
 
	
  

Dwindling Confirmation 
 
William Roche* and Tomoji Shogenji† 
* Department of Philosophy, Texas Christian University, Fort Worth, TX, USA, e-mail: 
w.roche@tcu.edu 
† Department of Philosophy, Rhode Island College, Providence, RI, USA, e-mail: 
tshogenji@ric.edu 
 
ABSTRACT: We show that as a chain of confirmation becomes longer, confirmation 
dwindles under screening-off. For example, if E confirms H1, H1 confirms H2, and H1 
screens off E from H2, then the degree to which E confirms H2 is less than the degree to 
which E confirms H1. Although there are many measures of confirmation, our result 
holds on any measure that satisfies the Weak Law of Likelihood. We apply our result to 
testimony cases, relate it to the Data-Processing Inequality in information theory, and 
extend it in two respects so that it covers a broader range of cases. 
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1. Introduction. Think of a series of propositions E, H1, H2, …, Hn such that E supports 
H1, H1 supports H2, …, and Hn-1 supports Hn. If the support relation is logical 
entailment, then, regardless of the length of the series, E supports Hn since logical 
entailment is transitive. We cannot say the same though if the support relation is 
confirmation in the incremental sense (hereafter simply “confirmation”), where, for any 
two propositions E and H, E confirms H just in case E increases the probability of H, i.e., 
Pr(H | E) > Pr(H). Even if each member (except the last) supports the next member in the 
series, E might not support Hn.1 This is because confirmation, unlike logical entailment, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 A few comments are in order here. First, here and throughout the paper we suppress 
reference to background information. We also assume that E and H are contingent and 
that the probability function Pr is regular so that Pr(H | E) = 1 and Pr(E ∧ ¬H) = 0 if and 
only if E logically entails H. Second, confirmation in the incremental sense is equivalent 
to confirmation in the “relevance” sense. E incrementally confirms H just in case E is 
positively relevant to H. Put formally, Pr(H | E) > P(H) just in case Pr(H ∧ E) > 
Pr(H)Pr(E). Third, and finally, confirmation in the incremental sense is neither sufficient 
nor necessary for confirmation in the “absolute” sense where E confirms H if and only if 
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is non-transitive. To illustrate the point, suppose a card is randomly drawn from a 
standard deck of cards where E = the card drawn is a Heart, H1 = the card drawn is a Red 
Jack, and H2 = the card drawn is a Diamond. E confirms H1, since Pr(H1 | E) = 1/13 > 
1/26 = Pr(H1), and H1 confirms H2, as Pr(H2 | H1) = 1/2 > 1/4 = Pr(H2), but E does not 
confirm H2 because Pr(H2 | E) = 0 < 1/4 = Pr(H2). It is somewhat troubling that 
confirmation is non-transitive since we often construct a chain of reasoning even when 
the support relation is only confirmation. In fact, such reasoning seems unproblematic in 
many cases. Take a case of testimony. E = Smith said that the card drawn is a Red. H1 = 
the card drawn is a Red. H2 = the card drawn is a Heart. E confirms H1, at least on 
certain ways of filling in the details, H1 confirms H2 since Pr(H2 | H1) = 1/2 > 1/4 = 
Pr(H2), and it seems clear E confirms H2. 

A second issue of interest, regarding a series E, H1, H2, …, Hn where each member 
(except the last) confirms the next, concerns degree of confirmation. Suppose, unlike in 
the first card case above, E confirms each of the other members in the series. Intuitively, 
at least in many cases of this sort, confirmation dwindles in that the degree to which E 
confirms Hn is less than the degree to which it confirms Hn-1, the degree to which it 
confirms Hn-1 is less than the degree to which it confirms Hn-2, and so on.2 Here is an 
example. E = Smith said that miracle M occurred. H1 = miracle M occurred. H2 = God 
exists. E confirms H1, at least on certain ways of filling in the details, H1 in turn 
confirms H2, and, it seems, E confirms H2 (though the probability of H2 given E need 
not be high, in fact, might be quite low). But, it seems, the degree to which E confirms 
H2 is less than the degree to which E confirms H1. The sense of dwindling confirmation 
becomes stronger as the chain gets longer, for example, if E = Jones said that Smith said 
that miracle M occurred, H1 = Smith said that miracle M occurred, H2 = miracle M 
occurred, and H3 = God exists. It turns out, however, that confirmation does not always 
dwindle. Returning to the card case, suppose E = the card drawn is a Face or the Ace of 
Hearts, H1 = the card drawn is a Heart, and H2 = the card drawn is a King, a Queen, or 
the Ace of Hearts. It is hard to deny that the degree to which E confirms H2 is greater 
than the degree to which E confirms H1, for E only slightly raises the probability of H1 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
the probability of H given E is sufficiently high. See Carnap (1962, Preface to the Second 
Edition) on “concepts of increase in firmness” and “concepts of firmness.” See also 
Roche and Shogenji (2013) for discussion of yet further notions of confirmation. 
2 This claim about degree of confirmation is distinct from Plantinga’s claim of 
“dwindling probabilities” (2000, 2006). The latter (put in terms of E, H1, …, Hn) 
concerns just the probabilities Pr(H1 | E), Pr(H2 | E), …, Pr(Hn | E) and not degrees of 
confirmation (i.e., incremental confirmation). See McGrew (2004) and Swinburne (2004) 
for forceful objections to Plantinga’s argument for dwindling probabilities. 
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(from 1/4 to 4/13) but substantially raises the probability of H2 (from 9/52 to 9/13). 
Another point (not unrelated to the first) in favor of this judgment is that Pr(H2) < Pr(H1) 
while Pr(H2 | E) > Pr(H1 | E), in other words, the probability of H2 is initially lower than 
that of H1, but it ends up higher given E, so that the increase in probability is greater for 
H2 than for H1.3 

It would be welcome, then, if there were conditions sufficient for transitivity in 
confirmation and conditions sufficient for dwindling confirmation. The former conditions 
could be used to verify in a given case, where E confirms H1, H1 confirms H2, …, and 
Hn-1 confirms Hn, that E confirms Hn. The latter could be used to verify that, even when 
E confirms Hn, the degree to which E confirms Hn is less than the degree to which E 
confirms Hn-1. 

It turns out, fortunately, that confirmation is transitive under the condition: 
 

Screening-Off Condition (SOC). Pr(Hk | Hk-1 ∧ E) = Pr(Hk | Hk-1) and Pr(Hk | 
¬Hk-1 ∧ E) = Pr(Hk | ¬Hk-1).4 

 
(SOC) says in effect that Hk-1 screens off E from Hk in that given the truth or falsity of 
Hk-1, E has no impact on the probability of Hk.5 In other words, E affects the probability 
of Hk only indirectly through its impact on the probability of Hk-1. (SOC) is a condition 
sufficient for transitivity in confirmation in that: if Pr(Hk-1 | E) > Pr(Hk-1), Pr(Hk | Hk-
1) > Pr(Hk), and (SOC) holds, then Pr(Hk | E) > Pr(Hk). 

The main question we aim to answer is whether (SOC) is also a condition sufficient 
for dwindling confirmation. We argue in the affirmative. The paper proceeds as follows. 
In Section 2, we provide a list of the main confirmation measures in the literature 
(thirteen in total) and introduce an adequacy condition on confirmation measures, which 
is called “the Weak Law of Likelihood” (WLL), and which is satisfied by each of the 
measures in the list. Then, in Section 3, we show that confirmation dwindles under (SOC) 
on any confirmation measure meeting (WLL), hence on any adequate confirmation 
measure. This is the main result of the paper.6 We apply our result to testimony cases of 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 It should be noted too that each of the main confirmation measures discussed in the 
literature, and listed below in Section 2, implies that the degree to which E confirms H2 
is indeed greater than the degree to which E confirms H1. 
4 See Shogenji (2003). See also Sober (2009) for an equivalent result and applications. 
5 (SOC) does not hold in the first card case above, since Pr(H2 | H1 ∧ E) = 0 < 1/2 = 
Pr(H2 | H1) and Pr(H2 | ¬H1 ∧ E) = 0 < 6/25 = Pr(H2 | ¬H1). 
6 Douven (2011) presents counterexamples to non-dwindling under (SOC), i.e., he shows 
that on three measures—the difference measure, the log-likelihood measure, and the 
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the sort given above (where the subject uses information obtained from testimony for 
further inference) and relate our result to the “Data-Processing Inequality” in information 
theory. In Section 4, we extend our result in two respects. Finally, in Section 5, we 
conclude. 
 
 
2. Preliminaries. It is a matter of controversy among Bayesian confirmation theorists 
how exactly to measure confirmation. The main confirmation measures in the literature 
are the following: 
 

(i) C(H, E) = Pr(H ∧ E)− Pr(H)Pr(E); 
(ii) D(H, E) = Pr H E − Pr(H); 
(iii) G(H, E) = !"(¬!)

!"(¬!|!)
; 

(iv) J(H, E) = !"#![!" ! ! ]!!"#![!"(!)]
!!"#![!" ! ]

; 

(v) K(H, E) = !" ! ! !!"(!|¬!)
!" ! ! !!"(!|¬!)

; 

(vi) L(H, E) = !"(!|!)
!"(!|¬!)

; 

(vii) L*(H, E) = Log !"(!|!)
!"(!|¬!)

; 

(viii) M(H, E) = Pr E H − Pr(E); 
(ix) N(H, E) = Pr E H − Pr(E|¬H); 
(x) R(H, E) = !"(!|!)

!"(!)
; 

(xi) R*(H, E) = Log !"(!|!)
!"(!)

; 

(xii) S(H, E) = Pr H E − Pr(H|¬E); 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Kemeny-Oppenheim measure—regardless of the minimum degree required for 
substantial confirmation, there are probability distributions on which the degree to which 
E confirms H1 is substantial, the degree to which H1 confirms H2 is substantial, and 
(SOC) holds, and yet the degree to which E confirms H2 is not substantial. For related 
discussion, see Roche (2012b). Our result is different in three main respects. First, our 
result is not limited to cases where E substantially confirms H1 and H1 substantially 
confirms H2. Second, our result concerns all confirmation measures meeting (WLL) and 
thus all of the main confirmation measures from the literature. Third, our result goes 
beyond mere counterexamples to non-dwindling. We establish the positive universal 
claim that, when a certain condition concerning logical entailment holds, confirmation 
invariably dwindles under (SOC). 



	
   5 

(xiii) Z(H, E) = 

!" ! ! !!"(!)
!!!"(!)

ifPr H E ≥ Pr H
!" ! ! !!"(!)

!"(!)
otherwise

.7 

 
Some of these measures are ordinally equivalent to each other: they impose the same 
ordering in degrees of confirmation on any two ordered pairs of propositions <H, E> and 
<H’, E’>.8 For example, K, L, and L* are ordinally equivalent to each other. The 
measures taken as a group, however, are motley. 

Consider now the following condition on any adequate confirmation measure X: 
 

Weak Law of Likelihood (WLL). If (a) Pr(E | H) > Pr(E | H*) and (b) Pr(E | ¬H) < 
Pr(E | ¬H*), then X(H, E) > X(H*, E). 

 
We argue below in the next section that, under certain conditions, confirmation dwindles 
under (SOC) on all measures meeting (WLL). First, though, some comments are in order 
regarding (WLL). 

Bayesian confirmation theorists, while disagreeing about how exactly to measure 
confirmation, all agree (as far as we are aware) that any adequate confirmation measure 
should satisfy (WLL).9 This is manifest in the fact that each of measures (i)-(xiii) meets 
(WLL). This point is easiest to see with respect to measures (i)-(iii) and (v)-(xiii). If Pr(E 

| ¬H) < Pr(E | ¬H*), then G(H, E) = !"(¬!)
!"(¬!|!)

 = !"(!)
!"(!|¬!)

 >  !"(!)
!"(!|¬!∗)

 = !"(¬!
∗)

!"(¬!∗|!)
 = G(H*, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 For discussion and references regarding measures (i)-(iii) and (v)-(xiii), see Crupi et al. 
(2007), Eells and Fitelson (2002), and Festa (1999). J is given in Shogenji (2012). See 
also Tornebohm (1966). 
8 Put formally, measures X and X* are ordinally equivalent to each other just in case: for 
any two ordered pairs of propositions <H, E> and <H’, E’>, X(H, E) ≤ X(H’, E’) iff 
X*(H, E) ≤ X*(H’, E’). Note that it follows by contraposition that X(H, E) > X(H’, E’) iff 
X*(H, E) > X*(H’, E’). 
9 Bayesian confirmation theorists also all agree on a second adequacy condition on 
confirmation measures: There is a real number t such that (a) X(H, E) > t iff Pr(H | E) > 
Pr(H), (b) X(H, E) = t iff Pr(H | E) = Pr(H), and (c) X(H, E) < t iff Pr(H | E) < Pr(H). This 
condition, called “Qualitative Discrimination” in Crupi et al. (2010), says in effect that X 
discriminates between cases of confirmation, cases of neutrality (where E neither 
confirms nor disconfirms H), and cases of disconfirmation by assigning values above t to 
cases of confirmation, t to cases of neutrality, and values below t to cases of 
disconfirmation. 
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E). So, G meets (WLL). Similarly, if Pr(E | H) > Pr(E | H*), then R(H, E) = !"(!|!)
!"(!)

 = 
!"(!|!)
!"(!)

 >  !"(!|!
∗)

!"(!)
 = !"(!

∗|!)
!"(!∗)

 = R(H*, E). Thus R too meets (WLL). To see that the same is 

true of measures (i), (ii), (v)-(ix), and (xi)-(xiii), consider the following equalities: 
 

C(H, E) = !
!

!! !
!(!,!)

! !
! !,! !!

Pr(E); 

D(H, E) = !
!

!! !
!(!,!)

! !
! !,! !!

; 

K(H, E) = ! !,! !(!,!)!!
! !,! !(!,!)!!

; 

L(H, E) = R H,E G H,E ; 
L*(H, E) = Log R H,E G(H,E) ; 
M(H, E) = Pr E [R H,E −1]; 
N(H, E) = R H,E − !

!(!,!)
Pr(E); 

R*(H, E) = Log R H,E ; 

S(H, E) =

!
!

!! !
!(!,!))

! !
! !,! !!

!!!"(!)
; 

Z(H, E) =
1− !

!(!,!)
ifPr H E ≥ Pr H

R H,E − 1 otherwise
. 

 
Take the first equality. C(H, E) is fully determined by G, R, and Pr(E), and is a 
monotonically increasing function of G and R. So, since Pr(E) is a constant in the 
inequalities in (WLL), and since G(H, E) and R(H, E) increase, respectively, as Pr(E | 
¬H) decreases and Pr(E | H) increases, it follows that C(H, E) also increases as Pr(E | 
¬H) decreases and Pr(E | H) increases. But that is just what satisfaction of (WLL) 
demands. So C satisfies (WLL). Similar remarks can be made with respect to measures 
(ii), (v)-(ix), and (xi)-(xiii). J (as far as we are aware) is not “reducible” to G, R, and 
Pr(E). But it too meets (WLL) (see Appendix A for proof). 

(WLL) is similar to “the weak likelihood principle” which is endorsed by Joyce 
(2008) and which is equivalent to the following: 
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(WLL*). If (a) Pr(E | H) > Pr(E | H*) and (b) Pr(E | ¬H) ≤ Pr(E | ¬H*), then X(H, E) 
> X(H*, E).10 

 
In defense of (WLL*), Joyce writes: 
 

(2.1e) [i.e., the weak likelihood principle] captures one core message of Bayes’ 
Theorem for theories of confirmation. Let’s say that H is uniformly better than H* as 
predictor of E’s truth-value when (a) H predicts E more strongly than H* does, and 
(b) ~H predicts ~E more strongly than ~H* does. According to the weak likelihood 
principle, hypotheses that are uniformly better predictors of the data are better 
supported by the data. For example, the fact that little Johnny is a Christian is better 
evidence for thinking that his parents are Christian than for thinking that they are 
Hindu because (a) a far higher proportion of Christian parents than Hindu have 
Christian children, and (b) a far higher proportion of non-Christian parents than non-
Hindu parents have non-Christian children. (2008, Sect. 3, emphasis Joyce’s) 
In fact, the weak likelihood principle (2.1e) encapsulates a minimal form of 
Bayesianism to which all parties can agree. … Indeed, the weak likelihood principle 
must be an integral part of any account of evidential relevance that deserves the title 
“Bayesian”. 

 
To deny it is to misunderstand the central message of Bayes’ Theorem for questions 
of evidence: namely, that hypotheses are confirmed by the data they predict. (2008, 
Sect. 3) 

 
(WLL*) is slightly stronger than (WLL), as one of the inequalities in its antecedent is 
weakened slightly from “less than” in (b) of (WLL) to “less than or equal to” in (b) of 
(WLL*). This fact, it turns out, is rather significant for our purposes. Unlike (WLL), 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 Joyce (2008, Sect. 3) also gives a second construal of the weak likelihood principle (on 
which the principle is stronger than on the first construal). It is equivalent to the 
following: If (a) Pr(E | H) ≥ Pr(E | H*), (b) Pr(E | ¬H) ≤ Pr(E | ¬H*), and (c) one of the 
two inequalities is strict, then X(H, E) > X(H*, E) and X(¬H, ¬E) > X(¬H*, ¬E). Each 
of these likelihood conditions—(WLL) and (WLL*) on its two construals—is much 
weaker than “the Law of Likelihood” (LL): If Pr(E | H) > Pr(E | H*), then X(H, E) > 
X(H*, E). See also Brossel (2013), Crupi et al. (2010), Fitelson (2007, 2011), and Sober 
(2011). 
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(WLL*) is not met by all of measures (i)-(xiii).11 So, since not all Bayesian confirmation 
theorists will accept (WLL*), we want to remain neutral on whether confirmation 
measures ought to satisfy (WLL*). However, what Joyce says on behalf of (WLL*) 
carries over to (WLL). If Pr(E | H) > Pr(E | H*) and Pr(E | ¬H) < Pr(E | ¬H*), then H is 
“uniformly better than” H* at predicting E. The key insight behind (WLL) is that if H is 
uniformly better than H* at predicting E, then E provides more confirmation to H than to 
H*. 

One final comment on (WLL) is in order. While (WLL) is a rather undemanding 
adequacy condition on confirmation measures, it is not entirely toothless. Consider the 
measure: 
 

(xiv) D’(H, E) = Pr H E Pr H E − Pr H Pr H . 
 
D’ is similar in an obvious respect to D which is a popular measure. But D’ does not meet 
(WLL). So, it is significant that the main confirmation measures in the literature, 
motivated by various disparate considerations, all satisfy (WLL). 

The question of dwindling confirmation under (SOC) can now be put precisely. Let 
E, H1, H2, …, Hn be a series of propositions. Consider the conditions: 
 

(A) H1 is confirmed by E, and Hk is confirmed by Hk-1 for all 2 ≤ k ≤ n; 
(B) E is screened off in the sense of (SOC) from Hk by Hk-1 for all 2 ≤ k ≤ n;12 
(C) E neither entails nor is entailed by H1, and Hk-1 neither entails nor is entailed 

by Hk for all 2 ≤ k ≤ n.13 
 
The question of dwindling confirmation under (SOC) is this: Is it the case that if (A), (B), 
and (C) hold and X meets (WLL), then X(Hk, E) < X(Hk-1, E) for all 2 ≤ k ≤ n? 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 G and Z do not meet (WLL*). To see this in the case of G, suppose Pr(E | H) > Pr(E | 
H*) and Pr(E | ¬H) = Pr(E | ¬H*). It should be the case by (WLL*) that G(H, E) > 

G(H*, E), but it is not since G(H, E) = !"(¬!)
!"(¬!|!)

 = !"(!)
!"(!|¬!)

 = !"(!)
!"(!|¬!∗)

 = !"(¬!
∗)

!"(¬!∗|!)
 = G(H*, 

E). The case of Z is similar. 
12 The qualification “in the sense of (SOC)” is needed because we introduce a second 
screening-off condition in Subsection 4.1 below. 
13 Recall the regularity assumption mentioned in footnote 1. It follows from (C) that 
Pr(H1 | E) < 1, Pr(E | H1) < 1, Pr(Hk | Hk-1) < 1, and Pr(Hk-1 | Hk) < 1. 
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3. Main Result. The task now is to answer the question of dwindling confirmation under 
(SOC). We do this in Subsection 3.1. We then turn to testimony cases in Subsection 3.2, 
and to the Data-Processing Inequality in Subsection 3.3. 
 
3.1. Dwindling Confirmation under (SOC). The answer to the question of dwindling 
confirmation under (SOC) is affirmative: 
 

Theorem 1. If (A), (B), and (C) hold and X meets (WLL), then X(Hk, E) < X(Hk-1, 
E) for all 2 ≤ k ≤ n. 

 
(See Appendix B for proof.) The key in the proof of Theorem 1 is the relations of 
likelihood that if (A), (B), and (C) hold, then (i) Pr(E | Hk-1) > Pr(E | Hk) and (ii) Pr(E | 
¬Hk-1) < Pr(E | ¬Hk) for all 2 ≤ k ≤ n. Theorem 1 follows immediately from (i) and (ii) 
by (WLL). 

Each of measures (i)-(xiii) meets (WLL). So, Theorem 1 entails that confirmation 
dwindles under (SOC) on each of measures (i)-(xiii). It is well known that certain claims 
about confirmation hold on some measures but not on others (Brossel 2013 and Fitelson 
1999). There is no such “problem of measure sensitivity” with dwindling confirmation 
under (SOC): confirmation dwindles under (SOC) on all of the main confirmation 
measures in the literature and, indeed, on any adequate confirmation measure extant or 
otherwise. 
 
3.2. Testimony Cases. Theorem 1 has application in many cases involving testimony 
where E = S said that H1 but the proposition of interest is not H1 itself but H2 that is 
related to it. In many such cases E neither entails nor is entailed by H1, H1 neither entails 
nor is entailed by H2, but E confirms H1 which in turn confirms H2. Moreover, and 
crucially, (SOC) holds in many such cases: given the truth of H1 (which is the 
proposition to which S testified), or given the falsity of H1, that S said that H1 has no 
impact on the probability of H2 (Shogenji 2003). The second testimony case from 
Section 1, where E = Smith said that miracle M occurred, H1 = miracle M occurred, and 
H2 = God exists, is plausibly such a case. E increases the probability of H1 (at least on 
some ways of filling in the details of the case)—even if just barely. H1 in turn increases 
the probability of H2. E (we can suppose) neither entails nor is entailed by H1. H1 neither 
entails nor is entailed by H2.14 Further, it seems, (SOC) holds: E has an impact on the 
probability of H2 only indirectly through H1. To put this in terms of rational credence, if 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14 We are assuming here that a miracle can occur in principle at least even if God does 
not exist. 
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one already knows whether miracle M occurred or not, then learning further that Smith 
said that miracle M occurred has no impact on one’s credence in God’s existence. On this 
construal of the case, Theorem 1 applies so that E confirms the existence of God less than 
it does the occurrence of miracle M. 

Things are much the same in cases involving higher-order testimonies. For example, 
the first member of the series is E = S1 said that S2 said that H2, the second member is 
H1 = S2 said that H2, the third member is H2 itself, and the fourth member is some 
proposition H3 related to H2. In many such cases (SOC) still holds at each step so that 
Theorem 1 applies if other conditions are also met. Since confirmation keeps dwindling 
as the chain becomes longer, there is less confirmation, other things being equal, in cases 
involving more intermediary steps. 

A caveat is called for here. Theorem 1 by itself has no implications concerning how 
much dwindling there is in a given case. Even if the degree to which E confirms Hk is 
less than the degree to which E confirms Hk-1 for all 2 ≤ k ≤ n, it might be that the 
amount of dwindling at each step is slight and that the total amount of dwindling is not 
substantial. It is worth noting in this regard that measures (i)-(xiii) differ in terms of how 
much dwindling they allow in a given case. Consider R and Z for instance and a three-
member series E, H1, H2 such that (A), (B), and (C) hold. There are distributions of 
probabilities on which each of R(H1, E) and R(H2, H1) is very high, say, roughly equal 
to 100,000, but R(H2, E) is very low, say, roughly equal to 1.01. Degree of confirmation 
can drop off precipitously on R in a single step of mediation under (SOC). Things are 
quite different with Z. When (SOC) holds, Z(H2, E) equals the product of Z(H1, E) and 
Z(H2, H1).15 So, if each of Z(H1, E) and Z(H2, H1) is very high, then it cannot be the 
case that Z(H2, E) is very low. 
 
3.3. The Data-Processing Inequality. The Data-Processing Inequality concerns “mutual 
information.” Let X and Y be discrete variables. The mutual information I(X, Y) between 
X and Y is the (weighted) average amount of information provided about (a proposition 
specifying) the state of the one variable by (a proposition specifying) the state of the 
other variable: 
 

Σ!∈!Σ!∈!Pr(x ∧ y)Log!
!"(!∧!)

!" ! !"(!)
. 

 
Here “x” and “y” are propositions specifying the states of X and Y respectively. Mutual 
information is symmetric in that I(X, Y) = I(Y, X). Now let D, P, and E be discrete 
variables (“D” for “distal cause,” “P” for “proximate cause,” “E” for “effect”) and 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15 This is clear from (14) in Appendix B. 
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suppose (SOC) holds in that each state of P screens off each state of E from each state of 
D.16 Then, by the Data-Processing Inequality, the mutual information between E and D is 
less than the mutual information between E and P: I(E, D) < I(E, P).17 This result can be 
glossed: mutual information dwindles under (SOC). 

The Data-Processing Inequality has application to the issue of information loss in 
various settings. Consider, for example, an evolutionary process in which each member 
of a population has trait A or trait B (but not both).18 Suppose the state of the population 
(the distribution of A and B in the population) at a given time screens off the state of the 
population at any earlier time. In other words, the state of the population at a given time 
has a direct impact only on the immediately succeeding state, so that if it has an impact 
on any subsequent states, it does so only indirectly through its impact on the immediately 
succeeding state. It follows from the Data-Processing Inequality that the current state of 
the population provides more information on average about the state of the population at 
more recent times than about the state of the population at less recent times. 

This result is interesting and resembles dwindling confirmation under (SOC), but 
there are important differences. First, mutual information (as defined above) is the 
expected amount of information—the amount of information about the state of one 
variable we should expect to receive upon learning the state of the other variable.19 
Suppose we learn E where E is a specific proposition about the current state of the 
population in the evolutionary case above, and our interest shifts from the expected 
amount of information to the degree of confirmation provided by E. Suppose, more 
specifically, we want to know whether E confirms H1 better than H2 where H1 is a 
proposition about the state of the population at an earlier time t1 and H2 is a proposition 
about the state of the population at an even earlier time t2. The Data-Processing 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
16 Screening-off is symmetric. So, as each state of P screens off each state of E from each 
state of D, it follows that each state of P screens off each state of D from each state of E. 
17 See Cover and Thomas (2006, Ch. 2) for explanation of mutual information and the 
Data-Processing Inequality (Theorem 2.8.1). Strictly speaking, in order for I(E, D) to be 
less than I(E, P), it also needs to be the case that I(E, P | D) is greater than 0. This 
condition should be understood throughout this subsection. 
18 See Sober and Steel (unpublished) for discussion of the Data-Processing Inequality, 
along with “the Markov Chain Convergence Theorem,” and the issue of how 
evolutionary processes affect how much information the present provides about the past. 
19 Terminology varies. Fano (1961), for example, distinguishes between mutual 
information and expected mutual information. Mutual information in our terminology is 
expected mutual information in Fano’s terminology. Mutual information for Fano is not 
an average. 
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Inequality is of no help here, since, as explained above, the Data-Processing Inequality 
concerns mutual information and mutual information is the expected amount of 
information. Of course, information theory also allows us to determine how much 
information particular proposition x provides about particular proposition y in the form of 
Log!

!"(!∧!)
!" ! !"(!)

. So, we can compare the amounts of information E provides about H1 

and H2, respectively. But, notice that the measure used here is the log-ratio measure of 
confirmation R*. So, when we translate the result into the language of confirmation 
theory, we are forced to use the specific measure R*. Theorem 1 above reveals not only 
that E provides less information about H2 than about H1 under (SOC), but also that there 
is no need to use the specific measure R*. If E confirms H1, H1 confirms H2, (SOC) 
holds, E neither entails nor is entailed by H1, and H1 neither entails nor is entailed by H2, 
then by Theorem 1 the degree to which E confirms H2 is less than the degree to which E 
confirms H1 on any adequate confirmation measure. Theorem 1 thus serves as a welcome 
supplement to the Data-Processing Inequality. 
 
 
4. Further Results. We now show that Theorem 1 can be extended in two respects. The 
first respect (discussed in Subsection 4.1) concerns a screening-off condition weaker than 
(SOC). The second respect (discussed in Subsection 4.2) concerns cases where condition 
(C)—the condition that E neither entails nor is entailed by H1, and Hk-1 neither entails 
nor is entailed by Hk for all 2 ≤ k ≤ n—does not hold. 
 
4.1. Dwindling Confirmation under (PISOC). (SOC) is the standard screening-off 
condition. But there are others. A less restrictive screening-off condition is: 
 

Positive Impact Screening-Off Condition (PISOC). Pr(Hk | Hk-1 ∧ E) ≤ Pr(Hk | 
Hk-1) and Pr(Hk | ¬Hk-1 ∧ E) ≤ Pr(Hk | ¬Hk-1). 

 
(PISOC) says in effect that given the truth or falsity of H1, E has no positive impact on 
the probability of H2—either E has no impact on the probability of H2 or the impact is 
negative. (PISOC) is weaker than (SOC), in that (PISOC) holds if (SOC) holds but not 
vice versa. 

(PISOC), unlike (SOC), is not a condition sufficient for transitivity in confirmation.20 
But (PISOC), like (SOC), is a condition sufficient for dwindling confirmation. Consider 
the condition: 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
20 Recall the first card case given in Section 1, where a card is randomly drawn from a 
standard deck of cards, and E = the card drawn is a Heart, H1 = the card drawn is a Red 
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(B*) E is screened off in the sense of (PISOC) from Hk by Hk-1 for all 2 ≤ k ≤ n. 
 
(B*) is simply (B) with (SOC) replaced by (PISOC). (PISOC) is a condition sufficient for 
dwindling confirmation in that: 
 

Theorem 2. If (A), (B*), and (C) hold and X meets (WLL), then X(Hk, E) < X(Hk-1, 
E) for all 2 ≤ k ≤ n. 

 
(See Appendix C for proof.) The crucial thing here is that (A), (B*), and (C)—as with 
(A), (B), and (C)—together imply that (i) Pr(E | Hk-1) > Pr(E | Hk) and (ii) Pr(E | ¬Hk-1) 
< Pr(E | ¬Hk) for all 2 ≤ k ≤ n.21 

Theorem 2 marks a further respect in which dwindling confirmation under (SOC) 
differs from the Data-Processing Inequality. The latter cannot be extended to the case 
where (PISOC) holds but (SOC) does not.22 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Jack, and H2 = the card drawn is a Diamond. We used the case as a counterexample to 
transitivity, but (PISOC) holds in it; Pr(H2 | H1 ∧ E) = 0 < 1/2 = Pr(H2 | H1) and Pr(H2 | 
¬H1 ∧ E) = 0 < 6/25 = Pr(H2 | ¬H1). So, (PISOC) is not sufficient for transitivity in 
confirmation. 
21 There is yet a third screening-off condition: 
 

Negative Impact Screening-Off Condition (NISOC). Pr(H2 | H1 ∧ E) ≥ Pr(H2 | 
H1) and Pr(H2 | ¬H1 ∧ E) ≥ Pr(H2 | ¬H1). 

 
(NISOC) is like (PISOC) in that given the truth or falsity of H1, E may still have some 
impact on the probability of H2. But whereas (PISOC) precludes the impact from being 
positive, (NISOC) precludes it from being negative. (NISOC), like (SOC), is a condition 
sufficient for transitivity in confirmation (Roche 2012a). But it is not the case that 
confirmation dwindles under (NISOC) on all measures meeting (WLL). In fact, for each 
of measures (i)-(xiii), there are distributions of probabilities on which E confirms H1, H1 
confirms H2, (NISOC) holds, E neither entails nor is entailed by H1, H1 neither entails 
nor is entailed by H2, and yet the confirmation provided to H2 by E is greater than or 
equal to the confirmation provided by E to H1. 
22 There are (at least) two ways to try to extend the Data-Processing Inequality to the case 
where (PISOC) holds but (SOC) does not. Consider a case involving dichotomous 
variables X, Y, Z where x1 = X has value 1, x2 = X has value 2, and similarly for y1, y2, 
z1, z2. First, one can require that each member of the partition {x1, x2} be screened off 
in the sense of (PISOC) by each member of the partition {y1, y2} from each member of 
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4.2. Non-Increasing Confirmation under (SOC) and (PISOC). Recall that each of the 
main confirmation measures in the literature—measures (i)-(xiii)—meets (WLL). The 
same is true of a slightly different condition: 
 

(WLL**). If (a) Pr(E | H) ≥ Pr(E | H*) and (b) Pr(E | ¬H) ≤ Pr(E | ¬H*), then X(H, 
E) ≥ X(H*, E). 

 
First, if Pr(E | ¬H) ≤ Pr(E | ¬H*), then G(H, E) = !"(¬!)

!"(¬!|!)
 = !"(!)

!"(!|¬!)
 ≥  !"(!)

!"(!|¬!∗)
 = 

!"(¬!∗)
!"(¬!∗|!)

 = G(H*, E), and if Pr(E | H) ≥ Pr(E | H*), then R(H, E) = !"(!|!)
!"(!)

 = !"(!|!)
!"(!)

 ≥  
!"(!|!∗)
!"(!)

 = !"(!
∗|!)

!"(!∗)
 = R(H*, E). So G and R meet (WLL**). Next, given that G and R meet 

(WLL**), and given the list of equalities provided in Section 2, it follows that C, D, K, L, 
L*, M, N, R*, S, and Z meet (WLL**). These measures are fully determined by G, R, 
and Pr(E), and are monotonically increasing functions of G and/or R. As noted in Section 
2, J is not “reducible” to G, R, and Pr(E), as far as we can tell, but it can be shown (in a 
way parallel to the proof given in Appendix A) that J also meets (WLL**). 

A few remarks are in order concerning (WLL**) as it relates to (WLL) and (WLL*). 
First, all inequalities in (WLL) are strict (“>” or “<”) while all inequalities in (WLL**) 
are non-strict (“≥” or “≤”). (WLL) states in essence that if H is uniformly better than H* 
at predicting E, then E confirms H more than it does H*. Similarly, (WLL**) states in 
essence that if H is uniformly at least as good as H* at predicting E, then E confirms H at 
least as well as it does H*. (WLL**) is every bit as intuitive as (WLL). Any adequate 
confirmation measure should satisfy (WLL**). Second, whereas all inequalities in 
(WLL**) are non-strict, this is not the case with (WLL*)—the first and third are strict 
while the second is non-strict. (WLL*) states in essence that if H is in some way better 
than H* and in another way as good as H* at predicting E, then E confirms H better than 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
the partition {z1, z2}. Second, one can require just that x1 be screened off in the sense of 
(PISOC) from z1 by y1. Both options are problematic. The first option fails because there 
is no case in which each member of {x1, x2} is screened off in the sense of (PISOC) by 
each member of {y1, y2} from each member of {z1, z2} but each member of {x1, x2} is 
not screened off in the sense of (SOC) by each member of {y1, y2} from each member of 
{z1, z2}. For, if, say, Pr(z1 | y1 ∧ x1) ≤ P(z2 | y1), then Pr(¬z2 | y1 ∧ x1) ≥ Pr(¬z2 | y1). 
So, Pr(¬z2 | y1 ∧ x1) ≤ Pr(¬z2 | y1) only if Pr(¬z2 | y1 ∧ x1) = Pr(¬z2 | y1), as required 
by (SOC). The second option fails because there are counterexamples, more specifically, 
there are cases where x1 is screened off in the sense of (PISOC) from z1 by y1 and yet 
I(X, Y) is less than I(X, Z). 
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it does H*. Recall that not all of measures (i)-(xiii) meet (WLL*). This is because on 
some such measures the first condition in the antecedent of (WLL*) is irrelevant to the 
truth or falsity of the consequent so that (WLL*) is tantamount to the dubious claim that 
if H is at least as good as H* at predicting E, then E confirms H better than it does H*. 
Things are different with (WLL**). The measures in question imply that the first 
condition in the antecedent of (WLL**) is irrelevant to the truth or falsity of the 
consequent, but they also imply that (WLL**) is tantamount to the plausible claim that if 
H is at least as good as H* at predicting E, then E confirms H at least as well as it does 
H*. 

Recall condition (C) that E neither entails nor is entailed by H1, and Hk-1 neither 
entails nor is entailed by Hk for all 2 ≤ k ≤ n. It is essential to Theorem 1 that (C) holds in 
that if (A) and (B) hold but (C) does not, then, even supposing that X meets (WLL), it 
might be that X(Hk, E) ≮ X(Hk-1, E) for some 2 ≤ k ≤ n. However, we now have: 
 

Theorem 3. If (A) and (B) hold and X meets (WLL**), then X(Hk, E) ≤ X(Hk-1, E) 
for all 2 ≤ k ≤ n. 

 
(See Appendix D for proof.) Theorem 3, unlike Theorems 1 and 2, is not limited to cases 
where (C) holds. As a result, in some instances of Theorem 3, X(Hk, E) = X(Hk-1, E) and 
thus confirmation does not dwindle. Theorem 3 can be glossed: confirmation in a chain of 
support never increases under (SOC). 

It is straightforward to show that, similarly, confirmation never increases under 
(PISOC): 
 

Theorem 4. If (A) and (B*) hold and X meets (WLL**), then X(Hk, E) ≤ X(Hk-1, E) 
for all 2 ≤ k ≤ n. 

 
(The proofs for Theorems 2 and 3 can be readily adapted to establish Theorem 4.) 
 
 
5. Conclusion. To state the main result of the paper in non-formal terms: as the chain of 
probabilistic support becomes longer, confirmation dwindles provided the first 
proposition supports each of the subsequent propositions only indirectly through the 
chain. This is true on each of the main confirmation measures in the literature, and more 
generally, on any adequate confirmation measure. This result applies to many testimony 
cases, and it serves as a welcome supplement to the Data-Processing Inequality. One 
question for future research is whether expected confirmation dwindles under (SOC)—
not just on the log-ratio measure of confirmation, as the Data Processing Inequality 
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implies, but also on any adequate confirmation measure. If so, we can make claims about 
expected confirmation without taking a stand on which of the many possible confirmation 
measures is to be preferred. 
 
 
Appendix A: Proof of J’s meeing (WLL). Suppose the antecedent of (WLL) holds. 
Then, since G and R meet (WLL), it follows that G(H*, E) < G(H, E) and R(H*, E) < 
R(H, E). Given that R(H*, E) < R(H, E), there are four cases to consider: 
 
 (1) 1 < R(H*, E) < R(H, E); 
 (2) 0 < R(H*, E) ≤ 1 < R(H, E); 
 (3) 0 < R(H*, E) < 1 ≤ R(H, E); 
 (4) 0 < R(H*, E) < R(H, E) < 1.  
 
We begin with cases (2) and (3), and then turn to cases (1) and (4). 

Rewrite J(H, E) and J(H*, E) as follows: 
 
 J(H, E) = !"#![! !,! ]

!!"#![!"(!)]
; 

 J(H*, E) = !"#![! !∗,! ]
!!"#![!"(!∗)]

. 

 
Since 0 < −Log![Pr(H)] and 0 < −Log![Pr(H∗)], it follows from (2) and (3), 
respectively, that: 
 
 (2*) J(H*, E) ≤ 0 < J(H, E); 
 (3*) J(H*, E) < 0 ≤ J(H, E). 
 
So, J(H*, E) < J(H, E) in cases (2) and (3). 

Cases (1) and (4)—the two remaining cases—imply, respectively, that: 
 
 (1*) 0 < Log![R H∗,E ] < Log![R H,E ]; 
 (4*) Log![R H∗,E ] < Log![R H,E ] < 0. 
 
In both case (1) and case (4), either (a) 0 < Pr(H*) ≤ Pr(H) < 1 or (b) 0 < Pr(H) < Pr(H*) 
< 1, from which it follows, respectively, that: 
 
 (a*) Log![Pr(H∗)] ≤ Log![Pr(H)] < 0; 
 (b*) Log![Pr(H)] < Log![Pr(H∗)] < 0. 
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To show that J(H*, E) < J(H, E) in case (1), it suffices to show that J(H*, E) < J(H, E) in 
the two sub-cases: (1) and (a); (1) and (b). Likewise, to show that J(H*, E) < J(H, E) in 
case (4), it suffices to show that J(H*, E) < J(H, E) in the two sub-cases: (4) and (a); (4) 
and (b). 

First sub-case: (1) and (a). It follows immediately from (1*) and (a*) that J(H*, E) < 
J(H, E). Second sub-case: (1) and (b). Let Pr H∗ = Pr(H)!, where 0 < α < 1 from (b). 

G(H*, E) < G(H, E), so !"(¬!
∗)

!"(¬!∗|!)
< !"(¬!)

!"(¬!|!)
. Given this, and given that 

 

 !"(¬!∗)
!"(¬!∗|!)

< !"(¬!)
!"(¬!|!)

  iff 

 !!!"(!|!)
!!!"(!∗|!)

< !!!"(!)
!!!"(!∗)

  iff 

 !!!"(!)!(!,!)
!!!"(!∗)!(!∗,!)

< !!!"(!)
!!!"(!∗)

  iff 

 !!!"(!)!(!,!)
!!!"(!)!!(!∗,!)

< !!!"(!)
!!!"(!)!

, 

 
we have: 
 
 (5) !!!"(!)!(!,!)

!!!"(!)!!(!∗,!)
< !!!"(!)

!!!"(!)!
. 

 
Meanwhile, it follows from α < 1 and 0 < Pr(H) < 1 that !!!

!!!!
 is a strictly increasing 

function of x. But Pr(H1) < Pr(H1)R(H1, E) from (1). So, 
 
 (6) !!!"(!)

!!!"(!)!
< !!!"(!)!(!,!)

!![!" ! ! !,! ]!
. 

 
It follows from (5) and (6) that 
 
 (7) !!!"(!)!(!,!)

!!!"(!)!!(!∗,!)
< !!!"(!)!(!,!)

!![!" ! ! !,! ]!
. 

 
Hence, R H∗,E < R(H,E)!. So, 
 
 (8) Log! R H∗,E < αLog![R H,E ]. 
 
It follows from (8) and 0 < −Log![Pr H ] that 
 

 (9) !"#! ! !∗,!
!!"#![!" ! ]

< !!"#! ! !,!
!!"#![!" ! ]

. 
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(9) implies: 
 

 (10) !"#! ! !∗,!
!!!"#![!" ! ]

< !"#! ! !,!
!!"#![!" ! ]

. 

 
It then follows that J(H*, E) < J(H, E) as follows: 
 

 (11) !"#! ! !∗,!
!!"#![!" !∗ ]

= !"#! ! !∗,!
!!"#![!"(!)!]

= !"#! ! !∗,!
!!!"#![!" ! ]

< !"#! ! !,!
!!"#![!" ! ]

. 

 
Hence J(H*, E) < J(H, E) in case (1). 

Third sub-case: (4) and (a). Let Pr H∗ = Pr(H)!, where 1 ≤ α from (a). (5) holds by 
the same reasoning as in the second sub-case. Meanwhile, it follows from 1 ≤ α that !!!

!!!!
 

is a strictly decreasing function of x. But Pr(H1) > Pr(H1)R(H1, E) from (4). So (6) 
holds. The argument then continues in parallel to the argument given in the second sub-
case. Fourth sub-case: (4) and (b). It follows immediately from (4*) and (b*) that J(H*, 
E) < J(H, E). Thus J(H*, E) < J(H, E) in case (4). 

So, as J(H*, E) < J(H, E) in cases (1)-(4), it follows that J meets (WLL). ■ 
 
 
Appendix B: Proof of Theorem 1. We establish Theorem 1 in two steps. First, we 
establish a lemma: 
 

Lemma. If (A), (B), and (C) hold, then (a) Pr(E | Hk-1) > Pr(E | Hk) and (b) Pr(E | 
¬Hk-1) < Pr(E | ¬Hk) for all 2 ≤ k ≤ n. 

 
Second, we argue from Lemma to Theorem 1. 

Consider a three-member series E, H1, H2 and suppose the antecedent of Lemma 
holds. It is known (Shogenji 2003) that if H1 screens off E from H2, as (B) implies, then: 
 

 (12) Pr H2 E − Pr H2 = !" !" ! !!" !" !" !" !" !!" !"
!!!" !"

. 

 
(12) implies: 
 

(13) !" !" ! !!" !"
!"(!")

= !" !" ! !!"(!")
!"(!")

!"(!") !" !" !" !!"(!")
!"(!") !!!"(!")

; 

(14) !" !" ! !!"(!")
!!!"(!")

= !" !" ! !!"(!") !" !" !" !!"(!")
!!!"(!") !!!"(!")

. 
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But, given (C), we have: 
 

(15) Pr(H1)(Pr(H2 | H1) – Pr(H2)) = Pr(H1 ∧ H2) – Pr(H1)Pr(H2) 
   < Pr(H2) – Pr(H2)(H1) = Pr(H2)(1 – Pr(H1)). 

 
(13) and (15) together entail: 
 

(16) !" !" ! !!" !"
!"(!")

< !" !" ! !!"(!")
!"(!")

. 

 
(16) implies: 
 

(17) R(H2, E) = !" !" !
!"(!")

< !" !" !
!"(!")

 = R(H1, E). 

 
Next, from (C), we have: 
 

(18) Pr(H2 | H1) – Pr(H2) < 1 – Pr(H2). 
 
(14) and (18) together imply: 
 
 (19) !" !" ! !!"(!")

!!!"(!")
< !" !" ! !!"(!")

!!!"(!")
. 

 
But, we have: 
 

(20) !" !" ! !!"(!")
!!!"(!")

< !" !" ! !!"(!")
!!!"(!")

  iff 

 1− !" ¬!" !
!" ¬!"

< 1− !" ¬!" !
!" ¬!"

  iff 

 !" ¬!" !
!" ¬!"

> !" ¬!" !
!" ¬!"

  iff 

 !"(¬!")
!" ¬!"|!

< !"(¬!")
!" ¬!"|!

. 

 
It follows from (19) and (20) that: 
 

(21) G(H2, E) = !"(¬!")
!" ¬!"|!

< !"(¬!")
!" ¬!"|!

 = G(H1, E) 

 
So, if the antecedent of Lemma holds for a three-member series E, H1, H2, then R(H2, E) 
< R(H1, E) and G(H2, E) < G(H1, E). 
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Now we generalize this result to the n-member series E, H1, H2, …, Hn. Suppose the 
antecedent of Lemma holds. (SOC) is a condition sufficient for transitivity in 
confirmation, so, given (A) and (B), it follows that E confirms Hk for all 1 ≤ k ≤ n. Next, 
given (A)-(C), and given the result from the previous paragraph, it follows that R(Hk, E) 
< R(Hk-1, E) and G(Hk, E) < G(Hk-1, E). 

Lemma is but a short step away. R(H, E) = !" ! !
!"(!)

 = !" ! !
!"(!)

 and G(H, E) = !"(¬!)
!" ¬!|!

 = 
!"(!)

!" !|¬!
.  So, as R(Hk, E) < R(Hk-1, E) and G(Hk, E) < G(Hk-1, E), we have: 

 

(22) !"(!|!")
!"(!)

= !" !" !
!!(!")

< !" !"!! !
!"(!"!!)

= !"(!|!"!!)
!"(!)

; 

(23) !"(!)
!" !|¬!"

= !"(¬!")
!" ¬!"|!

< !"(¬!"!!)
!" ¬!"!!|!

= !"(!)
!" !|¬!"!!

. 

 
It follows immediately from (22) and (23), respectively, that Pr(E | Hk-1) > Pr(E | Hk) 
and Pr(E | ¬Hk-1) < Pr(E | ¬Hk). Lemma is thus established. 

Suppose now the antecedent of Theorem 1 holds. Then, the antecedent of Lemma 
also holds. So, it follows by Lemma that (a) Pr(E | Hk-1) > Pr(E | Hk) and (b) Pr(E | 
¬Hk-1) < Pr(E | ¬Hk). It then follows, as X meets (WLL), that X(Hk, E) < X(Hk-1, E). 
∎ 
 
 
Appendix C: Proof of Theorem 2. Suppose the antecedent of Theorem 2 holds. Then, 
by reasoning similar to that for (12), we have: 
 

  (12*) Pr H2 E − Pr H2 ≤ !" !" ! !!" !" !" !" !" !!" !"
!!!" !"

. 

 
It follows from (12*) that: 
 

(13*) !" !" ! !!" !"
!"(!")

≤ !" !" ! !!"(!")
!"(!")

!"(!") !" !" !" !!"(!")
!"(!") !!!"(!")

; 

(14*) !" !" ! !!"(!")
!!!"(!")

≤ !" !" ! !!"(!") !" !" !" !!"(!")
!!!"(!") !!!"(!")

. 

 
With (13*) and (14*), instead of (13) and (14), the proof continues in parallel to the proof 
given above for Theorem 1 (details omitted so as to avoid repetition). First, it is shown 
that if (A) and (B*) hold for a three-member series E, H1, H2, then R(H2, E) < R(H1, E) 
and G(H2, E) < G(H1, E). Next, it is shown that the point generalizes to the n-member 
series E, H1, H2, …, Hn and thus Pr(E | Hk-1) > Pr(E | Hk) and Pr(E | ¬Hk-1) < Pr(E | 
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¬Hk). Finally, since X meets (WLL), it follows from the antecedent of Theorem 2 that 
X(Hk, E) < X(Hk-1, E). ∎ 
 
 
Appendix D: Proof of Theorem 3. The proof for Theorem 1 can be adapted to establish 
Theorem 3. Suppose the antecedent of Theorem 3 holds. It follows from (A) and (B) that 
(12), (13), and (14). Then, instead of (15) which is a strict inequality, we have: 
 

(15*) Pr(H1)(Pr(H2 | H1) – Pr(H2)) = Pr(H1 ∧ H2) – Pr(H1)Pr(H2) 
   ≤ Pr(H2) – Pr(H2)(H1) = Pr(H2)(1 – Pr(H1)). 

 
(13) and (15*) imply: 
 

(16*) !" !" ! !!" !"
!"(!")

≤ !" !" ! !!"(!")
!"(!")

. 

 
(16*) entails: 
 

(17*) R(H2, E) = !" !" !
!"(!")

≤ !" !" !
!"(!")

 = R(H1, E). 

 
Further, instead of (18) which is a strict inequality, we have: 
 

(18*) Pr(H2 | H1) – Pr(H2) ≤ 1 – Pr(H2). 
 
(14) and (18*) together entail: 
 
 (19*) !" !" ! !!"(!")

!!!"(!")
≤ !" !" ! !!"(!")

!!!"(!")
. 

 
But we have: 
 

(20*) !" !" ! !!"(!")
!!!"(!")

≤ !" !" ! !!"(!")
!!!"(!")

  iff 

 1− !" ¬!" !
!" ¬!"

≤ 1− !" ¬!" !
!" ¬!"

  iff 

 !" ¬!" !
!" ¬!"

≥ !" ¬!" !
!" ¬!"

  iff 

 !"(¬!")
!" ¬!"|!

≤ !"(¬!")
!" ¬!"|!

. 
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It follows from (19*) and (20*) that: 
 

(21*) G(H2, E) = !"(¬!")
!" ¬!"|!

≤ !"(¬!")
!" ¬!"|!

 = G(H1, E). 

 
So if (A) and (B) hold for a three-member series E, H1, H2, then R(H2, E) ≤ R(H1, E) 
and G(H2, E) ≤ G(H1, E). The argument now proceeds in parallel to the argument given 
above for Theorem 1 (details omitted so as to avoid repetition). First, it is shown that the 
point just established about a three-member series can be generalized to the n-member 
series E, H1, H2, …, Hn, and thus Pr(E | Hk-1) ≥ Pr(E | Hk) and Pr(E | ¬Hk-1) ≤ Pr(E | 
¬Hk). Then, from the antecedent of Theorem 3, which says in part that X meets 
(WLL**), it follows that X(Hk, E) ≤ X(Hk-1, E). ∎ 
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