
Chapter 1
A Step Towards Automated Functional
Assessment of Activities of Daily Living

Bappaditya Debnath and Mary O’brien and Swagat Kumar and Ardhendu Behera

Abstract Current activity recognition approaches have achieved a great success due
to the advancement in deep learning and the availability of huge public benchmark
datasets. These datasets focus on highly distinctive actions involving discrimina-
tive body movements, body-object and/or human-human interactions. However, in
real-world scenarios, e.g., functional assessment of a rehabilitation task, which re-
quires the capability of differentiating the execution of same activities performed
by individuals with different impairments, their recognition accuracy is far from
being satisfactory. To address this, we develop Functional-ADL, a challenging novel
dataset to take action recognition to a new level. Compared to the existing datasets,
Functional-ADL is distinguished in multi-label and impaired-specific executions of
different Activities of Daily Living (ADL) to contribute towards vision-based auto-
mated assessment and rehabilitation of physically impaired persons.We also propose
a novel pose-based two-streammulti-label activity recognition model consisting of a
spatial and a temporal stream. The proposed approach significantly outperforms the
state-of-the-art by a considerable margin. This new Functional-ADL dataset presents
significant challenges for human activity recognition, andwe hope this could advance
research towards activity understanding and monitoring.

Key words: Physical Rehabilitation, Functional Activity Recognition, Computer
Vision, Deep Learning, Body-pose Sequence, Fisher Vectors

1.1 Introduction

Activity recognition is an important and challenging problem in computer vision
with many applications linking assistive and rehabilitative robotics for health and
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social care services. This research aims to contribute towards this where there has
been an increased interest in using vision-based human motion understanding for re-
habilitation and assessment of physically impaired patients [27]. Physically impaired
people (e.g., affected by stroke, spinal cord injury, etc.) often experience problems
with physical movement and balance. As a result, they face difficulties in perform-
ing day to day tasks, known as Activities of Daily Living (ADL) [9]. To recover,
improve or avoid further loss of physical functionality, such patients undergo phys-
ical rehabilitation programs [9] involving repetitive therapeutic exercises or ADL.
These activities are usually guided by health professionals (clinicians, occupational
therapists and physiotherapists) at home or in a clinic [9]. The assessment part of
this rehabilitation process is often carried out via direct observation, which requires
the observer to note down the detailed movements of the patients performing a given
ADL. The process is time-consuming, laborious and often requires a significant
attention from the observer. This process could be automated by using vision-based
autonomous systems that can recognise and evaluate the difference between normal
and impaired physical activities. This has the potential to lower cognitive load on
the observers, time and overall cost.

(a) Reaching Above: Normal, Elbow Rigidity,
and Shoulder Weakness

(b) Walking: Normal, Knee Rigidity, and
Wider Gait

Fig. 1.1: We introduce a novel multi-label functional ADL dataset consisting of 10
activities and four different physical impairment-specific executions of each ADL
for fine-grained activity recognition in rehabilitation videos. a) “Reaching Above"
activity is executed by a normal person, an individual with ‘Elbow Rigidity’, and a
person with “ShoulderWeakness" impairment (left to right). b) Similarly, “Walking"
activity is performed ‘Normally’, with ‘Knee Rigidity’ and ‘Wider Gait’.

Functional assessment through ADL is widely carried out for assessing a patient’s
condition and progress. To measure it, there exists various methods [12] that focus
on complex manual assessment. The current study is only the first step towards
automating functional assessment of various ADL. The main aim of this study is to
recognise different ADL (e.g., eating, drinking, etc.) as well as their impairment-
specific variations executed by individuals with physical impairments (e.g., ataxia,
elbow rigidity, etc.). This will help in monitoring the extent of their progress and
achievement while undergoing impairment-specific rehabilitation. In recent times,
computer vision researchers have focused on Deep Learning (DL) [28, 1, 16] to
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improve human activity recognition accuracy. This is possible due to the availability
of large-scale datasets. However, for vision-based ADL assessment and rehabilita-
tion, authors have mainly used their own small in-house datasets [27, 4, 25, 37].
Lack of suitable publicly available datasets is one of the reasons why there has been
less participation from the vision community in developing models for solving such
problem.
To address this, we present a novel multi-label functional ADL dataset that is

targeted towards automated functional assessment of physically impaired persons
through ADL. Physically impaired persons would perform an ADL differently from
healthy individuals resulting in a different spatio-temporal pattern, which is depen-
dent on the type of impairment they are suffering from. For example, a person having
tremors would shake his/her hand while drinking water and the spatio-temporal tra-
jectory would be different from a drinking action without tremors. The existing
human activity datasets (Table 1.1) are not appropriate to develop and validate solu-
tions targeting this issue. Thus, this study presents a dataset that consists of a normal
and various physical impairment-specific executions of the same ADL. The pro-
posed dataset contains 5685 samples of 10 common ADL performed by 10 subjects,
captured in video, depth and human body-pose sequence format. For each ADL,
the dataset presents one normal and four different physical impairment-specific ex-
ecutions. Thus, each sample has two labels, one for the ‘Activity’ (e.g., drinking,
walking, etc.) and the other one for the ‘Impairment’ (e.g., normal, ataxic, etc.)
and hence, the name multi-label functional ADL dataset. Furthermore, we present a
novel pose-based two-stream multi-label activity recognition model based on TCN-
ResNet [16] that comprehensively outperforms the TCN-ResNet on our dataset and
the well-known NTU-RGBD ADL recognition dataset [28]. The two-stream archi-
tecture inspired by [6], which consists of a spatial and a temporal stream. The spatial
stream contains a Spatial Encoding Unit (SEU), which provides an enriched rep-
resentation that learns to capture the structural relationships between various body
joints in a given video frame. Similarly, the temporal stream includes a Temporal
Encoding Unit (TEU) that learns to encode the temporal relationship of each body
joint over the duration of a given sequence. The performance of the network is
further enhanced by the introduction of a Fisher Vector (FV) based activity-aware
learn-able pooling mechanism introduced at the end of each stream to replace the
Global Average Pooling (GAP) in the TCN-ResNet [16]. Our novel contributions
are: 1) A novel functional ADL recognition dataset that presents a normal and four
different physical impairment-specific versions of eachADL. 2)A pose-based (skele-
ton) two-stream functional ADL recognition model that integrates a spatial-temporal
body-pose encoding mechanism with FV-based pooling in a novel manner.

1.2 Related Works

Datasets: Major advances have been made in human activity recognition influenced
by the availability of large-scale datasets. Well-known datasets in this domain are
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shown in Table 1.1. However, the existing datasets are largely targeted towards
normal human activity recognition and are not suitable for functional assessment of
physically impaired patients through ADL. These datasets consist different normal
ADL but do not capture various physical impairment-specific versions of the same
ADL (Table 1.1, Column 4).Most of the datasets in Table 1.1 are single-label datasets
whereas we present a multi-label dataset where there are two labels (‘Activity’
and ‘Impairment’) for each sample. The Chardes [30] and the UA-Concurrent [38]
datasets present multiple labels for a single activity sample but these are multi-label
normal activities. The NTU-RGBD 120 dataset [21] presents 12 medical conditions
including neck pain, fall, etc. However, it is a single-label dataset which does not
demonstrated the difference between impairment-specific executions of the same
ADL. To the best of our knowledge, this is the first dataset that illustrates the
difference between various physical impairment-specific versions of the same ADL.

Datasets #Videos #Activities #Impairments #Subjects Data Modalities
MSRDailyActivity3D [35] 320 16 0 10 R,D,P

UTKinect [39] 200 10 0 10 R,D,P
MSR-Action3D [20] 567 20 0 10 R,D,P
CAD-60 [32] 60 12 0 4 R,D,P
CAD-120 [17] 120 20 0 4 R,D,P

Northwestern-UCLA [36] 1475 10 0 10 R,D,P
NTU-RGBD [28] 60K 60 0 40 R,D,P
Chardes [30] 10K 157 0 267 R

NTU-RGBd 120 [21] 120K 120 0 106 R,D,P
Toyota Smart Home [5] 16K 51 0 18 R,D,P
UA-Concurrent [38] 201 35 0 NA R,D,P

Ours 5865 10 8 10 R,D,P

Table 1.1: Comparison of the proposed datasetwith other popular activity recognition
datasets. The proposed multi-label functional ADL recognition dataset represents a
normal and four different physical impairment-specific executions for each ADL. R:
RGB, D: Depth, P: Pose

Pose-based activity recognition: The availability of cheap depth sensors (e.g.,
Microsoft Kinect) has significantly influenced pose-based activity recognition. Pro-
cessing 3D pose (body skeleton) information is computationally much less expensive
than RGB video processing and thus, researchers have increasingly relied on pose-
based methods for human activity recognition. Most works in this area have explored
recurrent networks such as RNN, LSTM and GRU which are specially designed for
processing sequential information such as trajectory of human body joints in a given
activity. [22] advanced the human tree-structure to model spatio-temporal features
learned from a modified gating mechanism of LSTM. [31] introduced LSTM-based
spatial and temporal networks with attention mechanism. Temporal Convolutional
Network (TCN) which are stack of 1D convolutional layer have been explored as
an alternate to recurrent mechanism. [18] proposed TCN with an Encoder-Decoder
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and a dilated convolution model for activity recognition. An LSTM cell processes
each time-step sequentially whereas no such constraint exists within TCN. This
makes TCN inherently faster than LSTMs. Kim et al. [16] present a pose-based
TCN-ResNet model which combines residual connections with TCN and shown to
be computationally inexpensive without compromising the recognition accuracy on
NTU-RGBD dataset [28]. The proposed model is inspired by this lightweight archi-
tecture which is necessary for home-based or in-clinic assessment of patients where
high-performance computational facilities (e.g., servers, GPUs, etc.) are not avail-
able. However, pose-based models do not benefit from contextual cues such as hand-
object interactions, background information other than body pose. Thus, authors have
focused on enriching the pose-information with physics-based measurements such
velocities and acceleration [7, 42], different normalisation techniques [42], relative
body joints positions [15] etc. Instead of handcrafting such features, [6] uses SEU
and TEU to automatically learn enhanced representations that can capture structural
information and various inter-joint dependencies of the human body joints. Inspired
by this, we adapt the TCN-ResNet model [16] to use a spatial-temporal architecture
involving SEU and TEU layer to advance the light-weight human activity recognition
approaches.

Learnable-Pooling: To further enhance the performance of our model, a FV-
based pooling mechanism is used that replaces the GAP layer typically present
towards the end ofmany standard convolutional architectures including TCN-ResNet
[16]. Similar to GAP, the literature presents other statistical pooling methods like
average or max-pooling [13, 14], rank-pooling [8], context-gating [24] and high-
dimensional Feature encoding [40]. Pooling using statistical methods do not consider
spatial-temporal and other semantic information in feature maps produced by CNN,
TCN or LSTM. Thus, learn-able pooling methods have been explored by researchers
to pool the most relevant features based on learned representations. In [10], authors
present a second order attentional pooling, in which the output map from a CNN is
multiplied with a weighted version of itself. A well-known technique called VLAD
for image feature representation is integrated by Girdhar et al. [11] for learn-able
pooling-based activity recognition. In [24], authors introduce learn-able FV (NetFV)
to semantically cluster and pool audio and video features by integrating it to a deep
model. In this study,NetFV is adapted for semantically clustering information present
in TCN-ResNet maps which further enhances the model performance.

1.3 Dataset

Human motion manifests in a wide variety of forms and so does its abnormalities. It
is not feasible to capture whole range of ADL and their corresponding impairments.
The idea is to prepare a dataset that would meet the following constraints: 1) The
dataset should contain enough samples uniformly spread across subjects, activities
and impairments that would suffice the needs of DL-based models. 2) The dataset
should contain enough activities that would collectively cover a wide range of body
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Fig. 1.2: The proposed model consists of a spatial and a temporal stream where
each stream uses a TCN-ResNet [16]. Block-A of the spatial stream is replaced with
the SEU [6] while the same block in temporal stream is exchanged with the TEU
[6]. The GAP layer of the TCN-ResNet [16] is replaced by a FV-based pooling
mechanism [24]. The Soft-max output of both the streams are multiplied (indicated
by ×) and normalised for the final output. The model is trained through a multi-hot
encoded label where in each label vector there are two ‘1’s indicating ‘Activity’ and
‘Impairment’ label.

movements and capture a few common abnormalities. To assess a patient’s condition
and to determine their functional independence, clinicians often require them to
performADL [12]. The initial ideawas to capture patients performing these activities
and annotate each action with an ‘Activity’ and an ‘Impairment’. To create a dataset,
one needs multiple samples for each annotation, ideally uniformly spread across
number of subjects. It is very difficult to ask patients to performmultiple repetitions of
each of the activities owing to their physical constraints. It is easy to see that a patient
with a ‘bent knee’ would face difficulty in performing sit to stand multiple times and
would not be able to provide a sample of a normal sit to stand sequence. Thus, to
address this, the workaround was to film the activities with healthy subjects acting
like patients. To make sure that activities performed by healthy subjects accurately
reflect the performance of real patients, help was sought from an occupational
therapist. Under the guidance of the occupational therapist the ADL were chosen in
a manner that would collectively cover a wide range of body movements and test
various parts of the musculo-skeletal system. Each ADL filmed for this dataset is
captured in one healthy and four different physical impairment-specific executions
of the same. The activities “Sitting", “Standing" and “Walking” cover lower torso
and leg movements. “Drinking”, “Brushing Hair” and “Wearing Glasses” test the
functionality of upper limbs. “Brushing Floor”, “Answering Phone” and “Clapping”
are preformed while standing and thus they require close co-ordination between
upper and lower halves of the body. The impairments ‘Weakness to One Side’,
‘Knee Rigidity’ and ‘Wider Gait’ are represented in all the lower-limb activities.
The impairments ‘Shoulder Weakness’, ‘Tremors’ and ‘Elbow Rigidity’ are present
for all the upper-limb activities. All the activities exhibit the ‘Normal’ and the
‘Ataxic’ versions. The dataset presents seven impairments in total while each of
the 10 activity is represented through four different impairments in addition to a
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regular healthy execution. Altogether there are 5685 samples, each annotated with
an activity and an impairment, performed by 10 (5 female and 5 male) subjects.

1.4 Proposed Approach

There are many aspects of designing a pose-based model and the proposed model
aims to address the following aspects: 1) Effectively capture the saptio-temporal
information contained within human body-pose sequence. 2) Semantically cluster
meaningful information represented by the body-pose network. The proposed model
is based on the TCN-ResNet architecture [16], which is basically a combination of
1D convolutions with residual connections. We use two TCN-ResNet models, one
for a spatial stream and another one is for a temporal stream. In the spatial stream,
Block-A of the TCN-ResNet is replaced with SEU and similarly, TEU substitutes
Block-A in the temporal stream (Fig. 1.2). As in [6], for each frame the SEU captures
the structural relationship between various body joints and enhanced/augmented
representation of the human body pose sequence to rest of the network. On the other
hand, the goal of the TEU is to encode the frame-wise positions of body joints and
present a temporally rich representation for each joint, individually. Furthermore, we
introduce a novel FV-based learn-able pooling mechanism in each stream replacing
the GAP layer in the original TCN-ResNet. This is mainly due to the fact that
learn-able pooling approaches have shown to be more effective in pooling more
relevant features instead of statistical pooling (e.g., average or max-pool). This has
been further discussed in related works. This learn-able pooling method integrates
FV-based clusteringmechanismwhich semantically clusters the spatial and temporal
structures containedwithin the respective streams. Thus, it has significantly improved
the recognition accuracy as shown in the experimental evaluation section.

TCN-ResNet:TheTCN-ResNetmodel is basically a stacking of 1D convolutional
layers followed by the standard GAP + FC layers. As shown in Fig 1.2, the network
is composed of three 1D convolutional blocks (Block-A, Block-B and Block-C)
and each of the three block is composed of three layers of 1D convolutions. Each
convolutional operation is followed by BN and a ReLU activation function. The
convolutional operation at the start of Block-B and Block-C is of stride 2, which
means the input is halved along the first dimension (normally time dimension) as
it passes from Block-A to Block-B and then from Block-B to Block-C. There are
two paths between any two layers: 1) First is through 1D convolutional operation
followed by BN and a ReLU activation function; 2) Second, through a residual or
skip-connection (omitted in Fig. 1.2 for simplicity). Let 𝑇 be number of frames in a
sequence, 𝐽 the number of body joints, 𝐷 dimension of each joint (3 for 3D pose)
and 𝐹 the total number of filters in a layer. Then, with input pose map 𝑉 ∈ R𝑇×𝐽𝐷 ,
1D convolution operations in each block performs the following transformation:
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𝐵𝑙𝑜𝑐𝑘𝐴 : 𝑉𝑇,𝐽×𝐷 → 𝑀𝑎
𝑇,𝐹𝑎

(1.1)

𝐵𝑙𝑜𝑐𝑘𝐵 : 𝑀𝑎
𝑇,𝐹𝑎

→ 𝑀𝑏
𝑇/2,𝐹𝑏 (1.2)

𝐵𝑙𝑜𝑐𝑘𝐶 : 𝑀𝑏
𝑇/2,𝐹𝑏 → 𝑀𝑐

𝑇/4,𝐹𝑐 (1.3)

Here, 𝐹𝑎 = 64, 𝐹𝑏 = 128, 𝐹𝑐 = 256 indicate the number of filters and 𝑀𝑎,𝑀𝑏, 𝑀𝑐

imply the output maps of Block-A, Block-B and Block-C (Fig. 1.2), respectively. The
output of Block-C is passed through a standard GAP layer followed by a FC layer
with Soft-max activation function.

Spatial Stream: The spatial stream is a TCN-ResNet [16] model. The difference
is, it adapts the Block-A (Fig. 1.2) to the SEU introduced by [6]. Normal 1D con-
volutions process all the frames in a body-pose sequence together as shown in Eq.
1.1. In contrast, the SEU processes each frame through separate and independent
convolutional operations and then concatenate the outputs. The enables the network
to learn relationships and dependencies between various body joints for each point
in time. In other words, the network learns the body-structure spatially for each time-
step for a given sequence. This structural learning is absent in case of TCN-ResNet
which involves normal 1D convolutions. Formally the SEU in Block-A performs the
following transformation [6]:

𝑀̂𝑎𝑡
𝐽,𝐹𝑎

= 𝑈̂𝑡 (𝐹𝑎, 𝑉𝐽,𝐷) (1.4)

𝑀̂𝑎𝑡
𝐽,𝐹𝑎

→ 𝑀̂𝑎
𝑇,𝐽×𝐹𝑎 (1.5)

where 𝑈̂ is the convolution operation parameterised by filters 𝐹𝑎. 𝑀̂ indicates a
map for the spatial stream, which corresponds to 𝑀 for the TCN-ResNet (Eqs.
1.1-1.3). Normally, body-pose sequence is represented by a map where for each
frame, the body-pose is represented by a vector of size 𝐽 × 𝐷. In TCN-ResNet
[16], the convolution operation in Block-A transforms this vector into a vector of
length 𝐹𝑎 (Eq. 1.1), which represents the body-pose for each frame transformed
through 1D convolutions. In contrast, the transformation by SEU produces a body-
pose that is represented through a vector of size 𝐽 × 𝐹𝑎 for each frame (Eq. 1.4).
The SEU transforms joints in each frame separately to produces maps 𝑀̂𝑎𝑡

𝐽,𝐹𝑎
for

each individual frame (Eq. 1.4). These maps are aggregated to form the final SEU
output (Eq. 1.5). Thus, instead of 𝐹𝑎 for all the joints in TCN-ResNet (Eq. 1.1), the
SEU represents each joint by a vector of size 𝐹𝑎 (Eq. 1.5). Through this enhanced
representation from 𝐷 co-ordinates (normally 3 for 3D pose) in input to 𝐹𝑎 (=64) at
the output of Block-A (Fig. 1.2), in each frame, the SEU encodes the relationships and
dependencies between various body joints that is learnt [6]. The SEU increases the
number of parameters from SEU by a factor of number of joints (Eq. 1.5). Including
more blocks (Block-B, Block-C) in the SEU, increases the number of parameters
because in TCN-ResNet the filter count is doubled each time a block is traversed
(Eqs. 1.1,1.2,1.3). Empirically it was observed that including more block for the
SEU, made the model slower while having no positive impact on the performance.
The output of Block-C in TCN-ResNet has the temporal dimension reduced by a
fourth, as shown in Eq. 1.3. Thus from Eq. 1.3 (TCN-ResNet), the spatial stream
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(Fig. 1.2) performs the following transformation:

𝑉𝑇,𝐽×𝐷− > 𝑀̂𝑐
𝑇/4,𝐹𝑐 (1.6)

Note that that because of SEU, the Block-A (Eq 1.5) in the spatial stream produces
different output than Block-A (Eq 1.1) in the TCN-ResNet. However, this does not
make any difference in the overall output of the spatial stream at the end of Block-C
which is determined by the number of filters at the end of Block-C and the number
of frames (time-steps) in the body-pose sequence. Effectively, output of Block-C in
spatial stream (Eq. 1.6) is same as output of Block-C in TCN-ResNet (Eq. 1.3).

Temporal Stream: Similar to the spatial stream, a TCN-ResNet [16] is used for
the temporal stream. The first block (Block-A, Fig. 1.2) is used for TEU as done in
[6]. Formally, the TEU performs the following transformation:

𝑉𝑇,𝐽×𝐷 → 𝑉̄𝐽×𝐷,𝑇 (1.7)

𝑀̄𝑎
𝐽×𝐷,𝐹𝑎 = 𝑈̄ (𝐹𝑎, 𝑉̄𝐽×𝐷,𝑇 ) (1.8)

𝑀̄𝑎
𝐽×𝐷,𝐹𝑎 → 𝑀̄𝑎

𝐹𝑎 ,𝐽×𝐷 (1.9)

Here, 𝑈̄ is the convolution operation. 𝑀̄ indicates maps for temporal stream cor-
responding to 𝑀 in TCN-ResNet (Eqs. 1.1-1.3). Normally, the input consists of a
map 𝑉𝑇,𝐽×𝐷 which is transposed to 𝑉̄𝐽×𝐷,𝑇 in case of TEU. This means in TEU
each input data point (row) represents the temporal variation of a body joint over
𝑡 = 1 to 𝑡 = 𝑇 and hence the name TEU. This is in contrast to a normal convolution
operation where each data point consists of body joint 𝑗 = 1 to 𝑗 = 𝐽 for a single
frame. Similar to the spatial stream the output map 𝑀̄𝑎

𝐹,𝐽×𝐷 of the TEU is passed to
Block-B and Block-C (Fig. 1.2) in the temporal stream which perform the following
transformation (Eqs. 1.2,1.3):

𝑀̄𝑎
𝐹𝑎 ,𝐽×𝐷− > 𝑀̄

𝑐
𝐹𝑎/4,𝐹𝑐 (1.10)

Streams fusion: The potential points for fusion of the two streams are at the end
of each block. The SEU and the TEU produce maps of different dimensions (Eqs.
1.5,1.10) at the end of Block-A (Fig. 1.2). Moreover, the TCN-ResNet [16] reduces
the temporal dimensions through Block-B and Block-C (Eqs. 1.1,1.2,1.3). Thus, the
spatial and temporal streams produces maps of different dimensions at the end of
each blocks. For example, the Block-C of spatial stream produces map 𝑀̂𝑐

𝑇/4,𝐹𝑐
(Eq.

1.6), whereas the temporal stream has the map 𝑀̄𝑐
𝐹𝑎/4,𝐹𝑐

(Eq. 1.10). The different
sizes of the maps do not allow the maps to be fused with either concatenation or
addition in a semantic manner. At the end of Block-C, the two streams can be fused
by flattening and concatenating however, flattening disturbs the spatial and temporal
structural organisation of the maps. FV-based clustering mechanism relies on such
meaningful representations for semantic clustering [26]. Empirically, it was observed
that flattening the two streams at this stage for fusion lead to poor performance. To
preserve the structural organisation of the maps and to cluster them semantically,
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each stream uses its own learn-able FV pooling. FVs [26] are computed as the
aggregation of cluster weights, means and co-variances computed from Gaussian
Mixture Model (GMM). Instead of calculating the FVs from GMM, NetFV (FV
with neural network) learns these parameters [24]. Let 𝑀𝑅,𝑆 be the input to FV-
based pooling. In spatial stream, 𝑀𝑅,𝑆 corresponds to 𝑀̂𝑐

𝑇/4,𝐹𝑐
(Eq. 1.6) where

𝑅 = 𝑇/4 and 𝑆 = 𝐹𝑐. Similarly, in temporal stream, 𝑀𝑅,𝑆 corresponds to 𝑀̄𝑐
𝐹𝑎/4,𝐹𝑐

(Eq. 1.10) where 𝑅 = 𝐹𝑎/4 and 𝑆 = 𝐹𝑐. Let 𝑟 ∈ (1, 𝑅). The idea is to assign each
𝑆-dimensional data point of 𝑀 i.e., 𝑀𝑟 to a cluster as a soft-assignment [24]:

𝛼𝑘 (Mr) =
𝑒𝑊

𝑇𝑟
𝑘

Mr+𝑏𝑘

Σ𝐾
𝑗=1𝑒

𝑊
𝑇𝑟
𝑗

Mr+𝑏 𝑗

(1.11)

Here matrix 𝑊 𝑗 and bias-vector 𝑏 𝑗 are learn-able parameters. The soft-assignment
𝛼𝑘 (Mr) to the 𝑘 𝑡ℎ cluster indicates how close 𝑀𝑟 is to the cluster 𝑘 . Here, 𝑗 ∈ (1, 𝐾)
where 𝐾 is the total number of clusters. Using the above soft-assignment, the Fisher
vector is computed using the NetFV representation by [24]:

𝐹𝑉1 ( 𝑗 , 𝑘) =
𝑅∑︁
𝑟=1

𝛼𝑘 (Mr)
(
Mr ( 𝑗) − 𝑐𝑘 ( 𝑗)

𝜎𝑘 ( 𝑗)

)
𝐹𝑉2 ( 𝑗 , 𝑘) =

𝑅∑︁
𝑟=1

𝛼𝑘 (Mr)
((

Mr ( 𝑗) − 𝑐𝑘 ( 𝑗)
𝜎𝑘 ( 𝑗)

)2
− 1

) (1.12)

𝐹𝑉1 and 𝐹𝑉2 respectively are the first-order and second-order statistics FV. 𝑐𝑘 and
𝜎𝑘 are the learned cluster centre and the diagonal co-variance of the 𝑘𝑡ℎ cluster, where
𝑘 ∈ (1, 𝐾). Here, 𝑐𝑘 and 𝜎𝑘 are randomly initialised and are learned independently
from the parameters of the soft-assignment 𝛼𝑘 as in Eq. 1.11. As in [24], the FVs
are then L2 normalised and concatenated and to get the final 𝐹𝑉 = [𝐹𝑉1, 𝐹𝑉2]. In
[24], the learned FV from the video stream is concatenated with the FV from the
audio stream to form a FC layer which is further processed with context gating and
mixture of experts identifier. Our implementation is different from the approach of
[24], where a weighted pooling mechanism is used to output the final class maps:

𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐹𝑉) = softmax(𝑊𝑝𝐹𝑉 + 𝑏𝑝) (1.13)

Here, matrix 𝑊𝑝 ∈ R |𝐹𝑉 |×𝐶 and bias vector 𝑏𝑝 are learn-able parameters, and
𝐶 is number of human activity classes. The class-maps from both the stream are
multiplied and normalised to get the final output. By avoiding concatenation of FVs
we preserve the intelligently pooled features from the semantic FV-based clusters
to form the class-maps. The multiplication and normalisation (Fig. 1.2) operation
ensures that the network automatically learns the contribution weightage of each
stream without the need for a further FC layer. Thus, in contrast to NetFV [24] we
are able to produce class-maps without any further processing.
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1.5 Training and Evaluation

Apart from the ground truth and evaluation method, the model is trained in a similar
manner to standard single-label classification models. The ground truth is presented
as multi-hot encoded labels to train the multi-label model. Two separate one-hot
encoded labels, prepared as ‘activity’ labels and ‘impairment’ labels are concatenated
to form the final ground truth labels. Let there be 𝐴 activity classes and 𝐼 impairment
classes. For 𝑎𝑡ℎ activity class where 𝑎 ∈ {1...𝐴} and 𝑖𝑡ℎ impairment class where
𝑖 ∈ {1...𝐼}, the one-hot encoded labels for activity and impairment respectively are:

𝐴𝐿𝑚∈𝐴 =

{
1, if 𝑚 = 𝑎,

0, if 𝑚 ≠ 𝑎.
𝐼𝐿𝑛∈𝐼 =

{
1, if 𝑛 = 𝑖,
0, if 𝑛 ≠ 𝑖.

(1.14)

𝐺𝑇 = 𝐴𝐿𝑚∈𝐴 ⊕ 𝐼𝐿𝑛∈𝐼 (1.15)

To create the final ground truth label𝐺𝑇 , the two labels are simply concatenated (Eq.
1.15). Thus, each of the ground truth label vectors 𝐺𝑇 has two ‘1’ values indicating
activity and impairment. In 𝐺𝑇 , the ‘activity’ label comes from the first 𝐴 elements
whereas the ‘impairment’ label is determined from final 𝐼 elements. Thus, to evaluate
the model, the prediction probability vector (i.e., the model output) is split into two
parts where the first part contains the first 𝐴 elements indicating the ‘activity’ class
probabilities and the rest 𝐼 elements indicate the ‘impairment’ probabilities. Then,
the accuracy for the ‘activities’ and ‘impairments’ are calculated separately. Finally,
prediction by themodel is considered to be true if both the ‘activity’ and ‘impairment’
predictions are correct.

1.6 Experiments and Results

We evaluate the proposed pose-based model in both single-label and multi-label
mode. The well-known and challenging NTU-RGBD [28], which contains around
60K samples distributed over 60 action classes has been used for evaluation in single-
label mode. We use the authors [28] protocol of cross-subject (CS) evaluation which
is harder than the cross-view evaluation. Table 1.2 compares the proposed model to
existing state-of-the art approaches and shows that the model achieves competitive
performance under the constraints of data modality (pose-based, RGB video-based),
end-to-end trainable and random initialisation (i.e., not pre-trained). The proposed
model has the advantage to being end-to-end trainable as compared to [29, 33, 23].
Also, in contrast to [2, 19, 23, 33] we do not pre-train the proposed model which
reflects the true capacity of model to learn without prior information. Given these
constraints the best performance is achieved by ST-GCN [41] and the proposed
model achieves almost similar performance while being a very light-weight model.
ST-GCN [41] requires 8 Nvidia Titan X GPUs for training while we use only one
Titan X GPU.
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Model Mode E2E RI CS(%)
TCN-ResNet [16] P ✓ ✓ 74.3
Synth-CNN [23] P x x 80.0
ST-GCN [41] P ✓ ✓ 81.5
DPRL+GCNN [33] P x x 83.5
3Scale-ResNet152 [19] P ✓ x 85.0
Glimpse Clouds [2] R ✓ x 86.6
Learned-Encoding [6] RP ✓ x 87.7
DGNN [29] P x ✓ 89.9
Ours P ✓ ✓ 80.2

Table 1.2: The proposed model achieves competitive accuracy when compared with
other pose-based state-of-the art models given the constraints of data mode (P: Pose,
R: RGB-video), being end-to-end trainable (E2E) and random initialisation (RI).
Given these constraints ST-GCN achieves the best performance and we achieve
performance close to ST-GCN.

Model Mode A I Final
I3D [3] R 87.2 65.9 55.9
C3D [34] R 90.1 73.2 63.3
TCN-ResNet [16] P 91.2 69.0 63.4
Ours P 97.1 80.7 78.7

Table 1.3: Evaluation of the proposed dataset using different models that predict
‘Activity’ (A) and ‘Impairment’ (I) and a model’s prediction is considered as correct
if both the ‘Activity and ‘Impairment’ predictions are true. Mode: Pose (P), RGB (R)

Model Split 1 Split 2 Weighted-Average
A I Final A I Final A I Final

TCN-ResNet [16] 90.4 72.0 65.3 90.0 69.0 61.9 90.2 70.5 63.6
Two-Stream (TEU) 92.9 73.1 69.3 96.2 75.7 73.3 94.6 74.4 71.3
Two-Stream (TEU + SEU) 93.1 74.4 69.8 95.0 79.1 75.6 94.0 76.8 72.7
Two-Stream (SEU + TEU) + FV 96.9 77.7 75.3 97.3 83.7 82.2 97.1 80.7 78.7

Table 1.4: Ablation study demonstrating the effectiveness of the two-stream archi-
tecture and FVs

Next, we evaluate our model using the proposed multi-label functional ADL
recognition dataset using the following protocol. A cross-validation approach is
used where the dataset is split into two subject-wise folds for good generalisation.
The first fold uses subjects 1, 3, 5, 7, 9 for training while subjects 2, 4, 6, 8, 10 are
used for validation and vice-versa for the second fold. Thus, out of 5685 samples,
the dataset is split into two groups of approximately equal groups of 2869 and 2816
samples which indicates a very good generalisation protocol. We do not use any
data-augmentation or any transfer-learning approach to understand the true capacity
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Fig. 1.3: Grid search for appropriate cluster-sizes show several parameter choices
provide close to peak performance. This indicates that the TCN maps can be seman-
tically clustered in multiple ways. Search range: 2𝑛, where 𝑛 = 2, 3, 4, 5, 6, 7

of the model to learn. The results in Table 1.3 are weighted average average of the
two-fold cross-validation mentioned above. For each sample, the models in Table 1.3
predict ‘activity’ (A) and ‘impairment’ (I) classes and a model’s ‘Final’ prediction
is considered to be true if both the ‘activity’ and ‘impairment’ predictions are true.

1.6.1 Ablation study

In Table 1.4, we demonstrate the evolution of the model from the base TCN-ResNet
to the final model through step-by-step inclusion of spatial-temporal architecture and
the FV-based pooling. First, we experiment with the original TCN-ResNet (Row 1),
and then we experiment with the two-stream architecture consisting of two parallel
TCN-ResNets (Row 2). Here, TEU is introduced to Block-A (Fig. 1.2) of one of
the streams making the stream temporal in nature, which is otherwise identical to
the other stream. This greatly improves the accuracy which is further enhanced by
the introduction of SEU to the spatial stream (Row 3). The final model accuracy is
the greatly enhanced by the introduction of FV-based pooling to both the streams
(Row 4). The number of clusters in FV is a tune-able hyper-parameter and for a grid-
searchwas performedwithin the search space 2𝑛, where 𝑛 = 2, 3, 4, 5, 6, 7. The search
results illustrated in Fig 1.3 which show that there are several peaks indicating higher
performance with multiple cluster-size settings. The best performance (78.8%) is
obtained with a cluster-size (CS) of 23 for both the streams. Similar, results (78.0%)
are obtained with CS is set at 8 (Spatial) and 16 (Temporal). CS of 16 (Spatial) and
64 (Temporal) gave 78.6% while CS of 64 (Spatial) and 32 (Temporal) gave 77.2%
accuracy. The results suggest that the TCN maps can be semantically clustered in
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a more than one way. However, with increased CS the model parameters increases
and thus the aim should be to keep the CS to a minimum.

1.7 Conclusion

The paper is a step towards a robot or an automated systems-based assessment of
physically impaired persons through ADL. To this end, we propose a dataset that
consists of 10 different ADL that can test functional capacity of different body
parts. Further, we present a normal and four different physical impairment-specific
executions of each ADL. To our knowledge, the dataset is first to explore robot or an
automated system’s perception of functional assessment through ADL. The paper
also presents a novel multi-label functional ADL recognition model that integrates
a spatial-temporal body-pose encoding method with FV-based pooling in a novel
manner. The dataset and the model will be made publicly available along with the
publication of this paper.

Acknowledgement: We are immensely thankful to Dr Helen Carey for guiding
us through the data collection process and Nvidia for providing the GPU.
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