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Abstract 

Recent advances in Neural network has offered great solutions to automation of various 

detections including speech activity detection (SAD). However, existing literature on SAD 

highlights different approaches within neural networks, but do not provide a 

comprehensive comparison of the approaches. This is important because such neural 

approaches often require hardware-intensive resources.  

As a result, the project provides a comparative analysis of three different approaches: 

classification with still images (CNN), classification based on previous images (CRNN) and 

classification based on a sequence of images (Seq2Seq).  The project aims to find a modest 

approach-one that provides the highest accuracy but yet does not require expensive 

computation whilst providing the quickest output prediction times. Such approach can 

then be adapted for real-time application such as activation of infotainment systems or 

interactive robots etc.  

Results show that within the problem domain (dataset, resources etc.) the use of still 

images can achieve an accuracy of 97% for SAD. With the addition of RNN, the classification 

accuracy is increased further by 2%, as both architectures (classification based on previous 

images and classification of a sequence of images) achieve 99% classification accuracy.  

These results show that the use of history/previous images improves accuracy compared 

to the use of still images. Furthermore, with the RNNs ability of memory, the network can 

be defined smaller which results in quicker training and prediction times. Experiments also 

showed that CRNN is almost as accurate as the Seq2Seq architecture (99.1% vs 99.6% 

classification accuracy, respectively) but faster to train (326s vs 761s per epoch) and 28% 

faster output predictions (3.7s vs 5.19s per prediction). These results indicate that the 

CRNN can be a suitable choice for real-time application such as activation of infotainment 

systems based on classification accuracy, training and prediction times.  
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1 – Introduction 

A recent study by RAC Limited (The RAC) suggests that an estimated 9.2 million drivers still 

use mobile phones whilst operating their vehicle, considering the higher penalties for such 

actions introduced in 2017. Even with bans and laws that state against such actions, the 

study showed that 39% confess to checking emails, text and social media, 29% confessed 

in writing a text and social media and 16% admitted in taking photos or videos (albeit whilst 

the car was stationary in traffic) (RoSPA, 2018). Another study (in the United States) 

showed that using a mobile device whilst driving is 6 times more likely to cause an accident 

compared to driving under the influence of alcohol, leading to 1.6 million crashes each year 

(Snyder & Associates LLC, 2019).  

Various manufacturers have attempted to tackle this phenomenon over the decades such 

as introducing hands-free calling and more functionalities with touch interfaces for the 

head unit/infotainment system. However, this yielded not a great success because 

“consumers have become enamoured by the breadth, variety and timeliness of the 

information that they get on their phone” and are “expecting the same level of information 

in a vehicle”. In some cases, “they want the same display and choices built into the car” 

(Greengard, 2015, 18). Furthermore, each manufacturer has different means of accessing 

and operating the infotainment systems. Moreover, they may not necessarily share the 

same features and operate differently, which requires the consumer to learn the 

infotainment system as a consequence. This causes frustration for the consumer and 

means that the consumer would have to get used to operating their infotainment systems. 

As a consequence, consumers either refrain from using the features from the infotainment 

systems or would use their mobile phones due to convenience and ease of use. 

In 2015, Android Auto (Google, 2020) and Apple CarPlay (Apple, 2020) saw their software 

being released in vehicles and as time went on, more manufactures opted for this approach 

which would leave the consumer to choose which system they would prefer. The idea of 

this was simple, the manufacturer would manufacture vehicles with the head unit and 

hardware (buttons, touchscreen etc) with some basic functionality, while Apple and Google 

would focus more on the software aspect of the infotainment systems. These systems are 

simplified versions of Android and IOS smartphones but are also empowered with their 

popular assistants (Google Assistant and Siri). Furthermore, they allow consumers to call, 

text, read messages, navigate and control music from consumer’s preferred choice (i.e. 
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Spotify, Deezer, iTunes etc) whilst controlling the notifications to reduce distractions.  

Google in particular also offers Android Auto as an app that can be downloaded and used 

in cars (Google, 2020). 

Greengard (2015, 18) states “there is a huge challenge associated with providing a driver 

with the right amount of information at the right time. You don’t want to overwhelm a 

driver or have someone get to the point where they are distracted or tuning out crucial 

information”.  

For the consumer, the availability of such a system is useful as it means using the 

infotainment system that is very much like their phone. Which also means that the 

consumer does not need to learn how to access or operate the infotainment system. As 

anyone comfortable with their phone should be comfortable with their interface 

(Greengard, 2015). These systems offer continuity of the mobile phone experience and 

enable the consumers to “carry smartphone into cars and integrate these systems and 

controls seamlessly” (Greengard, 2015, 18). 

Research by Strayer et al. (2019) found that Android Auto and CarPlay offered more 

functionalities and resulted in lower workload (on operating these systems) compared to 

manufacturer’s infotainment system. A comprehensive and qualitative study by Oviedo-

Trespalacios et al. (2020) found that using Android Auto and CarPlay did reduce the need 

to use mobile phones and consequently reduces distractions. 

However, both of these studies found that these systems can be improved. In a study by 

Strayer et al. (2019) participants found that some tasks with Android Auto and CarPlay were 

more demanding (such as the use of touch interfaces). While Oviedo-Trespalacios et al., 

(2020) concluded that these systems can still be improved in particular with the activation 

of these systems. 

To activate/access these systems, two options are offered: using the touch screen or by 

saying the keyword i.e. “Hey Google” or “Hey Siri”. However, touch screens have a proven 

higher risk compared to a button or keypad interface due to the visual feedback. It provides 

an uncertainty if the correct option or key has not been selected (Holstein et al., 2015). This 

is why both of these systems offer an assistant where the subject can speak, instead of the 

physical interaction with the infotainment system. However, the second activation (using 

speech) can be also affected by various aspects such as internet connection and 
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background noise (e.g. Noise via speech or music). Through the app, the distance between 

the mobile device and the user, and disturbances in or outside the vehicle can induce noise. 

All of these issues can affect the activation of accessing/operating the system. 

Artificial intelligence (AI) particularly neural networks, have become increasingly popular. 

Predominantly because they are designed around the human brain. Similar to humans, 

neural networks can learn through experiences, and apply this knowledge to new 

experiences without any supervision. This type of technology is already being used for 

various tasks such as speech recognition, the voice assistant or even the search engine used 

by the assistant. Neural Networks are not limited just to speech or text but can also be 

applied to images or videos. 

As a result, this thesis considers using neural networks for the activation of the 

infotainment system. In this proposed work, the activation of the infotainment system 

would be for the subject to move their lips (i.e. to speak) and the system would detect 

whether to be in assistance of the subject. Application of such a system allows for more 

natural/conversational-like assistance rather than the current activation of these systems. 

Thus, eliminating physical interaction(touch) or saying the keyword (“hey Google”) each 

time the subject requires any assistant which in return could also reduce distractions. The 

proposed system could also be applied in different tasks or scenarios such as speech 

recognition in robotics, where the proposed system can aid a robot in communicating with 

a user, or in healthcare industries to aid those who have difficulties in speaking.  

Aim and Objectives: 

The aim of this project is to create an artefact using 2-D images to detect when someone is 

speaking or not. To achieve the aim, the following objectives are proposed. 

1) Collect or gather a dataset that can be manipulated and utilised for speech 

detection. 

2) Implement the artefact using different methods with efficient training, based on 

the recent literature. 

3) Consider different modes of classification (when one is speaking or not) using still 

images, classification based on previous images and sequence of images. 

4) Investigate which way performs better in terms of accuracy and prediction times – 

still images, or sequences of images. 
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The contribution of this thesis is an investigation of different neural-based methods in 

which visual-SAD is applied. The experimental results based on VidTIMIT show that 

classifications based on still images (CNN) can achieve an accuracy of 97%. The inclusion of 

RNN further increases the accuracy, as classification based on previous images (CRNN) and 

sequences of images (Seq2Seq/encoder-decoder) achieve 99% accuracy.  Results show that 

the increase of sequence size has a positive impact on classification accuracy. The simpler 

architecture (CRNN) is marginally outperformed by Seq2Seq model (99.1% vs 99.6% 

accuracy). However, the CRNN model is 57% faster to train (326s vs 761s per epoch) and 

28% faster in output predictions (3.7s vs 5.19s per prediction). Further results show that 

use of existing CNN models can not only affect the accuracy but the training and prediction 

times within the context of SAD.  

The rest of the thesis is structured as follows. Chapter 2 – Background discusses the 

background of neural networks. Chapter 3 – Literature Review provides existing work in 

the field of SAD. Chapter 4 – Visual Speech Detection provides the experimental 

design/setting. Chapter 5 – CNN for Still Images and chapter 6 – CNN for Image History and 

Sequence compares the respective approaches for SAD. Chapter 7 – Conclusion and Future 

Work concludes with future work highlighted.  
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2 – Background 

This chapter discusses the background knowledge into neural networks and how they can 

be applied to the problem in question; speech detection in the context of infotainment 

systems. Therefore, the chapter introduces various methods of speech detection to analyse 

and differentiate how speech can be recognised.  This allows for an understanding of the 

most appropriate method to address the problem in question. Furthermore, the chapter 

explores what neural networks are, how they operate and the infrastructure required when 

implementing a network.  This includes the various network types that can be considered 

and how they can be evaluated to assess their success in solving the problem. Lastly, 

popular techniques to improve the network are examined.   

2.1 – Speech Detection 

Speech detection is a method of detecting the absence or presence of human speech. 

Speech detections aim to differentiate speech and non-speech and thus is widely applied 

in various fields. In the context of infotainment systems, speech can be detected in various 

ways. 

Physical Interaction  

One of the most common way speech is identified (i.e. the user is speaking/saying a 

command) especially in vehicles is through the button/keypad or touch interface. In this 

case, the driver physically presses a button or touches a certain icon which then triggers 

the system to listen for a command/speech. This may be a button which triggers the 

manufacturer’s built-in system to activate or an icon to touch if Android Auto or Apple 

CarPlay is utilised. 

Keyword Detection 

A common feature found with likes Android Auto or Apple CarPlay is the ability to obtain 

assistance after saying a hot word or keyword such as “Hey Google” or “Hey Siri”. In this 

scenario, the system listens for the keyword and then activates the system to listen for the 

command from the driver.  In contrast to the physical interaction, this would not require 

the driver to physically interact with the system. Instead, the user says the keyword to 

interact with the system which reduces distractions for the driver. 
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Speech Activity Detection 

Speech Activity Detection (SAD) or also known as VAD (Voice Activity Detection) is the 

process of detecting speech though audio or sound. In this case, the audio or sound is 

converted to graphical images such as spectrograms, which are then analysed and studied 

to differentiate in speech and non-speech (i.e. noise). SAD is popularly used within the field 

of speech processing including speech coding, Automatic Speech Recognition (ASR) and 

speech enhancements.  In SAD, there is no requirement for a keyword but rather speech is 

automatically analysed with noise being filtered to provide a smoother interaction. 

Whereas with keyword detection, each time one requires assistance the keyword needs to 

be said. 

Video-Based Speech Activity Detection 

Similar to SAD, video-based SAD is the process of detecting speech but through images or 

videos. In this scenario, facial images are studied to differentiate between speech and non-

speech. These images are segmented into particular features which are then studied to 

understand the differences of those features between speech and non-speech. Depending 

on the resources and the functionality required, current literature highlights various 

approaches of utilising SAD either as using audio or video alone or as a combination of both. 

Arguably, with the use of audio or video alone, there are limitations for either approach 

but opting for a multimodal (audio and video) approach can also require extensive 

resources. Noise in the surrounding area or multiple voices can affect the performance SAD 

(audio) whereas V-SAD focuses on facial images and thus, surrounding noise or multiple 

voices do not affect it.  
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2.2 – Neural Networks 

A neural network is a mechanism consisting of a series of algorithms whose functionality is 

loosely based on the human brain. These algorithms allow the network to recognise 

patterns in numerical form (i.e. vectors) into which various data such as images, sound, text 

and time series can be translated. Like the human brain, the network comprises of 

interconnected neurons who take in some information, apply a function and pass the 

output to the next neuron. As a result, these networks can learn from experiences and 

provide an output based on those experiences.  

Figure 2.1 represents the algorithm behind one of the many neurons in a neural network. 

In this case, the neuron takes two inputs 𝑥1 and 𝑥2. The individual input is multiplied by its 

weight 𝑊 which is then added together with bias 𝑏. This value is then passed through an 

activation function which outputs a value that is sent to the next neuron 𝑧. 

 

Figure 2.1: Design of the hidden unit 

As demonstrated in Figure 2.1, information (in this case) is passed forwards which is known 

as a forward pass or forward propagation. This type of network is described as a 

feedforward network. A Feedforward network, as described in Figure 2.2, typically consists 

of 3 layers. The first layer is often referred to as an input layer which processes the input 

(such an image) and provides an input feature vector. The second layer computes the input 

feature and provides the computation for the next layer for a response. The last layer is 

typically an output layer which uses the information from the hidden layers to provide a 

meaningful response/output. Each layer may consist of single or multiple neurons 

depending on the problem domain and computational resources etc. The strength of the 

connection between each neuron is referred to as weight. 
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Figure 2.2: Architecture of Feedforward Network 

The task of the feedforward network is to learn an approximation function that produces 

the target output based on the input provided. Thus, it can be denoted as 𝑦 = 𝑓(𝑥; 𝜃) 

where the network learns the parameter 𝜃 and applies to the input 𝑥 to result in the best 

function approximation (Goodfellow et al., 2016). To train the network, various training 

algorithms can be used. However, the most popular one is the backpropagation introduced 

by Rumelhart et al. (1986). During training, an error is calculated based on the target output 

and the output from the network. Backpropagation is a method that uses the error, goes 

backwards from the output to the input layers and updates the weights to reduce the error 

(Rojas, 1996). As a result, the network is trained by an application of forward propagation 

and backpropagation. Typically, a forward and back pass act as one iteration. The iteration 

is repeated until an epoch is completed, which is based on the batch size and training 

samples. The network is trained until set epochs or desires loss is achieved (Rojas, 1996). 

 

 



13 
 

2.3 – Activations 

Activation functions are equations that determine the output of the neuron. Activation 

functions are attached to each neuron in a network and regulates whether it should be 

activated or not. The function calculates the weighted sum of the inputs and normalizes 

the output to range between 0 and 1 or -1 and 1.  

Sigmoid 

 

Figure 2.3: Graph of the sigmoid function 

Sigmoid is a nonlinear activation function known as the logistic function which transforms 

the input so the output ranges between 0 and 1 and thus its denoted as: 

𝜎(𝑥) =
1

1 + 𝑒𝑥𝑝−𝑥
 

(1) Goodfellow et al. (2016, 67). 

Use of sigmoid function can be used in a binary classification where the output must be 

between the two classes. Sigmoid can also be used to determine probabilities (as 

probabilities lie between 0 and 1), and for memory allocation in LSTM’s or GRU (described 

in section 2.9 – RNN). 
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Softmax 

Softmax is another logistic function similar to sigmoid, however, softmax is used to 

represent a probability distributed over discrete variables with 𝑛  classes. Consequently, it 

is commonly used in the output layer for classification in cases where there are multiple 

target classes. Softmax combines the inputs so the sum of the output equates to 1 as well 

as each input is transformed so the value ranges from 0 to 1. Softmax is calculated as: 

𝑓(𝑥)𝑖 =
exp⁡(𝑥𝑖)

∑ exp⁡(𝑥𝑗)
𝑛
𝑗=1

 

(2) Goodfellow et al. (2016, 81) 

ReLU 

 

Figure 2.4: Graph of the Rectified Linear Function (ReLU) 

The rectified linear activation function (ReLU) is a linear function that outputs the input if 

the input is positive, otherwise outputs zero. Thus, it is denoted as: 

𝑅𝑒𝐿𝑈(𝑥) = max⁡(𝑥, 0)⁡ 

(3) Goodfellow et al. (2016, 193). 

ReLU is a piecewise linear activation function; however, it acts like a nonlinear function that 

allows complex relationships in data to be learned. ReLU is also computationally 

inexpensive as other functions such as tanh, which requires an exponential equation. As a 

result, deep convolutional neural networks with ReLU train several times faster than other 

activations such as tanh. Hence, it is the recommended default activation function 

recommended for most feedforward networks (Goodfellow et al., 2016). 
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2.4 – CNN 

Convolutional Neural Network (CNN) is a type of Feedforward network which is specialized 

for processing data that is in a grid-like structure (images, sound, or timeseries-data). The 

name convolutional neural network derives from the mathematical term convolution. In a 

CNN, images are read in small squares(kernels), where parts of the image are studied. 

These convolutions allow detection of small meaningful features such as edges, shapes and 

texture with kernels that have only tens or hundreds of pixels. Thus, allowing the network 

to distinguish between images (classification), cluster images by similarity (photo search) 

or object recognition. As the kernel sizes for convolution are much smaller than other 

operations, convolution has much fewer parameters leading to less required memory. 

Convolutions have also proven to be efficient as it computes the output features with fewer 

operations (Goodfellow et al., 2016). 

The operation of convolution can be described as: 

𝐴𝑗 = 𝑓(∑(𝐼𝑖 ∗ 𝐾𝑖,𝑗 + 𝐵𝑗)

𝑁

𝑖=1

 

(4) Li et al. (2014, 845)  

Where each input 𝐼𝑖 is convoluted with the corresponding kernel 𝐾𝑖,𝑗. The total of all 

convoluted matrices is computed and bias 𝐵𝑗 is added to each element of the resulting 

matrix. Lastly, the non-linear activation (ReLU) is applied to each element of the previous 

matrix to produce one output matrix 𝐴𝑗. 

CNN’s use supervised learning algorithm in which the data provided is labelled based on 

the type of data such as images corresponding to speech or non-speech. Apart from 

providing the data and the network architecture (number of layers, kernel sizes, optimisers 

etc), the network can learn and distinguish without any further supervision. Therefore, 

making CNN’s a very powerful tool within computer vision. 

The popularity of CNN increased particularly with the ImageNet Large Scale Visual 

Recognition Challenge – ILSVRC (Russakovsky et al., 2015). The ILSVRC introduced various 

models such as AlexNet (Krizhevsky et al., 2012), VGG - Visual Geometry Group (Simonyan 

and Zisserman, 2015), ResNet (He et al., 2016) and Xception (Chollet, 2017a) which 

changed the way the CNN’s a are designed. For example, AlexNet introduced the concept 

of applying max pooling after convolutional layer, a concept that is being followed to this 
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day. On the other hand, VGG introduced smaller filters for convolutions (3x3 with the stride 

of 1) with more depth (number of layers) to achieve better accuracy. These models 

achieved great accuracy in the ILSVRC and are being exploited in various ways. In some 

cases, these models are used to extract information(embeddings) regarding images (Ariav 

and Cohen (2019) using ResNet embeddings) whilst in other cases, networks are designed 

following the architecture of these models (at a smaller scale) yet achieving reasonable 

accuracy (Cornu and Milner, 2015) with the deployment of smaller VGG-like model).  

 

Figure 2.5: An example of CNN architecture 

Figure 2.5 shows the architecture of CNN. The network consists of an input layer, 

convolutional layer, downsampling layer, and fully connected layer. The convolutional layer 

extracts local information from the input and adjusts the weights based on the activations. 

After every forward pass, the convolution layer generates a feature map. The features are 

trained to activate feature maps when patterns of interest are observed in the input. To 

make the network efficient and size of the network smaller, these features are often 

downsampled via max-pooling (choosing the maximum value of the feature in a region) 

and fed to the next layer. With the reduced features, they are fed to another convolutional 

layer to extract further information. Features from this layer are downsampled again 

before being fed to a fully connected layer, which combines the features and uses a non-

linear output layer such as “softmax”. In this case, the classification is generated by 

associating probabilities for the relevant classes/labels, values of which lie between 0 and 

1 (Sehgal and Kehtarnavaz, 2018).  
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2.5 – Pooling Layer 

As discussed previously, convolutions learn the image and produce a representation 

(feature map) which summarises the presence of features. However, as they record every 

feature at every location, a small change/movement in the image (i.e. Cropping, rotation) 

can result in a different feature map. As a result, pooling is often used after a convolution 

layer to summarise the representation learnt by the convolution. Pooling replaces the 

output feature (obtained in convolution) with a summary of present features in patches of 

the feature map.  Two popular pooling operations used in CNN’s are average pooling and 

max pooling. In average pooling, the average value for each patch (window) of the feature 

map is calculated. Whereas in max pooling, the maximum value for each window is 

calculated.  

 

Figure 2.6: Comparison of average and max pooling.  

Figure 2.6 shows the comparison of the output between the two pooling operations (max 

pooling and average pooling). In CNNs, the popular practice is to apply max pooling as 

opposed to average pooling, as it is more important to look at the maximum presence 

instead of the average presence of the feature (Chollet, 2017b). Similar to the convolution 

operation, filter size and stride also need to be defined for max pooling. Chollet (2017b) 

suggests the strategy for max-pooling is to apply 2x2 filter with a stride of 2 which allows 

the feature to be downsampled by the power of 2. This particular approach is mostly used 

particularly for CNNs. 
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2.6 – Fully Connected Layer 

In a CNN fully connected (FC) layer is essentially a feedforward network as described in 

section 2.2 – Neural Networks. FC layer is responsible for classifying the input images into 

various classes. As features are passed on from subsampling (max pooling), the features 

are flattened to a one-dimensional vector (as the features from the max pool are 3D). This 

vector is then analysed and weights are applied to predict the correct label/class based on 

the training dataset. The output of this layer is typically a softmax for multiclass 

classification which provides the probability of the classes to the sum of 1. For binary 

classification, sigmoid activation is used which outputs 0 or 1 depending on the 

arrangement of the labels. The output layer also has a loss function such as categorical 

cross-entropy for multi-classification or binary cross-entropy for binary classification. The 

loss computes the prediction error. Once the forward pass is completed the 

backpropagation begins which updates the weights and biases for loss reduction. Thus, the 

application of the FC layer also makes the network end-to-end trainable (Goodfellow et al., 

2016; Tummala, 2019). 

As described in section 2.2 – Neural Networks, in the FC layer each neuron calculates the 

following:  

𝑦 = 𝑔(𝑊𝑥 + 𝑏) 

 (5) Goodfellow et al. (2016, 196) 

Where 𝑥 is the input vector, 𝑊 is the weight, 𝑏 is the bias vector and 𝑔 is the activation 

function such as ReLU. In the final layer, for classification, a squashing function (such as 

softmax) is applied to obtain probabilities for the labels/classes.  
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2.7 – Batch Normalization 

Batch normalization (Ioffe and Szegedy, 2015) is a technique used to optimize a neural 

network. Typically, in a neural network during training, the distribution of each layer’s input 

is affected, as the parameters of previous layers change.  The change in parameters can 

slow down the training of the network, which would require a lower learning rate and 

careful parameter initialization as a result. This makes it difficult to train models with 

saturating nonlinearities or squashing functions such as softmax. Batch normalization 

provides a way to reparametrize a network by performing normalization for each mini-

batch in training (Goodfellow et al., 2016), thus, coordinating the update of multiple layers 

in the model. Batch Normalization can be denoted as: 

𝐻′ =
𝐻 − µ

𝜎
 

 (6) Goodfellow et al. (2016, 318) 

Where 𝐻′ replaces 𝐻 – to normalize the minibatch of activations. µ is the mean of each 

unit and 𝜎 contains the standard deviation for each unit. Therefore, batch normalization 

can be deployed to any input or hidden layer in a network. For CNN, batch normalization 

allows the network to learn quicker, mainly due to the reduced problem of coordinating 

across the layers, which also reduces the number of epochs required. Ioffe and Szegedy 

(2015) add batch normalization before the activation to achieve stable distribution of 

activation values which resulted in accelerated training and better accuracy on the 

Inception architecture (Szegedy et al., 2015). 
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2.8 – Dropout 

Dropout (Srivastava et al., 2014) is a method of regularising a network, particularly used to 

reduce overfitting. In simple terms, overfitting occurs when network performs better 

during training than with unseen data (test data). Dropout temporarily removes the 

neurons in a network along with incoming and outgoing connections. By setting each 

output of the hidden neuron to zero with probability 𝑝 of occurrence, these neurons are 

dropped out during training and therefore do not participate in a forward pass or 

backpropagation. As these neurons are dropped at random, in every input, the network 

samples a different architecture (much like in Figure 2.7) whilst still sharing the weights. 

The change of sampled architecture reduces the reliance of a neuron on the presence of 

other neurons (complex adaptation), thus forcing the network to learn more robust 

features in conjunction with other random subsets of neurons. At test time, no dropout is 

applied and all neurons are used. However, the outputs from the neurons are multiplied 

by 1 − 𝑝. Srivastava et al. (2014) suggest dropout of 𝑝 = 0.5 for hidden layers. However, 

they further suggest that 𝑝 should be closer to 1 for input units. 

 

Figure 2.7: Difference in a network with dropout. a) A fully connected network.  

b) The same network but after dropout is applied. 
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2.9 – RNN 

Unlike CNNs where information flows forward (to the next state/neuron), in RNNs the 

connection of neuron can be to itself and the next state, thus storing information that is 

sent to the next neuron. RNNs use the memory to store information on what has been 

computed. The input and stored information are combined to update their hidden units 

containing the history of previous timesteps (elements), whilst passing the information to 

the next state, thus allowing the network to learn from its past. As a result, an RNN is often 

used for processing sequential data as it’s able to adjust itself based on its history. RNNs 

are popularly used in machine translation, text classification and speech recognition. They 

can also be used to study grid-like structures such as images in a time series, provided that 

the entire sequence is introduced to the network. As a consequence, they can also be used 

for handwriting generation and image captioning. 

 

Figure 2.8: An RNN with the unfolding of the RNN during computation (LeCun et al., 2015, 442). 

Figure 2.8 shows the unfolding of the RNN in computation. In this case, the hidden units 

under node s with values 𝑠𝑡at time 𝑡, get the input from other neurons at previous 

timesteps (represented with black square). In this way, the RNN can map input sequence 

with elements 𝑥𝑡 into an output sequence with elements 𝑜𝑡. Value at 𝑜𝑡 is dependent on 

𝑥𝑡−1….𝑡−𝑛 . Parameters (𝑈, 𝑉,𝑊) are shared across every time step and can be seen as a 

deep feedforward network (LeCun et al., 2015).  

Figure 2.8 can also be defined as: 

𝑠𝑡 = 𝑓(𝑈𝑥𝑡 +𝑊𝑠𝑡−1) 

(7) Lim et al. (2016, 2)  

Where 𝑥𝑡 is the input at timestep 𝑡, 𝑠𝑡 is the hidden state at timestep 𝑡, 𝑜𝑡 is the output at 

timestep 𝑡. As noted, each element of the output 𝑜𝑡is a function of 𝑉𝑠𝑡. Each element of 
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the output is produced using the same output rule applied to previous outputs, thus the 

recurrent formulation results in sharing of parameters (Lim et al., 2016).   

LSTM 

In recurrent networks, as the timestep goes on information is stored. However, in deep 

recurrent networks, storing such information can be computationally expensive and also 

lead to “vanishing” or “exploding gradients”.  The exploding gradient occurs when the value 

of weights become increasingly large as the timestamps go on. In other cases, the value of 

the weights is too small and as they go through continuous matrix multiplications, the 

values decrease in size making it impossible for a network to learn (known as vanishing 

gradient). Consequently, they both result in an unstable network.  

 

Figure 2.9: Architecture of LSTM (Goodfellow et al., 2016, 409) 

LSTMs were created as a solution for the issues of vanishing and exploding gradients. LSTMs 

provide internal states called gates which control the flow of information. With these gates, 

information can either be allowed or removed depending on the gate. An input feature is 

computed on the regular neuron but the value can only be passed into the state if the input 

gate permits. The state unit has connections to the next time step and therefore copies its 

own value and accumulates the external signal. The weight of the state is controlled by the 

forget gate, which learns to decide when to clear the content of the memory. Similarly, the 

output gate controls the output of the cell.  All gates have sigmoid functions whilst the 
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input gate can have squashing non-linearity such as sigmoid or tanh. The state can also 

provide input to the next time step, resulting in two sources for the input-the present, and 

the recent past. (Goodfellow et al., 2016) 

GRU 

Gated recurrent units (GRU) (Cho et al., 2014) are similar to LSTMs in the sense that they 

also have gates in which the flow of information is controlled. However, unlike LSTM they 

do not have a memory cell. The number of gates in a GRU is reduced as it only has an update 

and reset gate. These gates control the forgetting and updating of the state unit. The reset 

and update gates can individually “ignore” parts of the state vector. The update gate can 

choose to copy information if the values lie closer to 1 or ignore the information closer to 

0 and replace it with new “target state”. The reset gate controls which part of the state gets 

used to compute the next target state. The activation of the gates in GRU relies on 

information from current input and previous output. This results in fewer parameters 

which lead to quicker computation (Goodfellow et al.,2016; Tang et al., 2016). Goodfellow 

et al. (2016) argue that LSTM and GRU provide similar/comparable results. However, Tang 

et al. (2016) found the GRU to be quicker as it has fewer parameters and better in 

performance (accuracy) at detecting questions in conversational speech.   

 

 

Figure 2.10: comparison of LSTM and GRU cells (Cho et al., 2014, 1726).   

Figure 2.10 shows a comparison of LSTM and GRU cells. Where for (a) 𝑖, 𝑓, 𝑜 are the input, 

forget and output gate respectively. 𝑐 denotes the memory cell and 𝑐̃ denotes the content 

of new memory. For (b) 𝑟 and 𝑧 are the reset and update gate, whilst ℎ and ℎ̃ are the 

activation and candidate activations (Cho et al., 2014).  

a) LSTM 

Cell 

b) GRU 

Cell 
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Encoder-Decoder (sequence to sequence) 

 

Figure 2.11: Encoder-decode architecture. 

Figure 2.11 represents the encoder-decoder architecture. Encoder-decoder is a type of 

neural network which compromises of two RNNs. An encoder learns the input (𝑥) one 

timestep (𝑡) at a time and obtains a fixed-length vector representation (𝑐). On the other 

hand, the decoder extracts the output (𝑦) from the vector (𝑐). The two networks are trained 

as a combination to maximise the conditional probability of the target sequence given the 

input sequence. The encoder-decoder architecture allows the network to learn sequences 

where the input is not the same length as the output. As a consequence, the encoder-

decoder architecture is often used for machine translation, speech recognition and 

question-answer systems (Cho et al., 2014). 

The encoder reads the input sequence 𝑥 sequentially and updates its state based on: 

ℎ(𝑡) = 𝑓(ℎ(𝑡−1), 𝑥𝑡) 

(8) Cho et al. (2014, 1725) 

Where 𝑓 is a non-linear activation function such as sigmoid or an LSTM, ℎ represents the 

hidden state at timestep 𝑡 with 𝑥 denoting the variable-length sequence. After reading the 

entire sequence, the hidden state of the RNN is 𝑐 (in Figure 2.11) which holds a 

representation of the entire sequence.  

 

The decoder updates its state similar to the encoder but is conditioned on output 𝑦𝑡−1 and 

the entire sequence representation 𝑐. Thus, the hidden state of the decoder is denoted as: 

ℎ(𝑡) = 𝑓(ℎ(𝑡−1), 𝑦𝑡−1, 𝑐) 

(9) Cho et al. (2014, 1725) 
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The probability of next output (𝑦) from the decoder is: 

𝑔(ℎ(𝑡), 𝑦𝑡−1, 𝑐) 

(10) Cho et al. (2014, 1725)  

Where 𝑔 is the activation function such as softmax, as it produces valid probabilities.  

The encoder-decoder architecture was introduced by  Sutskever et al. (2014) as a sequence 

to sequence learning for machine translation. Sutskever et al. (2014) suggested that LSTMs 

could be used for machine translation where one LSTM can perform the encoding, and the 

other LSTM can perform the decoding. Their architecture compromised of four layers of 

LSTMs with each layer consisting of 1000 units. Their architecture particularly introduces 

“EOS” to sign as the end of the sentence during training.  

Cho et al. (2014) introduced a scoring system in which the target words are scored – the 

highest scoring word being used as output.  Cho et al. (2014) particularly introduced such 

architecture as “encoder-decoder”. Their proposed architecture did not use LSTMs but 

rather proposed a simpler recurrent unit called GRU. The architecture consisted of 1 layer 

of GRU with 1000 units and 500 maxout units for pooling (Goodfellow et al., 2014). 

Sutskever et al. (2014) found that using deeper LSTM significantly increases the 

performance of the model as opposed using shallow LSTMs. Whereas Cho et al. (2014) used 

single GRU with 1000 units whilst still achieving similar results.   

Although the encoder-decoder architecture was introduced for machine translation, 

Vinyals et al. (2015), Venugopalan et al. (2015), Soh, (2016) and Donahue et al. (2017) 

adapted the encoder-decoder architecture to caption images/videos. Instead of providing 

sequences of text, the authors provided embeddings from popular CNN architectures such 

Inception (Szegedy et al., 2015) and VGG (Simonyan and Zisserman, 2015), together with 

embeddings for words to train the network to provide captions/descriptions. The encoder-

decoder architecture in these papers has been developed in two different ways.  

Vinyals et al. (2015) introduced the encoder-decoder for images where the encoding was 

done by the CNN and decoding by the RNN. Venugopalan et al. (2015) and Soh (2016) used 

the LSTMs for encoding and decoding but with the input of features from the CNN-much 

like the initial encoder-decoder architectures suggested by Cho et al. (2014) and Sutskever 

et al. (2014). Donahue et al. (2017) compared both of these models with other variants and 

concluded these architectures provide similar/comparable results. However, they found 
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the CNN encoder and RNN decoder outperforms the RNN encoder-decoder by a smaller 

margin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

2.10 – CNN-RNN 

Convolutional Neural Network – Recurrent Neural Network (CNN-RNN) is a network with 

two independent networks - CNN and RNN. In this network, CNN is utilised to study images 

and provide image representations while the RNN studies sequential data and builds the 

image-label relationship. As a result, one of the popular uses of this network is the multi-

label generation. In this network, images are passed to a CNN (typically, an existing CNN 

model) to obtain the embeddings while the RNN takes the embedding of the predicted 

label at each timestep and models the occurrence of the label within the hidden state 

(Wang et al., 2016). The RNNs can also consider the label based on the previous timestep.  

The output from the RNN and image representation of the CNN are 

formatted/concatenated where these features are studied as shown in Figure 2.12. 

 

Figure 2.12: CNN-RNN architecture (Wang et al., 2016, 2288).  

Often the CNN used within CNN-RNN architecture, derives from an existing CNN model 

(such as VGG or Inception) to provide the best representation for the image. The RNN in 

this case can be of various types.  This can include a few layers of LSTMs/GRUs or the 

encoder-decoder model as discussed in the previous section. The utilization of the encoder-

decoder for images can be described as a CNN-RNN architecture as the CNN and RNN are 

two independent networks.  
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2.11 – CRNN  

Convolutional Recurrent Neural Network (CRNN) is a hybrid combination of the CNN and 

RNN architecture. In a CNN, convolution and pooling perform feature extraction between 

images and learn the representation of those features. However, they do not consider 

contextual dependencies between different images. These dependencies represent useful 

spatial structure information in images. RNNs on the other hand, are designed for learning 

contextual dependencies in sequential data by using recurrent connections. Therefore, in 

a CRNN, the CNN learns the images and provides a representation of the images (features), 

where the RNN learns to encode spatial dependencies between those image regions (Zuo 

et al., 2015). 

In a CRNN, the outputs of a CNN are converted into spatial sequences given to RNN and the 

feature outputs of the RNN are treated as fully connected layers (as shown in Figure 2.13). 

Thus, the fully connected layers are replaced by RNN (LSTMs or GRUs). Regarding the 

architecture, CRNN still follows the layout of the CNN but the LSTM/GRU is replaced for the 

fully connected layers as shown in Figure 2.14.  

 

Figure 2.13: the CRNN framework (Zuo et al., 2015, 19). 

 

Figure 2.14: CRNN Architecture 

CRNN architecture has been employed in various fields and tasks. Tao and Busso (2019), 

(Ariav and Cohen (2019) and Sharma et al. (2019) employed CRNN architecture for the task 
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of Visual Activity Detection (VAD). Similarly, the CRNN has been used for speech emotion 

(Lim et al., 2016), music classification (Choi et al., 2017), image-based sequence recognition 

(Shi et al., 2017) and for medical imaging (MRI) (Han and Kamdar, 2018). 

Regarding the architecture, Shi et al. (2017) employed a smaller VGG model (using 3x3 

filters similar to VGG11) with 2 bidirectional LSTM with 256 hidden units. Lim et al. (2016) 

and Choi et al. (2017) used 4-layered CNN with 3x3 filters with 2 layers of LSTM and GRU 

respectively, consisting of 1024 units. Han and Kamdar (2018) used 3 layers of CNN with 

5x5 filters and single bidirectional GRU with 256 units.  

Zuo et al. (2015), Lim et al. (2016), Choi et al. (2017) and Shi et al. (2017) in particular 

compared CNN and CRNN performances for their relevant tasks and found CRNN to be 

superior to CNN. Furthermore, Shi et al. (2017) suggest CRNN models can be suitable for 

mobile devices, as the CRNN architecture has fewer parameters compared to a CNN 

because CRNN models do not have fully connected layers. However, Choi et al. (2017) 

highlight that the CRNN can be more computationally expensive compared to CNN 

depending on the length of the sequence. 
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2.12 – Evaluation Metrics 

There are various ways in which a model can be measured. While loss (error rate) can be 

used to measure the performance of a model, it is predominately used to adjust the 

network based on the error rate in predicting the right label/class. For classification, 

evaluation metrics are typically based on the confusion matrix. 

 

Figure 2.15: A confusion matrix summarising the predictions (assuming there are two classes) 

Figure 2.15 shows a confusion matrix - a table that summarises the predictions of a model 

on unseen data (test data). A true positive (TP) is an outcome where the model predicts a 

positive class based on a positive input. Similarly, a true negative (TN) is an outcome where 

the network predicts a negative class based on a negative input. On the other hand, a false 

positive (FP) is an outcome where the network predicts a positive class for a negative input 

similar to a false negative (FN), which is an outcome where the network predicts a negative 

class for the positive input.  

The popular and straightforward method to measure performance is the accuracy which 

considers the positive predictions based on total predictions and is denoted as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 (11) (Alpaydin, 2014, 562) 

In some cases, accuracy may not necessarily show a true measure of a model. In cases with 

unbalanced data where the data for one class may be more significant than the other, this 

may automatically lead to a higher accuracy.  

Precision and recall give a more in-depth measure of the network. Precision identifies the 

number of positive predictions that actually belong to the positive class. Precision can be 

represented as: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(12) Alpaydin (2014, 562) 

Recall identifies the number of positive class predictions based on all positive inputs in the 

dataset. Thus, it is denoted as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(13) Alpaydin (2014, 562) 

To summarise precision and recall to one metric, F-score is often used which is useful for 

imbalanced data. F-Score is denoted as: 

𝐹 =
2𝑝𝑟

𝑝 + 𝑟
 

Where 𝑝 and 𝑟 represent precision and recall respectively.  

(14)  Goodfellow et al. (2016, 424) 
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3 – Literature Review 

The task of a detecting speech is often referred to as Voice Activity Detection (VAD) or 

Speech Activity Detection (SAD) in the existing literature. Traditional approaches often 

used audio signals for SAD but in the current literature, there has arisen a choice of input 

used for SAD. Recent literature shows authors using video signals or a combination of both 

over audio signals alone. 

In a SAD system via audio signals, the audio signals are often converted to graphical images 

(such as spectrograms) in which they are analysed and used to detect speech. However, 

the performance of the SAD is affected when background noise or the inclusion of multiple 

voices are involved.  

In a noisy environment, non-speech can often be classified as speech due to an increase in 

noise (Cornu and Milner, 2015; Ariav and Cohen, 2019; Sharma et al., 2019). As a result, 

recent approaches regarding SAD involve use of video or combination of both (audio and 

video) to create a more robust SAD system  

Furthermore, recent approaches involving SAD utilize deep neural networks (DNN) as 

opposed to a “static” approach or using algorithms. Due to their powerful abilities, DNN 

provides a system in which through feeding raw data, the system can learn differences 

between speech and non-speech. Non-speech activities such as cough, singing, whistling 

and yawn can often introduce noise within an image-based system but DNN’s can learn to 

differentiate between such activities (Bairaju et al., 2017). In various cases, multimodal is 

used for better robustness of the system. Moreover, DNNs require less supervision and 

computation workload by utilising smaller networks (Tao and Busso, 2019; Ariav and 

Cohen, 2019; Sharma et al., 2019).  

Table 3.1 provides an overview of the approaches for SAD in the literature in recent years.  

The table shows how modern DNNs (especially for SAD) rely on RNNs due to their ability to 

learn temporal dynamic behaviour (Ariav and Cohen, 2019; Sharma et al., 2019). Recent 

literature shows authors opting for a combination of CNN and RNN, as featured in Table 

3.1. In this case, CNNs are used to learn image representation as they carry the ability to 

distinguish between images. But the addition of RNN allows the network to learn temporal 

information, as it introduces history and information regarding the sequence. The addition 
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of RNN to the network architecture also increases classification accuracy (Sharma et al., 

2019). 

Table 3.1: Summary of closely related works to the proposed research 

Author Task Dataset Architecture Accuracy 

Cornu and 

Milner 

(2015) 

Voicing 

classification 

(classifying 

frame as 

speech/non-

speech) in 

speaker-

dependent and 

speaker-

independent 

scenarios. 

GRID  CONV (32x3x3)  

Max pool 2x2  

Dropout 0.2 

CONV (64x3x3) 

Max pool 2x2  

Dropout 0.2 

FC 512 

Dropout 0.5 

97.66% for 

speaker 

dependent. 

74.68%. for 

speaker 

independent 

Sharma et 

al. (2019) 

Visual voice 

activity 

detection for 

detecting 

endpoint. 

GRID, 

VidTIMIT,  

Indian-

English 

(locally 

collected) 

CONV (16x5x5), s=2 

Max pool 2x2 

Batch Normalization 

CONV 32x5x5, s=2  

Max pool 2x2 

Batch Normalization 

CONV 8x5x5, s=2  

Max pool 2x2 

Batch Normalization 

LSTM (64) x 2 

CONV stride=2 

96.5% for 

speaker 

dependent. 

92.2% for 

speaker 

independent. 

Wang and 

Wang 

(2019) 

Speech activity 

detection using 

facial images 

via landmark 

pooling 

Labelled 

Speech in 

the Wild 

(LSW) – 

locally 

collected. 

CONV (64x7x7), s=2. 

Landmark pooling layer 

(20 landmarks). 

FC Layer. 

GRU (64). 

FC Layer. 

79.9% for the 

proposed 

architecture vs 

76.7% for 

CRNN. 
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Tao and 

Busso 

(2019) 

 

Speech activity 

detection using 

multimodal 

recurrent 

neural 

networks 

CRSS-

4English-14 

– locally 

collected.  

Audio- Maxout Layers 

(512) x 2. 

LSTM x 2. 

Visual - 3 x CONV 

(64x5x5), s=2. 

LSTM (64) x 2. 

Multimodal - 

Feature from each 

modality is 

concatenated. 

LSTM (512) x 2 

Maxout layer (512) 

Audio: 90.3%, 

92.7% 

Video: 60%, 

65.5% 

Multimodal: 

92.1%, 93.8% 

Ariav and 

Cohen 

(2019) 

VAD by 

incorporating 

audio and 

visual 

modalities.  

Locally 

collected 

(Dov et al. 

2015) 

ResNet-18 (He et al., 

2016) to extract visual 

features. 

WaveNet encoder for 

audio features. 

Features are fed to MCB 

for fusion. 

LSTM (1024) x 2. 

FC 1024. 

Dropout 0.2,0.5 -across 

the network. 

Batch Normalization -

across the network. 

Audio: 

AUC=0.92 

Video: 

AUC=0.94 

Multimodal: 

AUC=0.97 

Multimodal 

Accuracy: 

91.5% 
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3.1 – Closely Related Research Works 

Cornu and Milner (2015) proposed a novel technique to extract visual speech features and 

use them to classify between speech and non-speech. The paper also compares CNNs and 

GMMs (Gaussian mixture model) to assess the performance of classification in visual-SAD. 

The paper argues how GMM systems have been outperformed by CNNs for automatic 

speech recognition and as a result, explores CNNs for SAD. 

Their suggested architecture consists of 2 convolution layers (3x3x32,3x3x64), followed by 

max-pooling (2x2) at each convolutional layer with Dropout of 0.2 for convolutional layers. 

The architecture also includes L2 regularization with a value of 0.0001 and a dropout of 0.5 

in the fully-connected layer with 512 neurons. For activation, they use ReLU. 

GRID (Cooke et al., 2006), is the dataset used for their experiments in two different 

scenarios. In the first case, all data is split based on 80% for training and 20% for testing. In 

the second case, data is split based on speakers on the ratio of 80:20. For the first task 

(speaker-dependent), the CNN achieves an accuracy of 97.66% as opposed 94.34% by 

GMM. In the second task (speaker-independent), the CNN achieves an accuracy of 74.68% 

whereas the GMM achieves 70.50% accuracy.  

The authors conducted further experiments by the inclusion of temporal information via 

CNNs whereby the first and last frames of the sequence are used for classification of 

speech. However, in this case, there was only a slight increase in accuracy compared to 

those mentioned previously. As a result, they conclude by suggesting how CNN can 

outperform GMM for visual-SAD and potentially other applications such as lip reading and 

automatic speech recognition.  

The implementation of temporal information by Cornu and Milner (2015) suggest that 

there are better architectures/methods (such as use LSTMs or GRUs) that can be 

considered. They also advise for further exploration of different architectures regarding 

temporal information and increasing dataset, which could further improve the accuracy of 

the CNN. However, the architecture of the CNN, considering the accuracy, highlights that 

smaller networks can achieve reasonable accuracy for binary classification. 

Sharma et al. (2019) extended the work of Cornu and Milner (2015). Their study involves 

visual SAD but is focused on the endpoint - when one stops speaking. The suggestion by 

Cornu and Milner (2015) of exploring different architectures for temporal dependency is 
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conducted by Sharma et al. (2019). As a result, they suggest an architecture for SAD by 

combining CNN and RNN (CRNN). Their architecture involves 3 layered-CNN with 5x5 filters 

with kernel sizes of 16, 32, and 8 respectively with a stride of 2. For every layer of CNN, 

max-pooling(2x2) is added as well as a batch normalization layer. The LSTMs are added to 

the CNNs to learn temporal dependence. In this case, the LSTMs are unidirectional, with a 

size of 64 and are 2 layered. The state is then passed to a dense layer followed by a SoftMax 

layer to determine the frame as speech or non-speech. Classification of the endpoint is 

based on the sequence, consisting of classification for each frame. 

Their network is run on multiple datasets such as GRID, VidTIMIT (Sanderson and Lovell, 

2009) and a personally collected dataset referred to as “Indian-English dataset”. Similar to 

Cornu and Milner (2015) the experiments are run on these datasets in two ways: speaker-

dependent and speaker-independent.  

In the case of speaker-dependent, the whole dataset is split across train, test and 

validation. For speaker-independent, the dataset is split based on speakers resulting in 

unseen data for each dataset (train, test and validation). The paper also compares 

performances of Cornu and Milner (2015) and their suggested architecture for the GRID 

dataset. Their results show that there is an increase in performance by adding RNNs as their 

architecture achieves an accuracy of 92.2% in the speaker-independent scenario as 

opposed to Cornu and Milner (2015) architecture achieving 74.68%. For speaker-

dependent, the accuracy achieved is 96.5% which is a similar result achieved by Cornu and 

Milner (2015). 

Sharma et al. (2019) applied the suggestion of considering different architecture for 

temporal information by Cornu and Milner (2015). As noted, this increased classification 

accuracy. Although the architecture lacks justification (such as the use of kernels), their 

paper provides evidence that the use of smaller CNN with RNN provides better accuracy 

than CNN (within the problem domain). Although the authors mention such architecture is 

suitable for real-time application, they do not consider or provide any evidence for real-

time application. Furthermore, the authors do not apply the SAD for any purpose to 

validate the claim of real-time application.  

Wang and Wang (2019) introduced Landmark Pooling Network (LPN) which acts as an 

attention guide scheme to help deep neural network only focus on the region of interest 

(ROI). In LPN, the network can be provided with full (raw) images with landmarks for the 
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network to focus on. This eliminates any pre-processing and computation to obtain ROI 

images, as well as reduces the number of parameters. Furthermore, (Wang and Wang, 

2019) argue that in an LPN the network can assign higher values to weights in important 

locations.  

The LPN focuses on facial images and can classify an image as speech or non-speech. The 

network utilises a CNN to learn image representation, landmark pooling for ROI of the 

image and uses RNN (GRU in particular) to learn sequential information and obtain a better 

understanding of the input signal. 

The LPN uses a convolution layer (7x7x64), followed by a landmark pooling layer which uses 

landmark location to pull convolutional feature maps. The landmark pooling layer uses 20 

landmarks around the mouth and thus has 20 - 64-dimensional vector which is passed to 

Fully Connected (FC) Layer.  

The vector is then passed to a GRU with 64 hidden units and passed to another FC layer (at 

every timestamp), at which case classification is made in the softmax layer. The network 

uses AdaGrad (Duchi et al., 2011) with a learning rate of 0.0001. 

The dataset for their network is personally collected and referred to as Labelled Speech in 

the Wild (LSW). The dataset consists of speech and non-speech sequences with 195 

subjects and 8903 sequences. 171 subjects and 8002 sequences are used for training and 

24 subjects with 901 sequences are used for testing.  Data is augmented at random and 

includes random flipping, random cropping, random distraction and face movement speed 

is varied (by deletion or duplication of images) to reduce the network from overfitting. 

The highest accuracy for their network is 79.9% which involves LPN and CNN - using CNN 

features of the image and landmarks as input. In their case, the LPN alone achieves 72.1% 

compared to a CNN (one convolutional layer, spatial max pooling layer, GRU) achieving 

76.7%.  

Although Wang and Wang (2019) propose the idea of using landmarks as opposed to hand-

crafted features (or ROI images). Their architecture achieves better accuracy but by only a 

small margin.  

Furthermore, it remains in question as to whether this requires further computation, 

especially for mobile devices. On a different note, as the images fed are full face images, 

this can affect the accuracy due to noise in the network. Lastly, their paper highlights that 



38 
 

use of single convolution layer does not necessarily lead to reasonable accuracy, as other 

architectures (with more layers) have achieved a higher accuracy.  
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3.2 – Other Research Works 

Tao and Busso (2019) incorporate an audio-visual system which they suggest increases the 

robustness of the SAD. The authors present an end-to-end SAD with bimodal RNNs where 

acoustic features and visual features are learnt from raw data. Their proposed system 

models temporal information regarding audio-visual data and each modality (audio and 

video) is a sub-system of the proposed system. These sub-systems are implemented with 

LTSMs to capture temporal relationship within each modality and provide a representation 

for each modality. The features learnt are then concatenated and fed as input to another 

set of LSTM layers to capture temporal information across the modalities.  

For the visual modality, they employ a CRNN architecture, in which 3 convolutional layers 

are stacked with each layer having 64 filters. The kernel sizes for each layer is 5x5 with a 

stride of 2.  

They do not use a max-pooling layer as the feature map is reduced by the application of 

increased stride size. 2 LSTM layers are then stacked with 64 neurons, to further process 

the visual representation. A similar architecture is also deployed for audio modality. But 

instead, two maxout layers (Goodfellow et al., 2014) are used to learn acoustic features 

with 512 neurons instead of convolutional neurons to reduce the computational 

complexity in training. The features learnt are then fed to two LSTMs. For the audio-visual 

network, the features (audio and video) are concatenated and processed by two LSTM 

layers with 512 neurons which is then fed to a FC layer (implemented with maxout with 

512 neurons). The output is then sent to a softmax layer for classification between speech 

or non-speech. The architecture uses ReLU for activation and Adam as the optimizer. With 

their implementations, their authors aim to provide a small and compact network to lower 

hardware requirements and computational resources which the authors argue is ideal for 

practical applications. For the same reason, the LSTMs used in their architectures are 

unidirectional LSTM as opposed to bidirectional LSTM and that is to reduce the latency of 

the model.   

The authors created their dataset in which they record speakers reciting sentences in front 

of a camera using ideal and practical scenarios. In the ideal scenario, data is collected with 

a close-talking microphone and HD camera, whereas the practical scenario data is recorded 

using a tablet. In total, the data consisted of 55 females and 50 males totalling to 60 hours 

and 48 minutes of recordings. Data is split based on speakers with 70 subjects for training, 
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25 for test and 10 for validation.  The authors use IntraFace (Xiong and De la Torre, 2013) 

to extract ROI from the full-face images recorded. These images are then down-sampled to 

32x32 and converted to grayscale to reduce computational workload. 

In their experiments, the multimodal achieves the highest accuracy of 93.8% in the ideal 

scenario and 92.1% in the practical scenario. The video modality achieves 60% accuracy in 

ideal scenario and 65.5% accuracy whereas the audio modality achieves 92.7% and 90.3% 

respectively. The authors argue with their proposed multimodal system, their suggested 

architecture achieves better performance than the state-of-the-art unimodal SAD systems.  

The paper by Tao and Busso (2019) lacks justification for the same kernel sizes in video 

modality and resulting accuracy. However, the architecture does highlight that use of same 

size kernels and removal of subsampling can affect the accuracy of the network.  

Furthermore, the proposed architecture relies on the visual and audio modality, which as 

stated, the failure of one component can affect the detection. Tao and Busso (2019) also 

suggest that further work involves researching where one component fails or there is 

missing information within the component. Nonetheless, their suggestion of using 

unidirectional LSTM as opposed to bidirectional LSTM can aid in the computation for real-

time application, as they suggest the use of bidirectional LSTM can increase latency in the 

model.  

Ariav and Cohen (2019) studied the performances between using audio, video and 

combination of both (audio and video) to assess the performances of the detection. For 

audio, they proposed a WaveNet encoder (Oord et al., 2016), whilst for video, they used a 

resNet-18 (He et al., 2016) to classify between speech and noise. Their multimodal is based 

on features extracted from WaveNet and ResNet-18 (with 512 embeddings) which are 

fused with Multimodal Compact Bilinear (MCB) pooling (Gao et al., 2016) module. This 

information is then passed to a 2-layer LSTM (with 1024 hidden neurons) to explore more 

temporal information in a supervised manner. Dropout at 0.2 and 0.5 is deployed across 

the network and batch normalization on the outputs of the audio and video networks and 

MCB modules output. 

Their dataset derives from Dov et al. (2015) which involves 11 speakers reciting an article 

consisting of 33,000 sequences (each image sized at 90x110) of which 24000 were used to 
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train and 9000 for testing. To make the model more robust, data was also infused with 

noise.  

Their results show the multimodal achieving AUC (area under the curve) of 0.97 whilst the 

video model achieved AUC of 0.94, with audio achieving AUC of 0.92. They found opting 

for smaller ResNet model provided better accuracy, as ResNet-50 and ResNet-101 caused 

a decrease in performance. They argue that the bigger models “are very deep models 

usually tasked with hundreds or even thousands of classes whereas voice activity detection 

is a binary classification” (Ariav and Cohen, 2019, 268).  However, in their comparison 

between audio, video and multimodal, the unimodal (video) uses ResNet CNN whereas the 

multimodal uses combinations of CNN and RNN. As discussed previously adding RNN for 

SAD does increase the classification accuracy.  

While Ariav and Cohen (2019) achieve reasonable accuracy, as the proposed architecture 

relies on multiple components, this can increase the prediction times.  

Furthermore, it also means that the failure of one component can affect the overall 

accuracy.  Nonetheless, due to their proposed architecture and the fact that the detection 

requires audio and video, this can be computationally expensive and not best suited for 

mobile devices or real-time application. Although Ariav and Cohen (2019) did not see any 

evidence (in terms of accuracy) over selecting different sequence lengths, it highlights that 

different sequence sizes need to be experimented with, to understand the difference for 

accuracy and prediction times. 
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3.3 – Summary 

Various approaches in recent years for the task of SAD have been considered. As one may 

note, the literature does not provide a comprehensive comparison of the 

approaches/models. For example, the difference in the application of the RNN to CNN is 

mainly based on accuracy but not in terms of computation and prediction times.  Secondly, 

the models proposed within the literature are trained on hardware-intensive resources and 

do not consider modest computational resources. Furthermore, existing literature shows 

classification based on each frame/image and do not consider the classification of 

sequences of images, which would suit the real-time application. This would also open to 

different architectures regarding temporal information. 

Lastly, as the existing SAD do not consider particular purpose, the dataset can be labelled 

differently as to when one is speaking or not. Thus, leading the network to learn speech 

and non-speech differently. 

On the other hand, the literature highlights that the task of SAD can affect the accuracy 

with a large network. Reasonable accuracy can be achieved with fewer convolutional layers 

and smaller filter sizes. Regularization techniques such as batch normalization and dropout 

are evident to be useful for a smaller network as well as reduce overfitting. The literature 

also shows the use of unidirectional LSTMs being better to decrease the latency of the 

model as well as feed each image independently.   
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4 – Visual Speech Detection 

Existing literature in section shows that SAD is regarded as a classification or captioning of 

images and shows that neural networks can automate a system in identifying speech 

activity, whilst outperforming other systems. In particular, CNNs have proven to have the 

ability to be able to distinguish between speech and non-speech. In recent years, the 

addition of Recurrent Neural Network (RNN) can further increase the accuracy of the 

detection with its introduction of memory/history. However, the addition of RNN can also 

increase the computation resources required and affect prediction times. Nonetheless, 

existing literature highlights that detection of speech can be done using still images or 

sequences of images.    

Therefore, detection of speech is examined in the following way: 

1) Detection of speech using still images - to obtain a baseline performance and 

comparison to other models. CNNs are applied due to their powerful abilities as 

mentioned in section 2.4 – CNN and 3 – Literature Review. 

2) Detection of speech using sequence images. In this case, the detection of speech 

is examined in two ways: 

• classification of the image based on previous images (or history of images). 

• classification of the sequence i.e. classifying images in a sequence (sequence 

to sequence). 

Furthermore, for each type of classification mentioned in sequences of images, two types 

of architectures are deployed. In the first architecture, CNN and RNN are combined (CRNN) 

similar to work of Tao and Busso (2019), Sharma et al. (2019) and Wang and Wang (2019). 

The second architecture is the CNN-RNN, where embeddings from an existing CNN model 

are used together with an RNN similar to work of Donahue et al. (2017) and Ariav and 

Cohen (2019).  

Accuracy is used to differentiate and compare other models. Although there are better 

metrics available as mentioned in section 2.12 – Evaluation Metrics, accuracy requires no 

further computation to assess a model. Other metrics may provide a better measure of 

performance of the model, but the application of such a metric can be complex due to the 

nature of models (such as sequence classification). It is also a popular metric used as 

mentioned in section 3 – Literature Review. 
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Furthermore, factors such as loss (error rate), training and prediction times are also 

considered as the network/system is intended for mobile use/infotainment system.  
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4.1 – Experimental Design 

Dataset

Data Transformation

(Labelling, feature 

extraction, data preparation 

& configuration

Record 

experimental 

Result 

Evaluate

Neural Networks

(CNN,CRNN, 

Encoder-Decoder 

(sequence to 

sequence)  

Figure 4.1:Design for approaching the problem in question. 

Figure 4.1 shows the overall design for approaching the problem - identifying speech with 

facial images. Firstly, the dataset for the experiments is identified. Secondly, data 

transformation is highlighted with the configuration/pre-processing necessary. Thereafter, 

the different variations of speech detection (detecting speech with still and sequence of 

images) are explored. Lastly, these variations of speech detections are evaluated and 

compared to find the detection that provides the highest accuracy and lowest prediction 

times. 
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4.2 – Dataset 

In approaching the problem, one of the most important aspects is to identify a suitable 

dataset. As without the right data, one cannot build any form of neural network. More 

importantly, the dataset needs to be appropriate and meet a set of requirements. The 

requirements in this problem domain are: data should be in a usable format (i.e. JPEG, 

PNG), the dataset should provide images of individuals speaking and not speaking, include 

a time series (in terms of the images) of when the user starts to speak and finishes speaking.  

The data utilised in the networks is derived from the VidTIMIT dataset (Sanderson and 

Lovell, 2009), which is also the dataset used by Sharma et al. (2019). The dataset consists 

of video and audio recordings of 43 people saying short phrases. Using the VidTIMIT 

dataset, it allowed obtaining facial images, as well as images of individuals that can be 

categorised based on speech (speaking and not speaking). Additionally, the total images 

are in excess of 100,000, which provides enough data for a neural network to truly learn 

the differences between images. It also allows to test the network thoroughly and build an 

efficient system. 

VidTIMIT dataset 

The dataset consists of 43 individuals which include 19 females and 24 males. The 

individuals were tasked to speak 10 different sentences recorded over 3 sessions. There 

was a delay of 6-7 days between sessions so that different data of the same individual (such 

as different attire, hairstyle, beard etc) can be recorded. Each session started with a head 

rotation sequence whilst images were captured. After that, the individuals were asked to 

speak some sentences. Audio and video were recorded during the recitation. For each 

individual 1346 images were captured (on average) during the head rotation sequence, and 

1061 images were captured (on average) during the recitation. Thus, the total of head 

rotation images equates to 57881 images and recitation images to 45661. 
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Figure 4.2: Sample of images recorded over 3 sessions 
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Figure 4.3: Head rotation sequence 
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4.3 – Data transformation 

Data transformation is the process of converting the dataset to usable data for the neural 

networks. Data transformation occurs at three stages: image labelling, feature extraction 

and preparation of data for the neural network.  

Data Labelling 

Data labelling involves categorising the images into two categories - “speaking” and “not 

speaking”. Each image was labelled (“speaking”/ “not speaking”) manually after a review 

of the labels from two individuals.  This process is initiated with splitting the dataset at the 

ratio of 50:50 where each individual labels the 50% of the dataset. Upon completion, the 

data is swapped where the individual now reviews the labelled data from the previous 

individual.   

Each individual allocates each image (at a time) to the relevant category (“speaking” / “not 

speaking”).  To clarify as to which image is speech or non-speech, two factors are 

considered: the state of the image at the given time (Figure 4.4), and the state of the 

current image based on previous images (Figure 4.5). Upon any disagreement in the label 

of the image, the individuals reconsider and discuss the label based on the two factors 

mentioned. Additionally, the individuals place the image on the timeline based on the audio 

file provided from the relevant dataset.   

 

 

 

Figure 4.4: factor 1 – labelling image based on current image 

Figure 4.5: factor 2 - labelling image based on previous images 
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Feature Extraction 

    

Image from Dataset 

    

 Applying Haar Cascade 

    

Applying Heuristics 

    

 Applying Brightness + contrast 

Figure 4.6: Transforming images from dataset to usable data for the network 

Feature extraction involves altering the labelled images so that only mouth-region images 

are obtained. The dataset mentioned includes full-face images, together with background 

and clothing which can add noise as noted in Figure 4.6. 

As the problem domain is based on detecting speech via facial images, only the mouth 

region of the images is necessary. Information regarding the background, clothing, and 

facial features (i.e. hair), is unnecessary and can potentially add noise to the network 

making it more difficult in distinguishing between speech and non-speech. As a result, 

within the process of feature extraction, unnecessary information regarding clothing and 

background etc is eliminated, and only relevant features from images are kept (mainly the 

mouth-region area). 

Haar cascades were used to obtain facial images and using heuristics the mouth-region of 

the image is obtained.  The frontal face Haar cascade by Lienhart and Maydt (2002) is used, 
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as it provides a mechanism in which images can be passed and only those images that have 

a face visible are kept. If the face is not clearly visible, then the image is discarded (e.g. 

images obtained within the head sequence – see Figure 4.7 ). Of the valid images, heuristics 

were applied (as noted in Figure 4.6). 

   

Figure 4.7: discarded images during face detection 

Figure 4.8 highlights the calculation in which the mouth-region is extracted from the facial 

image, where 𝑥 and 𝑦 represent the axes of the image. The 𝑤 and ℎ represent the width 

and height of the image and 𝑒𝑥 and 𝑒𝑦 are the starting points of the mouth-region as noted 

in Figure 4.9. 

𝑓𝑜𝑟⁡(𝑥, 𝑦, 𝑤, ℎ)⁡𝑖𝑛⁡𝑓𝑎𝑐𝑒𝑠: 

⁡⁡⁡𝑒𝑤 = (
𝑤

4
) 

⁡⁡⁡𝑒ℎ =
ℎ

3
 

⁡⁡⁡𝑒𝑥 = 𝑥 + 𝑒𝑤 

⁡⁡⁡𝑒𝑦 = 𝑦 + (𝑒ℎ ∗ 2) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑀𝑜𝑢𝑡ℎ_𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑒𝑦: 𝑒𝑦 + 𝑒ℎ, 𝑒𝑥: 𝑒𝑥 + (𝑒𝑤 ∗ 2) 

Figure 4.8: pseudo code of obtaining a mouth image assuming the same face proportion for all 

images 

 

 

 

Figure 4.9: mouth-region extraction based on pseudo-code in Figure 4.8 
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Arguably, a mouth Haar Cascade (Castrillón et al., 2007) could be deployed to retrieve the 

mouth-region as opposed to the application of face Haar cascade and heuristics. However, 

Manoharan and Chandrakala (2015) found that mouth Haar cascade fails in detecting 

mouth-region images if there is any rotation of the face. Therefore, as the dataset involves 

head rotation, the mouth Haar cascade could ignore these images (see Figure 4.10) which 

can be useful to train the network on “no speaking”/non-speech element.  

   

Figure 4.10: Images where the face may be visible but mouth may not be clearly visible. 

As noted in Figure 4.6, images can be inconsistent after the application of Haar Cascades. 

Due to lighting conditions, facial/race colour, or facial aspects such as beards etc, some 

images can appear to be brighter or darker than others. These inconsistencies can cause 

fatal issues in a neural network. As the images are greyscale images, the brightness and 

contrast of the image are enhanced. Through using the median of the image, brightness 

and contrast levels are increased or decreased to ensure all images appear consistent.  

Applying the algorithm in Figure 4.11 allows controlling the pixels of all images, thus 

allowing to maintain same/similar average pixels between all images in the dataset. 

Furthermore, the contrast is altered to enhance the images so images appear more clear 

and vivid (as noted in Figure 4.6).  

Figure 4.11 utilises the built-in libraries by Clark and Contributors (2016) to obtain a median 

for the image. If the image is dark i.e. less than 170, 170 is divided by the median to provide 

a small positive number that is applied to increase the brightness through a library by  Clark 

and Contributors (2020). This allows increasing the brightness of the darker images. If the 

image median falls between 171 and 180 the factor is set to 1 – which means that no 

brightness is added. If the median is greater than 181, the median is divided by 181 to 

provide a small negative number to enhance/darken the image through a library by Clark 

and Contributors (2020). This allows to darken a fairly bright image. In all cases the image 

is enhanced with contrast by a factor 2, allowing the colours to appear more vivid. This is 

particularly useful if the image is greyed out due to brightness adjustment. This process 
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allows to provide images that have the same brightness and contrast so all images appear 

consistent.    

𝑖𝑛𝑡⁡𝐼𝑚𝑎𝑔𝑒_𝑀𝑒𝑑𝑖𝑎𝑛 = 𝐼𝑚𝑎𝑔𝑒.𝑚𝑒𝑑𝑖𝑎𝑛(⁡) * 

𝑖𝑓⁡𝐼𝑚𝑎𝑔𝑒_𝑀𝑒𝑑𝑖𝑎𝑛 ≤ 170: 

⁡⁡⁡⁡𝑓𝑎𝑐𝑡𝑜𝑟 =
170

𝐼𝑚𝑎𝑔𝑒_𝑀𝑒𝑑𝑖𝑎𝑛
 

𝑖𝑓⁡𝐼𝑚𝑎𝑔𝑒_𝑀𝑒𝑑𝑖𝑎𝑛 ≥ 171⁡𝑎𝑛𝑑 ≤ 180: 

⁡⁡⁡⁡𝑓𝑎𝑐𝑡𝑜𝑟 = 1 

𝑖𝑓⁡𝐼𝑚𝑎𝑔𝑒_𝑀𝑒𝑑𝑖𝑎𝑛 ≥ 181: 

⁡⁡⁡⁡𝑓𝑎𝑐𝑡𝑜𝑟 =
181

𝐼𝑚𝑎𝑔𝑒_𝑀𝑒𝑑𝑖𝑎𝑛
 

𝐸𝑛ℎ𝑎𝑛𝑐𝑒⁡𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠(𝑓𝑎𝑐𝑡𝑜𝑟) ∗∗ 

𝐸𝑛ℎ𝑎𝑛𝑐𝑒⁡𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑠𝑡(2) ∗∗ 

* (Clark and Contributors, 2016) 

** (Clark and Contributors, 2020) 

Figure 4.11: pseudo-code for increasing/decreasing brightness/pixels of an image 

- allowing to keep images consistent. 

In comparison to the pre-processing techniques (extraction of ROI) used by authors in 

chapter 3 – Literature Review, Sharma et al. (2019) and Tao and Busso (2019) used 

detectors  “YOLO” and “IntraFace” respectively. Cornu and Milner (2015) and Wang and 

Wang (2019) obtained facial landmarks and extracted ROI images based on the calculations 

from the landmark data. Lastly, Ariav and Cohen (2019) only recorded mouth-region data 

when collecting their dataset. The pre-processing conducted in this thesis is similar to the 

work of Cornu and Milner (2015) and Wang and Wang (2019), where extraction of ROI is 

calculated based on the facial landmarks. This method was selected as it provided quicker 

extraction of ROI and proved to be less complex, which leads to less computational 

resources required. Furthermore, the methods used by Sharma et al. (2019) and Tao and 

Busso (2019) have stated to be complex and require consideration and work in the validity 

and speed of extraction.  
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Data Preparation and Configuration 

Data

Train

(70%)

Validation

(15%)

Test

(15%)

 

Figure 4.12: Allocation of the datasets 

In this stage, the usable data is prepared for the neural networks, which involves creating 

different datasets: train, validation and test.  For all neural networks, the data is split in the 

ratio of 70:15:15 for train, validation and test respectively. The data is chosen randomly.  

As noted in Figure 4.12, the train and validation datasets are utilised during training, whilst 

test dataset is used to evaluate. The test set is the data that would be unseen during 

training phases of any experiment.  

Some configurations for parameters are set as default, such as Adam as the optimiser which 

is used by various authors mentioned in section 3 – Literature Review. For similar reasons, 

ReLU and softmax are the activation functions used. Where applicable default values are 

used (as suggested within the Keras documentation) such as the learning rate for the 

optimiser (Keras, 2020c). All networks are run for 25 epochs which are then evaluated. As 

this thesis examines different architectures and networks, further configuration/ 

preparation can be found in the relevant section.  

The accuracy set for the initial model is 90% at which case the model is adjusted depending 

on the accuracy and performance.  Once the model achieves adequate results and provides 

reasonable performance, it is then used to compare against other models for different 

networks. The best model within the problem domain is selected based on accuracy, error 

rate (loss) and history of performance.   

For each experiment, the model that achieves the highest accuracy is cross-validated where 

𝑘 = 3. The train and test data sets are randomised in each round, with data deriving from 

train and test datasets. Whilst the validation set is used to evaluate the model. This method 

allows for obtaining robust/consistent results.  
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5 – CNN for Still Images  

Existing work shows CNNs have been used for various researches and fields where authors 

have boasted great results for recognition. As a result, the detection of speech with still 

images is first experimented on for two reasons. Firstly, due to its popularity for image 

classification and secondly, to obtain baseline performance and compare other models in 

this thesis.  

5.1 – Pre-Processing and Configuration for CNN 

Data

85,204 Images

Train

(70%)

Nospeaking : 35,710 Images

Speaking: 23,932 Images

Total: 59,642 Images

Validation

(15%)

Nospeaking: 7,651 Images

Speaking: 5,130 Images

Total: 12781 Images

Test

(15%)

Nospeaking: 7,606 Images

Speaking:5,175 Images

Total: 12781 Images
 

Figure 5.1: Data utilised in CNN networks 

Preparing data for CNN models involved creating datasets (see Figure 5.1) manually-albeit 

via computation. The data distributed is selected randomly and is ensured to not be 

overlapping/repeating. Adapting the above process allows better control over images that 

are utilised in the network, as well as provides an easier and more accessible way of 

backtracking during errors/debugging (e.g. tracking invalid data such as mislabelled 

images).  

Image data generator (Keras, 2020a) is utilised for generating images for the neural 

network. The image data generator allows a simple and computationally inexpensive way 

to generate images for the network. As images can be generated for each epoch rather 

than pre-processing all images within the dataset, which can be computationally expensive. 

Furthermore, the image data generator allows to perform any data augmentation if 

necessary and control how images are being read in a neural network.  

In order to utilise the image data generator, it is required for data to be split based on the 

classes. Thus, after images were selected for each dataset, they were then categorised 

based on their class names.    
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5.2 – VGG-Like Model 

As mentioned in section 2.4 – CNN and 3 – Literature Review, VGG is one of the popular 

CNN models that has achieved top performances but also changed the way architectures 

are designed for the networks. Due to its simplicity, the architecture is adapted for the 

problem in question. However, as there are various versions of VGG (VGG-16, VGG-19) 

which carry a substantial number of layers and parameters, the architecture requires not 

only time but powerful machines that can compute such a model.  

From their publication, Simonyan and Zisserman (2015) introduced using smaller 3x3 filters 

for CNN models and utilising more Convolutional Layers in a convolutional block. In the 

paper, the authors compared the different depths and sizes of the VGG model. Figure 8.2 

(in the Appendix section) shows different architectures of VGG with their parameters. As 

noted, even the smallest VGG model (VGG-11) has over 100 million parameters. As a result, 

the architecture was adapted by reducing the layers (as noted in Figure 5.2) to allow the 

architecture to be computed with the resources available.  
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Figure 5.2: VGG-11 vs VGG-Like model deployed. 
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Initial Architecture 

As noted in Figure 5.2, the last convolution block of 512 was removed. Furthermore, the 

number of hidden units in FC layers are also altered as a large number of hidden units 

require more computational resources (i.e. memory). However, the value of the hidden 

units is only set by experimenting with a different number of hidden units.  
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Figure 5.3: The VGG-9 model deployed. 

Initial Results 

Table 5.1: Comparison of the VGG-9 architecture with a different number of hidden units in 

the FC layer. 

Number of hidden units Validation (Loss, Acc) Test (Loss, Acc) 

FC 256 0.1282, 0.9644 0.1409, 0.9639 

FC 512 0.1208, 0.9651 0.1239,0.9615 

FC 1024 0.1244,0.9684 0.1217, 0.9687 

 

Table 5.1 shows the VGG-9 model’s performance in the problem domain, with a different 

number of hidden units in the FC layers. The model achieved the best accuracy of 96% with 

the loss of 0.12. As one may note, 1024 hidden units in the FC layer provided the optimal 

result, although there is only a marginal difference on the metrics (accuracy and loss) 

between a different number of hidden units.  

The graphs in Figure 5.4 also indicate that the model can be improved based on validation 

loss. As one may note, there is overfitting (albeit marginally) as the performance of 

validation loss (“v loss”) is not in line with the training loss (“t loss”).  
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FC 512 

 

FC 1024 

Figure 5.4: comparison of the performance of VGG-9 architecture between 512 and 1024 hidden 
units in the FC layer 
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5.3 – Further VGG-Like Experiments 

With the initial experiments highlighting that the model can be improved, further 

experiments are conducted. Improvement of the network is done by adding batch 

normalization and altering the value and presence of dropout. As mentioned in sections 

2.7 – Batch Normalization and 3 – Literature Review, batch normalization has been proven 

to not only aid the network in learning but also improve the overall performance of the 

network. As a result, batch normalization is added particularly before the activation 

function as recommend in the paper by Ioffe and Szegedy (2015).  

Similarly, dropout is known to reduce overfitting as mentioned in section 2.8 – Dropout. 

Furthermore, as mentioned in the paper, Srivastava et al. (2014) suggest dropout can be 

used in various layers such as the input layers. Application of this is shown in the work of 

Cornu and Milner (2015) and Ariav and Cohen (2019) who used dropout of 0.2 in 

convolutional layers and 0.5 in FC layers.  

Furthermore, Ariav and Cohen (2019) particularly, used a combination of batch 

normalization and dropout, Ioffe and Szegedy (2015) mention use of batch normalization 

reduces the value of dropout or in some cases eliminates the need of dropout.  

With this information, further experiments are conducted. To keep the experiments fair 

and comparable, the same parameters are shared across all networks. These parameters 

include Adam as the optimizer, ReLU as the activation, 1024 hidden neurons in FC layers, 

same padding for convolutional layers, max pooling of 2x2 and batch size of 64.  

Enlarging this architecture (VGG-9) in any shape albeit by adding batch normalization 

affects the resources required. That is due to the computational resources required for the 

convolutional operation and adding the batch normalization means more computational 

resources are required; as the network is reparametrized with each mini-batch. As a result, 

the stride of the first convolution is changed (stride=2) to facilitate the memory required 

for the batch normalization operation.  

The Presence and Alteration of Dropout 

Firstly, dropout is explored based on the work of Cornu and Milner (2015), who utilised 

dropout with a rate of 0.2 in convolutional layers and 0.5 in FC layers. Ariav and Cohen 

(2019) also follow the same principle of utilising dropout at 0.2 and 0.5. To get a better 

understanding and to compare the performance of dropout, the network is infused with 



60 
 

dropout at 0.2 (as suggested by Srivastava et al., (2014) in all layers and 0.2 in convolutional 

layers and 0.5 in FC layers. 

Table 5.2: Comparison of two networks with different dropout rates. Left: dropout at 0.2 in all 
layers. Right: Dropout at 0.2 in convolutional layers and 0.5 in FC layers. 

Experiment name VGG-9 – 20% dropout VGG-9 – 20% and 50% dropout 

Architecture CONV (64, stride = 2)>RELU>Max-Pool  

CONV (128)>ReLU>Max-Pool 

CONV (256)>ReLU>CONV (256)>ReLU>Max Pool  

CONV (512)>>ReLU>CONV (512)>ReLU>Max Pool 

FC (1024)>ReLU 

FC (1024)>ReLU 

FC (2)>SOFTMAX 

Dropout Dropout of 0.2 in all layers Dropout 0.2 in CONV, 0.5 in FC layers. 

Test (loss, Acc) 0.0968, 0.9641 0.1028, 0.9603 

 

Table 5.2 shows the results in the comparison between different dropout rates. The results 

show that network with a dropout of 20% provides a marginally better accuracy (96.41%) 

than that with a dropout of 20% in convolution with 50% in FC layers (96.03%). In 

comparison with the initial architecture, the addition of dropout improves the error rate 

(loss) of the network with a slight impact on accuracy.  

The Addition of Batch Normalization  

In this experiment, batch normalization is explored. As mentioned previously, batch 

normalization has proven to aid in performance regarding the speed of learning (training 

time) and classification accuracy. Ioffe and Szegedy (2015) suggest that the use of batch 

normalization can improve the network alone. Thus, use of batch normalization eliminates 

the presence or the amount of dropout applied. Contrary to Ioffe and Szegedy (2015) 

suggestion, the application of batch normalization and dropout can help in improving a 

network. Ariav and Cohen (2019) utilised batch normalization and dropout (at 0.2 and 0.5) 

which they suggest helped their network. As a result, in this experiment, the application of 

batch normalization and batch normalization with dropout is compared. These 

comparisons will help to understand the effect of applying batch normalization as well as 

whether applying batch normalization and dropout is useful for a network. Batch 
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normalization is added after each convolutional and fully connected layer but before 

activation, as recommended by Ioffe and Szegedy (2015). A dropout rate of 0.2 is utilised 

in each layer based on the performance from the previous experiment. Same architecture 

(VGG-9) is utilised as mentioned previously.  

Table 5.3: Comparison between the application of batch normalization and batch normalization 
with dropout at 20% 

Network name VGG-9 – BN VGG-9 – BN + Dropout 

Technique BN BN, Dropout 0.2 in CONV, 0.5 in FC layers 

Test (Loss, Acc) 0.1607, 0.9591 0.0967, 0.9708 

 

Table 5.3 shows the results in the application of batch normalization and batch 

normalization with dropout. The results show batch normalization improving the speed of 

learning but had no positive impact on accuracy. The initial architecture (VGG-9) achieved 

96.87% accuracy while applying batch normalization the accuracy obtained is 95.91%. On 

the other hand, the combination of batch normalization and dropout is evident to improve 

the training times and accuracy of the network. The results show that this combination 

provided 97.08% accuracy and 0.097 error rate which is a marginal improvement from the 

initial architecture.  

Smaller is better 

Table 5.4: Comparison of 3 significant smaller networks 

 

Ariav and Cohen (2019) found that with lesser classes and depending on the dataset, 

smaller models can obtain better or similar accuracies than larger models. Furthermore, as 

noted in chapter 3 – Literature Review, various authors utilised a smaller network with 2 or 

3 convolutional layers for SAD which could also improve training and prediction times. As 

a result, in this experiment, smaller networks are explored to find out whether they can 

Experiment Name VGG-7 – BN + Dropout 7 Layer CNN 5 Layer CNN 

CONV Layers 4 5 3 

CONV filter size 64,128,256,512 32,64,128,256,512 32,64,128, 

FC size 1024, 1024 1024 1024 

Technique BN + Dropout  Dropout  Dropout 

Test (Loss, Acc) 0.1312, 0.9581 0.0998, 0.9654 0.075, 0.9721 
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improve the accuracy previously obtained (97.08%). Table 5.4 simplifies the various 

number of experiments conducted and highlights three networks that provided significant 

results.  The changes to the networks are conducted based on experimental results with 

parameters chosen based on these results and published work (literature review). The 

number of filters is kept the same (3x3 filters) with incremental number filters (i.e. 32, 64, 

128) as popularly used within literature and to keep the experiments comparable.   

Based on the comment by Ariav and Cohen (2019), VGG-7 (architecture on left) in Table 5.4 

derives from the initial model (VGG-9) explored previously. In the attempt of going smaller, 

the VGG-9 model was altered by removing the extra convolution layers. With this change, 

the model was overfitting with dropout at 20%. As a result, the dropout was altered to 0.25 

and 0.5 based on experimental results and the popular use found in chapter 3 – Literature 

Review. This architecture (VGG-7 in Table 5.4) showed an accuracy of 95.81% with error 

rate if 0.1312. However, the network was still overfitting albeit marginally.  

In chapter 2 – Background and 3 – Literature Review, it is highlighted that various authors 

utilised smaller filter sizes within SAD and similar problem scenario (i.e. few classes, dataset 

etc.). As a result, the filter sizes within the convolution operation were altered as shown in 

Table 5.4. Comparisons on the effect of batch normalization are also conducted based on 

the overfitting and variation in the validation accuracy (as opposed to validation accuracy 

being in line with training accuracy). This will validate as to whether batch normalization 

causes this variation in validation accuracy. The result of this alteration in the network 

impacted positively – albeit marginally. The 7-layer CNN (architecture on the middle) in 

Table 5.4 achieved the accuracy of 96.54% with 0.0998 error rate. This validated the claim 

that batch normalization could have been causing the variation in the performance of the 

validation accuracy. Furthermore, the changes to the filter size also improved the accuracy 

from 95.81% with an error rate of 0.1312 to 96.54% with 0.0998 error rate.  

The 5-layered CNN in Table 5.4 (architecture on the right) derives from the review in section 

in 3.1 – Closely Related Research Works. The review highlighted that for an online system, 

a CNN with 3 convolutional layers or less is adequate to provide reasonable accuracy and 

prediction times – best suited for online systems. As a result, CNN with 3 convolutional 

layers is explored. Based on the results thus far and the review, smaller filter sizes are used 

(as shown in Table 5.4). Within smaller CNNs, various authors (in chapter 2 – Background 

and 3 – Literature Review) have utilised dropout rates of 0.2/0.25 in convolutional layers 
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and 0.5 in FC layers. Based on this, a dropout rate of 0.25 and 0.5 is utilised.  The 5-layered 

CNN (the architecture on the right) provided the highest accuracy so far. The addition of 

dropout at 0.25 in convolutional layers and 0.5 in FC layers had a positive effect with the 

network classifying at 97.21% accuracy with 0.075 error rate.   
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5.4 – Discussion 

Table 5.5: Comparison of the two highest accuracy achieving architectures. 

Values for train and prediction times are average. 

 

In the previous section various architectures deriving from chapter 2 – Background and 

chapter 3 – Literature Review, were explored. As noted, numerous architectures and 

combinations are experimented including a different number of layers, sizes and 

techniques such as batch normalization and dropout.  Table 5.5 shows two architectures 

provided the highest accuracy within CNNs. The 9-layered CNN (VGG-9) with batch 

normalization and a dropout rate of 0.2 provided the second-highest accuracy. The 

architecture achieved an accuracy of 97.08% with a loss of 0.0967 (as noted in Table 5.5). 

The average training time was 163.16s(per epoch) with an average prediction time of 

9.69ms. With the addition of batch normalization and dropout, there is a slight increase in 

accuracy from the initial model mentioned in Table 5.1. However, there is a better decrease 

in loss which was at 0.1217 from the initial architecture in Table 5.1 which is now at 0.0967. 

Figure 5.5 compares the performance between the two architectures. As noted for the 9-

layered CNN in Figure 5.5, the network is marginally overfitting as the validation accuracy 

and loss are not in line with the training accuracy and loss.  

Experiment Name VGG-9 – BN + Dropout (0.2) 5 Layer CNN – Dropout (0.25, 0.5) 

CONV Layers 9 3 

CONV filter size 64,128,256, 256, ,512, 512 32,64,128 

FC size 1024, 1024 1024 

Technique BN + Dropout (0.2) Dropout (0.25, 0.5) 

Total Parameters 10,286,082 Total Parameters: 18,970,114 

Test (Loss, Acc) 0.0967, 0.9708 0.075, 0.9721 

Train Times  163.16s 155.92s  

Prediction Time 9.69ms 5.865ms 
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9 Layered CNN 

 

5 Layered CNN 

Figure 5.5: Comparison of the performance between the two architectures in Table 5.5. 

Ultimately, a smaller 5 layered network with 3 convolutions (architecture on the right in 

Table 5.5) achieved the highest accuracy of 97.21% with a loss of 0.075.  Furthermore, the 

performance of the validation accuracy and loss was smoother and in line with the training 

accuracy and loss as noted in Figure 5.5. This architecture achieved 5.865ms for prediction 

time and thus outperforms the previous model (architecture on the left in Table 5.5) in all 

aspects such as accuracy, loss and training and prediction times.  

In this section, CNNs were considered for the task of SAD. Two types of architectures were 

initially experimented with. One deriving from the VGG architecture and the other from 

the existing literature which highlights the use of a smaller number of convolutional layers. 

However, as mentioned previously, the smaller architecture still followed the architecture 

of VGG, in the sense it used 3x3 filters and incremental kernel sizes of 32, 64 and 128, with 

a dropout of 0.25 and 0.5. This architecture was found to produce the highest accuracy of 

97.21% with almost half of the prediction time compared to the VGG-like model (VGG-9).  

Therefore, this model/architecture is selected for detection of speech with still images and 

used as a comparison for further experiments in this thesis.   

With the computational resources available only a selected set of configurations/models 

are experimented. This includes experiments being conducted in an offline setting. Online 

experimentation would provide a better assessment of these models. Furthermore, the 

models experimented had to be altered to facilitate the memory required such as changing 

the stride of the convolutional layer. This could potentially impact the accuracy of the 

network. However, the accuracy achieved with CNN (97.21% accuracy) is similar to those 

mentioned in 3 – Literature Review (CNN-based accuracy).  One of the limitations of CNN 

is memory. CNN analyse each image and do not store the data which can be useful for 

future operations. This is why Cornu and Milner (2015) suggest exploring temporal 
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information which can further improve the accuracy of the CNN. Furthermore, with the 

addition of memory, the network can be designed smaller and require less computational 

resources. This would suit an online/mobile implementation for quicker training and 

prediction times. The impact of exploring temporal information with CNN is evident in the 

work of Sharma et al. (2019). Furthermore, Sharma et al. (2019) suggest that such 

architecture is evident to outperform other methods.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

6 – CNN for Image History and Sequence 

In the previous chapter, identification of speech via still images was discussed. That is, 

considering an image at a given time if the image belongs to the category of speech/non-

speech. In this chapter, detection of speech is identified based on sequences of images. 

Much like Figure 4.5, speech is identified based on history/time-lapse of previous images. 

This chapter aims to find the effect of adding history/sequence of images on the detection 

of speech and compare its performance to the previous detection. 

However, in this section sequences of images are utilised in two ways: - 

• classification of the image based on previous images (or history of images).  

• classification of the sequence i.e. classifying images in a sequence (sequence to 

sequence). 

As explored previously, RNN is a type of network that allows a series of inputs and provides 

the ability to learn from the past. Moreover, existing work (in section 2.9 – RNN and 3 – 

Literature Review) shows various authors utilising RNNs in different ways. Particularly with 

images in mind, several authors have used a combination of CNNs and RNNs. The CNNs, in 

this case, are often used to learn information regarding the image whilst the RNNs are 

utilised to learn sequential data and spatial dependencies. However, within this method, 

there are various approaches in which this method can be implemented.  

Soh (2016), Wang et al. (2016) and Ariav and Cohen (2019) implemented a network with 

two subsystems including CNN and RNN. Existing models such as VGG or Xception are used 

to obtain image representations (embeddings) which are then concatenated/formatted to 

smaller vectors. These vectors are then passed to LSTMS which are designed and attached 

to learn sequential information. Commonly, these types of models are categorized as CNN-

RNN. 

Images
Existing CNN 

Model
Image 

Embeddings
Recurrent 
Layer(s)

FC layer(s)
 

Figure 6.1: CNN-RNN - using existing CNN model. 

On the other hand, Choi et al. (2017), Shi et al. (2017), Han and Kamdar (2018) and Sharma 

et al. (2019) implemented a network which combines a smaller CNN and RNN to form a 

unified model. In this case, the design of CNN may follow the architecture of an existing 
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model (such as VGG). LSTM’s are then attached to learn sequential information passed 

from the convolutional layers. This type of model is known as CRNN. 
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Figure 6.2: A CRNN model. 

For the architectures mentioned above, the authors have claimed publishable results and 

concluded the performance to be superior to CNN models. However, regarding the 

Recurrent Layer(s) in the above models, one may find two popular ways in which authors 

have utilised the RNN. 

Lim et al. (2016), Choi et al. (2017), Shi et al., 2017, Tao and Busso (2019) and Sharma et al. 

(2019) attached multiple recurrent layers to a CNN (CRNN) to encode the individual 

information to a sequence, thus, allowing for classification of the image based on the 

history of the image. This architecture in this thesis is referred to as encoder.  

For captioning images (sequence to sequence), Vinyals et al. (2015), Venugopalan et al. 

(2015), Soh (2016) and Donahue et al. (2017) used a separate set of recurrent layers in 

which the first set of recurrent layer(s) act as an encoder, whilst the latter set of Recurrent 

Layer(s) pose as a decoder. As previously mentioned, this architecture is referred to as 

encoder-decoder.  

As a result, this thesis considers the use of CRNN for classification of the image based on 

previous images. For sequence classification (sequence to sequence), the encoder-decoder 

architecture is used. However, as noted, the encoder-decoder architecture within 

captioning of images uses embeddings from an existing CNN such as VGG or Inception. 

However, Ariav and Cohen (2019) found the use of these architectures for embeddings for 

binary classification or multi-classification (with few classes) reduces accuracy as opposed 

to using embeddings from a smaller CNN, as these architectures (VGG and Inception) are 

large networks used for large datasets with 1000 classes (Ariav and Cohen, 2019). Taking 

the findings by Ariav and Cohen (2019) in consideration in this thesis the encoder and 

encoder-decoder are applied with CNN-RNN and CRNN architectures.  

As mentioned previously, accuracy is considered to denote which architecture is better as 

well as considering the prediction times. 
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6.1 – CNN-RNN  

Typically, the CNN-RNN is associated with caption generation and used with encoder-

decoder architecture. In this network, CNN is an existing model utilised to obtain 

embeddings for the image. These embeddings are then passed to a problem-specific RNN. 

Vinyals et al. (2015) and Soh (2016) utilised the Inception model to obtain embeddings and 

created similar variations to the encoder-decoder with these embeddings as input. In this 

thesis, the embeddings derive from Xception (Chollet, 2017a). Xception is a more recent 

model based on Inception but with a smaller number of parameters and better 

performance(accuracy) than its predecessors.  Opting for Xception would provide quicker 

prediction times as the Xception is one of the smallest models available (as noted in Table 

6.1). Furthermore, Xception has a higher top-1 and top-5 accuracy than various popular 

CNN models (such as Inception, VGG and ResNet). 

Table 6.1: Comparison of popular CNN models 

Model Size Top-1 Accuracy Top-5 Accuracy Parameters Depth 

Xception 88 MB 0.790 0.945 22,910,480 126 

VGG16 528 MB 0.713 0.901 138,357,544 23 

VGG19 549 MB 0.713 0.900 143,667,240 26 

ResNet101 171 MB 0.764 0.928 44,707,176 - 

ResNet152 232 MB 0.766 0.931 60,419,944 - 

ResNet50V2 98 MB 0.760 0.930 25,613,800 - 

ResNet101V2 171 MB 0.772 0.938 44,675,560 - 

ResNet152V2 232 MB 0.780 0.942 60,380,648 - 

InceptionV3 92 MB 0.779 0.937 23,851,784 159 

InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572 

DenseNet121 33 MB 0.750 0.923 8,062,504 121 

DenseNet201 80 MB 0.773 0.936 20,242,984 201 
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Figure 6.3: Overview of the CNN-RNN model. 

Figure 6.3 shows an overview of the CNN-RNN model used for detecting speech. An image 

is predicted against Xception, with the embeddings saved and utilised as input to the 

relevant RNN. Regarding the recurrent layer(s)/RNN, the model will be deployed with an 

encoder and encoder-decoder architecture detailed in the relevant sections below. 

6.2 – CRNN 
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Figure 6.4: The CRNN model. 

Choi et al. (2017), Shi et al. (2017), Tao and Busso (2019) and Sharma et al. (2019) 

implemented a smaller CNN network where the fully connected layers are replaced with 

recurrent layers. The authors employed a smaller 3 layered convolutional architecture and 

added recurrent layers to learn sequential data. The CRNN proved to be better (accuracy-

wise) than other networks including CNN (Choi et al., 2017; Shi et al., 2017; Sharma et al., 

2019).  For this thesis, the CNN derives from the CNN experiments conducted previously. 

In particular, the 5-layered VGG-Like model mentioned in Table 5.5 as it achieved the 

highest accuracy in the CNN experiments. 

Additionally, by combining the 5-Layered VGG-Like model to an RNN, it allows to obtain a 

fair comparison, as well as examine the effect of combining an RNN to a CNN. Regarding 

the RNN in Figure 6.4, the Recurrent layer(s) will be deployed with encoder and encoder-

decoder architectures.  
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6.2 – Encoder 
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Figure 6.5: Encoder in the CNN-RNN model 
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Figure 6.6: Encoder in a CRNN model 

In their work, Lim et al. (2016) utilise 3 recurrent layers for their CNN-RNN architecture and 

utilise 2 layers of recurrent layers in their CRNN model both with 1024 nodes. On the other 

hand, Han and Kamdar (2018) deployed a single recurrent layer with 256 nodes. For both 

methods, the mentioned authors have highlighted publishable results especially compared 

to other methods in their fields.  

In this thesis, a single layer of GRU is deployed with 1024 neurons. Various authors including 

Lim et al. (2016) use LSTM as the recurrent layers, but due to limitation on computational 

power, GRUs were employed as they require less computation (due to fewer parameters) 

and can achieve similar results compared to LSTMs (Jozefowicz et al., 2015). Regarding the 

nodes, 1024 nodes are often used for the recurrent layer as highlighted by work of Lim et 

al (Lim et al., 2016). Furthermore, increasing the size of the recurrent layer can have an 

impact on computational memory, which for larger models experimented at later stages, 

can cause issues regarding computational resources required. As noted in Figure 6.5 and 

Figure 6.6, the encoder is applied to the CRNN and CNN-RNN architectures.  

Within these experiments, sequence length is variable. Different sequence lengths are 

considered to obtain an understanding of the accuracy and prediction times. The 

classification for the encoder is based on the last image of the sequence as highlighted in 

Figure 6.7. 

    

Figure 6.7: Classification based on the last image of the sequence. 
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6.3 – Encoder-Decoder 
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Figure 6.8: Encoder-Decoder in CNN-RNN 
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Figure 6.9: Encoder-Decoder in a CRNN 

In this thesis, the encoder-decoder is deployed on CNN-RNN (Figure 6.8) and CRNN (Figure 

6.9). Similar to work of Vinyals et al. (2015), Venugopalan et al. (2015), and Soh (2016) the 

thesis considers using an existing CNN model for image embeddings (Figure 6.8). In this 

case, embeddings from Xception are obtained for all images. The embeddings are then 

utilised as input to the encoder-decoder model. In the second case, the model is attached 

to the CNN model from the previous section.  

For the encoder-decoder architecture, GRUs with 1024 hidden units are deployed due to 

reasons mentioned in the previous section (Encoder), but also to keep the models (Encoder 

and Encoder-Decoder) fair and comparable. In terms of the number of layers/GRUs, this is 

dependent on the length of the sequence. Similarly, the sequence length is variable - to 

understand the difference in sequence sizes. The classification in this case is for the whole 

sequence of images i.e. classifying each image in the sequence.  
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6.4 – Pre-Processing and Configuration  

CNN-RNN 

Load Image Predict 
Pre-Process 

Input
Xception 

Embedding

Save 
Embedding 

as CSV  

Figure 6.10:pre-processing images for CNN-RNN 

To reduce the computation resources required, the CNN-RNN model is executed in two 

parts. Firstly, the images from the datasets mentioned in CNN (Figure 5.1: Data utilised in 

CNN networks) are predicted against Xception and the embeddings obtained are saved 

onto a CSV file. The embeddings are then used as input for the relevant models.  

For obtaining the embeddings, each image is loaded and converted to an array to be pre-

processed for the prediction against Xception. Regarding the pre-processing for the image, 

built-in libraries were utilised. 

Once an embedding for the image is returned from the model, the value is then saved onto 

a CSV file along with its label (“speaking”/ “no speaking”). The whole process is repeated 

for all images in all datasets resulting in three CSV files (train, test and validation). The 

ordering of the embeddings is crucial and as a result, for every dataset, “no speaking” 

images were predicted first (with their sequences). Following that, “speaking” images were 

then predicted. As otherwise invalid sequences can be created with different person’s 

image at a different timestamp from a different category (“speaking”/”no speaking”).  

The same process is then repeated for labels of the embeddings. Once the data has been 

allocated to sequences, the sequences are shuffled to avoid overfitting and keep the model 

robust.  
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Figure 6.11: allocation of data for sequence creation (assuming sequence length=3) 
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Figure 6.12: Architecture for CNN-RNN with an Encoder 
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Figure 6.13: Architecture for CNN-RNN with an Encoder-Decoder 

 

Figure 6.12 and  Figure 6.13 show the architecture used for the CNN-RNN network. As it 

may be noted, CuDNNGRUs are utilised as opposed to standard GRU. That is because 

CuDNNGRUs provide a faster implementation of GRU, up to 7.2x faster than standard GRU. 

(Braun, 2018). In any case, the hidden neurons are kept the same for the experiments as 



75 
 

used for the CNN-1024. Furthermore, authors including Lim et al have deployed the same 

number of hidden units. (Lim et al., 2016). 

The batch size for CNN-RNN is kept the same as for CNNs at 64, as increasing the batch size 

any further can cause memory-related issues especially for larger sequences. For the same 

reason, sequence length for CNN-RNN is up to sequence size of 15. For both networks, 

different sequence lengths are examined to find the optimal result and understand the 

difference in performance and accuracy. Batch normalization was particularly useful for the 

encoder-decoder as suggested by Li et al. (2019) and as a result batch normalization is 

applied to the encoder-decoder models.   
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Figure 6.14: Encoder architecture for CRNN 
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Figure 6.15: Encoder-Decoder in a CRNN architecture 

 

From the data organised in Figure 5.1, the images are shaped and organised similarly to 

those mentioned in CNN-RNN. For CRNN, images from the datasets (Train, Test and 

Validation) are first read and converted to arrays before they are shaped and organised in 

sequences (Figure 6.11). Once the images are converted to arrays, the same pre-processing 

(shaping and organization of the data) takes place as mentioned for CNN-RNN.  
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As mentioned previously, the CNN model in the CRNN derives from the previous CNN 

experiment. The 5-Layered VGG-Like model from CNN in Table 5.5 is attached before the 

relevant RNN architecture (as noted in Figure 6.14 and Figure 6.15).  

In terms of the RNN, the CRNN model is deployed with the encoder and encoder-decoder 

architectures as mentioned for the CNN-RNN. In the first case, the 5-layered VGG-like 

model is attached before a CuDNN GRU with 1024 hidden units. In the other case, the 

encoder-decoder is attached on top of the CNN with the same number of hidden units. As 

mentioned for the CNN-RNN same parameters are applied. Choosing the same parameters 

for both CNN-RNN and CRNN allows the results to be fair and comparable.  

The CNN model in the above figures is wrapped in Time Distributed Layer (Keras, 2020b). 

As mentioned previously, Time Distributed Layer allows introducing a fifth dimension 

(time). Utilising Time Distributed Layer allows for each image to be used as a timestamp in 

the sequence. 

For CRNN models mentioned in Figure 6.14 and Figure 6.15, the batch size is reduced to 32 

as deploying batch size of 64 with larger sequences leads to more computational resources 

necessary. Similarly, the sequence size for the CRNN models is up to sequence size of 10. 

However, like the CNN-RNN the sequence size is variable. 
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6.5 – Results 

Table 6.2: Overview of the four neural networks experimented with varying sequence lengths, 
highlighting evaluation scores. 

 Encoder (Loss, Accuracy) Encoder-Decoder (Loss, Accuracy) 

CNN-RNN   

Sequence Length 1 0.1673,0.9465 0.1701,0.9391 

Sequence Length 3 0.1081,0.9697 0.1231,0.9557 

Sequence Length 5 0.0616,0.9810 0.0995,0.9642 

Sequence Length 10 (0.0473±0.0138), 

(0.9857±0.0033) 

(0.0985 ±0.0115), 

(0.9694 ± 0.00285) 

Sequence Length 15 (0.0545±0.0291), 

(0.9867±0.043) 

(0.0218 ± 0.0013),  

(0.9929 ± 0.00019) 

CRNN   

Sequence Length 1 0.0935,0.9639 0.1029,0.9611 

Sequence Length 3 0.0409,0.9880 0.0447,0.9846 

Sequence Length 5 (0.0302 ±0.0012), 

(0.9914 ± 0.00045) 

(0.027 ± 0.0027),  

(0.9915 ± 0.00070) 

Sequence Length 10 (0.0555 ±0.00525, 

(0.9892 ±0.00019) 

(0.014 ± 0.0017), 

(0.9961±0.00059) 

 

Table 6.2 highlights the results of the four architectures mentioned. The architectures 

mentioned include: 

1. Encoder - a single-layered RNN where the classification is based on 

previous/history of images (last image of the sequence).  

2. Encoder-decoder - a sequence-based RNN used to classify each image in the 

sequence. 

3. CNN-RNN – using an existing CNN model to obtain embeddings and input for the 

encoder/encoder-decoder architectures. 

4. CRNN - using CNN from previous experiments (5-Layered VGG-Like model) and 

attaching the encoder/encoder-decoder architectures instead of fully connected 

layers.  
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The table shows the accuracies of different networks with varying sequence lengths. All 

four architectures achieve reasonable results with a marginal difference in accuracy 

between different networks. The results show that increasing the sequence size has a 

positive impact on the accuracy of the network, as noted in Table 6.2. However, for 

sequence-based classification, results show that sequence size needs to at least 3 or more 

to outperform the CNN classification (97.21% accuracy). At larger sequences (sequences ≥ 

5) all architectures outperform the CNN. 

Nonetheless, within the problem domain and with resources available, for classification of 

image based on previous images, the CRNN architecture achieved the highest accuracy of 

99.14%. Similarly, for sequence classification (classifying each image in sequence), the 

CRNN with encoder-decoder achieved the highest accuracy of 99.61%. These results show 

that in this problem domain use of large CNN architectures for embeddings does reduce 

accuracy over using smaller CNN architectures.   

The encoder-decoder architecture does provide the highest network accuracy but requires 

an increase in history (sequence size). At lower sequence sizes, the encoder models achieve 

greater accuracy compared to the encoder-decoder models.  

 

 

 

 

 

 

 

 

 

 

 



79 
 

6.6 – Discussion 

In this section, the use of sequences of images was suggested as a means of classification. 

In particular, the classification of image based on previous images and classification of 

sequences of images (sequence to sequence). Existing work showed various approaches in 

which these classifications can be done. As a result, CRNN (Encoder) was applied to the task 

of classification of image based on previous images and encoder-decoder for the task of 

sequence classification.  

Existing work showed that use of existing CNNs to obtain embeddings can impact 

classification accuracy, as existing CNNs are primarily used for large datasets with at least 

1000 classes. As a result, the architectures (encoder and encoder-decoder) were 

implemented with CNN-RNN and CRNN to clarify if the accuracy of the network can be 

affected by the use of existing CNNs.  

One of the positives from these experiments was setting the sequence length as a variable. 

In doing so, it allowed highlighting that the increase of sequence length has a good effect 

on accuracy, as noted in Table 6.2. That is because the network has more data in memory 

(bigger history) for classification. However, in some cases increasing the sequence size can 

also lead to a decrease or no effect to the accuracy as noted in Table 6.2 (for the CRNN 

Encoder model for sequence length of 10). In their work, Zhang et al. (2017) argued that 

increasing the sequence size makes it more difficult for the right prediction of the input, 

which can be the reason for the slight decrease for CRNN Encoder models at larger 

sequence sizes.  

  

CNN-RNN Encoder-Decoder Sequence 

Length 1 

CNN-RNN Encoder-Decoder Sequence 

Length 5 

 

Figure 6.16: Comparison of the CNN-RNN encoder-decoder models at a sequence length of 1 and 5 
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In any case, increasing sequence size was proven to be less vulnerable to overfitting 

(arguably by a small margin in some cases). As the validation accuracies and loss for the 

models were more in line with training accuracies and loss (as evident in  Figure 6.16). 

Shi et al. (2017) suggested batch normalization is useful in overfitting and improving 

accuracy. As a result, batch normalization was deployed in both encoder and encoder-

decoders models. In the case of encoder-decoder, batch normalization proved to not only 

reduce overfitting but also increase accuracy. However, in the encoder model, the addition 

of batch normalization did improve the training times but did not improve the accuracy as 

evident in Figure 6.17. Similar results were also found by Laurent et al. (2016). Thus, batch 

normalization for the encoder models was disregarded as to keep the CNN-RNN and CRNN 

architectures comparable, to understand the difference in performance (accuracy, training 

and predicting times).  

  

without Batch Normalization  with Batch Normalization 

Accuracy:0.9810 Accuracy : 0.9710 

Figure 6.17: comparison of the performance in using Batch Normalization in encoder architecture 

 for CNN-RNN. 

Lim et al. (2016) and Han and Kamdar (2018) in their work deployed recurring dropout 

within the recurrent networks which they suggest helps to stabilize the network. However, 

as the models within these experiments were conducted using CuDNNGRU, adding 

recurrent dropout is not an available feature.  

Further experiments were done on different sizes of strides for convolution to make the 

network smaller which would result in quicker prediction. Change of stride has also been 

applied by Sharma et al. (2019). (Sehgal and Kehtarnavaz, 2018) compared different strides 

and found that increasing stride by more than 2, can cause a network to be unstable and a 

noticeable reduction in classification accuracy. As a result, for CRNN encoder architecture, 
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all convolutional stride was increased to 2. The performance of this network did reduce 

training times by half but also caused a reduction of 2% in overall accuracy, in comparison 

to the architecture of the CRNN encoder in Table 6.3. Consequently, this architecture was 

disregarded.  

Table 6.3: Comparison of the 4 models achieving the highest accuracy in Table 6.2. 

Experiment Name CNN-RNN Encoder – Seq Len:15 CNN-RNN Encoder-Decoder – Seq 

Len:15 

No of Parameters 9,445,378 15,751,170 

Test (loss, Acc) (0.0545±0.0291), 

(0.9867±0.043) 

(0.0218 ±0.0013), 

(0.9929 ± 0.00019) 

Average Train 

Times (per epoch) 

 

102.68s 173.24s 

Prediction Time   31.14ms 31.7ms 

Experiment Name CRNN Encoder– Seq Len:5 CRNN Encoder-Decoder – Seq 

Len:10 

No of Parameters 17,402,370 23,708,162 

Test (Loss, Acc) (0.0302 ±0.0012),  

(0.9914 ± 0.00045) 

(0.014 ± 0.0017), 

(0.9961±0.00059) 

Average Train 

Times (per epoch) 

325.72s 761s 

Prediction Time 3.7ms  5.19ms 

 

Table 6.3 provides further differences between the four architectures that achieved the 

highest accuracies with the experiments conducted. One may note, the CRNN models 

(encoder and encoder-decoder) took twice as long (or more) to train than the CNN-RNN 

models. However, in the case of CNN-RNN, the embeddings from Xception were obtained 

beforehand and were used as input through a CSV file. 

Nonetheless, the prediction times for the CNN-RNN models are around 30ms which is much 

longer than the CRNN models which take between 3-5ms to predict. The significant 

difference between the prediction times is merely down to the embeddings. For CNN-RNN, 

the model requires embeddings from Xception which a larger network with bigger kernel 
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sizes of convolution. On the contrary, the CRNN models utilise 3 layers of convolution with 

smaller kernel sizes. Thus, allowing for faster prediction.  

Similarly, the training times between the encoder-decoder models for CNN-RNN and CRNN 

are significant due to the architectures. As the Encoder models have been deployed with a 

single GRU as opposed the encoder-decoder models with multiple sets of GRUs (i.e. one 

set of GRUs for encoding and the other for decoding -depending on sequence length).  

Within this section, two widely used Convolution-Recurrent networks were experimented 

(CRNN with Encoder, and CNN-RNN Encoder-Decoder) with further two architectures 

(CRNN Encoder-Decoder and CNN-RNN Encoder). These architectures were used for the 

task of SAD. The classification was based on sequences of images which was categorised in 

two ways. 

Classifying current image based on previous images in which the CRNN encoder 

architecture was applied and classifying sequence of images in which the encoder-decoder 

architecture was deployed.  

Results (from Table 6.2 and Table 6.3) highlight that use of smaller networks over 

embeddings from existing CNN architectures, provide better accuracy. Nonetheless, for 

classification based on previous images the CRNN architecture achieves the accuracy of 

99.14% with 3.7ms per prediction. On the other hand, classification of the sequence, the 

CRNN with encoder-decoder architecture achieves the highest accuracy of 99.61% with 

5.19ms for prediction time. Both of these architectures tend to perform better than CNN 

architectures but require some history. In this problem domain, the experiments showed 

that a sequence of 3 or greater can outperform the CNN.  

Both of these architectures can be used for real-time applications due to their accuracies 

and prediction times. Where the CRNN achieves an accuracy of 99.14% with 3.7ms per 

prediction, the encoder-decoder architecture takes almost twice as long for prediction but 

provides a classification of 10 images with an accuracy of 99.61%. Therefore, choosing 

between these architectures will be dependent on the requirements and computational 

resources of the real-time application. 
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6.7 – Comparisons to the State of the Art 

The work presented in this thesis showed accuracies of 97.21% for CNN applied to the 

classification of still images, 99.14% for CRNN applied to classification based on previous 

images and 99.61% for CRNN with encoder-decoder architecture applied to the 

classification of a sequence of images (i.e. classifying all images in sequence).  

Within the same dataset (VidTIMIT) Sharma et al. (2019) achieved accuracy 73% at 

classifying each frame/image with a sequence size of 21. However, the VidTIMIT dataset 

used by Sharma et al. (2019) was utilised as test dataset whilst the network was trained on 

other datasets. Within the work of Sharma et al. (2019), their CRNN architecture achieved 

the highest accuracy of 96.5% for the speaker-dependent scenario with GRID dataset. The 

work presented in this thesis achieves a higher accuracy (99.61% vs 96.5%) than of Sharma 

et al. (2019), arguably, with a different dataset and sequence size but within the same 

speaker-dependent scenario. Sharma et al. (2019) primarily focus on the speaker-

independent scenario which their accuracy (92.2%) proves to be a significant improvement 

compared to similar/previous works.    

Sharma et al. (2019) extended the work of Cornu and Milner (2015) who utilised a 3-layered 

CNN and applied it to the GRID dataset in a speaker-dependent and independent scenarios. 

Cornu and Milner (2015) achieved 97.66% accuracy for speaker-dependent scenario and 

74.58% in the speaker-independent scenario at classifying a single frame/image. Within a 

similar setting, the work presented in thesis achieved 97.21% for the CNN at classifying a 

single image and 99.14% for CRNN at classifying image based on previous images. Arguably, 

the work presented in the thesis used VidTIMIT dataset in comparison to GRID used by 

Cornu and Milner (2015). 

Wang and Wang (2019) introduced landmark pooling with a single layer of CNN followed 

by landmark pooling and GRU. This architecture was applied to a personally collected 

dataset. The network takes in 40 frames/images and classifies each frame in the sequence. 

The highest accuracy obtained by Wang and Wang (2019) is 79.99% with a network that 

utilised landmark pooling. In comparison to the work in thesis, the CRNN with encoder-

decoder architecture achieves 99.61% accuracy at classifying each frame with sequence 

size of 10 and uses ROI images as input instead of full-face images used by Wang and Wang 

(2019) within a different dataset.  
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Tao and Busso (2019) and Ariav and Cohen (2019) incorporated multimodalities (audio and 

video) where each modality is studied and features from each modality are extracted and 

combined for classification. Tao and Busso (2019) utilised 3-layered CNN for visual modality 

and maxout layers to extract features for audio. These features are concatenated and 

passed to LSTMs. Similarly,  Ariav and Cohen (2019) proposed ResNet-18 for video modality 

and WaveNet encoder for audio. Features from these systems are fused with MCB and 

passed to LSTMs.  Both networks classify each frame within a set sequence size (Tao and 

Busso (2019) – 11 frames, Ariav and Cohen (2019) – 15 frames). Tao and Busso (2019) 

achieved the highest accuracy of 93.8% with their multimodal architecture. The video 

modality achieved 65.5% accuracy with audio modality at 92.7% accuracy. On the other 

hand, Ariav and Cohen (2019) achieved AUC of 0.97 with multimodal architecture, AUC of 

0.94 for video and AUC of 0.92  for audio. In comparison to the work in thesis, the CRNN 

encoder-decoder achieved 99.61% accuracy at classifying each video frame with sequence 

size of 10 (within a different dataset).  

In terms of prediction times, the comparisons made within the thesis were made to 

compare the different architectures and impact of certain features such as different 

classifications (classification of a single image, based on previous images and sequence of 

images). However, such comparisons are not made to the state of art. This is because the 

resources needed to compute are limited and less powerful than those used by state of the 

art (especially those mentioned in chapter 3 – Literature Review). Furthermore, as the 

performance of such models (in terms of time) is based on the hardware used, often there 

is little mention of such metric.  

From chapter 3 – Literature Review, Sharma et al. (2019) suggest 200-300ms for 7-10 

frames (20-42.9ms per frame) for the models to detect silence between words. On the 

other hand, Wang and Wang (2019) found their model predicting at 198 fps with Nvidia 

GTX 1080Ti GPU. In comparison, the CRNN with encoder-decoder predicts at 5.19ms with 

sequence size of 10 images (519 microseconds per image) at 99.61% accuracy. 

Alternatively, the CRNN encoder with sequence size of 5 images predicts with 3.7ms (740 

microseconds per image) at 99.14% accuracy. Arguably, these models would perform 

better (in terms of time) with more powerful hardware - similar to those used within the 

state of the art.  
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7 – Conclusion and Future Work 

This thesis highlighted the issues with infotainment systems of Android Auto and Apple 

CarPlay (i.e. activation of these systems using touch or saying the keyword each time one 

requires assistance). As a result, this thesis considered speech activity detection as a means 

of activation. The project aimed to create an artefact that can detect when someone is 

speaking or not. Existing work presented different approaches for implementing speech 

activity detection in neural networks but lacked in providing a comprehensive comparison 

of the models as well as require hardware-intensive resources. As a result, the thesis 

offered three types of classification: - using still images (CNN), use of previous images 

(CRNN) and classifying multiple images/sequences.  

Experiments showed the use of a sequence of images help classification and provide better 

accuracy than still images (CNN). Furthermore, the experiments showed CNN takes almost 

twice as long for predictions. However, these networks do require multiple images in 

history to outperform a CNN.  Moreover, depending on the problem domain, the use of 

existing popular architectures can affect not only the accuracy but prediction times of the 

network. With the proposed architectures achieving 99% accuracy, not only do they 

outperform CNN but provide quicker prediction times. A simpler RNN (encoder) may not 

achieve the best accuracy than a complex architecture (encoder-decoder) but provides 

quicker training and prediction times.  

Therefore, the work presented in this thesis follows the general notion found in the 

literature. The key to improving the performance of the network requires utilising the 

history of images. Furthermore, increasing the sequence size has a positive impact on the 

performance of the classification. Complex architectures such as Seq2Seq (encoder-

decoder) architectures provide better performance than simpler architectures (CRNN). 

However, the results suggest that the CRNN architecture is marginally outperformed but 

provides inexpensive computation requirements, quicker training and output predicting 

times. This is something that is not well documented in the literature.   

Based on these findings, this meets the aim and objectives set within the thesis, which is 

one of the main positives of the work conducted. The goals of the project were to identify 

an approach that allows detecting speech via images, experimenting various approaches in 

the literature regarding detection of speech and consequently, finding an approach that 

provides reasonable accuracy and prediction time. The result of the sequence of images 
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particularly of the CRNN with Encoder is evident to be a suitable choice for detecting speech 

based on its accuracy and prediction times which is a key positive.   

Another positive element of this project is the comparison of the various architectures and 

classifications, especially within SAD. These comparisons helped to identify the impact 

within accuracy, training and prediction times. For example, utilising existing CNN models 

for embeddings, using complex RNN architectures (Seq2Seq) which may provide the best 

accuracy but are evident to be more time consuming (training and prediction times) and 

lastly, the application and effect of Seq2Seq models for SAD. Such comparisons are not 

popularly found within the literature.  

Unquestionably, there are some limitations or aspects that can be improved within the 

project. One of the limitations is the pre-processing of the images. Arguably, by employing 

more participants for allocating the dataset (allocating image based on “speech”/ “non-

speech”) would be beneficial as it would allow this process to be more efficient and 

accurate. Alternatively, using a different dataset may be suitable especially one which has 

the images allocated beforehand based on the classes (“speech”/ “non-speech”). This 

would eliminate the process of sorting/labelling the data. 

Secondly, the extraction of the ROI of the image could be improved by the application of 

other face detectors such as YOLO as utilised by Sharma et al. (2019). Application of such 

detection may provide more accurate and valid images from the dataset. However, issues 

regarding the computation, validity and speed of the extraction of ROI may rise and require 

consideration.   

Lastly, the models/architectures have only been tested in a few cases and within one 

dataset. One of the common practises within this research area is to train and test the 

models with different datasets to ensure the validity and robustness of the model. 

Although due to the computational resources such practise was not applied, it would be 

better suited for the models to be tested against other datasets to obtain a better and 

accurate performance of the models. Furthermore, as the project is aimed towards the in-

car environment, it would be beneficial if certain actions/scenarios are considered such as 

yawning or sneezing. The different cases of speech or non-speech data used are limited as 

data is only recorded for movement of face and start and end of the speech. Other cases 

such as yawning and sneezing would be a better addition to the dataset as well as for the 

network to learn such actions, especially considering the in-car environment. Moreover, 
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due to the resources and scope of the research, the models/architectures have are only 

applied in an offline setting. Conducting the experiments in the online setting would allow 

to gain a better assessment of the model and allow to test the model in a live setting.  

Therefore, one area of future work regarding the project involves creating/improving the 

dataset and the processing of the dataset. As the dataset utilised in this project was from 

recordings conducted in an office, it would be better suited for the project if the dataset 

derives from the in-vehicle environment. This would allow obtaining data in the real 

scenarios with different lighting conditions and scenarios, where data is typically not 

recorded such as yawning or sneezing. Furthermore, it would also be beneficial for sound 

to be recorded which would aid in justifying the labelling of data and for multimodal 

classification.  Enlarging the dataset would also allow training the network based on 

subjects/individuals. Therefore, allowing the network to detect speech regardless of the 

subject’s images (speaker-independent) have been trained with the network.  

Regarding the processing of the data, recruiting more participants would be beneficial for 

allocating and labelling the data, ensuring the data is labelled correctly. This would also 

allow to process the data accurately and efficiently.  

The second area of future work involves the inclusion of audio, thus utilising both (video 

and audio) for classification. This would create a more robust system especially in changing 

environments (e.g. with good/poor illuminating conditions). Inclusion of audio would also 

aid in classification for noisy environments or in activities where non-speech can easily be 

classified as speech (such as yawn or sneeze).  

Accomplishing the work above would allow obtaining real-life data than can be utilised to 

build and test a network that can detect speech within an in-car environment. With the 

work presented in this thesis, a suitable approach has been suggested. This can be used to 

develop the network without the need for further experimentation on other 

models/architectures. After completion of building the network, such a system can be 

integrated into mobile devices (client-server or as an app) that can be used as standalone 

or integration with the likes of Android Auto. The network can also be transformed and 

developed locally (within the app) which could train the network as one uses it. Thus, 

improving the performance of detection. In the ideal scenario, images would be sent to the 

network for the detection of speech. The device would obtain a result from the network 
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(“speech”/ “non-speech”) which would then either listen for a command or carry out an 

action. The app would also allow carrying out further tests in a real environment.  

Ultimately, the project aimed to compare different approaches within SAD and identify an 

approach which provides a reasonable accuracy and prediction time. The results of the 

CRNN are evidence to suggest that this architecture may be a suitable choice for the 

development of activation of the infotainment system. This is because the architecture can 

achieve similar accuracy to a complex architecture such as Seq2Seq but is much quicker to 

train and predict and can be developed with modest hardware requirements.  Arguably, 

such architecture requires to be developed and tested within the in-car environment 

before it can be suggested for the activation of infotainment systems. However, with the 

results in this thesis, the performance of the simpler RNN architecture (CRNN with encoder) 

seems to be a promising fit.  
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Appendix 

𝐷𝑒𝑙𝑙⁡𝑋𝑃𝑆⁡15”⁡9550 

𝐶𝑃𝑈:⁡𝐼𝑛𝑡𝑒𝑙⁡𝑆𝑘𝑦𝑙𝑎𝑘𝑒⁡𝑖7 − 6700𝐻𝑄 

𝐺𝑃𝑈:⁡𝑁𝑣𝑖𝑑𝑎⁡𝐺𝑇𝑋⁡960𝑀⁡2𝐺𝐵⁡𝐷𝐷𝑅5 

𝑅𝐴𝑀: 16𝐺𝐵⁡𝐷𝐷𝑅4⁡2133⁡𝑀𝐻𝑧⁡ 

𝐻𝑎𝑟𝑑⁡𝑑𝑟𝑖𝑣𝑒:⁡512⁡𝑃𝐶𝑖𝑒⁡𝑁𝑉𝑀𝑒⁡𝑆𝑆𝐷 

Figure 8.1:Specification of the machine in which experiments were run on 
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Figure 8.2: comparison of VGG architectures.  

 


