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Abstract

This paper applies Causal Modeling Semantics (CMS, e.g., Galles and
Pearl 1998; Pearl 2000; Halpern 2000) to the evaluation of the probability
of counterfactuals with disjunctive antecedents. Standard CMS is limited
to evaluating (the probability of) counterfactuals whose antecedent is a
conjunction of atomic formulas. We extend this framework to disjunctive
antecedents, and more generally, to any Boolean combinations of atomic
formulas. Our main idea is to assign a probability to a counterfactual
(A∨ B)� C at a causal modelM by looking at the probability of C in
those submodels that truthmake A∨B (Briggs 2012; Fine 2016, 2017). The
probability of p((A ∨ B)� C) is then calculated as the average of the
probability of C in the truthmaking submodels, weighted by the inverse
distance to the original modelM. The latter is calculated on the basis of a
proposal by Eva et al. (2019). Apart from solving a major problem in the
research on counterfactuals, our paper shows how work in semantics,
causal inference and formal epistemology can be fruitfully combined.
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1 Introduction

How should we evaluate the probability of a counterfactual like “If it had
been sunny, Mary would have attended the football match”? We are inclined
to say that it should be in line with the probability of the consequent “Mary
attends the football match” in a hypothetical situation where the sun was
actually shining. The debate is about how to determine this probability. The
conditional probability p(C|A) = p(A∧ C)/p(A), or equivalently, the proba-
bility of C after conditionalizing on A, has been proposed by Adams (1965,
1975) for evaluating indicative conditionals, but arguably, conditionalization is
no adequate tool for evaluating counterfactuals (e.g., the Oswald/Kennedy
example in Adams 1970; see also Lewis 1973b, p. 72).

Which mechanism should replace conditionalization for calculating the
probability of a counterfactual A � C? David Lewis’s similarity semantics
(LSS) for counterfactuals gives a precise account of their truth conditions
(Lewis 1973a,b), but is silent on their probability. A couple of years later,
Lewis (1976) closed that gap by means of suggesting the equation p(A �
C) = pA(C): we should image the probability distribution p on the A-worlds
and evaluate C relative to that distribution (see also Gärdenfors 1982; Günther
2022).

On the other hand, computer scientists and formal epistemologists have
proposed causal modeling semantics (CMS): a counterfactual A � C needs to
be evaluated by looking at the truth value of its consequent C after a suitable
intervention on A (Skyrms 1980; Pearl 2000, 2017). This proposal, which relies
on causal models as a graphical tool for reasoning and inference, is elaborated
in Galles and Pearl (1998) and developed further in Briggs (2012). Transferring
this approach to probability, one obtains p(A � C) = p(C|do(A)), i.e., the
probability of the counterfactual is the probability of C after intervening on
A.1

The divergences and convergences of CMS and LSS have been studied
from various angles. Pearl (2000, pp. 72-73) shows that a certain type of
imaging is equivalent to an intervention on A that is represented by the do-
operator. It is agreed, however, that standard CMS and LSS are different in
(at least) one crucial respect (Briggs 2012; Halpern 2013; Pearl 2017): they
assign truth conditions to different classes of counterfactuals. Standard CMS,
as developed in Galles and Pearl 1998, cannot account for the truth conditions
of counterfactuals with disjunctive antecedents of the form (A ∨ B) � C.
That is, we cannot assign truth conditions to a sentence such as “if it had
been sunny or the tickets had been discounted, Mary would have attended
the football match”, and the same holds for the assignment of probabilities of

1In general, p(C|do(A)) , p(C|A), unless C is causally downstream of A. Both CMS and LSS
thus avoid the well-known triviality results for the probability of conditionals (Lewis 1976).
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the form p(C|do(A∨B)). It is simply not clear what it means to intervene as to
satisfy the logical disjunction of two propositions. In other words, while CMS
has a very strong theoretical motivation, it has limited expressive power.

By contrast, the LSS framework assigns truth values to counterfactuals
with arbitrary antecedents. For the disjunctive case, they are determined by
the truth value of C in the closest possible (A ∨ B)-world(s). The probability
of the counterfactual (A ∨ B) � C is given by the probability of C after
imaging the probability distribution on A ∨ B. However, the interpretation
and logical properties of counterfactuals with disjunctive antecedents are
the subject of substantive debate (e.g., Nute 1975; Loewer 1976; McKay and
Van Inwagen 1977), and LSS does not determine a canonical algorithm for
calculating p((A∨ B)� C).

Our paper develops a novel proposal for evaluating the probability of
such counterfactuals. Building on Briggs’ 2012 pioneer work, which combines
CMS with truthmaker semantics (Fine 2016, 2017), we propose a CMS-based
account for evaluating the probability of counterfactuals with disjunctive an-
tecedents. We work in a propositional language allowing for simple (i.e.,
non-nested) counterfactuals. Specifically, we propose to evaluate the proba-
bility of (A∨ B)� C as the weighted probability of C in all submodels that
truthmake A ∨ B. Their weights are determined by the algorithm developed
in Eva et al. (2019). This procedure extends to calculating the probability of
counterfactuals with arbitrary Boolean compounds of atomic formulas in the
antecedent.

Our proposal illustrates how work in semantics, formal epistemology and
causal modeling can join forces in order to solve a longstanding conceptual
problem. It synthesizes truthmaker semantics with ideas from LSS and CMS,
yielding more convincing results than LSS, and more general results than
standard CMS alone. At the same time, our account preserves some elements
of LSS, by weighting the contributions of causal submodels as a function of
their similarity to the original model.

The paper is structured as follows. In Section 2 and 3, respectively, we reca-
pitulate the basics of causal modeling semantics and explain how truthmaker
semantics can serve to establish a logic of counterfactuals. Section 4 intro-
duces probabilistic causal models, Section 5 outlines our account and Section
6 compares it with the LSS treatment of the probability of counterfactuals.
Section 7 wraps up our results and suggests future work.

2 Causal Modeling Semantics (CMS)

This section recaps the causal modeling framework for the semantics of coun-
terfactuals (CMS, e.g., Galles and Pearl 1998; Pearl 2000; Halpern 2000), as
presented by Briggs (2012). First, we need to introduce causal models, us-
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ing a running example (simplified from Pearl 2000) that will accompany us
throughout the paper. It involves four Boolean variables, whose values are
represented by the numbers zero and one.

A prisoner is condemned to death and led to the execution court. He
stands in front of two soldiers, who will fire at the captain’s signal. If
at least one of the soldiers fires, the prisoner dies. The captain gives the
signal (C = 1), the two soldiers fire (X = 1, Y = 1), and the prisoner dies
(D = 1).

The main ingredients of this causal model are a set of variablesV = {C, X, Y, D},
and the set of structural equations that describe their causal dependencies:
S = {X = C, Y = C, D = max(X, Y)}. This means that the executioners fire
if the captain gives the signal and the prisoner dies if one of the two execu-
tioners fires. The dependencies can also represented graphically, as in Figure
1 below.

D

X Y

C

Figure 1: Causal graph for the prisoner execution story. C stands for the captain (not)
firing, X, Y for the soldiers (not) shooting, D for the prisoner dying/living.

The parents PA(V) of a variable V are simply the variables from which
there is an arrow into V. For example, C is the only parent of X and Y, and
X and Y are the parents of D. Structural equations describe the value of a
variable as a function of the value of its parents. In general, a causal model
M is a tripleM = ⟨V,S, a⟩where:

• V is a non-empty finite set of variablesV = {V1, V2, ..., Vn};

• S is a set of structural equations, where each element has the form
V = fV(Vi1 , Vi2 , . . . , Vin) and PA(V) = {Vi1 , . . . , Vin} (i.e., each structural
equation defines the value of V uniquely by the value of its parents; no
cycles are allowed);

• a : V → R(V) is a function assigning an actual value to each variable
V, in a way that is consistent with the range of V and the structural
equations.

The last part, the assignment of actual values, is not necessarily required
for making predictions with causal models, but it is crucial when we want to
use them for counterfactual reasoning.
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Some additional terminology will be useful: when a variable V1 is con-
nected to another variable V1 via a sequence of directed arrows from V1 into
V2, we say that V2 is a descendant of V1. For instance, in Figure 1, D is a de-
scendant of C, X and Y. As in (Briggs 2012), we will restrict our attention to
only those models not containing any loop, namely models in which there is
no sequence of arrows connecting a variable to itself. Moreover, in a causal
model, we say that a variable is exogenous when it has no parents (e.g., C in
Figure 1) and endogenous when it is not exogenous, so that its value can be
determined by the value of other variables in the model (e.g., X, Y and D in
Figure 1).

Now, we need to introduce the notion of an intervention on a causal model.
An atomic formula in our language has the form V = v, expressing the fact
that the variable V takes a certain value v. The intervention do(V = v) on a
causal modelM breaks the dependency of V on its parents via the structural
equations (i.e., it eliminates all arrows into V) and assigns the value V = v
to it. The intervention generates a causal submodel M′ where the formula
V = v is true and the structural equation fV is no longer part of the causal
model: the variable V now depends on the intervention, but not any more on
its parents.

We can generalize this idea to conjunctions of interventions. For a causal
model M = ⟨V,S, a⟩, the intervention do(V1 = v1, V2 = v2, . . . , Vn = vn)

generates a submodelM′ = ⟨V′,S′, a′⟩ ofM such that:

• V′ = V, i. e.M′ has the same variables asM;

• S′ = S\ { fV1 , . . . , fVn};

• a′ : V\ {V1, V2, . . . , Vn} → R(V) assigns actual values to the variables
not affected by the intervention, in line with the structural equations in
S
′.

Conceptually, an intervention on a causal model manipulates some variables,
forces them to take a certain value and breaks the causal mechanism between
them and their parents. For an example, consider the causal model of the
execution story depicted above; we want to know what would have happened
if the two executioners had not fired (X = 0∧Y = 0). The answer is given by
the intervention do(X = 0, Y = 0) which would generate the model in Figure
2.

Our intervention has broken the causal mechanism that links C to X and
Y, and we have forced X and Y to value zero. What happens to D now? It
continues to be determined by the structural equation D = max(X, Y), but
X = 0 and Y = 0 as a result of our intervention, hence D = max(0, 0) = 0.
And so the prisoner will live.

The concept of intervention in a causal model explicates our intuitive
counterfactual reasoning: in order to know what would have happened to the
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C

Figure 2: Causal graph for the prisoner execution story, where we intervene on X
and Y and break the dependency on the captain’s signal C.

prisoner had the executioners not fired, we perform an intervention on the latter
and see how it would have affected the prisoner, according to the known
causal mechanisms.

More generally, in standard CMS, counterfactuals and interventions are
connected in the following way: a counterfactual of the form (A1 ∧A2 ∧ ...∧
An) � B is true at a causal model M that contains A1, . . . , An and B as
variables if and only if B = 1 holds at the causal model M′ generated by
the intervention do(A1 = 1, A2 = 1, . . . , An = 1) on M. (As before, we use
A1 = 1 for expressing that the Boolean variable A1 takes the value “true”.)
For instance, the counterfactual “if the two executioners hadn’t fired, then the
prisoner would not have died” is true at the causal model of the execution
story since, as we have seen above, after performing the intervention do(X =

0, Y = 0), D = 0 holds in the new submodel.
Notice that an intervention of the form do(A) is only defined when A

is an atomic formula or a conjunction of atomic formulas. This imposes a
restriction on the class of counterfactuals that standard CMS can account
for: only counterfactuals of the form (A1 ∧ A2 ∧ ... ∧ An) � B can assume
a truth value. CMS does not provide truth conditions for counterfactuals
with logically complex antecedents. For instance, we cannot say whether the
counterfactual “if one of the two executioners hadn’t fired, then the prisoner
would not have died” ((X = 0 ∨ Y = 0) � D = 0) is true or false at the
causal model of the execution story. This limitation is due to the fact that the
disjunctive intervention do(X = 0∨Y = 0) is not defined (see also Pearl 2017).
Intuitively, there is more than one possible realization of do(X = 0 ∨ Y =

0): we could manipulate X, Y, or both variables at the same time (compare
Sartorio 2006; Briggs 2012; Günther 2017). Each of the three interventions
do(X = 0), do(Y = 0) and do(X = 0, Y = 0) would be a good candidate for
an intervention that brings about the state “X = 0 or Y = 0”. But their effects
on D = max(X, Y) differ. For the intervention do(X = 0) and do(Y = 0), the
prisoner would still die (since the other soldier fires) but for the intervention
do(X = 0, Y = 0), he would live. Thus, if just one executioner hadn’t fired, the
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prisoner would have died anyway; if both hadn’t fired, he would live. So, in the
end, standard CMS as presented in Galles and Pearl 1998 and Pearl 2000 does
not provide a unique answer to the question of evaluating counterfactuals
with disjunctive antecedents. And this is arguably a disadvantage of CMS
with respect to LSS, where Lewisian spheres or Stalnaker’s selection functions
provide definite answers to the question of in which worlds we need to
evaluate counterfactuals, and how the results need to be combined (e.g.,
Lewis demands that the consequent holds in all nearest possible worlds). In
order to overcome this shortcoming, Briggs (2012) has proposed an extension
of CMS that we present in the next section.

3 Truthmaker Semantics for Causal Modeling

Briggs’ extension relies on truthmaker semantics (TMS), a semantic frame-
work developed in a series of recent publications by Kit Fine (2016, 2017). The
idea underlying TMS is that of an exact truthmaker of a sentence A, namely
something in the world which truthmakes A and is wholly relevant for the truth
of A.

This intuitive idea can be fruitfully combined with CMS. An intervention
do(A) is admissible on a causal model M when it does not perform two in-
consistent value assignments to the same variable, like do(V1 = 0∧V1 = 1).
For a causal model M = ⟨V,S, a⟩, we can define the set of submodels of M
generated by any intervention do(A) as S(M) = ⟨S,⊔⟩where

• S is the set of submodels ofM generated by any admissible intervention
do(A);

• M[A] indicates the submodel generated by performing do(A) onM;

• ⊔ is an operation of fusion among the models in S defined by M[A] ⊔

M[B] :=M[A∧ B].

In other words, the fusion of the two submodelsM[A] andM[B], defined by
the interventions do(A) and do(B), corresponds to the submodel defined by
the fusion of the two interventions. We assume that only consistent fusions
are allowed, in the sense that do(A∧B) is an admissibbile intervention onM.

Now, consider a language Lwhere atomic formulas have the form V = v
and complex formulas are obtained from Boolean combinations of atomic
formulas. For a model M, consider its space of proper submodels S(M) =

⟨S,⊔⟩ where M < S. We can inductively define relations of truthmaking ⊩ ⊆
S×L and and falsemaking ⊩⊆ S×L between any member s of S and formulas
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in the language as follows:

s ⊩ V = v ⇔ s =M[V = v]
s ⊩V = v ⇔ s =M[V = v′] for some v , v′

s ⊩ ¬A ⇔ s ⊩A
s ⊩ A∧ B ⇔ f or some t, u (t ⊩ A, u ⊩ B and s = t⊔ u)
s ⊩ A∨ B ⇔ s ⊩ A, s ⊩ B, or s ⊩ A∧ B

where s ⊩ A means that s truthmakes (=is a truthmaker of) A. State s is a
truthmaker of V = v if and only if it corresponds to the submodel defined
by the intervention do(V = v), and a falsemaker of V = v if and only if it
corresponds to the submodel defined by an intervention that sets V to a value
different from v. Since states in S(M) can be identified with interventions,
we can say, for simplicity, that an intervention do(V1 = v1, ..., Vn = vn) onM
truthmakes a formula A if and only ifM[V1 = v1, ..., Vn = vn] is a truthmaker
of A.

Evidently, s falsemakes A iff s is a truthmaker of ¬A. State s truthmakes
a conjunction of variable assignments iff it is the fusion of two states that
truthmake the two individual assignments—in other words, iff s is the causal
submodel defined by the intervention that assigns the right values to both
variables. Finally, s is truthmaker of a disjunction of variable assignments iff it
truthmakes one of the two assignments, or its conjunction. This interpretation
of truthmaking a disjunction is also at the center of Briggs’ (and our own)
proposal for expanding CMS.

Consider a propositional language L, which we extend to a language L→

with a simple, non-nested counterfactual operator: for any formulas A, B ∈ L,
let A � B ∈ L→. We can now give inductively defined truth conditions for
formulas of L→, including simple counterfactuals.

Truth Conditions for Formulas of L→ (Briggs) A L→-formula is true at
a causal modelM = ⟨V,S, a⟩ in the following conditions:

M ⊨ V = v ⇔ a(V) = v
M ⊨ ¬A ⇔ M ⊭ A
M ⊨ A∧ B ⇔ M ⊨ A andM ⊨ B
M ⊨ A∨ B ⇔ M ⊨ A orM ⊨ B
M ⊨ A� B ⇔ f or every s in S(M) such that s ⊩ A, s ⊨ B

Thus, a counterfactual A � B is true at a causal model M if and only if
B is true at all the members of S(M) that truthmake A. Consider again the
execution example and the counterfactual “if one of the two executioners
had not fired, then the prisoner would not have died”. We can formalize
this counterfactual as (X = 0 ∨ Y = 0) � D = 0. The truthmakers of
X = 0∨Y = 0 are the submodelsM[X = 0],M[Y = 0] andM[X = 0∧Y = 0].
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The first two submodels validate D = max(X, Y) = 1 since the second soldier
is not affected by the intervention, and so (X = 0∨Y = 0)� D = 0 is false
atM.

Briggs’ extension of CMS allows us to assign a truth value to counterfac-
tuals with disjunctive antecedents—in fact, to counterfactuals with arbitrary
Boolean compounds of atomic formulas in the antecedent. The main inno-
vation to CMS consists in evaluating counterfactuals in the submodels that
truthmake the antecedent. Implicit in Briggs’ approach is a relevance princi-
ple for the truth conditions of counterfactuals, which we will also use later
when defining their probability:

Relevance Principle (Truth Conditions) The truth value of a counterfac-
tual A� B at a causal modelM depends exclusively on the truth value
of B in the submodelsM1,M2, . . . ,Mn generated by the interventions
on the variables in A that truthmake A.

4 Probabilistic Causal Models

In this section, we introduce probabilistic causal models in order to assign
a probability to a counterfactual. We will also see how the problem of the
limited expressive power of CMS re-emerges at the probabilistic level: causal
modeling semantics does not allow to assign a probability to counterfactuals
with disjunctive antecedent.

A probabilistic causal model is a tupleM = ⟨V,G, p⟩where

• V is a set of variables;

• G ⊂ V×V is a set of directed edges between the variables inV, defining
the parents and descendants of each variable;

• p is a probability distribution onV subject to the Markov condition, that is,
each variable V is probabilistically independent of its non-descendants,
conditional on its parents.

The probability distribution p fulfils the role of a structural equation (i.e., it
describes how variables depend on their parents), but without the assumption
of determinism. Consider again the execution scenario from Section 2 with
the probability distribution p described in Table 1. Thanks to the Markov
condition, it is sufficient to specify the probability of the exogenous variables,
and the conditional probability of the endogenous variables, given the values
of their parents.

Analogously to the non-probabilistic case, probabilistic causal models pro-
vide an excellent tool for reasoning about counterfactuals. Again, the notion
of an intervention is crucial. Pearl (2000) proposes that the probability of a
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C
C

X
C

Y
X Y

D
1 0.5 1 0 1 0 0 1
0 0.5 1 0.9 0.1 1 0.9 0.1 1 0 0.5 0.5

0 0.1 0.9 0 0.1 0.9 0 1 0.5 0.5
0 0 0.9 0.1
1 1 0.1 0.9

Table 1: Probability distribution for the variables in the execution example, as a
function of the values of their parents.

counterfactual A � C at a probabilistic causal model P, given a certain ev-
idence E, amounts to the probability of B in the submodel generated by the
intervention do(A), where A is an atomic formula or a conjunction of atomic
formulas. In other words, p(A� C|E) = p(C|do(A), E). This corresponds to
the following procedure:

1. Update the probability p(U = u) of each exogenous variable U on
the evidence E, via Bayesian conditionalization, to the new probability
p′(U′ = u) = p(U = u|E), without changing the conditional dependencies
among the variables. This is because the evidence should not change the
structure of the causal relationships between the variables: it just informs
us which context we are likely to be in (see Pearl 2000, pp. 33-38). So p′

induces a new probability distribution on the (endogenous) variables,
too.

2. Perform the intervention do(A) on M to obtain a new submodel M′

ofM; accordingly, change the probability distribution so that variables
involved in the intervention do not depend on their parents anymore.

3. Use the new submodelM′ = ⟨V,G′, p′⟩ with post-intervention graph
G
′
⊆ G and probability distribution p′(◦|do(A)) to calculate the proba-

bility of B atM′ (i.e., p′(B|do(A))).

For example, consider now the probabilistic execution model with the
numbers from Table 1. Assume that we have learned about the death of
the prisoner, without knowing whether the captain has given the signal, or
whether the executioners have fired. We have thus learnt the evidence E =

{D = 1}. By the procedure specified above, we need to update the probability
of the exogenous variables, i.e., p′(C) = p(C = 1|D = 1) = 0.82, which induces a
new probability distribution p′ on the endogenous variables.2 Now, we want
to compute the probability of D = 0 under the counterfactual assumption
that X has not fired, X = 0, or in other words, we assign a probability to

2Henceforth, unless otherwise stated, we will use p′ to refer to the probability distribution
induced by p′(C) = p(C = 1|E) = 0.82.
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the counterfactual “if executioner X hadn’t fired, then the prisoner would not
have died” (X = 0 � D = 0). Following the above procedure, we obtain
that

p′(D = 0|do(X = 0))

=
∑

x,c∈{0,1}

p(D = 0|X = 0, Y = y) × p(Y = y|C = c) × p(C = c|D = 1)

= 0.598.

In other words, it is 59.8% probable that the prisoner would not have died
under the counterfactual supposition that the executioner X hadn’t fired. This
is, by the way, much less than the conditional probability p′(D = 0|X = 0) =
0.752 because updating on X = 0 (with all other variables being unknown)
would suggest an inference to the best explanation, i.e., that the captain did
not give the signal. Hence, also the probability of Y = 0 goes up sharply when
we learn X = 0, and so does the probability of D = 0.

Like deterministic CMS, the probabilistic framework does not account for
the probability of counterfactuals with disjunctive antecedents since interven-
tions are only defined for atomic formulas, and their conjunctions. We will
now develop a proposal that expands probabilistic CMS to arbitrary Boolean
compounds of atomic formulas in the antecedent, similar to what Briggs has
achieved for deterministic CMS.

5 CMS with Similarity Metrics

Suppose now that we want to use probabilistic CMS in order to calculate the
probability of a counterfactual with disjunctive antecedents, or any Boolean
compound of formulas that is more complex than a conjunction of elementary
interventions. When we apply Pearl’s procedure described in the previous
section, steps (2) and (3) fail because the model generated by the intervention
do(X = 0∨Y = 0) is not well defined and consequently we cannot compute
p′(D = 0).

We now try to solve this problem using the Relevance Principle from Sec-
tion 3, transferring Briggs’ idea to evaluate counterfactuals with disjunctive
antecedents by evaluating the consequent on the submodels that truthmake
the antecedent:

Relevance Principle (Probability) The probability of a counterfactual A�
B at a causal model M depends exclusively on the probability of B in
the submodels M1,M2, . . . ,Mn generated by the interventions on the
variables in A that truthmake A.

Thus, we obtain three submodels respectively generated by do(X = 0), do(Y =

0) and do(X = 0∧Y = 0). See Table 2. Step (2) is working now: performing the
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D D

X Y = 0 X = 0 Y

C C

do(Y = 0) do(X = 0)

D

X = 0 Y = 0

C

do(X = 0∧Y = 0)

Table 2: The three submodels that truthmake the proposition X = 0∨ Y = 0 in the
execution example, with the interventions used to generate them.

intervention do(X = 0∨Y = 0) amounts to selecting three specific submodels.
However, step (3) is still problematic: we have now three possible submodels
with respect to which we can compute the probability of p′(D = 0), and
it is not clear how these probabilities should be combined. In fact, for the
models generated by do(X = 0) and do(Y = 0), p′(D = 0) = 0.598, whereas
p′(D = 0) = 0.9 in the model generated by do(X = 0∧Y = 0).

It is clear that Briggs’ solution for the truth conditions of a counterfactual
with disjunctive antecedents will not help. There, the consequent needed to
be true in all states that truthmake the antecedent. Briggs (2012, pp. 152-154)
recognizes that this is a choice, inspired by Lewis’ possible world semantics,
which requires that a proposition be true in all nearest possible worlds. The
conceptual motivation is that there is no convincing argument for identifying
a unique best submodel, and so Briggs assumes that the consequent needs
to be true in all of them. While this is a reasonable choice in the context of a
logic of counterfactuals, we cannot apply the same approach to the probability
of counterfactuals where the output of the submodels are no Boolean values,
but real numbers.
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However, all truthmaking submodels s should be relevant in the sense
that the values of p′s(D = 0) should bound the overall probability of the
counterfactual from above and below:

Convexity Principle For the probability of a counterfactual A � B at a
model M, and the set of submodels |A|M where we intervene on the
variables in A as to truthmake A,

min({ps(B) : s ∈ |A|M}) ≤ p(A� B) ≤ max({ps(B) : s ∈ |A|M})

where ps denotes the probability distribution of the variables in sub-
model s, after updating on the available evidence and performing the
truthmaking intervention.

In other words, the probability of a counterfactual cannot be greater (smaller)
than the maximum (minimum) probability of the consequent in the causal
models that truthmake the antecedent (see also Pearl 2017, p. 9). The crucial
question is now which weight we need to assign to the different truthmaking
models.

A natural starting point is the straight average of p′(D = 0) in the three
submodels generated by the antecedent do(X = 0 ∨ Y = 0). In this way, we
would obtain p′(D = 0) = 0.598+0.598+0.9

3 = 0.698. However, straight aver-
aging is at best a default assumption. Alternatively, they could be weighted
by means of the similarity to the original model. This idea is elaborated in
Lewis’s (1976) similarity-based semantics (LSS) for counterfactuals and their
probability.

The basic ingredients of LSS are a space of possible worlds W together
with a similarity order and a probability distribution p on the elements of
W. A proposition is represented as a set of possible worlds (i.e., the set of
possible worlds where it is true). More precisely,

∑
w∈W p(w) = 1, and the

probability of a proposition A is the sum of the probabilities of the worlds
where A is true, that is, p(A) =

∑
w⊨A p(w). Suppose now that we want to

evaluate the probability of B given the counterfactual assumption that A.
Lewis defines, for this purpose, the procedure of imaging on A as yielding a
probability distribution pA where all ¬A-worlds have probability zero. Their
weight is transferred to the most similar worlds where A is true. Define, for
any proposition A ⊂W, the function fA : W →W as mapping any world w to
the A-world that is most similar to w. Thus, for any world w ∈W:

pA(w) =
∑
v∈W

p(v) ×

1 if w = fA(v)

0 otherwise
(1)

This procedure assumes that each world is most similar to itself, that is, for any
w ∈ A, w = fA(w). Hence any A-world preserves at least its original weight
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whereas ¬A-worlds transfer their probability mass to the closest possible A-
world.3 Lewis (1976, p. 310) then defines the probability of a counterfactual
A� B as the probability of B after imaging on A:4

p(A� B) = pA(B) =
∑
w|=B

pA(w)

According to Lewis, imaging is a “minimal revision of the probability func-
tion to make the antecedent certain” (Lewis 1976, p. 311), and so it is the
appropriate way of belief revision for evaluating a counterfactual. We dis-
cuss the merits of this proposal and its relation with CMS in detail in Section
6—at this point, we would like to stress a key feature of imaging: a world
w gains weight (=probability mass) from a world v proportionally to its de-
gree of similarity with v. This differs starkly from Bayesian conditionalization
where the updating procedure preserves the prior probability ratio between
the remaining possible worlds.

We now apply Lewis’ idea to the execution story: what should be the
weight of each of the three submodels generated by do(X = 0), do(Y = 0)
and do(X = 0 ∧ Y = 0)? We claim it must be proportional to the degree of
similarity to the original execution model. Once we have weights α1,α2,α3 for
each of them, we can compute the post-intervention probability of p′(D = 0)
as p′(D = 0) = α1 × 0.598 + α2 × 0.598 + α3 × 0.9.

The question is how to measure this degree of similarity. A possible answer
comes from a recent work of Eva et al. (2019) where the authors introduce
two notions of similarity distance between causal models: evidential similarity
distance, based on the shared probabilistic (in)depencies, and counterfactual
similarity distance, based on shared counterfactual dependencies. In what fol-
lows, we restrict our attention to the latter since probabilistic independencies
can hide true causal and counterfactual dependencies.5

Counterfactual Dependence between Variables A variable V2 is coun-
terfactually dependent on another variable V1 when an intervention on
V1 affects the probability distribution of V2, i.e., for some v ∈ R(V1),
p(V2|do(V1 = v) , p(V2).6

Counterfactual Similarity Distance (Eva et al., 2019) Two (probabilistic)
causal modelsM andM′ are more or less similar to each other, the more
counterfactual dependencies they agree on. Specifically, the counterfac-
tual distance betweenM andM′ is the absolute value of the difference

3Equation (1) assumes that the most similar A-world is uniquely determined, but gen-
eralization to a function fA : W → P(W) that assigns a set of closest possible worlds is
straightforward (e.g., Gärdenfors 1982)—we will get back to this in the next section.

4Actually, Lewis refers to “Stalnaker conditionals” and not specifically to counterfactuals.
5In the causal modeling literature, this is known as failure of the Faithfulness Condition.
6For example, in the execution model, D counterfactually depends on X, Y and C; while X

and Y counterfactually depends on C.
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of their counterfactual dependencies normalized by the total number of
possible counterfactual dependencies:

d(M,M′) =
|CM −CM′ |

NC
∈ [0, 1].

Recall that a variable V2 is counterfactually dependent on another variable
V1 if we can go from V1 to V2 by following a sequence of arrows from V1

to V2: arrows represent the structural equations, i.e., the mechanisms or laws
that connect variables. Hence, if two models disagree on some counterfactual
dependencies among the variables, they disagree on the mechanism connecting
those variables. So, intuitively, the more laws governing the original model
are broken inM′, the more counterfactual-distant fromM a causal modelM′

is (see also Lewis 1973a).
There are now two principled options for calculating the probability of

counterfactuals. First, we could focus on the submodel that is most similar
toM in the above metric, and neglect the contribution of the other submod-
els. This is feasible, but it would privilege a particular model and a specific
way of truthmaking the antecedent. This is especially implausible when the
truthmaking models have a similar distance to the original model and ex-
press qualitatively different ways of changing the mechanisms to make the
antecedent true.

Second, we could propose that the weight of each submodelM′ should
be inversely proportional to its distance to the original modelM, according
to the above distance measure. This is our preferred approach since it takes
into account all relevant submodels that truthmake the antecedent (and only
them).

For example, consider the execution story and the three submodels gen-
erated by do(X = 0), do(Y = 0) and do(X = 0∧ Y = 0). The number of total
pairwise counterfactual dependencies is NC = 12; the original modelM en-
codes CM = 5 counterfactual dependencies; each of the models generated by
do(X = 0) and do(Y = 0) encodes CM′ = 4 counterfactual dependencies and
the model generated by do(X = 0∧ Y = 0) encodes CM′ = 2 counterfactual
dependencies. Table 3 describes the counterfactual dependencies of the execu-
tion story and its submodels, where V1 � V2 means that V2 counterfactually
depends on V1:
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Original Model do(X = 0) do(Y = 0) do(X = 0∧Y = 0)
C� X Yes No Yes No
C� Y Yes Yes No No
C� D Yes Yes Yes No
X� D Yes Yes Yes Yes
X� Y No No No No
X� C No No No No
Y� D Yes Yes Yes Yes
Y� X No No No No
Y� C No No No No
D� X No No No No
D� Y No No No No
D� C No No No No

Table 3: Counterfactual Dependencies for the Execution Example.

CallM the original execution model. By looking at the table we can deduce
that

d(M,M[X = 0]) =
1

12
d(M,M[Y = 0]) =

1
12

d(M,M[X = 0∧Y = 0]) =
3
12

So,M[X = 0] andM[Y = 0] are equally similar toM andM[X = 0∧Y = 0]
is the most distant from M. Hence, M[X = 0 ∧ Y = 0], which is the most
distant submodel, will receive the least weight. Call |A|M = {s|s ⊩ A} the set
of truthmakers of A, i.e., the submodels generated by the intervention do(A)

onM. In the modelM of the execution story,

|X = 0∨Y = 0|M = {M[X = 0],M[X = 0],M[X = 0∧Y = 0]}.

For s ∈ |X = 0∨Y = 0|M, we define its weight as

α(s) =
d(M, s)−1∑

t∈|X=0∨Y=0|M d(M, t)−1
,

following the rationale that the weight should be inversely proportional to
the distance from the original model, normalized by the sum of all weights.

By some computation, we get that

α(M[X = 0]) = α(M[Y = 0]) =
3
7

α(M[Y = 0∧X = 0]) =
1
7
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Applied to the execution story, we then find that

p′((X = 0∨Y = 0)� D = 0) =
3
7
× 0.598 +

3
7
× 0.598 +

1
7
× 0.9 ≈ 0.64,

in agreement with the Convexity Principle. We can generalize the weighting
procedure as follows: for a causal modelM, for an arbitrary formula A in L,
for s ∈ |A|M,

α(s) =
d(M, s)−1∑

t∈|A|M d(M, t)−1
.

Consequently, we calculate the probability of a counterfactual A � B with
L-sentences A and B, relative to a causal modelM, as

p(A� B) =
∑

s∈|A|M

α(s) × ps(B) (2)

=
∑

s∈|A|M

d(M, s)−1∑
t∈|A|M d(M, t)−1

× ps(B)

Equation (2) expresses our main idea in a nutshell: the probability of the coun-
terfactual p(A� B), given an evidence E, is the probability of the consequent
B in all submodels that truthmake the antecedent, weighted inversely by their
similarity to the original model, where similarity is measured by the number
of shared counterfactual dependencies. Our account thus synthesizes Causal
Modeling Semantics with the Relevance Principle (=focusing on models that
truthmake the antecedent, as in Briggs (2012)), and Eva et al.’s (2019) proposal
for measuring similarity between causal models.

It is easy to see that our definition of the probability of a counterfactual
with disjunctive antecedents extends to more complex sentences, too. Fine’s
truthmaker semantics, already adopted by Briggs (2012) in her development
of a general logic of counterfactuals, indicates the truthmaking space states
of all Boolean compunds of atomic sentences. Thus, for any sentence that we
wish to take as the antecedent of a counterfactual, we simply determine the
truthmaking states, the interventions on the causal model that correspond
to them, and the corresponding counterfactual probabilities. Then we can
use the Eva-Stern-Hartmann procedure for weighting the causal models that
correspond to the truthmaking states.

For example, if, for binary variables A and B, our counterfactual is “if
A = B, then C = 1” (with actual values A = 1 and B = 0), the antecedent
has two truthmakers: the model generated by do(A = 1, B = 1) and the
one generated by do(A = 0, B = 0). The two causal models obtained will
then have the same weight according to our procedure, since the intervention
affects the same variables and yields the same counterfactual dependencies.
In other words, the probability of the counterfactual “if A = B, then C = 1” is
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simply the straight average of the probability of C = 1 under the interventions
do(A = 1, B = 1) and do(A = 0, B = 0).7

Taking stock, we have developed a procedure that goes beyond the achieve-
ments of Galles and Pearl (1998) and Halpern (2000), who can calculate prob-
abilities of counterfactuals, but only for antecedents representing a (conjunc-
tive) set of interventions. On the other hand, Briggs (2012) has a general logic
of counterfactuals, allowing for arbitary Boolean compounds as antecedents,
but no extension to probabilistic reasoning. Our contribution provides a prob-
abilistic counterpart of her logic motivated from the very same principles.

6 Back to Lewis: Comparison with Imaging

In this section, we compare our account with David Lewis’ imaging procedure
for assigning a probability to a counterfactual with disjunctive antecedents.
This is especially interesting since imaging has been proposed as an alternative
to Bayesian conditionalization in the context of Causal Decision Theory (Joyce
1999).

When we image on a proposition A, and more than one A-world is most
similar to a ¬A-world w, we need to generalize Lewisian imaging beyond
Equation (1). Günther (2022) shows that there are numerous ways of doing
so, depending on how one determines the selection function fA : W → P(W),
and how one distributes the mass of w among the selected worlds fA(w). For
the purposes of counterfactual and causal reasoning, the following function
proposed by Gärdenfors (1982) is especially attractive:

pA(w) =
∑
v∈W

p(v) ×


p(w)∑

w′∈ fA(v) p(w′) if w ∈ fA(v)

0 otherwise
(3)

In this case, each world w where A is false transfers its probability mass to
the closest worlds where A is true, in proportion to the prior probability
of these worlds. This type of imaging, which respects the prior probability
ratio among the worlds that receive mass from w, is called “Bayesianized
imaging” by Joyce (1999). Indeed, in the extreme case where fA(w) = A
if w < A (i.e., all A-worlds are selected), this form of imaging amounts to
Bayesian conditionalization on A (Pearl 2000, p. 73; compare also Proposition
1 in Günther 2022).

There is a deep connection between Bayesianized imaging and CMS. Pearl
(2017) shows that the probability of a counterfactual A � B, with A =

7Note that this also holds if it is actually the case that A = B = 1. Calculating the probability
of the counterfactual does not privilege the actual values of variables; all that matters is whether
the distance of the truthmaking models from the original model in terms of counterfactual
dependencies.
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A1 ∧ ....∧An being a conjunction of atomic formulas, can be characterized in
two equivalent ways: either, by the definition of Causal Modeling Semantics,
as

p(A� B) = p(B|do(A)) (4)

or, when we count worlds with equal causal histories as equally similar, and
use the function pA(w) defined according to Equation (3), by

p(A� B) = pA(B) =
∑
w|=B

pA(w) (5)

The first condition (“equal causal history”) means that the most similar A-
worlds to a ¬A-world w contain all and only those A-worlds that agree with
w on the value of the variables that cannot be affected by do(A), i.e., the
non-descendants of A.

Pearl then shows that these two characterizations are equivalent, i.e.∑
w|=B

pA(w) = p(B|do(A)). (6)

In other words, the transformation defined by the do-operator can, for atomic
interventions or their conjunctions, be interpreted as an imaging-type mass-
transfer. This is a significant result showing that generalized imaging and
CMS agree for a large class of interventions. Since Bayesianized imaging is
the only type of generalized imaging with this property, we put it into the
focus the comparison of our own proposal with LSS.

We now extend Bayesianized imaging to the probability of counterfactuals
with disjunctive antecedents. Consider the execution model, the probability
distribution p′, and the counterfactual (X = 0 ∨ Y = 0) � D = 0. We
associate a possible world w to each possible realization of the binary variables
C, X, Y, D; so there are 16 possible worlds in total. The probability of each of
them is simply the joint probability of the realizations of the variables in that
possible world. In the execution model, we use p′ to compute the probability
of each of the 16 possible worlds in Table 4; this means that for c, y, x, d ∈ {0, 1},

p′(⟨C = c, X = x, Y = y, D = d⟩)

= p′(C = c) × p(X = x|C = c) × p(Y = y|C = c) × p(D = d|X = x, Y = y)

It is clear that after imaging on (X = 0∨Y = 0), four worlds will have weight
zero in p′X=0∨Y=0: w1, w2, w9 and w10 in Table 4. The question is how their
weight should be distributed to the rest; and this depends on what are the
closest neighbors to these possible worlds.

The first conceptual obstacle in defining a similarity order is to decide
which variables are not affected by do(X = 0 ∨ Y = 0). Again, we translate
the problem into Causal Modeling Semantics. According to Briggs (2012), the
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Worlds
Closest worlds after imaging on X = 0∨Y = 0
Option 1: f (wi) = . . . Option 2: f (wi) = . . .

w1 = ⟨C = 1, X = 1, Y = 1, D = 1⟩ {w3, w4, w7, w8} {w3, w4, w5, w6, w7, w8}

w2 = ⟨C = 1, X = 1, Y = 1, D = 0⟩ {w3, w4, w7, w8} {w3, w4, w5, w6, w7, w8}

w3 = ⟨C = 1, X = 1, Y = 0, D = 1⟩ {w3} {w3}

w4 = ⟨C = 1, X = 1, Y = 0, D = 0⟩ {w4} {w4}

w5 = ⟨C = 1, X = 0, Y = 0, D = 0⟩ {w5} {w5}

w6 = ⟨C = 1, X = 0, Y = 0, D = 1⟩ {w6} {w6}

w7 = ⟨C = 1, X = 0, Y = 1, D = 0⟩ {w7} {w7}

w8 = ⟨C = 1, X = 0, Y = 1, D = 1⟩ {w8} {w8}

w9 = ⟨C = 0, X = 1, Y = 1, D = 1⟩ {w11, w12, w15, w16} {w11, w12, w13, w14w15, w16}

w10 = ⟨C = 0, X = 1, Y = 1, D = 0⟩ {w11, w12, w15, w16} {w11, w12, w13, w14w15, w16}

w11 = ⟨C = 0, X = 1, Y = 0, D = 0⟩ {w11} {w11}

w12 = ⟨C = 0, X = 1, Y = 0, D = 1⟩ {w12} {w12}

w13 = ⟨C = 0, X = 0, Y = 0, D = 0⟩ {w13} {w13}

w14 = ⟨C = 0, X = 0, Y = 0, D = 1⟩ {w14} {w14}

w15 = ⟨C = 0, X = 0, Y = 1, D = 0⟩ {w15} {w15}

w16 = ⟨C = 0, X = 0, Y = 1, D = 1⟩ {w16} {w16}

Table 4: Imaging Mass Transfer for the execution example with disjunctive interven-
tions. The two options correspond to two different similarity orders.

disjunctive intervention do(X = 0∨Y = 0) can be regarded as encoding three
different interventions, do(X = 0), do(Y = 0), and do(X = 0 ∧ Y = 0). The
closest worlds to w1 for the first intervention are w7 and w8, for the second,
they are w3 and w4, and for the third, w5 and w6. Dependent on how seriously
we consider the option of intervening on both variables as a way of expressing
do(X = 0 ∨ Y = 0), this gives us two options for the most similar worlds
to w1: {w3, w4, w7, w8} or {w3, w4, w5, w6, w7, w8}. And vice versa for the other
worlds whose weight needs to be cancelled. Both options are represented in
the rightmost columns of Table 4.

However, if we calculate the probability of the counterfactual (X = 0 ∨
Y = 0) � D = 0, after having learnt the evidence D = 1, the result of
Bayesianized imaging will, for either of these similarity orders, differ from
our proposal. For Option 1, we obtain p′

(X=0∨Y=0)(D = 0) ≈ 0.56, and for

Option 2, we obtain p′
(X=0∨Y=0)(D = 0) ≈ 0.57.8 This is arguably not a good

prediction since it violates the plausible Convexity Principle: the probability of
the counterfactual should be bounded from above and below by the (maximal
and minimal) probability of the consequent in the causal submodels that

8Alessandro Zangrandi’s GitHub https://github.com/zazangra/lewis_imaging offers
a Python program to perform Bayesianized imaging on a causal model.
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truthmake the antecedent. To recall:

p′(X = 0� D = 0) = 0.598 p′((X = 0∧Y = 0)� D = 0) = 0.9

p′(Y = 0� D = 0) = 0.598

To the extent that the Convexity Principle is plausible and compelling, we
should reject any procedure that violates this constraint. It is simply puzzling
why the probability of the counterfactual can exceed or fall below the proba-
bility of the consequent in all relevant submodels. On an intuitive level, it is
puzzling why the death of the prisoner, D = 1, is more probable under the
hypothetical assumption that at least one of the two executioners did not fire
(p′X=0∨Y=0(D = 0) ≈ 0.56/≈ 0.57), than under the assumption that only one did
not fire (p′X=0(D = 0) = 0.598).

Primarily, the failure of Convexity in imaging is due to the fact that in
calculating p′X=0(D = 0) and p′X=0∨Y=0(D = 0), different worlds are involved:
there is no systematic connection between these two probabilities, like in our
proposal. For instance, when imaging on X = 0, part of the mass of w3 is
transferred to w5, whose probability mass makes a contribution to p′X=0(D =

0), but not to p′X=0∨Y=0(D = 0) (in Option 1). This explains why the latter
probability falls below p′X=0(D = 0), i.e., below the bounds resulting from the
Convexity Principle. In other words, the violation of the Convexity Principle
is due to the fact that Bayesianized imaging does not respect the Relevance
Principle: the possible worlds do not contain any information about the causal
structure of the model, and hence, the results of Bayesianized imaging can
differ substantially from our proposal.

Of course, generalized imaging offers an entire universe of different mass
transfer functions. So we do not exclude that the imaging theorist can find a
function that complies with the Convexity Principle. However, this must come
at the price of choosing a procedure that deviates systematically from CMS for
(conjunctions of) atomic interventions. What the imaging theorist cannot have
is a probability mass transfer function that agrees in regular circumstances
with CMS, and that satisfies at the same time the Convexity Principle when
applied to more complex interventions. Indeed, Pearl (2017, pp. 6-7) explicitly
advises caution when applying imaging to disjunctive interventions, such as
the ones that we discussed in this paper. Hence, we conclude that the imaging
framework has not yet delivered a convincing response to the problem of
evaluating the probability of counterfactuals with disjunctive antecedents.

7 Conclusions

The present paper expands Causal Modeling Semantics to the evaluation
of the probability of counterfactuals with disjunctive antecedents, and more
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generally, any truth-functional compound of atomic sentences. To the best
of our knowledge, no other proposal has been advanced in the literature to
achieve this goal. Our approach is very natural and based on combining three
well-established ideas: (1) Briggs’ characterization of disjunctive interventions
in a causal modeling framework; (2) Lewis’ idea of ordering possible worlds
according to their similarity with the actual world; (3) Eva et al.’s definition of
similarity distance between causal models by counting shared counterfactual
dependencies.

As an alternative to our approach, one can assign probabilities to counter-
factuals with disjunctive antecedents by embedding Lewis’ process of (gener-
alized) imaging into the causal modeling framework, via Bayesianized imag-
ing. However, this option does not return plausible predictions about the
probability of counterfactuals, and what is more, it violates intuitive require-
ments such as the Convexity Principle and the Relevance Principle.

For future work, it would be worth investigating further applications
of this framework and discuss whether it matches our intuitions about the
probability of counterfactuals. With respect to the former point, we believe
that an application of our framework could shed new lights on the notion
of disjunctive causes introduced by Sartorio (2006); with respect to the latter
point, we think that the question of what constraints one should impose on
the probability of counterfactuals is a urgent one. We hope to have started
an investigation towards this directions by showing how the probability of a
counterfactual A � B should intuitively have a lower and an upper bound
imposed by the best and worst scenarios for B that we could imagine under
the counterfactual supposition that A.
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