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Abstract

Since Don R. Swanson’s first works in the field of Literature-Based Discovery (LBD)

in the 1980s, there has been a keen interest in the process’s abilities to retrieve new

relationships from already published articles. In addition to this, the explosion of

biomedical literature added to the public domain daily makes these automated sys-

tems more vital as time goes on with a researchers ability to keep up to date with

their specialism let alone any potentially related fields. Furthermore, this emergence

of LBD and the explosion of published knowledge has come at a time where the

pharmaceutical industry is beginning to understand the importance of repurposing

existing compounds as a method of reducing costs whilst still managing new and old

conditions. This thesis proposes a system that utilises the Word2Vec group of models

to implement an LBD system. These tasks are undertaken utilising seven different

corpora comprised of biomedical articles related to varying levels from Raynaud

Disease to Hematological journals published on the MEDLINE database and re-

trieved through PUBMED. This data was then fed through a specially developed

pre-processing pipeline to normalise the data and then passed through a Word2Vec

model and using the cosine similarity metric the most semantically similar phrases

to any phrases containing the word "Raynaud". Finally, these phrases are filtered

based upon their UMLS semantic type and compared to the terms found by both

Weeber and Swanson to evaluate the usefulness of this method. These experiments

found that when using these corpora the majority of links, an average of 88% of

B-Terms for Open Discovery and an average of 81% for Closed Discovery, can still

be formed. However there is still a large degree of manual curation necessary due to

the imprecision of the process. This thesis shows that the development and imple-
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mentation of such a system with improvements to its precision can be of use to the

research community.
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Chapter 1

Introduction

1.1 Motivation

The average cost of drug development in the United States has increased from $403

million in 2000 (DiMasi, Hansen and Grabowski, 2003) to $648 million in 2017 and

with costs ranging between $157.3 million to $1.950 billion (Prasad and Mailankody,

2017). There is widespread demand, both in the pharmaceutical industry and also

within many healthcare facilities for more work to be done in the field of reusing

compounds in diseases as a method to escape some of the most expensive and time-

consuming processes in drug discovery (See Fig. 1.1).

Figure 1.1: Drug discovery and drug development timeline until Food and Drug
Administration (FDA) approval
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The highly expensive field of drug discovery has driven many companies and re-

searchers to try and focus their efforts on the much cheaper idea of repurposing (also

known as repositioning) existing drugs to similar diseases. Whilst many people have

focused on the cost of the development of new drugs as a barrier for much of the

fields research. It has also been shown in research that another large contributing

factor to many companies being more responsive to the idea of repurposing previ-

ously approved medication for new uses is that many government agencies have much

more strict approval rates. This new found strictness is related to the fact that in

previous years in response to the fact that some 450 previously approved drugs were

later found to be dangerous, with the main cause being liver damage (Dialani, 2019).

Figure 1.2: FDA number of drug approvals with respect to their R&D costs

The reason R&D cost, as seen in Figure 1.2, is still rising when the number of

approved drugs is decreasing is because the R&D process is inefficient (Ayyadurai,

2014). When this argument is looked at alongside the previous fact research output

is at a rapid level (See Fig. 1.1), it makes a large amount of sense why companies

are wondering as to whether starting their own research on brand new undiscovered

compounds is both financially plausible, but whether it also has a decent chance of

being successful.
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Figure 1.3: Number of MEDLINE citations per year

With a successful track record in the field, after most famously Sildenafil (Viagra)

being repurposed from cardiovascular diseases to erectile dysfunction and Minoxi-

dil from being an anti-hypertensive to being repurposed into Rogaine (Azvolinsky,

2017). The use of drug repositioning has been shown to have the potential to be be-

neficial not only to the healthcare facilities and pharmaceutical companies previously

mentioned, but also to the everyday consumer due to the fact that if the process to

finding and developing cures becomes cheaper, then the actual to consumer cost of

treatment will likely decrease. There is also an argument not only for drug repur-

posing, but also for the effect that many dietary/vitamin supplements may have on

certain conditions. For example, in 1986, Don Swanson in his article entitled "Fish

Oil, Raynaud’s Syndrome, and Undiscovered Public Knowledge" (Don. R. Swanson,

1986a) found for the first time via the manual curation of published literature evid-

ence the consumption of Fish Oil supplements may ease the symptoms of Raynaud’s

Syndrome, a medical condition which reduces blood flow to a persons extremities.

Swanson’s work was so groundbreaking that it birthed the technique currently known

as Literature-Based Discovery (LBD). LBD is a form of Knowledge Extraction that

uses academic literature that are currently seen as "Noninteracting Literatures" to
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potentially uncover previously unreported links such as those between Raynaud’s

and Fish Oil (Don. R. Swanson, 1986a). In the years after Swanson reported his

hypothesis lab experiments were able to concur and thus prove the link between Fish

Oil and Raynauds Disease (Digiacomo, Kremer and Shah, 1989).

Since Swanson’s work in 1986 many researchers have found that LBD has as the

potential to not only potentially speed up the hypothesis generation phase of drug

discovery, but of also its ability to link together previously existing but currently un-

linked, islands of scientific literature. This is largely due to the rate of growth seen in

many scientific fields, for example, the biomedical database MEDLINE has shown a

growth from 16,113,221 in 2007 to 24,335,332 in 2017, a total increase of 51.03% and

an average year on year growth of 4.2% (See Fig. 1.3 and Table 1.1). As this graph

makes abundantly clear, it would be impossible for any scientific researcher to keep

up-to-date with not only their own area of research, much less so any neighbouring

and currently un-linked research areas.

Early LBD experiments utilised co-occurrence lexical statistics to extract concept

relationships in text. Whilst these studies have had a moderate level of success

it has become clear that they struggled to explain the relationships themselves.

Later experiments attempted to overcome this issue through the utilisation of text-

mining techniques, for example mapping text to concepts with the use of the UMLS

(Unified Medical Language System) (Weeber et al., 2001) and Term Frequency -

Inverse Document Frequency (TF-IDF) for term weighting (P. Srinivasan, 2004).

Fiscal Year
(Oct. 1-Sep. 30)

Number of Journals
Indexed in Index Medicus

Number of Journals
in MEDLINE

Number of Citations
in MEDLINE Total Citations Percentage Change on

Previous Year
2017 5,150 5,617 813,598 24,335,332 3.42%
2016 5,136 5,623 869,666 23,531,948 5.09%
2015 5,123 5,618 806,326 22,391,870 3.75%
2014 5,118 5,647 765,850 21,582,742 4.29%
2013 5,067 5,640 734,052 20,695,240 3.61%
2012 5,025 5,633 760,903 19,974,272 4.28%
2011 4,946 5,559 724,831 19,155,303 4.44%
2010 4,866 5,484 699,420 18,340,055 3.96%
2009 4,759 5,394 712,675 17,641,559 4.46%
2008 4,660 5,319 671,904 16,888,640 4.81%
2007 4,520 5,194 670,943 16,113,221 N/A

Table 1.1: MEDLINE Indexing Statistics from 2007-2017 as found on the NIH web-
site Detailed Indexing Statistics: 1965-2017 n.d.

To give the LBD process a higher degree of autonomy the aim of this thesis is
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to replicate the Raynaud-Fish Oil discovery (Don. R. Swanson, 1986b; Weeber

et al., 2001) with the usage of recently developed deep learning methods of word

embedding generation to prove that use of Word Embeddings is a suitable method

for the task. This will involve the crafting of a variety of corpora, the normalisation of

any potentially significant text, the creation of word embeddings from the content of

this corpora and the filtering of words found to be potential matches to target words

by their semantic types defined by the UMLS and its associated biomedical thesauri.

This project also aims to investigate the optimisation of these word embeddings

to potentially envisage any potential patterns in the optimal parameters that may

potentially be applied to other diseases and corpora.
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1.2 Description of Chapters

I have provided an overview of the motivation behind the approach I am going to

follow in this thesis. The remaining of this thesis is organised in the following five

chapters:

• Chapter 1 introduces the field of LBD. It also provides a justification as to why

the research community have taken a keen interest in the field in recent years

with a brief discussion on drug discovery and drug repositioning.

• Chapter 2 provides a detailed introduction to the field of traditional LBD, its

progress throughout the years whilst highlighting the problems that these sys-

tems encountered and how future LBD systems tried to solve these problems.

Particular focus was paid not only to Swanson’s original work but also on the

experiments that were subsequently conducted to validate the "Raynaud-Fish

Oil" hypothesis.

• Chapter 3 provides a detailed explanation of the implementation of an LBD

system that aims to replicate Swanson’s hypothesis through the use of word

embeddings generated by the Word2Vec group of models. It is in this section

that my proposed system and its individual components are broken down,

starting with the retrieval of the free text data from the PubMed/MEDLINE

database, moving onto the pre-processing of the text data through the use of

text normalisation methods. This section also contains a detailed methodology

which explores all of the libraries and systems that are the backbone of this

research and how they themselves have been created and the algorithms behind

them.

• Chapter 4, presents the results of the experiments undertaken. It is here that

it becomes clear as to whether the usage of Word Embeddings are utilisable as

a variant of both discovery methods as defined throughout the history of LBD.

• Chapter 5 concludes this thesis as well as it identifies the potential areas for

further research and how this research can help further the field of literature

based discovery.
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1.3 Value of This Thesis

In this thesis an innovative pipeline has been developed for the (re)discovery of the

Raynaud-Fish Oil Hypothesis. This pipeline has been developed utilising some of the

many publicised NLP techniques found to be effective in previous literature. These

are:

• The use of Word2Vec to replicate the Raynaud - Fish Oil Discovery.

• The development of a pipeline from pre-processing PubMed data into aWord2Vec

model and thus usable as a method of Literature-Based Discovery.

• The investigation into whether the specificity and generality of a corpus can

improve/worsen the results of a Word2Vec literature based discovery system.

The utilisation of these methods will allow for more data to be employed than before.

It will also give an insight as to whether these methods can be successfully used for

other biomedical literature-based discovery methods. This work will also provide

a fully-fledged set of tools to read data from the XML format given by PubMed

into data ready for word embedding generations which will then be used to retrieve

semantically similar terms.
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Chapter 2

Related Work

2.1 Swanson’s Initial Works in the Field

The first research works on LBD were published by Don R. Swanson in the late

eighties. These publications were primarily aimed towards defining, utilising and

verifying a new method of scientific discovery. The first of these three papers released

by Swanson "Fish Oil, Raynaud’s Syndrome, and Undiscovered Public Knowledge."

defined this process. It is within this paper that Swanson utilises co-occurrence

between elements in the titles to test the strength of his "Raynaud-Fish Oil" hy-

pothesis. To do this, Swanson took two groups of specifically chosen literature to

match his starting (Raynaud) and ending (Fish Oil) literature, otherwise known as

"closed discovery", this differs from Swanson’s other discovery type "Open Discovery"

(OD) because OD does not require both sets of literature, as it searches the initial

(Raynaud) literature for any potential pathways. These groups, while chosen for

their relatedness to specific attributes such as blood viscosity, platelet aggregabil-

ity and vascular reactivity the literatures were completely isolated from one another.

This paper explained the idea that due to dietary fish oils being hypothesised to help

contain different symptoms of Raynaud’s, such as Thrombosis in one set of literat-

ure, the theory that these oils could be potentially connected to Raynaud’s disease is

plausible. Whilst these papers have suggested a viable and working manual process

to find these new connections in disjointed literature, it wasn’t until 1991 for Swan-
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son to propose a potentially automated process (Don R. Swanson, 1991). Following

this, a system named ARROWSMITH was developed and integrated in 1997, de-

tails of which are discussed in section 2.1. This process still utilised the potential for

linking elements in each title e.g. Migraine could be linked to magnesium due to sero-

tonin. This level of thinking would understandably make the manual process a lot

more tedious, whilst this 1991 paper focuses on the Magnesium-Migraine hypothesis

its process is very interchangeable with the aforementioned Raynaud hypothesis as

shown by the works published by Weeber in 2001. Swanson struggled in his paper to

find the "intermediate" stage records simply from the terms that co-occur with mi-

graine in the title due to the large number of them approx 120,000 (Don R. Swanson,

1991). However, Swanson did state that a certain categorisation/filtering strategy

could be utilised to narrow these down.

2.2 Arrowsmith

As Swanson’s ideas for finding undiscovered knowledge in already published literature

were becoming more accepted in the research community, it became of additional

value for an automated system that was able to utilise these methods to be developed

and tested. One of the first tools designed for this task is known as "Arrowsmith",

produced by Swanson and Smalheiser in 1997 as the subject of their paper "An

interactive system for finding complementary literature’s: a stimulus to scientific

discovery". The Arrowsmith system works by taking a user’s input, setting that

as the "C" literature, a secondary set of literature which is complementary to the

first is also provided, known as the "A" literature. This system then automatically

retrieves any terms that co-occur with the C-Terms, these terms are then known

as B-Terms. One feature that Arrowsmith incorporates, which improves upon the

manual methods, is that A/B-Terms are ranked allowing users to guide their own

decisions on the importance of a term. The technique utilised for this procedure is

a multi-step method, which also includes the filtering of the list. The first of these

steps is the removal of all unsuitable words, for example, those which are off-topic.

However, the system also performs a search of the MEDLINE database to retrieve
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how many different article titles each B-Term appears in, then calculating how many

of these results are related to the current search, retaining only those which have a

small probability of leading to a number of co-occurrences with migraines (Don R

Swanson and Smalheiser, 1997). This process also utilised manual curation which

is shown in step three; this step consists of a human examining the filtered list and

judging themselves which entries are not-suitable. The rank of the remaining terms

is calculated through a search of MEDLINE through these B-Terms, and the current

word occurrences are found and used to form the base A-B relationships. Whilst

the procedure for finding the B-Terms is slightly different than the one previously

defined for finding the A-Terms it is due to the fact that the authors have attempted

to prevent the possibility of retrieving already known links.

2.3 DAD-System

Published four years later than the Arrowsmith system in 2001 by Marc Weeber et

al., the DAD-system attempted to use a mixture of concepts and statistical Natural

Language Processing (NLP) techniques to utilise PubMed citations as a method of

text-based discovery. In this research, the authors have attempted to codify the

process as a method of assistance for biomedical research. However, they have made

a conscious effort to make sure that the user is still at the centre of the process.

This system is similar to the work of Gordon and Lindsey but very different to the

Arrowsmith system explored in section 2.1 of this literature review. This similarity

lies in the fact that the DAD system starts the discovery process with the C liter-

ature to find the B and A terms, but then in a second step the system examines

both the A and C literature to test their hypothesis, whereas the Arrowsmith sys-

tem utilises a one-step system to generate its hypotheses. Additionally this system

expands on Swanson et al’s work by resembling both open and closed discovery in

their two procedures whereas ARROWSMITH only utilises the "closed discovery"

method (Smalheiser and Don R Swanson, 1998). One other advancement that this

piece of work has made over Arrowsmith is that it does not only treat words as words

but also as concepts. The DAD system does this by only analysing those that are
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found in the UMLS (Unified Medical Language System), this is done due to it only

allowing words of interest, otherwise defined as those words with meaning in the bio-

medical domain to be analysed whilst also allowing even further specialisation and

filtering through the semantic types allocated to these words which would limit the

number of pathways found in a more automatic method than the one proposed by

Swanson and Smalheiser. Another advancement that this paper has made is that it

uses a more advanced and automatic method of n-gram generation and classification

of meaningful n-grams from those which are meaningless. Whereas Swanson and

Smalheiser utilise an extensive list of stop-words (Smalheiser and Don R Swanson,

1998), this piece of work has utilised the UMLS (Unified Medical Language Sys-

tem) to map the free-text into different biomedical concepts, which are then utilised

within the discovery process. One important point that should be noted here is that

whilst this method is slightly more automated, the authors make the note that these

semantic filters are not a one-size fits all method and are dependent on the query

being processed.

2.4 Lit-Linker

Published two years after the DAD-System, LitLinker is also a system that attempts

to utilise NLP methods to be able to mine the currently released biomedical literature

for new potential links (Pratt and Yetisgen-Yildiz, 2003). To do this they, like most

others, attempted to build on Swanson’s approach which differs to many of the

approaches such as Arrowsmith through the use of intermediate literature to be

able to limit the search space. Their approach is, however, similar to Swanson’s

Arrowsmith tool due to the fact they are utilising only the titles of articles. In

contrast, the experiments by Weeber were made using titles and abstracts of the

relevant data. The LitLinker paper restricts their concepts only to titles as it allows

for a limit in the number of terms found, thus making it easier to compare and

prune the list. Whilst the DAD-System solely utilises the UMLS knowledge base for

its automated concept pruning whilst having it backed by manual intervention the

Lit-Linker system found their were three types of erroneous connections:
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1. Too general terms - Terms such as problem, test, therapeutic

2. Too closely related terms to the start term

3. Terms that do not make sense as connections

One method the authors utilised to remove these terms was to remove certain terms

that appeared at the second level of the UMLS. However they found that this process

only eliminated a small number of found terms. Due to this fact they then had

to include another step that removed terms that were found too frequently, ten-

thousand occurrences, in the titles. This step automates the pruning process even

further than those provided in the Arrowsmith and DAD-Systems. After this point

however, they then followed the same step as Weeber and utilised a semantic filter.

Whilst this may reduce in a slightly smaller list of potential terms, it should be noted

that the author’s technique did eliminate some previously found terms in Swanson’s

Magnesium-Migraine hypothesis.

2.5 Other LBD Experiments

While our previous sections have focused purely on the usage of literature-based

discovery techniques when used in the Raynaud-Fish Oil hypothesis. It should be

noted that there have been other pieces of work in the field in relation not only to

other diseases (Pyysalo et al., 2018; Meng et al., 2018) but as previously mentioned

to entirely new areas such as Material Sciences with (Tshitoyan et al., 2019) and

Neuroscience with brainSCANr which is the result of the works published by Brad

and Jessica Voytek in 2013. These three papers all replicate known scientific hy-

potheses in their fields, such as the relationship between Progesterone and Aging

(J. B. Voytek and B. Voytek, 2012) and Thshitoyan et al. verified previously made

thermoelectric claims (Tshitoyan et al., 2019). As the previous statement shows,

the majority of LBD experiments have been focused upon the fields of biomedicine

and drug repositioning. This research trend has continued into more recent years as

seen by the LION tool mentioned above and also in regards to research into whether

Ketamine is a valid therapy for those with Alzheimer’s disease (Smalheiser, 2019)
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where the authors utilised the Arrowsmith tool previously discussed to find three new

viable pathways as to how Alzheimer’s disease can be affected through the usage of

ketamine. These pathways were found to be:

• VGF Levels

• mTOR Regulation

• The process of Autophagy

• Inflammatory cytokines

As is shown in this section, the field of Literature Based Discovery is largely limited

to biomedicine where it can be used to potentially kickstart research in areas that

could be potentially struggling, this does raise the question as to how the systems

could be utilised in fast-changing and developing pandemics such as the COVID-19

pandemic as a method of speeding up vaccine development.

2.6 Word Embeddings

As discussed in Section 2.4 many recent advancements in the field of biomedical

LBD has been focused on the utilisation of word embeddings, however, this trend

does not seem to have stopped at this small corner of Natural Language Processing.

Wang et al. did a comparison of these word embeddings for the field in their 2018

paper. In this paper the authors’ trained different types of skip-gram Word2Vec

word embeddings on different sets of literature ranging from biomedical publications

to news articles, for some of these they did utilise other collections such as the

Google News set of Word Embeddings and also the GloVe model which allows for

a comparison between different generation methods (Y. Wang et al., 2018). In this

paper they found that the embeddings produced by Word2Vec using biomedical

academic literature outperformed those produced by GloVe and Google News. These

results were correlated by other publications such as Schnabel et al. who evaluated

different unsupervised word embeddings and their uses in more general NLP tasks.

It was in Schnabel’s research that Word2Vec, albeit the continuous bag-of-words

(CBOW) model, outperform many of the other word embedding methods utilised in
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their experiments, for example, GloVe (Schnabel et al., 2015). This article did not

directly compare a model employing a CBOW architecture with a model that uses

the skip-gram method. However, S Henry, C Cuffy, and B T. McInnes published a

paper in 2018 which experiments with both models which found that both Word2Vec

models create better word embeddings than singular value decomposition and explicit

co-occurrence vectors. Still, there was not any significant increase/decrease from a

specific method (Henry, Cuffy and McInnes, 2018). However, there have been other

works released which have found the skip-gram model to not only be preferable for

the task of biomedical NLP (TH, Sahu and Anand, 2015). On the other hand, there

have been been more in-depth releases that evaluate dimensionality but also when

training on an extensive, 1.25 million article, corpora taken from PubMed (Chiu

et al., 2016).
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Chapter 3

Materials and Methods

3.1 Materials

3.1.1 XML Parsing

XML Parsing is the act of converting data formatted as XML to usable in-memory

text data. This method has been employed in this project as it is by far the easiest

and fastest way of retrieving a comprehensive record of all information stored about

each found document. This is due to the fact that by design, an XML document is

heavily structured which allows a parser to specify tags to search for and thus allows

them to ignore all other data stored in the file.

15



Figure 3.1: PubMed Article Set Base XML
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This XML file, see 3.1, contains a lot of tags that are not necessarily required, however

this file can be unzipped and when the MedlineCitation is opened it contains tags

that are of interest such as the articles title, abstract and published language (See

Fig. 3.2).

Figure 3.2: PubMed Article XML
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3.1.2 Word2Vec

A group of models introduced by Mikolov et al. in 2013 (Mikolov, Chen et al., 2013;

Mikolov, Sutskever et al., 2013), Word2Vec is known to be a method of generating

Word Embeddings, these models are called continuous skip-gram was introduced in

2013 by Mikolov. Continuous skip-gram was introduced as a method that attempts to

predict the current word from its context by inputting the current n-gram into a log-

linear classifier and predicting the phrases within a specific range before and after the

current word (Mikolov, Chen et al., 2013). A second method called the Continuous

Bag of Words model which was also introduced as a method of generating word

embeddings without taking into account the order of the words found however future

words are taken into account. These methods have both been found to successfully

find subtle semantic relationships when created using large dimensional word vectors

from a large amount of data.

Continuous Bag Of Words (CBOW)

As mentioned above in Section 3.1.2, the simple definition of the CBOW model

is a method of generating word embeddings without the syntactic order of those

words being taken into account. This architecture is defined as being similar to a

Feedforward Neural Network Language Model (NNLM) where the non-linear hidden

layer has been removed and the projection layer is shared between all words (Mikolov,

Chen et al., 2013) which is seen in its shallow nature, with the model comprising of

only an input layer, a projection layer and the output layer. Due to the fact that this

model does not take into account the location of the words in a sentence, it means

that it is also able to take into account words also used in the future allowing it to

more accurately classify the "middle" word.

Continuous Skipgram

Unlike the CBOW model defined above, the Skipgram model attempts to classify a

word based upon other words defined in the same sentence. This done through the

model taking the current word as an input to a log-linear classifier which through
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the use of a continuous projection layer, maps each word index to this vector space

which is then fed into the output layer which holds the probability that the next

word is each word in the vocabulary. Mikolov et al. in 2013 found that increasing

the "range", otherwise known as the context window will improve the quality of the

resultant word vectors. However, this does increase the training complexity of this

model as shown below:

Q = C × (D +D × log2(V )) (3.1)

Where C is equal to the maximum distance between words, D being the dimension-

ality and V being the size of the vocabulary (Mikolov, Chen et al., 2013).

It should be noted that due to the skip-gram model utilising more information than

the CBOW model, it is predominately the slower of the two but does a better job for

infrequent words. There has however been a large amount of work into improving the

performance of the skip-gram model with some authors focusing on an extension of

the skip-gram model inclusive of negative sampling. When this was initially defined

by Mikolov needed to go through the training data a minimum of two times whereas

in 2017 an extension of this model was provided to allow for incremental model (Kaji

and Kobayashi, 2017). Negative Sampling works through a sigmoid function and by

getting a smoothed unigram probability distribution and only keeps those words it

finds occurring enough times.

3.1.3 MetaMap

Developed to map free-text to biomedical concepts found in the UMLS, MetaMap

uses a group of lexical analysis techniques to find the best matched mapped terms to

terms in a given phrase (A. R. Aronson and F. M. Lang, 2010). The tool starts by

creating phrases of all the text after parsing the text into predominately simple noun

phrases which allows for easier limitation of further processing, this is done through

the use of a minimal commitment parser for SPECIALIST which is a large English

language lexicon of biomedical terms (McCray, S. Srinivasan and Browne, 1994).
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This parser utilises the Xerox part of speech tagger to assign generic syntactic tags

to those words that do not have a unique tag in the SPECIALIST lexicon. Once this

is done, the knowledge of the SPECIALIST lexicon is supplemented with a database

of synonyms and a generator is used to find all variants including any acronyms,

abbreviations, variants, and synonyms. These are stored alongside their POS-Tag in

the order the variant was created. MetaMap then generates and retrieves a subset

of the metathesaurus of all phrases that contain any of the variants found. To

improve performance MetaMap includes options to ignore those terms of only one

or two characters. Once this is done the tool then evaluates every candidate using

a weighted average of the centrality (involvement of the head), the variation (the

average of the inverse distance scores), the coverage (how well it matches the term),

and the cohesiveness of the term (how many pieces this term has) (Alan R Aronson,

2001). The closer this score is to one thousand the better a match the term is.

Each mapped term found by MetaMap is assigned to one of 134 different semantic

categories, which are discussed below.

3.1.4 UMLS

The Unified Medical Language System (UMLS) is the most comprehensive collection

of biomedical vocabularies which was released in 1986 by the National Library of

Medicine (Humphreys et al., 1998). The UMLS has experienced such growth that in

2004 the UMLS consisted of over two million different names for over nine-hundred

thousand unique concepts (Bodenreider, 2004). However, the latest release, 2019AA,

consists of 14.6 million concept names for over 3.85 million concepts held in 210

different sources(Health, 2019). Due to the massive number of available concepts in

the UMLS, this project utilises the tool alongside the mapping tool MetaMap that

is discussed in Section 3.2.3 to map phrases from the free text found to its closest

possible entry in the UMLS.
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Semantic Types

A method of assigning biomedical concepts to different semantic categories stored

in the UMLS Semantic Network makes it easier to distinguish between two concepts

(Bodenreider, 2004). A semantic filter is a method of reducing the amount of data

returned by only including those found to be in the same categories as those found

useful (See Table 3.3), this method was used successfully by Weeber in his own

automated LBD system in 2001 (Weeber et al., 2001).

3.2 Methodology

The pipeline used in this project is as follows:

1. Passed each title/abstract of each compressed corpus through an Natural Lan-

guage Toolkit (NLTK) parser to generate bigrams/trigrams of each unigram

based on a minimum occurrence count value.

2. Employed a Skip-gram word2vec model with initial parameter values as in

Table 4.1 to generate word vectors for all words and phrases in each corpus.

3. Scan through all generated word vectors to discover variations of the “raynaud”

C-concept (e.g. Raynaud’s disease, Raynaud syndrome, primary Raynaud,

etc).

4. Utilised a grid search on the architecture, dimensionality, epoch, learning rate,

downsampling, context window and minimum word count parameters to find

the model with the optimum performance in each corpus used.

5. Using the optimally derived word2vec model, we repeated STEP 4 to estimate

cosine similarity of all terms in the corpus with Raynaud variation terms from

STEP 3.

6. Placed the most semantically similar terms , as defined as those with the closest

cosine similarity, from STEP 5 into a list.

7. Mapped every term from the list saved in STEP 6 via MetaMap to UMLS

ontologies. Then using a semantic filter (see Table 3.3) we excluded from
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further analysis all mapped terms which were not semantically related to the

semantic types in the filter.

8. These results are then compared to Weeber’s found terms to see if the tool

provided acceptable results.

Figure 3.3: Overview of Pipeline from start to finish

3.2.1 Data Retrieval and Parsing

Data selection and pre-processing is a critical part of any research project; for this ex-

periment, the datasets utilised were all curated and downloaded from the MEDLINE

database by utilising the PubMed search engine. As the majority of the experiments

are based upon replicating the Raynaud-Fish Oil experiments previously utilised,

many of the corpora formed are representative of this fact. These search terms are

shown above next to the type of discovery they were utilised within Figure 3.1. Once

the query has been handled by PubMed the data is then downloaded and returned

in a XML file format. As shown in Figure 3.1 a PubMed Article Set is a very large

and comprehensive list of relevant information to each article retrieved in the search.

Due to this fact the size of a query that encompasses all literature on a disease over

a period of years, as used in this research will end up being an extremely large file.

Once this file has been downloaded and is saved locally, a script known as BioParser

was developed which is able to read through a directory of files, retrieve all XML files

found (if the user wants to combine multiple) and then find all MEDLINE citations in
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said XML files, with an example shown in Figure 3.1 for further processing. For each

MEDLINE citation found, the script then only extracts the necessary information

required to lower the memory usage of the program as seen in 3.1.

This triplet of information is then iterated through a process where filtering occurs,

removing any items missing information to make sure that the project would only

be utilising complete datasets with these being initially saved as .txt files, as shown

in Figure 3.4. However, the functionality is there to include those which are missing

parts of the data. Once this filtering has been done the finished articles are then

compressed down into a .txt.gz file to save on local disk space.

Figure 3.4: List of Text Files before Compression
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Corpora Search Term Search Type
(Raynaud) AND ("1960"[Date - Publication] : "1986"[Date - Publication]) AND ("english"[Language]) Open Discovery
(Peripheral vascular disease)) AND ("1960"[Date - Publication] : "1986"[Date - Publication]) AND ("english"[Language]) Open Discovery
(Vascular disease)) AND ("1960"[Date - Publication] : "1986"[Date - Publication]) AND ("english"[Language]) Open Discovery
(((((((((((((((Raynaud) AND ("1960"[Date - Publication] :
"1986"[Date - Publication]))) OR ((Fish Oil) AND ("1960"[Date -
Publication] : "1986"[Date - Publication]))) OR ((Maxepa) AND
("1960"[Date - Publication] : "1986"[Date - Publication]))) OR ((Fatty
Acids, omega-3) AND ("1960"[Date - Publication] : "1986"[Date -
Publication]))) OR ((Omega-3 polyunsaturated fatty acid) AND
("1960"[Date - Publication] : "1986"[Date - Publication]))) OR
((Eicosapentaenoic acid) AND ("1960"[Date - Publication] : "1986"[Date -
Publication]))) OR ((Epa-e) AND ("1960"[Date - Publication] :
"1986"[Date - Publication]))) OR ((Cod Liver Oil) AND ("1960"[Date -
Publication] : "1986"[Date - Publication]))) OR ((Fish Oils) AND
("1960"[Date - Publication] : "1986"[Date - Publication]))) OR ((Salmon
Oil) AND ("1960"[Date - Publication] : "1986"[Date - Publication]))) OR
((Fatty acids, essential) AND ("1960"[Date - Publication] : "1986"[Date -
Publication]))) OR ((Dietary Fats) AND ("1960"[Date - Publication] :
"1986"[Date - Publication]))) AND "english"[Language])

Closed Discovery

((((((((((((Peripheral Vascular Diseases (PVD): (Peripheral vascular
disease) AND ("1960"[Date - Publication] : "1986"[Date -
Publication]))) OR ((Fish Oil) AND ("1960"[Date - Publication] :
"1986"[Date - Publication]))) OR ((Maxepa) AND ("1960"[Date -
Publication] : "1986"[Date - Publication]))) OR ((Fatty Acids, omega-3)
AND ("1960"[Date - Publication] : "1986"[Date - Publication]))) OR
((Omega-3 polyunsaturated fatty acid) AND ("1960"[Date - Publication] :
"1986"[Date - Publication]))) OR ((Eicosapentaenoic acid) AND
("1960"[Date - Publication] : "1986"[Date - Publication]))) OR ((Epa-e)
AND ("1960"[Date - Publication] :
"1986"[Date - Publication])))
OR ((Cod Liver Oil) AND ("1960"[Date - Publication] : "1986"[Date -
Publication]))) OR ((Fish Oils) AND ("1960"[Date - Publication] :
"1986"[Date - Publication]))) OR ((Salmon Oil) AND ("1960"[Date -
Publication] : "1986"[Date - Publication]))) OR ((Fatty acids,
essential) AND ("1960"[Date - Publication] : "1986"[Date -
Publication]))) OR ((Dietary Fats) AND ("1960"[Date - Publication] :
"1986"[Date - Publication]))) AND "english"[Language])

Closed Discovery

(((((((((((Vascular Disease) AND ("1960"[Date - Publication] : "1986"[Date -
Publication]))) OR ((Fish Oil) AND ("1960"[Date - Publication] :
"1986"[Date - Publication]))) OR ((Maxepa) AND ("1960"[Date -
Publication] : "1986"[Date - Publication]))) OR ((Fatty Acids, omega-3)
AND ("1960"[Date - Publication] : "1986"[Date - Publication]))) OR
((Omega-3 polyunsaturated fatty acid) AND ("1960"[Date - Publication] :
"1986"[Date - Publication]))) OR ((Eicosapentaenoic acid) AND
("1960"[Date - Publication] : "1986"[Date - Publication]))) OR ((Epa-e)
AND ("1960"[Date - Publication] :
"1986"[Date - Publication])))
OR ((Cod Liver Oil) AND ("1960"[Date - Publication] : "1986"[Date -
Publication]))) OR ((Fish Oils) AND ("1960"[Date - Publication] :
"1986"[Date - Publication]))) OR ((Salmon Oil) AND ("1960"[Date -
Publication] : "1986"[Date - Publication]))) OR ((Fatty acids,
essential) AND ("1960"[Date - Publication] : "1986"[Date -
Publication]))) OR ((Dietary Fats) AND ("1960"[Date - Publication] :
"1986"[Date - Publication]))) AND "english"[Language])

Closed Discovery

((((((((((((((((((((((((((((((((((((((("Expert Review of
Hematology"[Journal]) OR "British Journal of Haematology"[Journal])) OR
"Blood Reviews"[Journal])) OR "Haematologica"[Journal])) OR "American
Journal of Hematology"[Journal])) OR ("Blood Cells, Molecules and
Diseases"[Journal])) OR "Blood"[Journal]))) OR ("Pediatric Hematology
and Oncology"[Journal])) OR "Pediatric Blood
Cancer"[Journal]) OR
"Experimental Hematology"[Journal]) OR "International Journal of
Hematology"[Journal])) AND "english"[Language])) OR (((Fish Oil) AND
("1960"[Date - Publication] : "1986"[Date - Publication]))))))) OR
(((Maxepa) AND ("1960"[Date - Publication] : "1986"[Date -
Publication]))))) OR (((Fatty Acids, omega-3) AND ("1960"[Date -
Publication] : "1986"[Date - Publication]))))))) OR (((Omega-3
polyunsaturated fatty acid) AND ("1960"[Date - Publication] :
"1986"[Date - Publication]))))) OR (((Eicosapentaenoic acid) AND
("1960"[Date - Publication] : "1986"[Date - Publication]))))) OR
(((Epa-e) AND ("1960"[Date - Publication] : "1986"[Date -
Publication]))))) OR (((Cod Liver Oil) AND ("1960"[Date - Publication] :
"1986"[Date - Publication]))))) OR (((Fish Oils) AND ("1960"[Date -
Publication] : "1986"[Date - Publication]))))) OR (((Salmon Oil) AND
("1960"[Date - Publication] : "1986"[Date - Publication]))))) OR
(((Fatty acids, essential) AND ("1960"[Date - Publication] : "1986"[Date
- Publication]))))) OR (((Dietary Fats) AND ("1960"[Date - Publication]
: "1986"[Date - Publication]))) AND "english"[Language]))))

Closed Discovery

Table 3.1: The seven search terms utilised within this experiment
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3.2.2 Data Pre-Processing

Some of most popular examples of preprocessing which are becoming heavily used

include the removal of stopwords from text. However, this is not utilised by Wee-

ber et al. (Weeber et al., 2001), stemming/lemmatization, which is the subject of

the BioLemmatizer Paper (Liu et al., 2012) and casefolding. Due to the number of

changes that were made regularly to the code and pipeline, the decision was made

quite early in the project to utilise as few permanent pre-processing techniques on the

data before it was written to disk and to do them when the data is read into memory

ready for usage. The first pre-processing step that is utilised is through the Gensim

library’s simple_preprocess function which lower-cases all text. This pre-processing

step is taken as a method of normalising the text and to reduce the number of vari-

ants of each word due to capitalisation etc, this is a practice that has been found to

have a positive impact on the generation of biomedical word embeddings(Chiu et al.,

2016). It is also used to remove any any word with less than three characters. A

simple graphical overview of the process undertaken in section’s 3.2.1 is shown below.

Figure 3.5: Corpus Creation

As mentioned above, the traditional approach taken during the pre-processing of free

text is the removal of stopwords however this is not implemented in this research.

This is not done for a few reasons, the first being that as defined in the Word2Vec

paper, the Word2Vec model utilises a downsampling technique based on how fre-

quently a term appears in the corpus (Mikolov, Sutskever et al., 2013). This means
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that the removal of stopwords would not have any significant impact on the results

and would be more akin to a waste of processing time and power. There is also

the use of Lemmatization which when utilised with Word2Vec can make the vector

space sparser, however, it has been stated in previous works that Word2Vec allows

semantically similar words to overlay without the need for lemmatization (Major,

Surkis and Aphinyanaphongs, 2018).

Text Normalisation

The first of the pre-processing steps taken in this process were to normalise the data.

This research utilised a few different steps of text normalisation based on the success

rate of those utilised in other pieces of literature. The first was capitalisation norm-

alisation, defined by Gupta and Lehal in their 2009 paper as "casefolding" (Gupta,

Lehal et al., 2009). Case-folding is the task of converting all text to either lower

or upper case, in this research lowercasing was employed. This form of case norm-

alisation is used to make sure that all variants of a term are treated as the same

word vector e.g. Raynaud and raynaud. A secondary step of normalisation was the

removal of all tokens with a text length of lower than 3. This removal was done

due to many items not providing as much importance as those above it for example

many terms under this are preposition terms that do not provide a great deal of

information likely valuable to our task. At the same time as this occurs the text is

tokenized at a word level thus returning a list of all words at a length greater than

three, all in the same lower-cased form and with no punctuation or digits.

Figure 3.6: The process taken to normalise the text used in this process
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Generation of N-Grams

Due to the fact that Word2Vec was developed to find representations of "words" it

became clear that to allow the model to utilise N-Grams a process would have to

be implemented within the pre-processing pipeline that found any n-grams in the

corpora and transforms the text to include them. This was implemented using the

scoring equation found in Mikolov’s 2013 paper.

score() = count(counti, countj) − δ

count(wi) × count(wj)
(3.2)

The above equation is used to generate a score for each potential n-gram found in

the corpus, the delta within this equation is used as a discounting coefficient, thus

making sure that there are not an erroneous number of phrases are generated with

infrequent words. After these scores have been generated for all possible phrases, the

only phrases taken into consideration are those with a score meeting a threshold. For

this research the process was run twice to generate both bi-grams and tri-grams due

to the success of other of this technique in experiments (Ye et al., 2016). Additionally,

as a method of increasing the size of our corpora without sacrificing its specificity

which was a large concern as shown by the paper "Bigger does not mean better! We

prefer specificity" (Dusserre and Padró, 2017).

After the pre-processing stage of the project, the normalised corpora was then

plugged into a Word2Vec model which utilised multiple hyper-parameters to yield

the optimal word embeddings. The decision to utilise Word2Vec word embeddings

was made early on in the project given to the success of papers published in other

fields. (Tshitoyan et al., 2019)

3.2.3 Word2Vec Model Creation

Once the chosen corpus has been pre-processed and been transformed to include its

phrases a Word2Vec model is created using this text data as an input. The other

parameters for this model are based upon the results of a grid search which was run
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for each corpus with the results being outlined in Chapter 4 of this thesis. The usage

of optimised hyper-parameters allows for the best possible word embeddings to be

created for each corpus thus allowing the next steps in the pipeline to perform at

the best they could.

Figure 3.7: The process taken to generate Word Embeddings in this project

Figure 3.7 shows there is a large number of steps taken to transform the text from

the saved pre-processed text into the n-gram transformed text that is placed into

the model.
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Hyper Parameter Analysis

Parameters Options
Epochs 10, 25, 30, 50
Minimum Word Count 1, 10, 15, 25, 50
Context Window Size 1, 10, 30
Learning Rate / Alpha 0.01 to 0.1 with jumps of 0.005
Downsample Rate 1e-03, 1e-04 ... 1e-08, 1e-09

Table 3.2: Parameters for Grid Search

The parameters as seen in table 3.2 will all have their own effects as to the perform-

ance of the model. For example, the number of epochs is the number of iterations

over the corpus the model performs, with many large corpora only requiring 1-3

iterations it may be found that this project needs to go beyond that due to the size.

The minimum word count is the minimum number of occurrences a word must have

in the corpus to be taken into account, whilst this project has tried to consolidate all

variations of words into as few as possible this parameter could remove potentially

interesting information if too high or could keep too much background noise in the

corpus if too low. The context window size is how many words either side of the

target word is taken into account, thus too low a value could struggle to find the

context of a word due to lack of information. The learning rate is the magnitude to

which word updates are shifted along a gradient (Chiu et al., 2016). The final hy-

perparameter changed throughout the grid search is the downsampling rate which as

discussed in Section 3.2.2 is a method used by Word2Vec to dilute the most-frequent

words in a corpus to levels similar to the rarer words.

For this experiment we utilised a 256 vector model, there were a few reasons for this.

The first being that many papers have found that a word vector size of approximately

200 performs better than those of 100 (Tshitoyan et al., 2019; Gu et al., 2018; Chiu

et al., 2016), furthermore, it has also been found that when the size of a vector hits

300 the effect it has is limited (Li et al., 2017).
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3.3 Mapping

Once the word embeddings had been created and those with the highest cosine sim-

ilarity to all of the generated Raynaud Phrases were retrieved, it became necessary

to map these terms to their UMLS concepts as mentioned above. This was done to

allow for a meaningful reduction of terms whilst also categorising those remaining

into relevant biomedical categories ready for filtering in the next section of the pro-

cess. The process of mapping a term to its UMLS concepts is a complex one, with

the inclusion of many different text mining techniques to get the optimal result. In

this section the method utilised and described will be taken from the MetaMap tool

as that is used in this project. The first sections of the tool are based primarily

in the area of lexical and syntactic analysis with the input text initially having the

sentences detected, the text tokenised and the identification of acronyms and abbre-

viations. The tool then moves onto its POS Tagging module, these words are then

searched for within the SPECIALIST lexicon and ran through a parser called the

"SPECIALIST minimal commitment parser" as defined by McCray in 1993 (McCray,

Alan R Aronson et al., 1993). These found phrases are then further analysed through

a deeper, more thorough process. This process starts through the generation of as

many variant phrases as found, each phrase is automatically searched to identify any

candidate phrases, a score of these candidate phrases is also generated which details

how closely they are related to the input text. These are then combined into phrases

which are then compared to the input text to find those that match it closest. In

cases where multiple phrases match the input text, MetaMap can utilise a word-sense

disambiguation to bolster the confidence of its choices (Alan R Aronson and F.-M.

Lang, 2010).

3.3.1 Semantic Filtering

Once the text is mapped to the UMLS metathesaurus, the next step taken is to reduce

the number of terms found to only those found to be potentially significant. This is

done utilising the filtering based on the semantic type method found in Weeber et al.

2001 paper (Weeber et al., 2001). The similarity types used can be found in section
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3.3 in section 3.2.3 of this thesis. This list was formed with the majority of terms

being chosen due to the fact that they were used in very similar experiments by

Weeber as stated above to allow for some consistency when comparing the method

defined here to their method.
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Semantic Type (Long Form) Semantic Type Acronym
Biological Function biof
Body Location or Region blor
Body Part, Organ, or Organ Component bpoc
Body Space or Junction bsoj
Cell Function celf
Laboratory or Test Result lbtr
Molecular Function moft
Organism Function orgf
Organism Attribute orga
Organ or Tissue Function ortf
Pathologic Function patf
Phenomenon or Process phpr
Sign or Symptom sosy
Physiologic Function phsf
Lipid lipd*
Vitamin vita
Element, Ion, or Isotope elii

Table 3.3: Table of the Semantic Types that are used in the filter, those with a star
are only found in older of MetaMap.
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Chapter 4

Results

4.1 Hyper-parameter Analysis: Grid Search

To make sure that the model was performing sufficiently, an optional step was built

into the pipeline that allows the user to utilise the grid search hyper-parameter tun-

ing method. Due to the time and computational costs of the grid search method an

analysis was made of the different parameters available to the model and the effects

each parameter has on the different results outputted by the model. This was done

with a two pronged method, the review of previous similar experiments and also the

investigation of certain changes on our own corpora. Each model created throughout

these options had its effectiveness tested through the use of average cosine similarity

score of all Raynaud’s Phrases and the other found significant B-Terms found in the

model’s vocabulary. Both of these equations are visualised in the below equations:

Average Similarity Score =
∑
Similarity Scores

Number of Similarities

With the optimal model being the model with the highest similarity score. Ini-

tial experiments with this equation initially focused on one manually chosen word

and the similarity between that word and the phrases found to include the term

"Raynauds". The decision was finally made to include all found "significant phrases"
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instead of just the one due to the fact that an average will give a more representative

view of the models chance of being successful. The initial experiments were ran on

the parameters shown in table 4.1, however, these did change as a grid search was

performed and replaced with a new value which will be stated in its corresponding

section. These experiments have been run in two variants, the first only searching

for B-Terms and the second searching for a combination of B and A-Terms. This

decision was made as it allows the reporting of whether performance weakens due to

the inclusion of the A-Terms which are more likely to be weak relationships.

Parameter Option
Epochs 50
Minimum Word Count 1
Context Window Size 10
Learning Rate / Alpha 0.0199999
Downsample Rate 1e-09

Table 4.1: Parameters for initial Skip-gram model utilised

4.1.1 Architecture

One of the first parameters that was put through the grid search was the architecture

of the model. As previously discussed in Section 3.1.2 the Word2Vec group of models

are based on two different architectures, Skip-gram and Continuous Bag-of-Words

to make sure we were utilising the optimal architecture a grid search was ran to

see whether there was a clear-cut correct choice for all three of our corpora. Be-

low are two sections detailing each discovery types corpora and where the resulting

experiments have been ran and ranked.

Open Discovery

As the table shows, there was not an outright best architecture for the open discov-

ery experiments with the PVD corpus performing better with Skip-gram, whereas

the other two performed better with a CBOW model. One thing that should be

noted is the largest drop in performance is also between the PVD’s two experiments
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Figure 4.1: Comparison of different Architectures with an Open Discovery Method

with a decrease in average similarity of 0.018. Performing these experiments again

with the inclusion of any found A-Terms finds that the best performing architecture

differs dependent on the type of discovery being undertaken, with the open discovery

performing best with a skip-gram architecture and the closed performing better with

a CBOW architecture.
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Figure 4.2: Comparison of different Architectures with an Open Discovery Method
and inclusive of A-Terms

Closed Discovery

As seen in Figure 4.3 both architectures perform well with each one being optimal

for 50% of the corpora. A pattern that has formed here that was not necessarily

found was the fact that the two smallest corpora were found to perform best with a

skip-gram model whereas the larger perform much better with a CBOW model.
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Figure 4.3: Comparison of different Architectures in a Closed Discovery Experiment

Figure 4.4 shows the results for these experiments indicate the best performing ar-

chitecture for these experiments when taking into account A-Terms is the CBOW

architecture.
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Figure 4.4: Comparison of different Architectures in a Closed Discovery Experiment
Inclusive of A-Terms

4.1.2 Dimensionality

For this experiment a model was created utilising a dimensionality ranging from

100 to 950 in jumps of 50. This was experimented with to not only test the ef-

fect of a smaller dimensionality on the corpora but to also test the effect a larger

dimensionality has on the results.

Open Discovery

The dimensionality of a word vector has been found to not result in a consistently

optimal value in our experiments. One experiment found that a dimensionality of

100 was enough to generate optimal results, Raynaud Disease when only looking for

B-Terms, which is a massive difference when compared to the PVD corpus which

needs a vector dimensionality of 850 to find its most robust relationships between

the Raynaud phrases and the B-Terms (See Fig. 4.5).
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Figure 4.5: Dimensionality Grid Search results for the Open Discovery Corpora

These results do not become any clearer when including the A-Terms in the search,

with both the PVD and VD corpora having different results again (Raynaud was not

tested due to the lack of A-Terms found), 750 and 450 respectively (See Fig. 4.6).
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Figure 4.6: Dimensionality Grid Search Results for the Open Discovery Corpora
Inclusive of A-Terms

Closed Discovery

The findings in the open discovery experiments for this parameter struggled to find

any one individual strongest parameter and whilst the closed discovery experiments

also do not indicate an exact correct value they do help determining a seemingly

best performing range of between 700 and 950 with all but one corpus, the under-

performing Peripheral Vascular Diseases, having an optimal dimensionality between

this range (See Fig. 4.7).

When the A-Terms are included in this experiment the two closed discovery corpora

where free text A-Terms are found the best, PVD and Vascular Diseases the results

show that the best performing dimensionality values are 950 and 450 respectively

(See Fig. 4.8).
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Figure 4.7: Dimensionality Grid Search results for the Closed Discovery Corpora
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Figure 4.8: Dimensionality Grid Search results for the Closed Discovery Corpora
when A-Terms are included
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4.1.3 Epoch

Open Discovery

To find the optimal number of epochs used by the model to train there were four

different options were tested ten, twenty-five, thirty, and fifty epochs. These numbers

were chosen for a few reasons, with one of the main being that one of the downfalls in

word2vec being that more epochs alone cannot solve the problems found in a smaller

corpus (Gu et al., 2018). As seen in Figure 4.9, this is not necessarily the case for

the open discovery experiments detailed in this thesis.

Figure 4.9: Graph showing epoch grid search results

As the above graph shows, the general consensus for the optimal number of epochs

the models need to run for is usually on the higher side of the potential values. One

important factor to note is that the smallest corpora by far needs the most epochs to

get its best results whilst the other two corpora actually performed better with less

epochs. However, when the A-Terms are included within the equation the optimal

found epoch rate for both the PVD and Vascular Disease corpora is to up all epoch

rates to 50. Due to this, the final experiment will be ran with an epoch number of

50.
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Figure 4.10: Average Similarity of each model inclusive of A-Terms

Closed Discovery

One thing that Figure 4.12 shows is that the more data in a corpus the less epochs

that are found to be necessary with the smaller Raynaud corpus performing best

with 50 epochs but the Hematology corpus performs at its best when only ran for

one epoch. This is likely due to the fact that the amounts of data in the Hematology

corpus is starting to contain an acceptable level for a Word2Vec model thus requiring

fewer run throughs.

This figure of 50 epochs also stands for the Raynaud / Vascular Disease corpora

when inclusive of A-Terms whereas the PVD Corpus was found to run best with 30

epochs. Due to the fact that the majority of corpora run best with 50, this is the

figure that shall be used.
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Figure 4.11: Result of the Closed Discovery Epoch Grid Search

Figure 4.12: Result of the Closed Discovery Epoch Grid Search
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4.1.4 Learning Rate

To find the optimal value for the learning rate models were created using all learning

rates in a range from 0.01 to 0.1 with jumps of 0.05. Whilst these experiments did

not find a huge increase in any learning rate value for any of the corpora it did show

that certain learning rates do perform better than others. However, one thing these

results did show is exactly how much of an impact the wrong learning rate can have

on all corpora.

Open Discovery

As mentioned previously, none of the used open discovery corpora have been found

to have a grouped optimal value for the learning rate, which is shown in figure

4.13. However, one interesting thing is how all three corpora have a matching worst

learning rate, a value of 0.01. As mentioned in Gu. et al. ’s paper, those words earlier

in the corpus usually have a higher learning rate and thus have a greater impact on

the word vectors (Gu et al., 2018). This is likely due to the smallest of the three

corpora, the Raynauds set of documents, performs better with the largest corpora.

As mentioned previously, while all results don’t have a top-performing result they

do have some similarities at the other end of the table with both the PVD and

Raynaud corpora’s bottom three performing results including a rate of 0.015 and all

three corpora’s worst performing learning rate was a value of 0.01. The full results

for this experiment are shown in figures 4.13 and 4.14:

Results 46



Figure 4.13: The Average Similarity Score for each Learning Rate Experiment using
the Open Discovery corpora

As is shown in the above data the best performing result is the PVD dataset when

run with a learning rate of 0.06 which achieves an average similarity score of 0.91

As shown in figure 4.13 this corpus has the highest range in average values of 0.201

compared to the lowest range of the Raynaud corpora which is 0.0033. However, it

should be noted that whilst the PVD range is the highest so is its minimum result

whereas Raynaud which technically has the most consistent results has the lowest

best performing score. As is shown in Figure 4.14 the optimal learning rate for the

PVD corpus whilst including the A-Terms is a smaller learning rate of 0.01 which is

the exact same for the vascular disease open corpora.
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Figure 4.14: Learning Rate Open Discovery when Inclusive of A-Terms
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Closed Discovery

When the same experiments were run for the Closed Discovery corpora it was also

found to not include an optimal parameter for all four corpora used.

Figure 4.15: Learning Rate Grid Search Results for the closed discovery corpora

Furthermore, unlike the previous experiments there was found to be an optimal value

to be used by half of the corpora, 0.05. Which was shared by both the PVD and

Vascular Disease corpora as is shown in figure 4.15. The learning rate of 0.05 also

performs very well for the Haematology corpus where it is the fourth best performing

corpus. This is also the case for the worst performing learning rate, three of the closed

discovery corpora (Raynaud, Vascular Disease and Haematology) operate worst with

a learning rate of 0.01 whereas the PVD dataset performs worst with a learning rate

of 0.035. Since 0.05 has been found to be optimal for half of those experiments in

the closed discovery experiments and that 0.06 was found to perform well a value

of 0.05 will be used for the learning rate. When inclusive of A-Terms the worst

performing learning rate is stuck at 0.01 for two of the corpora where A-Terms are

Results 49



found, Raynaud and PVD however the worst for the VD corpus has been found to

be 0.095 (See Fig. 4.16).
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Figure 4.16: Learning Rate Grid Search Results for the closed discovery corpora
when inclusive of A-Terms

4.1.5 Downsampling

A grid search was run on a total of 7 different possibilities to make sure that the

optimal downsampling value was found, these options were increments from 1e-03

up to 1e-09.

Open Discovery

Out of the seven models that were generated and tested for this experiment the best

performing open discovery model was the PVD corpus downsampled by a factor

of 1e-08, interestingly all three of the Open Discovery corpora were downsampled

within one level of scientific notation, 1e-08 for PVD and Vascular Disease and 1e-07

for the Raynaud corpus.

When these same experiments were ran with the inclusion of found free-text A-Terms

the results were extremely similar (See Fig. 4.18)
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Figure 4.17: The Average Similarity of The Open Discovery Corpora with each
Down-sampling Option

This graph also shows the same dominance found in initial open discovery experi-

ments with both the PVD and Vascular Disease corpora tested having a best per-

forming downsampling value of 1e-08 and because of this the final experiment will

be ran utilising this down-sampling value.
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Figure 4.18: Average Similarity Score of Open Discovery Corpora when taking into
account the 5 A-Terms found

Closed Discovery

The results of the closed discovery experiments were interestingly very similar to

those of the open discovery experiments with all four of the corporas best results

being found within the same three optimal values found. However, whilst instead

of the fact that the 1e-08 value being the most common optimal value in the larger

closed discovery corpora it has been found that the most common words need to be

downsampled to a level of 1e-09 which is likely to make up for the total number of

terms being increased.
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Figure 4.19: The Results for the Downsampled Grid Search performed on the Closed
Discovery Corpora

What should be noted as displayed on the above graph is the finding that there

has been not one corpus that performs better with a downsampling rate of lower

than 1e-07. With the Vascular Disease having a almost sequential increase of its

downsampling value in each experiment until it peaks at 1e-08 and the PVD corpus

performing having its second best performance at 1e-08 followed by its worse per-

formance at 1e-09. With results in the closed discovery corpora once again being

very similar, these experiments have found that the best performing results in the

closed discovery experiments when taking into account the A-Terms found is using

a down-sampling value of 1e-08.

What these two experiments demonstrate is how important an optimised down-

sampling value can be with a value too high or too low being able to have a massive

effect on the performance of a model as shown with the gap in performance when

comparing 1e-03 and 1e-09 for open discovery and the performance of the closed

discovery PVD model where it drops between 1e-08 and 1e-09.
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Figure 4.20: The Results for the Downsampled Grid Search performed on the Closed
Discovery Corpora Including A-Terms

4.1.6 Context Window

To find the optimal context window size in all experiments a grid search was ran

with the following parameters - 1 word, 10 words and 30 words.

Open Discovery

As with most of the grid searches performed in these experiments there is not one

outright best result, however a context window of just one word produces the best

results as shown in Figure 6:
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Figure 4.21: Graph showing the results for the Open Discovery Experiments

As the graph in Figure 4.21 the most consistent performing context window size for

an open discovery corpora is a window that only takes into account the n-grams

directly surrounding each word by using a context of only one. The table shown in

Figure 6 allows easier viewing of the Raynaud’s results when in comparison to the

other corpora. This open discovery model was then rerun on the two corpora where

A-Terms were found, PVD and VD with one and four terms found respectively, the

results were similar with the only change being the PVD corpus actually having a

slightly higher average on the 10 word context window (See Fig. 4.22).
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Figure 4.22: Graph showing the results for the Open Discovery Experiments when
taking into account the found A-Terms

Closed Discovery

Whilst the open discovery experiments have been found to utilise a much smaller

context window for its experiments it has been found that the closed discovery ex-

periments perform better with a large window.

As seen in Figure 4.23 instead of the much smaller windows performing better they

actually have the worst performance for all four corpora with the two larger options

having the best performance with an optimal performance value of ten. This is

because a larger context window means the model has a better ability to detect

semantic relationships instead of a smaller context window which uses just terms

that occur in close proximity to the main word which has more of a benefit to closed

discovery relationships because the desired A-Terms will very rarely appear in the

context of Raynaud’s Disease since the link had not yet been formed.
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Figure 4.23: Graph showing the results for the Closed Discovery Experiments when
taking into account the found B-Terms

When inclusive of A-Terms the closed discovery results are completely different with

the most optimal results being a context window of 30 for the PVD and Vascular

Disease corpora with the Raynaud corpus proving to have an optimal value of 10.

As this is very similar to the closed discovery results without the A-Terms included

the optimal model will include a context window of 30.

4.1.7 Minimum Word Count

The minimum word count of a Word2Vec model is used to exclude any words that

can be seen as too rare to appear in a corpus. Due to this fact the importance

of selecting a correct value cannot be understated with it being too high it could

exclude some potentially valuable information, but being too low could potentially

include words that appear only once and thus reduce the quality of the results.
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Figure 4.24: Graph showing the results for the Closed Discovery Experiments when
taking into account the found A-Terms

Open Discovery

The best performing result for the open discovery corpora was found to be the

inclusion of every word that occurs in the corpus. This was likely because the

corpora were a lot smaller than those in the closed which meant that the performance

of Word2Vec would have suffered due to a lack of large amounts of training data.

This is also backed by the finding that the results do get weaker as more words are

discarded.

Most corpora have a large drop the more words that are excluded from the corpus

(See Fig. 4.25), however it should be noted that the Raynaud and PVD corpora do

have a small increase in performance with the jump from 25 to 50 words discarded.

When the inclusion of A-Terms were taken into the mix however the results differ

slightly with the larger corpora needing more words removed to perform at their

optimal level (See Fig. 4.26) as shown by the experiments which found that the best

results for the PVD and VD corpora is 10 words and 15 words respectively.
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Figure 4.25: Results from the Minimum Word Count Grid Search for the Open
Discovery corpora

Figure 4.26: Results from the Minimum Word Count Grid Search for the Open
Discovery corpora

Closed Discovery

One large difference in the results of these experiments from those undertaken on the

Open Discovery is found within the inclusion of the Haematology corpus. During
Results 60



the experiments on this corpus it is found that only TWO of the potential values,

one minimum word and ten minimum words, find any of the potential B-Terms in

the corpus. As is shown in Fig. 4.27 the best performing minimum word count on

average for this experiment was found to be a context window of one minimum word.

Figure 4.27: Results from the Minimum Word Count Grid Search for the Closed
Discovery corpora

Figure 4.28: Results from the Minimum Word Count Grid Search for the Closed
Discovery corpora when including A-Terms
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4.1.8 Optimised Models

In this section we will be discussing which results are found to be optimal for each

corpus and then discuss the final models that are used for the finished experiments.

4.1.9 Optimised Model: B-Terms

As shown in Section 4.1, the optimal model architecture with a majority in the best

performing models was the Continuous Bag of Words architecture which outper-

formed the skip-gram architecture. The models will utilise a minimum word count

of 1 word due to the fact that 71.42% of experiments outlined in Section 4.1.7 per-

formed at their best with this parameter. The next hyper-parameter that has been

set is a context window. However, as the graphs in section 4.1.6 show this parameter

had extremely inconsistent results when comparing on a corpus by corpus basis with

the best performing parameter, a context window of 1 only achieving a success rate

of 42.85%. The model will also downsample all terms by a rate of 1e-08 because this

performed best for the majority of experiments see Section 4.1.4. This model will

also be trained for a total of fifty epochs since this number was found to produce

acceptable results (See Sec. 4.1.3).

4.1.10 Optimised Models: A-Terms

Unlike the model described in Section 4.1.9 the best performing model architecture

is the skip-gram architecture with a majority of 60% (when disregarding the lack

of A-Terms found in the Raynaud open discovery or Haematology closed discovery

corpora). However, as also displayed in this research the optimal value for a minimum

word count when looking for A-Terms is found to be 10 with a minimum word

count of 1 also performing well. When deciding upon a set learning rate there

is a strong case for a learning rate of 0.01 as this is optimal not only for two of

the open discovery corpora (See Fig. 4.14 but it also the optimal value for one of

the closed discovery corpora. There are two joint top performers for the Minimum

Word Count parameter, and that is the usage of both one minimum word and also

ten minimum words. To allow for simplicity at the model generation stage, the
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minimum word count used will be ten words to help minimise the differences in the

models. This is because a comparative test that was run of all minimum word count

options alongside all context window size options the best performing results for

all experiments including A-Terms had a minimum word count of 10 and a context

window of 1 respectively. All words will be downsampled by a factor of 1e-08 as this

was found to be successful in 80% of experiments (See Section 4.1.4). As described

in Section 4.1.3 when including the need to find A-Terms in the text the optimal

number of epochs is 50 with only one corpus, the Peripheral Vascular Disease corpus,

requiring less than this (30 epochs).

As seen in both Sections 4.1.9 and 4.1.10 there are certain parameters that are found

to perform optimally on both the open and closed discovery methods, through all

experimented corpora which has allowed these experiments to find a generic model

for potential usage in further experiments. It should however be noted that these

experiments do show certain discrepancies and indicate that an exhaustive hyper-

parameter search would be preferable for any new experiments, this is due to the

slight differences in many different corpora.
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4.1.11 Breakdown of Corpora

The graph below contains a number of lexical statistics from each of the three cor-

pora:

Figure 4.29: Size of the three closed corpora before N-Grams were generated

As is expected the more specific a corpus is, the fewer unique words are found in

the entries since there are less entries. This is shown by the decrease of 95% from

our largest corpus, comprising of articles on general Vascular Diseases over the cor-

pus comprising of those purely comprising of articles based on the highly specific

Raynaud’s Disease. Once this idea is taken to the corpus after N-Gram generation,

the corpora sizes do have a large increase on generation on bi-grams however this is

not continued into tri-gram creation. This would be down to the fact that many of

the tri-grams created utilise and thus replace many of the previously found bigrams.

One thing that should be noted is that the decrease in unique trigrams is very close

to the decrease shown in unigrams with a 93% decrease from smallest corpus to

largest. The closest margin is still quite the separation with the bigram generation

having a slightly smaller decrease of 86% in unique term number (See Fig. 4.30).
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Figure 4.30: Number of Bigrams and Trigrams

As mentioned throughout this research, there are predominately two different types

of Discovery in the field of Literature Based Discovery, open and closed. In this

section of the thesis there will be a presentation of the results of the experiments

taken. Whenever a new corpora was experimented on, there were two parameters

that were changed to see the effect they had on the results. These parameters were

the minimum word count and also whether we took the most similar words, defined

as those with the closest cosine similarity to the target phrases, or whether we took

the least similar words, those with the furthest cosine similarity. In this section we

will be displaying which of the A-Terms and B-Terms found in the 2001 paper by

Weeber, as shown in Appendix 6.1 and 6.2, are also found by the model.

4.2 Open Discovery

As has been mentioned throughout this thesis, the open discovery method requires

there to be no A/B literature to be involved in the search. As the search terms have

differed between these searches and the closed discovery. For this experiment, there

were also three different corpora used in the same vein as those in the closed discovery
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with the most specific being only data related to Raynaud’s, the second corpora being

on Peripheral Vascular Diseases and the third being all Vascular Diseases. In the

graph below, we can see how many entries are utilised when the system works with

each corpus.

Figure 4.31: Number of Entries used in Word Embedding Creation
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As the above graph shows, there are massive increases in dataset size dependent

on the specificity of each corpus. When the number of documents increases, it is

expected that the number of found significant terms would rise. As the graph below

does show, many of these terms were found, and the trend shows that the more data

we have utilised, the more of these words that do appear.

Figure 4.32: The Average number of A/B Terms that are found per Open Discovery
corpus.

One thing that was found through these experiments is that certain search terms

were found consistently, whereas others were found rarely, if at all. The table be-

low consists of all the significant terms that were looked for and the percentage of

corpora they were found within. These tables do not take into account the different

parameters used e.g. the varying minimum word count or whether the least or most

similar words were used and class a term as found if it appears in any one of those

experiments. However, the table does show yellow for those terms which are not

found in every variant of that corpus and red for those that never appear in any of

them.

As is shown in the above table the larger the corpora the more significant phrases are
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Vascular Peripheral Vascular Raynaud
Blood Viscosity
Platelet Aggregation
Vascular Reactivity
Erythrocyte Deformability
Plasma Viscosity Level
Hemorheology
Decreased Vascular Flow
Hyperviscosity
Fibrinolysis
Thrombosis
Platelet Adhesiveness
Effects, blood coagulation
Vasodilatation
Vasodilation
Vasospasm
Vasospasm Mechanisms
Vasomotion
Decreased Vascular Resistance
Total Found: 94.44% 88.88% 83.33%

Table 4.2: Performance of finding the B-Terms of each Open Discovery Corpora
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usually found which is likely due to both the number of new entries allowing for new

connections to be formed but also due to the inclusion of new phrases completely.
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Table 4.3: Performance of finding the A-Terms of each Open Discovery Corpora

Vascular Disease Peripheral Vascular Raynaud Disease
Fish Oils
Maxepa
Fatty Acids, Omega-3
Omega-3 polyunsaturated fatty acid
Eicosapentaenoic Acid
Epa-e
Cod Liver Oil
Salmon Oil
Fatty Acids, Essential
Dietary Fats
Total: 80% 70% 0%

As the above tables show the open discovery corpora as a whole perform rather well

in retrieving the B-Terms with at-least, one experiment ran per corpus finding most

words. There were however terms not found in any corpus at any parameter mix. On

the other hand some of these terms, highlight the need for someone with biomedical

training to look over the lists generated by programs like this. This need was found

especially necessary with the b-term "Vasospasm Mechanism" which in itself may not

be seen. However, there are many different mechanisms such as "vasoconstriction"

and "oxidative stress" which to somebody within the field are seen to be "Vasospam

Mechanisms".

It should be noted that some terms like these have been found in specific experiments

for our tool but not counted to keep parity with Weeber’s list) which may be missed

when someone with the correct knowledge looks at the file. However, while each

corpus performs well with the B-Terms, there is a much more significant drop in

performance when it comes to finding the A-Terms. As expected there was a drop

in all corpora in regards to number of a-terms that appear in each list, what is

surprising is the fact that the smaller, more specific corpora, which is based purely

on those articles that are found when Raynaud is the search term finds 0 linkage

terms between Raynaud itself and Fish Oil. As shown below in Table 4.4 out of a

maximum 15 a-terms the highest average number found was 8.75 which equates to
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58% of the a-terms found, note these averages do not show the total number found

per experiment.

Raynaud Disease Peripheral Vascular Disease Vascular Diseases
0 4 8.75

Table 4.4: The average number of A-Terms found per Corpus

As is to be expected with these experiments the number of documents has a large

effect on the total number of significant phrases found in each experiment with the

trend being that the more documents in the corpus the more likely one of the A-

Terms defined by Swanson and Weeber are to be found.

4.3 Closed Discovery

As seen in Table 3.1, for this experiment there were three different corpora generated

all with a different size and specificity, ranging from Raynaud’s Diseases all the way

up to general hematological journals. The difference being that because this is a

closed discovery the corpora included all data published on the found Fish Oil terms

between 1960 and 1986. The experiments that were undertaken for this corpora were

the same as those previously detailed however the results did differ.

Utilising the same method as in Section 4.2 we found that the closed discovery

corpora had the following numbers of A/B-Terms. Bear in mind it should be noted

that the hematology corpus did not find any Raynaud terms in its experiments with

a 15 minimum word count so their was no relationships detected.

The average number of A/B-Terms found per the first two smaller corpora does see

an increase when utilising the closed discovery corpora. The largest increase will

be an increase of 11.75 when taking into account the fact that the average A-Terms

found in the open discovery raynaud corpora was zero but is now found to be an

average of 11.75. There is also an increase of 3.25 for A-Terms when comparing the

two PVD corpora. It should be noted that all three corpora experience a decrease in

B-Terms found. This is experienced most dramatically with the Raynaud and PVD

corpora which experience a drop of 5 terms dropped on average with the VD corpus
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Figure 4.33: Number of Entries used in Word Embedding Creation for the Closed
Discovery

Figure 4.34: The Average Number of A/B Terms found in the closed discovery
corpora

has experienced a smaller decrease of 2 B-Terms, however that these results will be

skewed as that there were also no Raynaud terms found in the 15 minimum word
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count least similar experiments. The number of A-Terms found in these experiments

has massively increased from finding no A-Terms in any of the Raynaud experiments

to every A-Term being found in atleast one experiment, See Table 4.5. Nonetheless,

the number of A-Terms found in the Vascular Disease corpus has dropped by 10%

and the PVD corpus has experienced an increase of 20%. The new corpus included in

these experiments, the hematology corpora performed exceedingly well finding all A-

Terms in at least one experiments with 70% of terms being found in all experiments.
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Raynaud Disease Peripheral Vascular Vascular Disease* Hematology*
Fish Oils
Maxepa
Fatty Acids, Omega-3
Omega-3 polyunsaturated fatty acid
Eicosapentaenoic Acid
Epa-e
Cod Liver Oil
Salmon Oil
Fatty Acids, Essential
Dietary Fats
Total: 100% 90% 70% 100%

Table 4.5: Performance of finding the A-Terms of each Closed Discovery Corpora

Raynaud Peripheral Vascular Vascular* Hematology
Blood Viscosity
Platelet Aggregation
Vascular Reactivity
Erythrocyte Deformability
Plasma Viscosity Level
Hemorheology
Decreased Vascular Flow
Hyperviscosity
Fibrinolysis
Thrombosis
Platelet Adhesiveness
Effects, blood coagulation
Vasodilatation
Vasodilation
Vasospasm
Vasospasm Mechanisms
Vasomotion
Decreased Vascular Resistance
Total Found: 94.44% 66.66% 100% 61.11%

Table 4.6: Performance of finding the B-Terms of each Closed Discovery Corpora
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Chapter 5

Discussion

5.1 What we have learned from this thesis

In this project, word embeddings are generated for a total of seven different bio-

medical corpora taken from the PubMed database with the first set consisting of

all articles related to Vascular Diseases, Peripheral Vascular Diseases or Raynaud’s

Disease published between 1960 and 1986 and the second set is all articles related to

the aforementioned diseases but also those of the found A-Terms as found in Wee-

ber’s paper (Weeber et al., 2001) for the closed discovery we also utilised a corpora

based upon all articles from a selection of the major Hematological journals. These

datasets were preprocessed and normalised through the removal of too short words

and case-folding. Once these techniques were complete, the preprocessed text was

taken and used to generate both bigrams and trigrams before this transformed text

was fed into a Word2Vec model to create a set of word embeddings for each corpus.

Once this model has been created the most and least similar phrases to the found

Raynauds terms are taken and mapped to the UMLS metathesaurus. Once this has

been done a semantic filter is then ran which removes all terms that are not found

to be in any potentially interesting semantic types leaving a shorter list of terms for

manual curation to find any potential terms of interest. This pipeline was utilised in

both an open and closed discovery context and as explored in Chapter 4 both of these

methods have their own strengths and weaknesses with the closed discovery corpora
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providing better results in regards to found A-Terms however this is likely due to the

inclusion of the relevant articles more than it is the ability of the Word2Vec model.

Whereas the open discovery corpora performed better when searching for B-Terms

than the closed discovery which can be attributed to the specificity of the corpora

to the diseases in question. The fact that the smaller corpora manage to retrieve

the B-Terms more successfully than the larger corpora can also be linked to other

works in the field which have found that more specific corpora can outperform more

general, potentially unrelated corpora (Dusserre and Padró, 2017).

5.2 Comparison with other pipelines

As has been discussed throughout this thesis, a large amount of the pre-processing

section of this pipeline was adapted from the one defined from Marc Weeber’s 2001

experiments. This is visible in the fact that both processes utilise phrases, made up

of bigram and trigrams, instead of a system focusing solely unigrams. The pipeline

defined in this thesis does however differ to the system developed by Gordon and

Lindsey in 1996 due to the fact that their system utilises a system where stopwords

are detected and removed (Gordon and Lindsay, 1996). Whilst Weeber have also

implemented such a system, this module was experimented with in early experiments

however it was not implemented due to the size of the corpora used and the fact

that removing these terms from play was unnecessary due to the fact that Word2Vec

downsamples all commonly occurring terms. All three pipelines have a common

factor of the fact that they all utilise the MetaMap tool to map the free-text to the

UMLS metathesaurus. After the text were mapped to the UMLS the pipeline then

uses the same broad semantic filter defined by Weeber in 2001 (Weeber et al., 2001).

This method however was not developed or investigated at the time Lindsey and

Gordon published their works and in future works, other knowledge bases have been

used such as the Semantic MEDLINE Database (SemMedDB) (Hristovski et al.,

2006) with some works deciding not to implement UMLS concepts at all and opting

to use MeSH headings instead (Cheng et al., 2014) due to the fact these terms are

assigned by humans with specific training at this task.
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5.3 Limitations and Future Work

One large limitation of the work displayed in this research is the amount of time it

takes to find the optimal parameters of the Word2Vec model. Whilst a grid search

is exhaustive and easily expanded upon for new experiments it is an extremely time

consuming method of hyper-parameter analysis due to the fact it tests all different

parameter combinations. Due to the amount of time this method takes this research

only ran the analysis on free-text where it could have been beneficial to run the

experiments on the mapped text which could have reinforced the accuracy of the

model.

It has also become clear throughout the result gathering and analysis section of this

project that one of the main limitations of this work was the precision of the output.

Even with a semantic filter the resulting output from the pipeline was extensive and

would require a large amount of manual effort to filter through if the pipeline is

to be used in a non-controlled environment where the results can be scanned for

specific terms. Future works in this project would likely include the narrowing of

the significant words lists as the size of these are currently dependent on the number

of Raynaud phrases found with it not uncommon to have thousands of potentially

significant words found, which could be achieved through the tweaking of the current

filters and occurrence numbers. This could also be done by upping the thresholds

for a Raynaud phrase to be found but due to the lack of documents in each corpus it

became clear early on that limiting the model to a small number of terms is unlikely

to provide good results.

There could also be future works on the ranking of the returned terms. This method

has been explored in other experiments and has since become a mainstay of many

different LBD pipelines, such as Linking Term Association and Minimum Weight

Association (Henry and McInnes, 2019). The inclusion of one of these metrics would

also allow for more exhaustive filter as the terms that meet the semantic filters

criteria could then be filtered based on this value, thus reducing down the found

terms further.
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To improve the accessibility of these technologies research would likely have to be

done in the generalisation of the models due to the fact these experiments have

found a large degree of variability in result quality even when using slightly different

parameters on the same corpus. There would also likely be a large amount of work

necessary on the improvements of data availability and potentially the use of multiple

types of data in the same model e.g. both biomedical literature and also clinical notes

as a method of solving the data sparsity problem. One other focus of research that

is beyond the scope of this work is the expansion of the relationships found, for

example there has been research that has formed more comprehensive relationships

by forming links between concepts through the identification of drugs and diseases

within the same sentence which has been the focus of some relationship extraction

research (Xu and Q. Wang, 2013). There has also been large amounts of work

in the field of relationship explanation whilst still utilising co-occurance alongside

the implementation of neural nets (Spiro, Fernández García and Yanover, 2019).

However as also mentioned in this thesis it is possible that the integration of the

SemMedDB could be a potential method of expanding the existing relationships

found.

Whilst this work has provided a baseline system to the extraction of significant

phrases from a biomedical dataset it is hoped that this can serve as an insight into

the potential pitfalls when developing a literature based discovery system with word

embeddings as its basis. It should however perform as a platform for new research

and developments in not only replicating old discoveries as shown by the Raynaud-

Fish Oil experiments but in also hopefully generating new hypotheses. This is due

to the fact that as shown by other research (Pyysalo et al., 2018; Meng et al.,

2018; Tshitoyan et al., 2019) that LBD systems are not only of interest to those

studying Raynaud’s disease. Through the systems put in place in this thesis there is

a possibility that through optimisation and automated tweaking to the parameters

of the model that it could be deployed and tested on the results reported by the

aforementioned research.
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Blood Viscosity Platelet Aggregation Vascular Reactivity
Blood Viscosity Fibrinolysis Vasodilatation
Erythrocyte Deformability Platelet Aggregation Vasodilation
Plasma Viscosity Level Thrombosis Vasospasm
Hemorheology Platelet Adhesiveness Vasospasm Mechanisms
Decreased Vascular Flow Effects, blood coagulation Vasomotion
Hyperviscosity Decreased Vascular Resistance

Decreased Vascular Flow

Table 6.1: Found B-Concepts as defined in Weeber’s 2001 paper

Blood Viscosity Platelet Aggregation Vascular Reactivity
Fish Oils Eicosapentaenoic acid Fatty Acids, Essential
Maxepa Cod Liver Oil Dietary Fats
Fatty Acids, Omega-3 Fish Oils
Omega-3 polyunsaturated fatty acid Maxepa
Eicosapentaenoic acid Fatty acids, omega-3
Epa-e Omega-3 polyunsaturated fatty acid
Salmon Oil

Table 6.2: Found A-Concepts as defined in Weeber’s 2001 paper

Architecture Window Score
Raynaud 1 0.0035824481182552227
Raynaud 10 0.003384353400797274
Raynaud 30 0.003522011043204793
PVD 1 0.8792117434042528
PVD 10 0.7926014610579173
PVD 30 0.8393686332752044
Vascular Disease 1 0.7648024610640313
Vascular Disease 10 0.7840307721825088
Vascular Disease 30 0.7582937348648169

Table 6.3: Context Window Parameters for Open Discovery Corpora
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