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Abstract

We propose a theoretical model to explain the usage of time inconsis-
tent behavior as a strategy to exploit others when reputation and trust
have secondary effects on the economic outcome. We consider two agents
with time-consistent preferences exploiting common resources. Supposing
that an agent is believed to have time-inconsistent preferences with prob-
ability p, we analyze whether she uses this misinformation when she has
the opportunity to use it. Using the model originally provided by Levhari
and Mirman (Bell J Econ 11(1):322-324,1980), we determine the optimal
degree of present bias the agent would like to have while pretending to
have time-inconsistent preferences and we provide the range of present
bias parameter under which deceiving is optimal. Moreover, by allowing
the constant relative risk aversion class of utility form, we characterize
the distinction between pretending to be naive and sophisticated.

Time-inconsistent preferences Hyperbolic discounting Dynamic game
Common property resources Perfect Bayesian equilibrium

1 Introduction

The notion of time inconsistency which is characterized by a preference reversal
from a larger but later reward to an imminent one as the delays to both rewards
decrease has long been recognized by the economists and has been frequently
documented by psychologists in the delay discounting literature.! Consider this
as an example of preference reversal: a majority of people say that they would
say they prefer a $100 check that can be immediately cashed in over a $200
check that can be cashed in after 2 years. The same people do not prefer a
$100 check that can be cashed in after 6 years over a $200 check that can be
cashed in after 8 years, even though this is the same comparison with a 6-year
delay (Ainslie and Haslam 1992). The dependence of decisions on time distance
creates dynamic inconsistency, meaning that the individual’s future plan will

1 For the insights established by Adam Smith and David Hume, see Palacios - Huerta (2003)
and for a review of studies providing evidence of preference reversal, see Green and Myerson
(2004, 2010).



be inconsistent with his current optimal plan. A rational agent may restrict his
future options to compensate for these inconsistencies. While limiting his future
options, an individual can engage in social commitments as well as individual
commitments.?

Social relations based on trust and reputation can make a rational agent
conform to his original plan (Benabou and Tirole 2004; Bryan et al. 2010).
However, social relations may not always resolve the self-control problem; fur-
thermore, as Battaglini et al. (2005) demonstrated, they can even aggravate the
problem of self-regulation. Can social interaction itself be a source of dynamic
inconsistency? Can people without self-control problems actually behave as if
they had self-control problems within their social relationships? For example, a
person who fails to stick to family budget despite all promises to his/her spouse
gets rid of self-control problem once they are divorced. As another example,
a colleague who acts as if he has a severe procrastination problem is actually
simply shirking work. In this paper, we propose a theoretical model to explain
the usage of time-inconsistent behavior as a strategy to exploit others when
reputation and trust have secondary effects on the economic outcome.

Consider two agents with time-consistent preferences exploiting common re-
sources. Assume that one of them wrongly believes that the other agent has
time-inconsistent preferences. We have examined the following questions in
an analytically solvable model: Does the agent who is believed to have time-
inconsistent preferences, use this misinformation as an advantage? What is the
degree of time inconsistency she would like to pretend? How does it depend on
her own and the other agent’s impatience?

Supposing that an agent is believed to have time-inconsistent preferences
with probability p, we analyze whether she uses this misinformation when she
has the opportunity to use it. Since this is a game with observable actions, we
use perfect Bayesian equilibrium as an equilibrium notion. We characterize the
pooling equilibrium where she plays with time-inconsistent preferences irrespec-
tive of her type. This proves that if an agent has created a perception that he
might have problems with self-control, she prefers to act accordingly. Hence the
choices seen as a result of the self-control problem can actually be intentional.

We use a quasi-hyperbolic discounting structure (Phelps and Pollack 1968)
to represent the consumption-saving decisions of an agent with time-inconsistent
preferences. There are emotion-based and various cognitive mechanisms shown
as the driver of time inconsistency®. In the emotion-based mechanism, time-
inconsistent behavior has often been represented as a result of conflict between
two different decision-making systems, the current and future self, which have
narrow and wide temporal perspectives, respectively (Thaler and Shefrin 1981;

2Consider a person with a bad habit of staying up too late. Every morning, he promises to
go to bed early, but at night, he always goes to bed later than he intended. By knowing that
he breaks his promises so many times, a rational agent may pre-commit his future behavior.
For example, he can say his spouse that he feels tired and sluggish so that he should go to
bed early. If you are married, then you know that your spouse will make you go to bed early
either by kindness or by force.

3For a comprehensive review on psychological determinants of intertemporal preferences,
see Urminsky and Zauberman, 2015



Metcalfe and Mischel 1999). This idea provides the rationale for the quasi-
hyperbolic discounting function which can be decomposed into two distinct
processes: one that captures the extra weight given to immediate rewards and
another that discounts exponentially (McClure et al. 2007).

Using the analytically tractable version of dynamic fishery model originally
provided by Levhari and Mirman (1980), we determine the optimal degree of
present bias that the agent would like to have while pretending to have time-
inconsistent preferences. Next, we consider the constant relative risk aversion
(CRRA) class of utility form to characterize the distinction between pretend-
ing to be naive and sophisticated. While the sophisticates are aware of their
self-control problem, the naifs are not. By assuming that output elasticity is
one, we prove that there exists equilibrium under strategies linear in stock and
that exploitation of the resources increases when agent pretends to have time-
inconsistent preferences. We show that, the decision to pretend to have time-
inconsistent preferences and the preference between pretending to be naive and
sophisticated is sensitive to the each of these parameter values: present bias
parameter, discount rate and the degree of concavity of the utility function. We
analyze how the decision to pretend to have time-inconsistent preferences and
the preference between pretending to be naive and sophisticated depends on the
parameters of our model by providing results derived from calculations based
on our characterization of the equilibrium.

There has been extensive research, started by Strotz (1955) and accelerated
by Laibson (1994, 1997, 1998) studying the consumption-saving decisions of
an agent with time-inconsistent preferences (see also Harris and Laibson 2001;
Krusell et al. 2000 and 2002; Krusell and Smith 2003) This interest has recently
shifted to environmental models with imperfect intergenerational altruism (see
Karp, 2005; Haurie, 2005 and 2006; Di Corato, 2012).

Our paper complements the literature that studies the effects of time pref-
erence on the exploitation of common resources. The fishery model has been
used as a metaphor for any kind of renewable resource on which the property
rights are not well defined (For recent surveys on this topic, see Van Long 2011
and Jorgensen et al. 2010). Levhari and Mirman (1980) and Van Long et al.
(1999) analyze the game between time-consistent agents having different dis-
count rates. Nowak (2006), analyze this model by assuming that agents are
hyperbolic players whose preferences change over time. Haan and Hauck (2014)
consider a common pool problem and propose a solution concept for games
that are played among hyperbolic discounters that are possibly naive about
their own, or about their opponent’s future time inconsistency. We consider
the game between time-consistent and (seemingly) time-inconsistent agents and
extend the analysis to CRRA class of utility form.

The article is organized as follows. The next section introduces the model
and characterizes the equilibrium conditions of the game. In Sect. 3, we define
the perfect Bayesian equilibrium in which the agent who is believed to have
time-inconsistent preferences and use this misinformation as an advantage. Two
different versions of dynamic fishery model are introduced and the main results
of the paper are proven in Sects 4 and 5, respectively. Section 6 concludes.



2 The model

In this section, we analyze three different cases. In case 1, time-consistent
agent, let us call agent A, will play the game with an agent who has the same
preferences with him. In case 2, his opponent has time-inconsistent preferences
and she is unaware of her inconsistency problem. In case 3, his opponent has
time-inconsistent preferences and she is aware of her problem. From now on,
we will call the agent in case 2 "agent N", as a sign of her naivety and call the
agent in case 3 "agent S", as a sign of his sophistication.

Consider that the dynamics of a common property renewable resource is
governed by
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where ¢! is the consumption by player i € {1,2} at period ¢ with
¢t >0, Viand ;14 >0, V¢t > 0.

The payoff of agent A can be written as

Z 8ulcy) (1)
t=0

where u denotes the instantaneous utility function and 0 < § < 1 denotes the
discount factor.
Now consider the problem of an agent who has time-inconsistent preferences:

U =u(c)+ B Z 5tu(07)

T=t+1

Quasi hyperbolic model, which is also referred as 5 — d model, differs from the
standard exponential model when the imperfect altruism or present bias para-
meter, [, is less than one. The discount rate applied between current and the

immediate future period is 1;? 3 whereas per-period discount rate for the future

periods is %. Note that the per-period discount rate for a given time period
changes as that period approaches. For example, when ¢t = 0, the per-period
discount rate for period 1 (the discount rate applied between period 1 and 2) is
1%5 but when ¢ = 1, the per-period discount rate for period 1 is 15?‘5. Laibson
(1997) applied this model to explore the implications of time-inconsistent prefer-
ences on consumption-saving decisions. Quasi-hyperbolic discounting structure
of the model formulates the behavior of an agent who has time-inconsistent pref-
erences in a simple and highly tractable way (For a literature survey on models
of hyperbolic discounting, see Frederick et. al. 2002).

We make the following assumptions regarding the properties of the utility
and the production functions.
Assumption 1 v: Ry — R, is continuous, twice continuously differentiable,
strictly increasing, strictly concave, and u’ (0) = 4o00. f: Ry — Ry is continu-
ous, twice continuously differentiable, strictly increasing and satisfies f (0) = 0.




At each period, agents decide on their planned consumption a!, Their actual
consumption is given by the rule below:
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In a single agent optimization problem, when the utility function satisfies In-
ada condition, consumption in any period satisfies the nonnegativity constraint.
This is not held in a noncooperative game setup. There is a noncooperative
equilibrium where both agents set their planned consumption to the available
stock and all available stock get exhausted right away. Using this option, we
can define the incentive compatibility constraint. An agent can always set her
planned consumption to the available stock and end the game. We consider this
situation as an exit strategy where the agent’s utility is defined as follows:

]

IC’(w):u(g) +

u (0)

In any equilibrium, the equilibrium payoff should be greater than the payoff that
an agent can get using exit strategy. We write and solve the model in terms
of actual consumption c} as if the agent does not choose exit strategy. After
characterizing the candidates of equilibrium, we check whether they satisfy the
incentive compatibility constraint and constitute an equilibrium. When the
utility function is unbounded from below, all candidates satisfy the incentive
compatibility constraint as lim,_,o IC () = —oo. When the utility is bounded
from below, candidates of equilibrium may not constitute an equilibrium as we
show in Sect. 5.1.

The sets of feasible strategies available to the players are interdependent and
in addition, the agents’ choices in the current period affect the payoffs and their
choice sets in the future. A Markov strategy for an agent is a function that
defines consumption decision of an agent for all possible values of the stock of
the common resource. In Markov strategies, all the past influences current play
only through its effect on a state variable.

For a given strategy of the other agent satisfying ¢ (x) < x, best response
function of agent A is defined with the following problem:

VA @)= max w(d)+oVA(f (2 - o(@) - @) (2)

Using the first order condition and the envelope theorem, we get
W (d(2)) =0f (x—c(z) —d(z))u' (d(f (z —c(z) — d(z)))) 3)
(1= (f(z—c(z) —d(2))))

where d (z) € argmaxq<,—c(x) u (d) + VA (f (z — c(z) — d)).
The equilibrium condition changes according to the type of player that he
faces.



2.1 Case 1: the strategic interaction with the time-consistent
agent

Using the conditions 2 and 3, the symmetric Markovian perfect Nash equilibrium
(MPNE), gt (), and the corresponding value function Vi () are defined by the
following:

u/ (gtc (I’)) = 5f/ (:L‘ - 2gtc (LE)) u/ (gtc (.f (I - 29tc (LE))))
(1= gie (f (z = 2g1c (2))))  (4)

Vie (x) = u(g1e (2)) + 0Vie (f (2 — 291 (2))) ()

2.2 Case 2: The strategic interaction with the naive agent

The agent N, who has time-inconsistent preferences and is unaware of her in-
consistency problem, solves the problem below:

max u(c)+ BoVi. (f (x —c—d(x))) (6)

c<z—d(x)

for a given d(z) where d(x) < x represents agent A’s strategy. Since the
naive agent having time-inconsistent preferences believes that her future self
will act like the other agent who has time-consistent preferences, continuation
value function represented with V.. The conditions of MPNE, where gy ()
denotes equilibrium consumption of agent N, and g, () denotes equilibrium
consumption of agent A are defined with:

u' (g (2)) = BOf (x — gn (x) — gay (%) Vi (f (x — gn (2) — gay () (7)
and

u' (gay () = 6" (x — gn (2) — gay (@) u' (gay (f (& — gn (2) — gay (2))))
(1 =gy (f (&= gn () = gay () (8)

2.3 Case 3: The strategic interaction with the sophisti-

cated agent

The agent S, who has time-inconsistent preferences and is aware of her incon-
sistency problem, solves the problem below:

max u(c)+ B0Vs (f (x —c—d(z))) (9)

c<z—d(x)

for a given d (x) where d () < x represents agent A’s strategy. The continuation
payoff, Vs (), satisfies:

Vs (z) = u(c(x)) +0Vs (f (z — c(x) —d(2))) (10)



where ¢(z) € argmaxc<,_q(z) u(c) + B0Vs (f (x —c—d(x))).The conditions
of MPNE, where gg () denotes equilibrium consumption of agent S, and g4, ()
denotes equilibrium consumption of agent A are defined by the following:

u' (g5 (2)) = BOf' (x = gs () — gas () W (g5 (f (z = g5 (z) — 945 (2))))

[(1 - 1) gs (f (x — gs (x) — gas () + (L= 9o, (o = gﬁs (=) = 945 (@)

B
(11)

and

u' (945 (2)) = 6" (# = gs () = gas (@) v’ (945 (f (x — g5 (z) — gas (2))))
(1—gs (f (x—gs (¥) —gas (). (12)

3 Pretending to have time-inconsistent prefer-
ences

Suppose that agent 1 is believed to have time-inconsistent preferences with
probability p. We will analyze whether she uses this misinformation when she
has the opportunity to use it. It is common knowledge that agent 2 has time-
consistent preferences, so that he is the agent A in section 2.

If agent 1, who has time-consistent preferences pretend to be a sophisti-
cated agent with time-inconsistent preferences and use gs (z), agent 2’s best
reply will be gay(z). In this case, agents’ corresponding utilities denoted with
Vs (z),Vag(z) are defined as follows:

Vs (z) =u(gs () + 0Vs (f (z — gs () — gas(2)))
Vas ({B) =u (gAs (x)) +Vag (f (m —4gs (:13) — 9As (CL‘)))

Similarly, if Agent 1, who has time-consistent preferences use gy (), agent
2’s best reply will be g4, (). In this case, agents’ corresponding utilities denoted
with Vi (z),Va, (x) are defined as follows:

Vi (z) = u(gn () +0VN (f (z — gn (2) — gay (2)))
Vay (@) = u(gay (x)) +0Vay (f (z — gn (2) — gax (@)

Recall that, g:. () denotes the symmetric MPNE of the game. The value function
Vie () under symmetric equilibrium is defined as:

Vie (2) = u (gt (%)) + 6Vie (f (2 — 294 (2)))

It is common knowledge that agent 2 has time-consistent preferences. Agent
1, however, has private information about its preferences. Agent 2 believes



that player 1 has time-inconsistent preferences with probability p and time-
consistent preferences with probability (1 — p) . As a simplifying assumption, we
let the agent with time-inconsistent preferences be sophisticated. Our analysis
can easily be applied to the case where she is naive or she can choose between
pretending to be naive or sophisticated. We will show that if V4, (x) and Vg (x)
satisfy the incentive compatibility constraint and if Vs () is greater than V;. (z),
there exists a perfect Bayesian equilibrium where the agent 1 pretends to have
time-inconsistent preferences.

Let the history at period ¢ be h; = {ci,cz,mk}zzo where the c}, and 2 are
consumptions of agent 1 and agent 2 and xj, is resource stock at period k. Let
A (ht) = [0, x¢] denote agents’ feasible actions at period t+1 when the history
is hs. Agent 1 has a type 0 in a set © = {tco,tin} where tco represent time-
consistent preferences and tin represent time-inconsistent preferences. Agent 2’s
belief about agent 1’s type after the history h; is represented with p (h:). A pure
strategy s = {5116}220 for agent 1 is a map from the set of possible histories and
types into feasible actions (so that it satisfies si (hg,0) € A' (h;)) and similarly
a pure strategy ss for agent 2 is a map from the set of possible histories into
feasible actions. The next proposition defines the pooling equilibrium where the
agent 1 plays with time-inconsistent preferences irrespective of her type.

Proposition 1 Consider the Markov strategies gs (), gaq (), gee(x) and value
functions Vg (), Vag (z), Vie(x). If Vs(z) > Vie(z) and Vi (z) > IC (x) where
I €{S, Ag}, there is a perfect Bayesian equilibrium ((3'(h,0),5% (h)), (1 (h)))
such that

5t (he, 0 = tco) = 5} (hy, 0 = tin) = gs (z)
52(ht) _ gas(x) and p(hy) =p if he = {gs(wk),ci,xk};zo
t gre(@) and pu(he) =0 if by # {gs(an), o}y
Proof. By definition gs (z) € argmaxu(c) + B6Vs (f (x —c — ga,(x))) and
gas(x) € arg max u (d)+0Va, (f (x —c—gs(x))). We have to show that agent

1 does not deviate from her strategy even if she has time-consistent preferences.
This requires that:

Vs(z) > mcaxu(c) + Vi (f (. — ¢ — gag(z)))

The right-hand side of the equation defines the utility of agent 1 if she deviates
from her strategy and left-hand side of the equation defines the utility of agent
1 if she keeps using g°(z). The inequality follows from the fact that, for any
arbitrary c, we have:

u(e) +0Vie (f (x = €= gas(2))) Sule) + Vs (f (z — ¢ = gas(2))) < Vs(z)

so that
max u (€) + 0Vie (f (x — ¢ — g, (x))) < Vis(a).



Because of the assumption of the proposition, the agents do not use the exit
strategy and ((5'(h,0),5%(h)), (1 (h))) constitutes an equilibrium. m

In this equilibrium, agent 1 plays with gg(z) irrespective of her type or
history and agent 2 plays with ga.(z) as long as agent 1 play with gg(z). If
Agent 1 plays with a strategy different than gs(z), agent 2 updates his belief
and plays with gi.(x).

Here we have two properties assuring the existence of pooling equilibria:
Agent 2’s utility does not depend on agent 1’s type but on her strategy and agent
2 can not damage agent 1’s dishonesty unless he damages himself. Because of
the first property, agent 2’s prior belief does not change as long as agent 1 act
as if she had time-inconsistent preferences. By the second property, agent 2 can
not force agent 1 to play symmetric MPNE even if he is sure that agent 1 has
time-consistent preferences.*®

Next, we analyze two different versions of dynamic fishery model. The first
model let us examine the optimal degree of time inconsistency she would like
to pretend? And the second model let us make the distinction between acting
naive and sophisticated.

4 The optimal degree of time-inconsistency

This analytically tractable version of dynamic fishery model is originally pro-
vided by Levhari and Mirman (1980) and has been used broadly to analyze
common property resource games. This is the simplest setup to show that so-
cial relations could be a source of dynamic time inconsistency.

Assumption 2 u(c) =log(c); f(z) =2“ ,0<a < 1.

4Note that, even if both players know that they have time consistent preferences, we might
have a subgame perfect equilibrium where the consumption path coincides with the one defined
in Proposition 1: The agent 1 continues to play gs(z) and agent 2 continues to play gaq(z)
as long as no agent deviates from this strategy. If at least one player deviates from this
strategy, they both play h (z) = x and the resources are exhausted. For a set of payoffs to be
supportable in discounted dynamic programming, see Fudenberg and Tirole (1991).

5The pooling equilibrium that we define resembles the well-known variant of the chain-
store game in which there is a small probability p that the monopolist is "tough" and prefers
fight rather than cooperate if there is an entry to the market. In the original chain-store
game, a monopolist plays against a succession of K potential competitors. In each period
one of the potential competitors decide whether or not to compete with the monopolist. If it
decides to enter then the monopolist chooses either to cooperate or to fight. Each potential
competitor prefers to stay out rather than entering and being fought, but prefers the most
when it enters and the monopolist does not fight. If a competitor enters, the monopolist
prefers to cooperate rather than fight, but it prefers the most if there is no entry. In the
unique subgame perfect equilibrium of the game, each potential competitor chooses to enter
and the monopolists always chooses to cooperate (Selten 1978). Kreps and Wilson (1982)
shows that the regular monopolist turns the failure of correct common knowledge about its
payoff into an advantage by acting like a tough one and preserves its reputation at least until
the horizon gets close. Similarly, we show that agent 1 turns the failure of correct common
knowledge about its preferences into an advantage and acts as if he might have problems with
self-control.



Using the conditions 4, 7,8, 11,12 and by postulating an equilibrium with
strategies linear in stock, we characterize gi.(z), gs (2),944(2),gn (), ga, (T).
Since the period utility is unbounded from below, the incentive compatibility
constraint is automatically satisfied as lim, .o IC () = —o0.

Proposition 2 Under Assumption 2, for all games defined in case 1,2 and
3, there exists a MPNE where gi.(z),gs (z),944(2), gn (z), 94, (z) defined as

follows:
1—da
Gie(w) = (2 (5a> “

1 -« B(1—-da)

ov () = g —gg® o 9an(®) = g o5t
R e B(1-da)
95 (0) = T qg” 94 (0) = T35 05"

Proof. See Appendix. m

Note that in this setup, the equilibrium does not depend on the distinction
between acting naive or sophisticated. This result is not surprising as Pollak
(1968) showed this property in a continuous-time model with logarithmic utility.

Corollary 3 Under Assumption 2, exploitation rate of the resources is higher
when agent 1 has or acts as if she had time-inconsistent preferences.

Proof. See Appendix. m

By knowing that agent’s true preferences are represented by Eq. (1), we
can discuss if she gets more utility by acting as if she had time-inconsistent
preferences. Moreover, we can characterize the optimal value of § if it were to
be chosen. Under Assumption 2, whenever we have an equilibrium under linear
strategies, agent 1’s utility is given by the following:

log x logc—&-lf%‘alogl—c—d

Vi(z) =

@) =% 1—6

where ¢ and d represent the equilibrium consumption rates of the agents, i.e.
c= gN(:”) 95@) and d = #4v = 925 Agent 1 finds the optimal value of 3 by

solvrng the trade off between her consumptron rate and combined investment
rate governed by the following maximization problem:

logl—c—d (13)

maxlog ¢ + oa
B & 1-da

Since « affects the common resource exponentially, % can be thought as a
modified discount rate of an agent having time consistent preference. Note that,

as [ decreases, the consumption rate of the agent,1 +[3 =, increases, whereas

the combined investment rate, ﬁ —5» decreases. Even if 3 is not under her
control, she may prefer acting like a player with time-inconsistent preferences.
Next, we characterize the optimal value of § and provide the range of § under
which deceiving is optimal.

10



Proposition 4 a) If agent 1 can choose B, She chooses § = «ad. b) If agent
can not choose B, she acts as if she had time-inconsistent preferences when

> min <oz<57 (21&)4)510)

Proof. See Appendix. ®

The reason for finding such a simple solution for the optimal level of S is
the logarithmic utility function. It assures the existence of equilibrium under
linear strategies and let the trade-off between consumption and combined in-
vestment rate be defined under the additively separable form. The relation
between the optimal value of 8 and discount factor can be analyzed further by
differentiating the discount rates of the agents. Let us assume that agents can
have different discount factors denoted with §; and . By applying the methods
used in the proof of Proposition 2, one can characterize the equilibrium values
of consumption rates and show that the optimal value of 5 is equal to «ads.
Interestingly, while equilibrium consumption rates depend on both §; and ds,
the optimal value of 3 does not depend on agent 1’s own discount rate.® This
result is specific to the logarithmic utility. Whenever finding the optimal degree
of time inconsistency problem reduces to a trade-off between consumption rate
and combined investment rate, the objective function can be represented with
h(c(B),1—c(B)—d(B)).The first order condition of the problem is as follows:

hi(c(B),1—c(8)=d(B)) , 5 _ .
hc(B),1—c(d)—d@)’ D C@+dE) =0 (14

where h; represents the partial derivative with respect to the ith term. Un-
der logarithmic utility, this condition reduces to 8¢’ (8) — (¢ (8) +d' (8)) =0
2B s independent of §1, the optimal value of 5 does not depend

< (B)
: hy(c(B),1—-c(B)—d(B)) d'(8)
on her own discount factor. In general, h;(c([j),l—c(ﬁ)—d([j)) and ) depends

and since

on the (modified) discount factors of both agents and optimal degree of time
inconsistency characterized by the nonlinear interaction of them.

While the relation between the optimal value of 8 and the agent 1’s own
discount factor is not necessarily monotonic, in Proposition 3, we show that the
optimal value of 3 is increasing in the discount factor of her rival. For the model
introduced in the next section, we plot the optimal level of 5 of the Naive agent
for multiple cases by freeing the modified discount factor of the agents one at
a time. This analysis, too, suggests that the optimal value of 3 is increasing
in the discount factor of her rival. The basic reasoning behind it is as follows:
Let us consider the optimal value of 5 and equilibrium consumption rates under
discount factors d; and d% denoted by 5%, ¢ and d*. Let us fix the value of 3
and &7, and consider what happens when d, increases from 6% to §&’. In the new
equilibrium pair, (¢, d), the agent 1’s consumption rate increases and agent 2’s
consumption rate decreases. This result follows from two facts: First, for a given

6With heterogeneous discount factors, we get ¢ = 6;;_;;1?15532, d= 5(214:5551&_)54?1?2 and

= Badyda
L—ec d_52+651*a5152'
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consumption of the agent 1, the agent 2’s consumption rate is decreasing in her
own discount factor. Second, the agents’ consumption decisions are strategic
substitutes; when one agent consume more, the other agent replies this with
consuming less. Since both agent 1’s consumption rate and combined investment
rate have changed, S* may not be optimal anymore. Agent 1 adjusts to the
behavioral change of her rival by increasing the level of # and thus by decreasing
her equilibrium consumption rate. Let us denote the optimal value of 5 and
equilibrium consumption rates under discount factors d; and 67 by g, cf
and d¥. Our reasoning implies that when &, increase from 6% to 637 we have
B > Bl and ¢ < ¢ < c. This is an interesting result as it suggests that
agent 2’s patience can mitigate the self-control problem of the (seemingly) time
inconsistent agent.

Note that our game is dynamic i.e. if the agent 2 observed information that
contradicts his belief, he would react. However, as we show in Proposition 4,
V1(z) > Vi.(z). By the Proposition 1, there is a pooling equilibrium under
which agent 1 acts as if she had time-inconsistent preferences so that agent 2
does not observe any contradicting information to update his initial belief.

Our analysis can be easily extended to the case where both agents have
time-consistent preferences but there is uncertainty about the agent 1’s dis-
count factor. In the Appendix, we characterize the pooling equilibrium and the
optimal value of the discount factor. Our analysis shows that the agent 1 may
pretend to be less patient when there is uncertainty about her true discount
factor. While solving the optimal value of the discount factor, she considers
the same trade-off between her consumption rate and combined investment rate
defined in (13). In sum, uncertainty in both the present bias and the discount
factor can be used as an advantage. However, there is a fundamental difference
between them in terms of the nature of the strategic interaction. While, in the
former, agent 1 acts with time-inconsistent preferences, in the latter she acts
with time-consistent preferences and agents differ only in terms of discount fac-
tors. As the nature of the strategic interaction changes, we see a qualitative
difference even under the simplest model we define in this section. While the
optimal level of present bias is independent of the agent 1’s own discount factor,
as we show in the Appendix, the optimal level of the agent 1’s discount factor
depends on her true discount factor.

5 Distinction between pretending to be naive
and sophisticated

In the previous setup, the equilibrium does not depend on the distinction be-
tween acting naive or sophisticated. In this section, we use CRRA class of utility

form to characterize this distinction. To have an equilibrium under strategies
linear in stock, we assume that output elasticity is one.

Assumption 3 u(c) = Cll_—_:; f(z)=Az,1 <A™ <% 0€(0,00).
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Using the conditions 4, 7,8, 11,12, and by postulating an equilibrium with
strategies linear in stock, we can characterize gi.(z), gs (2) , 945 (), gn (), ga, (@).
By Proposition 1, together with Vg (z) > Vi (z), the incentive compatibility
condition, Vi (z) > IC (z) where I € {S,Ag}, should be met in order for
{gs (z),ga4(z)} to constitute an equilibrium. Similarly, together with Vi (x) >
Vie (), Vi(z) > IC(z), where I € {N,An} should be met in order for
{gn (), g4, ()} to constitute an equilibrium.

Proposition 5 Under Assumption 3,
a ) There exist a symmetric MPNE where gi.(z) and corresponding value func-
tion Vi (z) defined as follows:

1

() = atexr and Vi (x) = ulage.x
gre(T) = ay te (2) = ulay )1_5(14(1_2%6))1,0

where ay. € (0,%) solves hie(c) = (1-2¢)7 — §AY7(1—¢) = 0.
b) If h (1+B+1/0) > 0 where B = 175,5514:(71?2{£)1—" and hy (c) = Be? —

A7 (1 —¢), gy () and gay (x) defined as follows:

on (2) = anw and ga, (@) = (1= an (14 BY7) )

where a,, € (atc, 1+B+1/”) solves hy (¢) = 0.
¢) gs (z) and ga,(x) defined as below:

9s(z) = asx and gaq(x) = Basx
where as € (atc, ﬁ) solves hg (¢) = (1 —c— pe)” — A7 (1 —¢) = 0.

Proof. See Appendix. m

Note that, for the game between agent N and agent A, we need an addi-
tional condition for the existence of MPNE with strategies linear in stock. The
following proposition shows that the degree of concavity, o, is less than or equal
to one, is sufficient to satisfy this condition. There could be an MPNE under
linear strategies for ¢ > 1.For example, it has been satisfied for ¢ = 1.5 and
o = 2 for all parameter values that we consider in Sect. 5.2.

Proposition 6 If o < 1, we have hy (
{9~ (), 9ay (2)}.

Proof. When o < 1,we have

1 Bl/o g Bl/e
h = At —
N(1+Bl/ﬂ> <1+Bl/”) 157"

which follows from the fact that ~B~_ and §A'~7 are smaller than 1 by Propo-

1+B1/e
) > 0 together with A" (0) < 0

1+B+1/0) > 0, i.e., there exists a unique

sition 5-a and by Assumption 3. hy 1+B+1/“
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and h/y (¢) > 0, implies that there exists unique ¢ such that hy (¢) = 0. By
Proposition 5-b, there exists a unique {gny (z),g4,(2)}. =

Under Assumption 2, we have proved that exploitation rate is higher when
agent 1 has or acts as if she had time-inconsistent preferences. Although we can
not fully characterize the equilibrium strategies in open form for some values of
o, the next corollary to Proposition 5 proves that the same relation holds under
Assumption 3.

Corollary 7 Under Assumption 3, the rate of exploitation is higher when agent
1 has or acts as if she had time-inconsistent preferences.

Proof. See Appendix. m

Consider the case that agent 1 has time-consistent preferences but she is
believed to have time-inconsistent preferences with probability p. For an initial
level of available resource stock x, when she acts with her true preferences, her
payoff will be V;. (z) . As we show in Proposition 1, she might pretend to have
time-inconsistent preferences. By acting like a naive player, she gets Vi ()
and by acting like a sophisticated player, she gets Vg (x) . Since we focus on an
equilibrium with strategies linear in stock”, any payoff V (x) can be defined as
V177 j.e., we can compare V,.. (z), Vi (z) and Vs (z) independently of available
resource stock simply by comparing V;., Vy and V.

5.1 Example: the degree of concavity is less than one

To analyze the case where the degree of concavity is less than one, we consider
o = 0.5. We plot the preference over acting like a naive player, acting like a
sophisticated player and acting with time-consistent preferences in Fig. 1. It is
worthwhile emphasizing that the results that we provide are not derived from
numerical simulations, but are calculations based on our characterization of the
equilibrium. We characterize V;., Viy, and Vg in terms of two parameters, (3
and the composite parameter §A'~7. Because of the structure of our model,
A~ represents the modified discount factor of the agents. By assumption,
both present-bias parameter and modified discount factor are less than one. To
focus on plausible values of discount factor, we let the modified discount factor
be greater than half.

(Figure 1 will be inserted here)

On the left panel, we show the greatest among Vi.(z), Vn(x), Vs(x). The
green region represents the parameter set where Viy(z) is greater than both
Vie(z) and Vg(x). The blue region represents the parameter set where Vg(x)
is the greatest of them and the red region represents the parameter set where
Vie(x) is the greatest.

On the right panel, we characterize the equilibrium for different value of the
parameters. The green region represents the equilibrium where agent 1 act like a

"We restrict ourselves to linear strategies to obtain definite results. By relaxing the as-
sumption on output elasticity, one can show numerically that the decision to pretend to have
time—inconsistent preferences and the preference between naive and sophisticated behavior
may depend on the available resource stock
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naive player and use strategy gy (x) and agent A use strategy ga, (z). Similarly,
the blue region represents the equilibrium where agent 1 act like a sophisticated
player and use strategy gs () and agent A use strategy gaq(z). The red region
represents the equilibrium where agent 1 act with time consistent preferences
and both agent use strategy g:.(x).

The difference between the left panel and the right panel demonstrates the
effects of incentive compatibility. The area where red replaces green represents
the parameter set where Vy,, () < IC (z) . In this region, since agent A will use
exit strategy, {gn (z), 94, (z)} does not constitute an equilibrium. Similarly,
the area where red replaces blue represents the parameter set where Vy, (z) <
IC (z).

We also plot the optimal level of § if the agent 1 can decide. The coordinates
of the circles represent the optimal level of 3 for a given level modified discount
factor, 6A'/2. The color of a circle represents who makes this decision. When
§AY/? is greater than @, the agent 1 act with time consistent preferences no
matter the value of the present-bias parameter is, i.e. the optimal level of
B = 1. When 6A'Y? is less than @, the agent 1 act like a naive player as long
as she could choose present-bias. In the mid-region represented with (a,a), she
switches between acting like a naive and sophisticated player as the modified
discount factor increases.®

5.2 Example: the degree of concavity is higher than one

To analyze the case where the degree of concavity is greater than one, we con-
sider two cases: o = 1.5 and ¢ = 2. Note that, when the degree of concavity
is greater than one the period utility is unbounded from below, i.e. incentive
compatibility constraint is automatically satisfied as lim,_,o IC () = —oc.

We characterize V., Vy, and Vs in terms of two parameters, S and the
composite parameter 6A'~7. In Fig. 3, we plot the preference over acting like a
naive player, acting like a sophisticated player and acting with time-consistent
preferences when the degree of concavity is one and a half. The upper side of
the figure is blue, implying that, when § is greater than § = 0.66, the agent 1
pretend to be a sophisticated player no matter the value of §A~1/2is. When the
present-bias is less than 3, the preference over acting like a naive player, acting
like a sophisticated player and acting with time-consistent preferences depends
on the value of §A~1/2. Whenever the agent 1 can choose the optimal level of
present-bias, she switches between acting like a naive and sophisticated player
as the modified discount factor increases.

(Figure 2 will be inserted here)

8 As we did in Sect. 4, one can solve the model for heterogeneous discount factors. While
an MPNE in linear strategies does not exist when agent 1 pretend to be sophisticated, it
still exists when both agents act with time consistent preferences or when agent 1 pretend to
be naive. For the naive player, we plot the optimal level of 8 for multiple cases by freeing
modified discount factor of agents one at a time. Our analysis confirms the discussion in Sect.
4 that the optimal level of 8 depends on the nonlinear interaction of agent 1’s own discount
rate and the discount rate of the agent 2.
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Finally, we analyze the case where the degree of concavity is two. In this
case, the agent 1 acts like a sophisticated player when [ is greater than 5 ~ 0.47
no matter the value of modified discount factor, % is. By comparing Figs. 2
and 3, we can see that blue region enlarges as the degree of concavity increase.
Recall that, the blue region represents the parameter set where acting like a
sophisticated agent is the dominant strategy. At the bottom right corner, there
is a red region where the agent prefers acting with time consistent preferences.
However, it is dominated by the time inconsistent preferences when the agent
can choose the optimal level of 3.

(Figure 3 will be inserted here)

6 Discussion

The emergence of time-inconsistent behavior is considered as a consequence of
human nature (Ainslie and Haslam, 1992) while the consistent behavior is a
skill to be acquired. Ainslie (1992) argues that "[i]t is just as supportable,
however, to say that living mostly for the present moment is our natural mode
of functioning, and that consistent behavior sometimes acquired, to a greater or
lesser extent, as a skill. Some philosophers have even suggested that we should
not acquire such a skill-that we would be happier if we abandoned our complex
ways of banking on the future and lived for the present instant."

Although this argument explains the endogenous formation of time-consistent
behavior, it can also be used to discuss why the endogenous formation of time-
inconsistent behavior can arise. Sigmund et. al. (2001) show that reputation
is necessary for fostering social behavior among selfish agents and punishment
works much better than rewarding in promoting cooperative behavior. If time
inconsistency is socially accepted as a natural mode of functioning then the
time-inconsistent behavior is rarely punished. Moreover, we have shown that
the bad reputation in time consistency can improve agent’s welfare by letting
him exploit the other agent. These two arguments suggest that agents may act
as if they have time inconsistency problem since it may bring economic benefit
without social cost. This means that together with the endogenous formation of
time-consistent behavior, endogenous formation of time-inconsistent behavior is
also possible.

While the self control problem is presented as a conflict between the im-
mediate rewards and the long-term interests, social dilemmas arise from the
conflict between the individual and the collective interests. The correspondence
between self control on the dimension of time and social cooperation on the
dimension of social space has been pointed out by a number of authors (see
Rachlin, 2000; for the formalization of the social cooperation problem in the
same way as the self-control problem). The studies on time preference that ad-
dress the relationship between these two concepts report that self control reduces
the over-exploitation of the common property resources and benefits coopera-
tion (Fehr and Leibbrandt, 2011; Burks et al., 2009; Houser et al., 2012). We
consider the opposite relation and analyze how social dilemma may result in
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time-inconsistent behavior.

Frederick et al. (2002) document the lack of agreement among studies mea-
suring time preference and argue the existence of a discrepancy between the
pure time preference and the elicited measures. There are many contextual
factors affecting elicited time preference and it is important to isolate the con-
textual factors that are central to the actual time preference from the remaining
factors that distort the link between them (Soman et al., 2005; Urminsky and
Zauberman, 2015). The social environment may affect elicited time prefer-
ences differently, depending on whether or not the social relationships are based
on trust and reputation. Further experimental and correlational analyses are
needed to increase our understanding of the temporal or permanent effect of
social environment on time preference.

In this paper, our concern is the consumption-saving decisions of people. A
similar analysis can be made for the decision of when to do a task while one of the
agents is wrongly believed to have a tendency to procrastinate (see O’donoghue
and Rabin, 1999; for procrastination under quasi-hyperbolic discounting). As
an illustration, consider an experiment in which some participants in a group
are misrepresented as having procrastination problems to the rest of the group
and that they are aware of this misrepresentation. There are three ways how
these participants might behave: (1) they might behave according to their actual
time preferences, (2) they might behave according to the perceptions of others
about them, or (3) they might make extra effort to destroy this perception. Our
results suggest that the second option is possible when reputation and trust have
secondary effects on the economic outcome. For example, in a workplace where
personal qualifications and work ethics are not the primary cause of promotion
and they bring nothing but workload, the agent who is believed to have time-
inconsistent preferences may use this misinformation as an advantage. Studying
the reasons behind the possible behavioral differences will allow us to understand
project team or group study procrastination better.

Finally, we can interpret our game as the strategic interaction between coun-
tries exploiting common resources. By construction, discount rates are subjec-
tive parameters. When resources are exploited by countries, time preference
is represented with social discount rates that are generally not observable or
common knowledge. Our analysis reveals that it is not the actual time prefer-
ence, but the others’ perception of you that is important and countries might
use misinformation about their social discount rates. Soman et al. (2005) quote
the news commenting that "some emerging countries like China and Mexico
have such a strong desire to make progress in the present that they consume
resources at a rate that is detrimental to the future progress". They ask if it
makes sense to think of discount factors for nations and if these nations display
high discount rates. In their words, these are intriguing questions without a
perfect answer. However, one thing we can say for sure is that there is a public
opinion that the time preferences of developing countries are different from the
developed countries. Our model implies that as long as the emerging countries
believed to have high discount rates, whenever there is a divergence between
their national interests and global collective ones, their acts will be consistent
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with the public perception of them.
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8 Appendix

8.1 The proof of proposition 2

a) Follows from Amir and Nannerup (2006).
b) From part a, one can compute that:

1-da da da
B lOg.’IJ T IOg (27504) + 1-da lOg 2—da
11— 1-9
Under Assumption 2, by 7 and 8, we have

(1 —-da)(z —gay (x))

Vie ()

95 () = 7507 goa)
9ax (¥) _ 0f' (x = gn () = gay () (1 — gy (y)) where y = (f (z — gn () — gay (2)))
gAan (:C)
By using the linearity of gy () and ga, (z), we find gy (z) = 1}_;5‘261‘ and
Gay (@) = B0,
c¢) Under Assumption 2, by 11 and 12, we have

a— 1 / 1-g s
51} — B (@ - g5 (2) — g (2)" [(1 )ty LD

(15)

9= W) 517 (0 — g5 (@) — ga, () (1 — g () where y = (f (2 — g5 (&) — g1, (@)
9As ({E)

(63

Using the linearity of gs () and ga(z), we find gs (z) = legifaéx and ga,(x) =

B(1-ba)
T+8—as L

8.2 The Proof of Corollary 3
It follows from Proposition 2, as we have

2(1—da) _ (1+5)(1-da)

2 —do 1+8—ad :gN(l‘)‘FgAN(SU):g5($)+gAs(:1:)

2g1c(w) =

8.3 The Proof of Proposition 4
a) Under case 2 and 3, agent 1’s utility is given by the following:

V(@) =log (g () + V' (2~ g (2) - g ())")

where g (z) = ¢°(z) = ¢™ () = 115 57 and
o (2) = g8 (@) = gie) = L0
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By guessing that the value function has the form Alogz + B, we compute
Ba

1-5 s
V1 (2) = log z log 775°%5 + 1555 108 19 5—as
1 -« 1-94

This implies that utility maximizing 3 solves the following problem:

1
0% B T g e TO¥I8P

From the first order condition we get 8 = da. Note that objective function is

increasing when 8 < da and decreasing when 8 > da i.e. § = da is the unique

maximization point.

b) If the agent cannot choose 3, she gets V! () if she acts as if she had time-
inconsistent preferences and gets Vi (z) if she acts truly. Note that V! (z) >
Vie () <= IOguﬁ%éa + dalog 8 > log 57— . By part (a), we know that
left-hand side of the equation is decreasing in S when [ is greater than Ja.
Since they are equal to each other for  equals to 1, the left-hand side is
greater than the right-hand side when 8 € [da, 1). Let us consider the case,

1
such that (ﬁ) " < ad. Our result follows from the fact that, for any

1
ﬂe[(216a>5a’aé),Wehavelogwléa+6a10g6>6a10gﬁ>10g215a.

8.4 The proof of proposition 5
a) Under Assumption 3, by 4, we have

(2

) =500~ @) wherey = 7 (o~ 201 ()

By imposing that g (z) = as.r we get (1 — 2a4.)” — A~ (1 — az.) = 0. Since
hic (0) > 0, hye (7) < 0 and hy. (c) is continuous in ¢ implies that there exist as.
S (07 2) such that hs. (at.) = 0. By 5, we get:

1

Vie () = u(agex) A 20%50))1_0 (16)

b) Under Assumption 3, by 7 and 16, we have

(( — gn (2) — gan @)
(on (2))° =0
(gAN (y

)
gan (.73)
(z

) — 5(1 gy () where y = £ (z — g () — gax (=)

By imposing that gy () = apz, and ga,(x) is linear in z, we get ga, (z) =
(1—a, (14 BY?)) 2 and

Bal — A" (1 —a,) =0
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Consider function Ay (). In equilibrium, we must have x — gn () — ga, (z) >0

1o (g— Atc
ie. ap < 1+B+1/G.Since hy (ate) = Bag,—0AY" % (1 — az.) = 1_(;52170((5_21;&1,0 <
0, by (¢) > 0, and by assumption of the proposition hy (H_B%l/g) > 0, there
exists unique a,, € (atc, 1+B+1/”> such that hy (a,) = 0.
c¢) Under Assumption 3, by 11, we have
gs (y)>” 1y, (1-gas )
= [6A (1— gs (y) + —==—= .
(gs (z) B s B
945 )’
(Z) 61 gt (1) where y = (f (o~ (0) = gy (2))
S

By imposing that gg (z) = asz, and ga, () is linear in z, we get gay(z) = Bfasx
and

(1—as — Pas)” =A™ 7 (1 —a,) =0
In equilibrium, we must have z — gs (z) — gags(z) > 0 ie. a5 < ﬁ.(}onsider
function hg (). Since hg(aw) > hi (ate) = 0, hg (ﬁ) < 0 and hg(c) is

continuous in c, there exists as € (atc, ﬁ) such that hg (as) = 0.

8.5 The proof of corollary 7

Since the equilibrium strategy of a naive and a sophisticated agent does not
necessarily coincide, we have two different cases to consider. Let us consider the
strategic interaction with a naive agent first. We have

hy (an) = Bag — A" (1 —a,) = (1 —¢,)” —6A™ 7 (1 —a,) =0

where ¢,z = gn (2) + gay (2) = anz + (1 — a, (1 + BY9)) .
Since (1 — 2a;.)” — §A*=7 (1 — a4.) = 0 we have the relation that:

Ay, > Qte & Cp > 204

By proposition 5-b, we conclude gn () + ga, (z) > 291 () .
Similarly, we have

hs(as) = (1 —cs)” =A™ (1 —a,) =0
where ¢z = gs (z) + gaq (z). This implies that:
As > Qe & Cs > 204

By Proposition 5-c, we conclude gs (z) + gag(z) > 29ic () .
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8.6 The pooling equilibrium and optimal value of discount
factor when there is an uncertainty about agent 1’s
discount factor

Suppose that agent 1’s true discount factor is &1, while agent 2 believes that her
discount factor is ; with probability p. Consider the games with discount rate

pairs (51, (52) and (01, d2) .Since both agents have time consistent preferences,
MPNE of the games can be found by following the steps we define in Sect. 2.1.
Let us denote MPNE by §i.(z), §2.(r) and value functions by V,.(z), V,2(z) for
the game with discount rate (51, 52) . Similarly denote MPNE of the game with
discount rate (d1,d2) by gi.(z), g2.(z) and the corresponding value functions by
Vie(2), V2 (). We can define the pooling equilibrium as below:

If Vii(z) > VL(z) and V}i(x) > IC (x), where i € {1,2}, there is a perfect
Bayesian equilibrium ((§'(h,6),5 (h)) , (1 (h))) , such that

§%(ht, 0 = tco) = 5% (ht, 0 = tin) = Qtlc(x)

~2(ht) _ gtzc(x) and :u‘(ht) =D Z.f hy = {gtlc(xk)vciaxk};zo
g?c(x) and :u(ht) =0 Zf ht 7é {ggc(xk%C%?xk}k:o

Under Assumption 2, by Levhari and Mirman (1980), we have:

oL (x) = RIGLDN xandgfcm(

51 (1 — (520[) .
51 + 6y — 51520&

81 + 52 - 515204

Agent 1 finds the optimal value of 5 by solving the trade off between her con-
sumption rate and combined investment rate governed by the following maxi-
mization problem:

S
max log c + ! logl—c—d
51 1— (510&
where ¢ and d represent the equilibrium consumption rates of the agents, i.e. ¢ =
~1 ~2 ~
w and d = 'J“T(GC) From the first order condition, we get 0; = ;=222 Note
1+a26162

OL5152
1—(1(51 +(X26162

is the unique maximization

that objective function is increasing when b < and decreasing

ad1d2 ady 62

when 01 > {5t Qe 01 = [ 5 todyss

point.

24



