ERV3) (145). In another, quantities of cell-free DNA for the different isolation methods for detection of EGFR variants in 202 

NSCLC varied between medians of 1.6 ng/mL and 28.1 ng/mL (146) . Moreover, concordance between tissue and plasma variant detection for leading 203 

platforms has been shown to range from 70% to 90% (147). Thus, ctDNA extraction /isolation methods (145,146) may need to be standardised before 204 

routine clinical use. 205 

Finally, histopathology may also be a method for tumour response evaluation. However, serial histological sampling is not routinely used for response 206 

assessment and has thus far shown agreement with imaging-based responses only in a few studies (51). Histopathological evaluation of response is 207 

performed usually after neoadjuvant therapy, when the organ is surgically resected. Qualitative or semi-quantitative histopathological evaluation also 208 

presents variable reproducibility according to organs, methods and published studies (52–55). Agreement between pathologists yielded kappa values 209 

ranging from 0.21 for extent in prostate cancer (53), to 0.49 for multiple well-trained observers in cervical cancer (54), 0.64 for a 5-point tumour regression 210 

grade in rectal cancer (51) and 0.83 for a central review in bladder cancer (52). As with macroscopic imaging, reader experience (55), and central review 211 

(53) improve reproducibility. 212 

Statement #4: Alternative biomarkers for tumour response yield reproducibility generally comparable to RECIST. Each technique has its sources of 213 

variability, and it is important to understand inherent variability and limitations of individual biomarkers. It is critical that imaging experts communicate their 214 

level of confidence in any chosen biomarker. 215 

What are common RECIST limitations? 216 
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Challenging organs: bone 217 

Bone metastases were considered unmeasurable in the initial RECIST initiative, because of the lack of sensitivity of existing techniques to bone marrow 218 

infiltration(4). On CT it is the bone’s osteolytic or osteosclerotic reaction to the presence of tumour, or its response to therapy (flare lesions) that is 219 

visualised rather than the tumour itself (56,57). With the updated RECIST 1.1. version, bone metastases with soft tissue masses 10 mm are recognized 220 

as measurable target lesions(1). Nevertheless, bone lesions without soft tissue involvement, whether lytic, mixed or sclerotic, remain unmeasurable by 221 

RECIST. Since the early 1990s, bone marrow MRI has been shown to be superior to bone scintigraphy and CT for the assessment of bone metastatic 222 

disease. Bone marrow replacement by neoplastic foci is detected and quantified on T1-weighted and fat-suppressed T2-weighted MRI sequences (58,59),  223 

more recently complemented with diffusion-weighted imaging (DWI) sequences(60,61). However, to date, RECIST 1.1 has not validated quantitative bone 224 

MRI for tumour response assessment. Positron Emission Tomography Response Criteria in Solid Tumours (PERCIST), introduced in 2009 (62,63),  225 

enables response to be measured in 18F-fluorodeoxyglucose (18F-FDG) avid bone metastatic lesions based on their metabolic activity in the absence of 226 

any obvious anatomic changes. Finally, PSMA-PET appears promising for identifying bone marrow invasion due to prostate cancer, regardless of the 227 

impact on the bone mineral content (64,65) . 228 

Challenging diseases: GIST and mCRC 229 

As RECIST is not organ-specific, it might not capture the key parameters that are associated with survival outcomes in certain cancer types, and under 230 

certain types of treatement. In gastrointestinal malignancies, the hepatic tumour burden and its response commonly outperform other sites of metastatic 231 

disease for survival prediction. A study in metastatic colorectal cancer (mCRC) showed that the depth and uniformity of response in liver metastases 232 

represented a highly useful and clinically relevant indicator for therapy monitoring(66). Organ-specific response patterns may also occur under 233 

immunotherapy possibly due to varying immune microenvironments in organs or the lymphatic system(67–69). Thus, choice of target lesions would largely  234 

impact the response observed according to the organ, as well as the predictive ability of RECIST. In this case also, reader experience and knowledge of 235 

the disease is crucial for proper target lesion selection. 236 

Response to therapy in patients with advanced GIST was drastically improved by the introduction of imatinib, a tyrosine-kinase inhibitor. Imatinib treatment  237 

as been shown to induce necrosis with a marked decrease in vascularity of GIST lesions, resulting in a decrease in CT density often before any significant  238 

decrease in size is seen, thus leading to underestimation of the initial tumour response (70,71) (Figure 2). A paradoxical increase in volume is occasionally 239 

observed, simulating progression (72). Choi et al therefore proposed adapted criteria for GIST, combining changes in tumour density on contrast-enhanced 240 

CT expressed in Hounsfield units (HU) and/or size to determine tumour response(71) : PR is defined as a decrease of ≥10% in the SOD or a decrease of 241 

≥ 15% in tumour density of target lesions, whereas PD is defined as a ≥ 10% increase in size and not meeting the PR criteria by tumour density. PD may 242 
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also occur if new intra-tumoural nodules are present or existing intra-tumoural nodules show an increase in size, factors which are not catered for in 243 

RECIST. In patients treated with imatinib, Choi criteria showed a significantly better correlation with survival rates than RECIST(73). 244 

 245 
Figure 2: Response unrelated to tumour size in a 66 yo patient treated with imatinib for a gastrointestinal stromal tumour (GIST). Compared to the baseline 246 

image (left), after treatment (right) the tumour shows a dramatic decrease in density rather than in size. 247 

 248 

Challenging treatments: focal therapies 249 

Treatment of tumour lesions with ablative therapies, such as radiofrequency ablation, microwave ablation or cryoablation, res ults in a larger defect than 250 

the original lesion and such treated lesions are not considered measurable unless there is progression at this site (1), such as the development of a new 251 

measurable nodule within the ablation defect. Distinguishing normal post-ablation changes from residual disease and recurrence can be challenging (74).   252 

Intravascular therapies are also a challenge for the use of RECIST. Trans-arterial radioembolization (TARE) induces inflammatory changes with a 253 

generally delayed morphologic response (74). A reduction of 18F-FDG uptake on early PET-CT has been found to be helpful in predicting further outcome 254 

of these patients(75). As a consequence, both TARE and intra-arterial therapies such as trans-arterial chemoembolization (TACE) in hepatocarcinoma 255 
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require modified RECIST (mRECIST) criteria derived from arterial and portal venous enhancement phases of CT or MRI(76), and which take into account 256 

both lesion size and vascularity. 257 

High-intensity focused ultrasound (HIFU), under the guidance of ultrasound or MRI, has also been used as a non-invasive technique for tissue ablation 258 

in prostate cancer and more recently in recurrent gynecological malignancy (77). The use of HIFU for hepatic tumour lesions is still in the exploratory  259 

stage. As for other ablative therapies and for similar reasons (78), RECIST 1.1 appears to be unsuitable for local response evaluation following HIFU 260 

applied to liver lesions.   261 

Finally, tumour lesions in a previously irradiated area (via CyberKnife, stereotactic radiotherapy or traditional fractionated radiation therapy) are not 262 

considered measurable(1) and must be excluded from RECIST evaluation due to the inflammatory or fibrotic changes that may be observed, thus making 263 

evaluation of size unreliable . 264 

Statement #5: There are several scenarios in which RECIST criteria fail to evaluate treatment-induced changes correctly. Informed appreciation that 265 

RECIST criteria are not applicable to all tumour sites and situations is thus crucial for proper interpretation and again dependent on reader experience.  266 

 267 

When is RECIST response assessment misleading? 268 

Pseudo-progression 269 

During immunotherapy, RECIST may describe progression that can be misleading and is thus classified as “pseudo-progression”. In fact, in around 5 to 270 

10% of patients with metastatic disease treated with check-point inhibitors, an initial increase of tumour burden has been observed, followed by actual 271 

response or long-term stabilisation of disease (79–81). This phenomenon relates to the mechanism of action of immunotherapy, which stimulates the 272 

immune response and initially induces inflammation and tumour swelling, thus delaying visible tumour shrinkage. For this reason, adaptations of RECIST 273 

criteria for assessing treatment response to immunotherapy (iRECIST) have been developed. The first ascertainment of progression by iRECIST is 274 

considered as “immune unconfirmed progressive disease”(or iUPD), and requires, if possible, a subsequent evaluation 4 to 8 weeks later in order to 275 

confirm true progression(82) (Figure 3). 276 

In review



 

14 
 

 277 

Figure 3: Pseudoprogression on immunotherapy in a 56 yo patient with metastatic non small cell lung cancer . The baseline image (left) shows lung and 278 

peritoneal nodules (arrows). After 4 wks of antiPDL1 therapy (middle), CT shows an increase in previous lesions and the appearance of new lung nodules.  279 

Disease was considered immune unconfirmed progressive disease. Siix weeks later (right) a dramatic response in all previous lesions was seen classifying 280 

the patiets as a complete responder and endorsing an ealier diagnosis of pseudoprogression. 281 

Mixed response/progression 282 
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In some patients, the tumour bulk does not respond homogeneously, with some lesions increasing and others decreasing. Mixed or heterogeneous 283 

response is defined as an increase in size of some tumour lesions and decrease of others in the same patient during treatment. This lesion-specific  284 

response has been attributed to the emergence of drug-resistant clones and indicates that tumour heterogeneity is likely causing treatment failure(83,84).  285 

Mixed response has the same incidence in patients treated with targeted cancer agents and those undergoing chemotherapy alone or even combined 286 

with targeted agents(12,31).  287 

Since RECIST records overall patient response rather than individual lesion response, the choice of target lesions critically affects the objective 288 

assessment of overall patient response in patients with mixed response in individual lesions (Figure 4)(12). As lesions escaping treatment control will 289 

weigh negatively on patient prognosis (85), their presence should be annotated in order to offer the best alternative treatment for the patient.  290 In review
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 291 

Figure 4: Mixed response to treatment in the same patient illustrated in Figure 1.  Eight weeks after targeted therapy lung, adrenal and pancreatic  292 

metastases decreased, whereas one mediastinal lymph node (top right, arrow) increased  293 

Lesion cavitation, necrosis and residual non-viable masses represent other forms of response than decrease in size and may complicate RECIST 294 

assessment(86). Tumour necrosis with cavitation is present in approximately 14-24% of NSCLC patients undergoing anti-angiogenic drug therapy(87–295 

89). When cavitation is present, lesion size may not change significantly and RECIST may therefore under-estimate the effect of therapy. Conversely ,  296 

cavitation also risks missing progression if there is tumour regrowth inside the cavity. While alternative criteria have been proposed in such cases, e.g. 297 

subtracting the longest cavitation diameter from the largest lesion diameter (such as Crabb criteria )(88), these are not commonly used. 298 
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When residual tissue is present after therapy, evaluation with RECIST criteria is subject to pitfalls. First, an asymmetric shrinkage of the tumour may result 299 

in a similar longest diameter and consequent stable disease (SD) rating not reflecting the real response to treatment (Figure 2). Second, it may be difficult  300 

to distinguish between viable tumour and fibrosis. In such cases, best response assessment, an important endpoint in phase 2 studies (partial vs. complete 301 

response; PR vs. CR) may be affected(88). According to RECIST guidelines, in equivocal cases, residual lesions should be evaluated by either biopsy or 302 

PET(-CT) (Figure 2). This may well then allow upgrading PR to CR. However, false positive PET findings are not uncommon (90). Alternatively, other 303 

advanced imaging tests, such as DWI-MRI or perfusion imaging (e.g. from MR or CT) could be used. 304 

Statement #6: Some patterns of response/progression cannot be correctly documented by RECIST. These require specialist reader experience and 305 

communication with oncologists to determine appropriate evaluation approaches and/or therapeutic options.  306 

 307 

Should (could) RECIST be automated? 308 

The core assumption of RECIST is that a single diameter on the cross-sectional imaging slice presenting the largest cross-section of a given lesion (or 309 

sum thereof) is a surrogate for tumour burden. This assumes that lesions are grossly spherical and that their size represents their overall activity . To 310 

streamline the determination of this single diameter and make it less subject to possible human-induced variability, semi- or fully-automated 2D or even 311 

3D segmentation techniques can be applied to target lesions, which can also be semi- or fully-automatically tracked between scans  acquired at different  312 

time points(91–96). The 2D or 3D mask resulting from the segmentation process then readily permits the automated and accurate extraction of the largest  313 

diameter from the segmented lesion. With 3D segmentation, the full volume of a target lesion can be provided alongside an automatically extracted largest  314 

diameter, which may not be oriented in the 2D plane of the source images in a broader RECIST interpretation, together with any other geometric metric 315 

of relevance. Using the largest 3D diameter would allow RECIST to be used beyond 2D constraints, and can account for non-orthogonal motion of target  316 

lesions between scans at different time-points. While segmentation and tracking can now plausibly be fully automated, especially with newer approaches 317 

using machine learning, and such capabilities are already implemented in several commercially available clinical systems, som e challenges remain with 318 

key RECIST operations, such as the proper selection of target lesions and dealing with new or disappeared lesions. These are currently still best addressed 319 

or verified with a human (e.g. a radiologist) in the loop (21,97). 320 

Statement #7: Though automation is desirable to streamline the process and potentially reduce the variability of results within the RECIST paradigm, 321 

remaining technical challenges must be overcome to ensure proper repeatability, and human adjudication is still required. 322 

 323 
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RECIST in novel drug development 324 

RECIST measurements play a pivotal role in the development of novel oncological drugs(98). In most registered randomised controlled trials (RCTs),  325 

studies are powered to meet primary endpoints such as OS/PFS, which determines the number of patients recruited. A study of RCTs between 2006 and 326 

2015 looking for evidence of clinical efficacy of novel oncology drugs in order to gain US Food and Drug Administration (FDA) approvals had PFS as 327 

primary endpoint in 28 out of 42 RCTs (66%), and OS in 14 (33%). In 2012, 12 novel anticancer drugs were approved by the FDA; only three drugs 328 

showed improvement of overall survival(99). Similarly, a study of drugs approved by the European Medicine Agency (EMA) between 2009 and 2013 also 329 

showed that only 18 of 68 (26%) novel drug uses were supported by OS data, whereas PFS was used in 31 (46%)(100). In the vast majority of trials, PFS 330 

is determined using the RECIST1.1 framework, or iRECIST for immune-oncology trials. It is acknowledged however, that in some disease types other 331 

criteria are used: e.g. Lugano criteria for 18F-FDG PET/CT or RECIL in lymphoma (101,102)and RANO criteria for brain tumours (103,104). The fact that 332 

PFS can predict OS outcome in large patients cohorts with commonly occurring cancers, reinforces the use of RECIST criteria in clinical trials(105).  333 

Moreover, rapid progress in drug development will make the reliance on OS as endpoint for novel drugs in oncology increasingly challenging because 334 

treatment options on progression on trial, including in-trial cross-over, are increasing.  335 

Statement #8: Although the RECIST framework might not be perfect, the scientific basis for the anticancer drugs that have been approved using a 336 

RECIST-based surrogate endpoint remains valid. 337 

 338 

RECIST: only as good as its users? 339 

RECIST criteria were developed for clinical trials and thresholds chosen to produce a comparable classification of patients, taking into account tumour 340 

measurement variability. These criteria are widely used in clinical trials and accepted by regulatory agencies. Despite some limitations, the scientific basis 341 

for the anticancer drugs that have been approved using a RECIST-based surrogate endpoint remains valid. Reader experience, choice of target lesions 342 

and detection of new lesions impact RECIST reproducibility, which necessitates adequate training of radiologists using these criteria. Automation is not 343 

currently sufficiently reliable to replace human experience.Unfortunately, some organ-, disease- or drug-specific patterns of response/progression cannot  344 

be correctly documented by RECIST. 345 

This expert statement oncludes that RECIST remains a tool for radiologiststhat needs to be used with discrimination and good understanding of its purpose 346 

and limitations. Training of radiologists is essential to improve its application and reproducibility. RECIST conclusions should not go against common (or 347 

informed) sense. Furthermore, RECIST criteria have the advantage of simplicity, availability, cost-effectiveness, and intuitiveness. Overall, therefore, RECIST 348 
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provides a common language between oncologists and imaging experts (e.g. radiologists), provided there is full understanding of how measurements are 349 

made, what they represent, and their inherent limitations.  350 
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Table 1. RECIST categories of response. 653 

Overall response Target lesions Non target lesions New lesions 

Definition Lesions with longestdiameter≥10 mm 
and limits that are sufficiently well 
defined for their measurement to be 
considered reliable 
Lymph nodes: measurement of short 
axis, target lesion if short-axis 
measures≥15 mm  
 Maximum number of selected target 
lesions 5/patient and 2/organ 

Lesions that are too small 
(< 10 mm) 
Lesions for which measurement is 
considered unreliable as their limits are 
difficult to define (bone or 
leptomeningeal lesions, ascites, pleural 
or pericardial effusion, lymphangitic 
carcinomatosis etc.) 
Measurable lesions not selected as 
target lesions 
Lymph nodes: measurement of short 
axis, non-target lesion if 10 mm ≤ short-
axisdiameter < 15 mm 
Levels of tumour markers > normal (if 
relevant and predefined) 

 

Complete response (CR)  Disappearance of all target lesions 
and all nodes have short axis < 10 mm 

 Disappearance of all non-target 
lesions and normalisation of tumour 
marker levels  

 No 

Partial reponse (PR) ≥ 30 % decrease in the sum of target 
lesions taking as reference the baseline 
sum 

No progression  No 

Stable disease (SD) Neither response nor progression  Persistence of one or more 
non-target lesions and/or 
tumour marker levels > normal 

 No 

Progressive disease (PD) : 
response is PD if at least one 
category of lesions meets 
progression criteria 

≥ 20 % increase in the sum of target 
lesions taking as reference the smallest 
sum measured during follow-up (nadir) 
and ≥ 5 mm in absolute value 

 ‘Unequivocal’ progression (assessed 
qualitatively) in lesion size (an increase 
in size of a single lesion is not sufficient) 

 Yes (appearance of 
new unequivocally 
metastatic lesion(s)) 
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Biomarker Reproducibility Factors impacting 

reproducibility 

 95% limits of agreement Kappa Other  

RECIST 
(measurement) 
CT (size) 

Per lesion 
- Intra-obs: -18% to 16% 
- Inter-obs: -22% to 25% (1(17) 
Per sum of diameters 
- Intra-obs: -10% to 13% 
- Inter-obs: -20% to 20% 
Interval change in tumour burden (% change 
between time points) 
- -31% to 30% 
Repeatability (same image on repeat CT taken 
within 15 minutes)  
- -4% to +4% (24) 

With target lesion selection  
- Intra-obs: 0.957 (25) 
- Inter-obs 0.954 (25) 
Target response classification 
- Inter-obs: 0.48 (21) to 0.66 

(20) 

Non-target response 
classification 

- Inter-obs: 0.58 (21) 

 

Lesion size ICC (106) 
- Pre-treatment: 0.72 
- Post-treatment: 0.85 
- Interval change: 0.70 

 

- Selection of target lesions 
differs in 21 to 33 % 
(17,18,30) 

- Practical training (ref 40) / 
expertise (20) 

- Same observer (17,21) 
- Well delineated lesions 

(17,25) 
- Lesions size (greater 

variability for smaller 
lesions) (24,25) 

- Adjudication could reduce 
easily avoidable 

inconsistencies (21,22) 

RECIST (overall 
response) 

 With target lesion selection  
- Inter-obs: 0.97 (18) 
Without target lesion selection 
- Inter-obs: 0.51 (21), 0.53 
(23,30) to 0.58 (18)  

- 30% of patients classified 
differently in a cohort of 39 

pts with 2 readers (23) 

 

- Arbitrary nature of CR/ PR/ 
SD/PD categories (10) 

- Inconsistencies mainly due 
to interpretation of new 
lesions (21,23) 

- Choice of target lesions 

3D 
measurement 

- Intra-obs: 0.4 to 33% according to 
automated volume measurement method 

(107) 

Whole body volumetry 

- Inter-obs: 0.95 30) 

- Discordant classification in 
overall response in 10 to 
21% of patients according 
to automated volume 
measurement method 
(107) 

- Time consuming (31) 
- Do not resolve the 

discrepancies linked to the 

choice of target lesions (30) 

Table 3: RECIST reproducibility and factors impacting it. 95% limits of agreement are derived from the Bland-Altman method comparing two measurements of the same 
variable. Kappa coefficients measure agreement between qualitative observations. ICC measures the reliability of measurements by comparing the variability of different ratings 
of the same subject to the total variation across all ratings and all subjects . 
Abbreviations: Intra-obs: intra-observer; Inter-obs: inter-observer; ICC: Intra-class coefficient; CR: complete response; PR: partial response; SD: stable disease; PD: 

progressive disease.   
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Biomarker Reproducibility Factors impacting reproducibility 

 ICC Coefficient of Variation Other  

Metabolic activity 
(18-FDG PET) 
Semiquantitative: 
SUV (SUVmax, 
SUVmean; 
SUVpeak), SUL 
(SULmax, 
SULmean, 
SULpeak); MTV, 
TLG 
Response 
criteria: 
PERCIST (62) 
/EORTC (108) 

SUVmax (4 observers) (106) 
- Pre-treatment: 0.93 
- Post-treatment: 0.91 
- Interval change: 0.94 

 SUVmean repeatability (109) 
- 0.91 (meta-analysis) 
SUVpeak  
- -31% to 30% 
-  

SUVmax (4 observers) (106) 
- Pre-treatment: 6.3% 
- Post-treatment: 18.4% 
- Interval change: 16.7% 

 

Repeatability standard 
deviation (110) 
- SUVmax : 1.01 

- SUVmean : 0.28 

Technical factors:  
Scanner calibration/injected activity calibration 
(41,111) 
Incorrect decay correction (112) 
Tracer extravasation (113,114) 
Residual activity in syringe (41) 
Synchronization of clocks (41) 
Biological factors:  
Blood glucose levels  (114) 
Inflammation (41) 
Patient preparation (114) 
Injection-acquisition interval (115,116) 
BMI/metabolic syndrome (117) 
Drug interaction/corticosteroids (114) 
Physical factors: 
Acquisition parameters/matrix size (41,112) 
Reconstruction algorithm (115,118,119) 
Partial volume effect (120) 
Normalization factor for SUV (41,121) 
Use of contrast agents (41) 
ROI/VOI definition (115,118) 
Semiautomated/manual contouring (122) 
Movement artifacts/respiratory movements 
(41) 
Recovery effect/motion blur(123) 
Image noise (120,124) 
Background activity/visual assessment 
(118,125) 
Lesion size/location (126) 

Vascularity (DCE 
MRI) 

DCE-MRI ktrans  
- Intra-obs: 0.98 (127) 
 
DCE CT (arterial flow, blood 
volume, permeability) - Intra-
obs: 0.72-0.89 
- Inter-obs: 0.70-0.91 (128) 
 

DCE MRI  
- model-free parameters (ex: AUC60, 
peak…): 12-24% 
- modeled parameters (ex: 
distribution volume, blood flow, 
mean transit time): 21-29% (130) 
 

 - Parameter extraction model (130) 
- Segmentation: 3D vs 2D regions of interest 
(128) 
- Software (129) 
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DCE and DSC-MRI 
intersoftware reproducibility 
ICC 0.31 to 0.58 (129) 
 
 

DSC MRI normalised rCBVmax - 
repeatability: 50%,  
- reproducibility: 6% (131) 
 
DCE-CT (blood flow, blood volume, 
mean transit time, permeability) 
- within subject: 18% to 25%; DCE-
MRI (Ktrans, k(ep), v(e))  
- within subject 16% to 23%, (132) 
 

Cellularity (MR) 
ADC 

ADC mean value 
- Intra-obs: 0.91 (133) – 0.99 
(127) 
- Inter-obs: 0.92 (133) 
 
ROI segmentation method 
(Inter-obs) 
- Manual method: 0.69 
- Semi-automated volumetric 
method: 0.96 (134) 

Repeatability 
- ADC total = 4.8% (133), 7.1% (142) 
to 13.3% (135) 
 
Different post-processing platforms  
- 2.8% (136) 
 
Different sites 
- multicentric : 9% (137) 
- ice-water phantom: 1.6% (143) 
- breast fibroglandular tissue: 7.0% 
(137) 

Repeatability (single-centre)  

-  ±0.1x10-3 mm2/s (138) 
 

- Field homogeneity gradient linearity (139) 
- QA procedure by trained operators 
assessing artifacts, fat suppression, and 
signal-to-noise ratio (133) 
- Segmentation: 2D vs. 3D, manual vs. semi-
automatic (134) 
- Choice of measurement: 
mean/min/max/percentiles of ADC (140) 
- Lesion size (136) 

 

Table 4 : Reproducibility and factors impacting it of other imaging biomarkers. SUVmax is measured as the maximum single voxel value of SUV, SUVmean is the average 

value of SUV in all voxels above a threshold, SUVpeak (is the average value of SUV in a region of interest positioned so as to maximize the enclosed average. 
Abbreviations: SUV = standardized uptake value; SUL = lean body mass corrected SUV; MTV = metabolic tumour volume; TLG = total lesion glycolysis; PERCIST = PET 

Response Criteria in Solid Tumours; EORTC = European Organization for Research and Treatment of Cancer; wCV = within-subject coefficient of variation; BMI = body mass 

index; ROI = region of interest; VOI = volume of interest; ICC inter correlation coefficient; DCE dynamic contrast enhanced; DSC-MRI dynamic susceptibility contrast magnetic 

resonance imaging; ADC: apparent diffusion coefficient; QA quality assurance; 3D: three-dimensional; 2D: bi-dimensional; AUC60: area under the curve at 60s; rCBV: relative 

cerebral blood volume; Ktrans: transfer constant; k(ep): wash-out transfer constant; v(e): extracellular volume. 
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