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Abstract— Accurate estimation and quantification of the
corneal nerve fiber tortuosity in corneal confocal mi-
croscopy (CCM) is of great importance for disease under-
standing and clinical decision-making. However, the grad-
ing of corneal nerve tortuosity remains a great challenge
due to the lack of agreements on the definition and quan-
tification of tortuosity. In this paper, we propose a fully
automated deep learning method that performs image-level
tortuosity grading of corneal nerves, which is based on
CCM images and segmented corneal nerves to further im-
prove the grading accuracy with interpretability principles.
The proposed method consists of two stages: 1) A pre-
trained feature extraction backbone over ImageNet is fine-
tuned with a proposed novel bilinear attention (BA) module
for the prediction of the regions of interest (ROIs) and
coarse grading of the image. The BA module enhances the
ability of the network to model long-range dependencies
and global contexts of nerve fibers by capturing second-
order statistics of high-level features. 2) An auxiliary tor-
tuosity grading network (AuxNet) is proposed to obtain
an auxiliary grading over the identified ROIs, enabling the
coarse and additional gradings to be finally fused together
for more accurate final results. The experimental results
show that our method surpasses existing methods in tortu-
osity grading, and achieves an overall accuracy of 85.64%
in four-level classification. We also validate it over a clin-
ical dataset, and the statistical analysis demonstrates a
significant difference of tortuosity levels between healthy
control and diabetes group. We have released a dataset
with 1500 CCM images and their manual annotations of four
tortuosity levels for public access. The code is available at:
https://github.com/iMED-Lab/TortuosityGrading.

Index Terms— Corneal confocal microscopy, corneal
nerve, tortuosity grading, interpretability, deep learning.
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I. INTRODUCTION

Corneal confocal microscopy (CCM) is a non-invasive
corneal imaging technique that is widely used clinically,
especially for assessing the sub-basal nerve plexus [1]. Ex-
isting studies [2]–[4] suggest that morphological changes of
the corneal nerves, such as nerve fiber branching, density,
tortuosity, length and so on, are closely related to a variety of
ocular and systemic diseases. Among these changes, tortuosity
is the most widely used criterion to characterize diversifica-
tions of the corneal nerve fibers. Several clinical studies have
shown that corneal nerve tortuosity is a potential and valuable
biomarker for further pathological analysis of systemic or
ocular diseases such as diabetic neuropathy (DN), dry eye
disease, unilateral herpes zoster, herpes simplex keratitis, acute
acanthamoeba and fungal keratitis [5]–[14]. To assess the
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Fig. 1. Examples of CCM images with four different tortuosity levels,
from left to right: levels 1 to 4.

relationship between corneal nerve tortuosities in normal and
diseased images, tortuosity has been usually divided into
3 to 5 grades in different studies [1], [2], [5], [15], [16].
In this paper, we grade corneal nerves into four tortuosity
levels, as in [5], [16], since the four-level tortuosity highlights
significant variation in the corneal nerve fibers of patients with
diabetic neuropathy [8], [17] and dry eye disease [9], [11].
For example, a study by Kallinikos et al. [8] demonstrate
significant differences in corneal nerve tortuosity between four
clinical groups in diabetic patients with neuropathy, i.e. nerve
fiber tortuosity is significantly greater in the severe neuropathy
group than in the control, mild and moderate neuropathy
patient groups. Klisser et al. [17] also demonstrate a significant
reduction in corneal nerve tortuosity in individuals with both
T1DM (type 1) and T2DM (type 2) relative to controls, as
well as a significant difference in tortuosity between diabetic
participants with neuropathy compared to those without. In
addition, Ma et al. [11] conclude from a detailed statistical
analysis that increased corneal nerve tortuosity is linked to
frequencies of ocular discomfort, visual function disturbance,
and tear film instability in dry eye disease. Fig. 1 illustrates

https://github.com/iMED-Lab/TortuosityGrading
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four CCM images, in which the images are classified into four
levels of corneal nerve tortuosity [2]: almost straight (level 1),
mild tortuous (level 2), quite tortuous (level 3), and heavily
tortuous (level 4).

Currently, tortuosity is mainly measured by analyzing the
pixels of the corneal nerve structure extracted from a CCM
image, which represents the anatomical structure of the corneal
nerves. The measurement of tortuosity has been studied ex-
tensively [18]–[22]. As there is no generally accepted def-
inition or standard description for the tortuosity of curvi-
linear structures [16], various curvilinear structure tortuosity
measures have been proposed: length-based [23], [24], angle-
based [19], [21], [25] and curvature-based [16], [22], [26].
Clinical parameters derived after tedious manual fiber tracing
are subjective, and tedious to retrieve. Moreover, grading
corneal nerve tortuosity by means of these subjective methods
may lead to substantial inter-and intra-observer variation and
human error [2], [25]. In addition, manual screening for
corneal nerve tortuosity estimation is time consuming and thus
a serious obstacle to the introduction of large-scale screening
procedures.

Therefore, a number of automated curvilinear structure tor-
tuosity assessment methods have been proposed to reduce the
errors of manual tracing, and to increase speed of diagnosis.
Conventionally, vessel tortuosity calculation requires several
steps, including preprocessing, segmentation, vessel network
splitting and curvature calculation. Considering that the errors
introduced in each processing step in such pipelines may
accumulate and cause information loss, Bekkers et al. [26]
propose for the first time a tortuosity measure method based on
the theory of best-t exponential curves in the roto-translation
group SE(2), which does not rely on vascular pre-segmentation
but act directly on the retinal image, effectively advancing the
workflow of the downstream tortuosity measurement. Grisan
et al. [23] divide retinal vessels into segments with constant-
sign curvature and then combine each evaluation of these
segments to complete the automated evaluation of tortuos-
ity. To address the limited repeatability and inter-observer
agreement due to subjective and visual assessment, Roberto
et al. [2] propose a fully automated framework for image-
level tortuosity estimation. It consists of a hybrid segmentation
method and a highly adaptable tortuosity estimation algorithm,
with a feature selection strategy that attempts to identify the
most discriminative nerve fibers from the CCM image for
the representation of image-level tortuosity. Inspired by [26],
Zhao et al. [16] propose to classify tortuosity directly from
pixel-wise curvature measurements obtained through analysis
of exponential curves in a 3D position-orientation space that
is derived from enhanced CCM images, rather than measuring
tortuosity based on a pre-tracked error-prone corneal nerve
fiber map. These automated methods usually first track the
corneal nerves, then compute tortuosity of individual nerve
fibers, and finally perform a weighted fusion of the obtained
measurements for the representation of image-level tortuosity.
However, CCM images contain corneal nerve fibres with
different numbers, lengths and distributions, and therefore it is
problematic to use the tortuosity measurements of individual
nerve fibres for the representation of the degree of tortuosity

of the whole image.
Neural networks have greatly improved performance in

the past decade for the tasks of image classification [27],
[28], object detection [29], segmentation [30]–[33] and visual
question answering (VQA) [34], etc. in the field of computer
vision and image processing. Although neural network-based
methods have achieved performance improvements in many
tasks, how neural networks exactly work are often a mystery,
i.e., it is difficult to explain their underlying mechanisms and
behavior, leading to the resistance in their adoption for their
applications. To address this limitation, visualization-based
interpretability methods [35]–[38] have been developed to
explain how neural networks arrive at decisions from a human
cognition perspective. For example, [39] and [40] attempt to
visualize the different convolutional neural network (CNN)
layers to improve the interpretability of the model outputs and
predictions. Moreover, Liao et al. [41] propose to integrate
the object activation map with the location information into
the CNN to enhance classification ability of their glaucoma
detection model. In [42], CAMs [35] are further binarized
and applied over original medical images to generate masks
of regions of interest (ROIs): the generated temporary ROIs
are then used synchronously with the original images as input
for further training.

Most of the aforementioned tortuosity grading methods
rely on handcrafted filters to extract tortuosity representations.
These methods have the advantage of being highly inter-
pretable, but are not well adapted to the assessment of large
amounts of nerve tortuosity with variable morphology. With
the development of deep learning techniques, learning-based
methods can be well adapted to large-scale image analysis.
However, in the corneal nerve image tortuosity grading the
differences between adjacent levels is relatively subtle: the
nerves are comprised of hard-to-discriminate, fine-grained
features. Therefore, models directly transferred from existing
deep learning-based classification methods cannot obtain the
desired accuracy in corneal nerve tortuosity grading, being
less capable of extracting fine-grained, more discriminative
features at different levels.

To address these limitations, we propose a novel two-
stage corneal nerve tortuosity grading network, DeepGrading,
based on a CNN embedded within a visually interpretable
mechanism. It first predicts the coarse grading and the class
activation regions of the image, using a pre-trained network
refined through a proposed bilinear attention (BA) module.
In contrast to existing attention modules, the proposed BA
module attempts to model the interdependencies and global
context of features in different channels by bilinear pooling
and residual learning. Secondly, a novel auxiliary network
(AuxNet) is proposed for the prediction of the additional
grading over the identified activation regions of interest in the
automatic corneal curve segmentation map [43], leading the
global coarse and local independent gradings to be integrated
for more accurate final grading results. More specifically, this
paper makes the following four main contributions:
• We propose a novel framework to automatically learn the

tortuosity features of corneal nerve fibers in CCM images.
A data-driven neural network-based model has the advantage
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Fig. 2. Schematic diagram of DeepGrading. The green and purple
circles indicate tortuosity levels graded by the two different stages,
respectively. It is important to note that stage 1 provides input for stage
2. Even though the same backbone network has been run in stage 1 and
stage 2 respectively, they have different purposes: the former outputs N-
ROIs, while the latter outputs the coarse grading.

of adaptively learning curvature-related features and mining
more discriminative semantic features, rather than depending
on manually-designed filters, as in conventional methods.
• To better extract fine-grained varied features between

corneal nerves, we propose a novel BA module that can
model the global context and long-range dependencies of
nerve fibers by capturing second-order statistics of high-level
tortuosity features. Moreover, this proposed BA module can
be embedded as an independent unit in other classification
models.
• To enhance the interpretability of the grading model

and further improve the grading performance, we propose an
AuxNet for feature re-extraction of nerve fiber segments within
tortuosity activation regions. The proposed method not only
obtains the decisive nerve fiber segments in the image, but also
effectively narrows down the tortuosity feature mining range,
and improves the grading performance from an interpretability
perspective.
• The proposed method has been trained and evaluated

on a newly-constructed corneal nerve tortuosity dataset, and
the trained model has also been further tested over another
publicly available database and a clinical dataset about healthy
control and diabetic group. To encourage reproducible research
on the topic, we have released this new dataset for public
access1.

II. PROPOSED METHOD

In this section, we describe the proposed DeepGrading
framework in detail. Overall, the proposed framework consists
of two stages, as shown in Fig. 2. The first stage (stage 1)
is a bilinear attention network (BANet) that contains a fine-
tuned backbone, followed by a bilinear attention module for

1https://doi.org/10.5281/zenodo.5880419

the prediction of the global coarse grading and the activation
regions of interest (ROIs) of a given CCM image. In the second
stage (stage 2), we propose an auxiliary network (AuxNet) to
grade the activated nerve fibers in the identified ROIs (N-ROI).
We finally perform refined tortuosity grading by integrating the
global and local auxiliary predictions of BANet and AuxNet,
respectively.

A. Architecture of BANet
Existing classification methods based on learning strategies

can achieve promising performance in many applications [27],
[44], [45], but one of their major limitations is that they require
large amounts of data for training. Direct training of tortuosity
level grading models based on a relatively small number of
CCM images may lead to a high risk of over-fitting. To speed
up the training and enable faster convergence and thus improve
the learning efficiency, we chose a pre-trained ResNet18 [27]
as the backbone, and fine-tune it with CCM images and their
segmentation maps. Grading nerve fibers of varying tortuosity
in CCM images is a fine-grained recognition task. In view of
this, inspired by Bilinear CNN [46], we propose a bilinear
attention (BA) module to extract discriminative features of
nerve fibers at different tortuosity levels. Fig. 3 shows its
architecture.

In designing the fine-tuned BANet, we replace the original
classification (fully-connected) layer of ResNet18 with the
proposed BA module, shown as the green box in Fig. 3,
where li (i=1, 2, 3, and 4) denotes the ith layer of ResNet18.
To facilitate the description of BA, we denote the output
feature of l4 as F , where F ∈ RC×W×H , and C, W , and
H represent the number of channels, the width and the height
of F , respectively. In the proposed BA, we first reshape F
into RC×N , where N = W ×H . The number of channels in
a neural network represents the high-level features extracted
by the intermediate hidden layers, and the final classification
is determined by these high-level features. Theoretically, the
higher the number of the channels, the more feature dimen-
sions the neural network contains and the more likely they
include redundant information. As in [37], some channels are
visualized to demonstrate that some of them attend to specific
classes. However, there are also some channels that fail to
provide relevant features for the classification but could not
be sufficiently visualized. Therefore, it is necessary to design
a channel attention model that applies the correlations between
the extracted features to enhance the relevant ones and weaken
the irrelevant ones, which leads more reliable and expressive
features to be finally extracted for the fine-grained tortuosity
classification. Then, we obtain the bilinear features of the
corneal nerves by performing the matrix outer product of F
and its transpose F T, i.e.

Bc = F × F T. (1)

where Bc ∈ RC×C indicates the channel-related bilinear
features of the corneal nerves. Further, a bilinear vector of di-
mension C2 is obtained by reshaping Bc so that it can be used
by the classification function (i.e., the fully connected layer).
The obtained bilinear vector is then subjected to an element-
wise sign operation sign(·) followed by the square root and

https://doi.org/10.5281/zenodo.5880419


4 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2021

l1 l2 l3

fc2AVG

l4

transpose

AVG

F

FT × 𝓁2
signsqrt

fc + dropout
Sigmoid

C×N

N×C C2 C2

C

fc1
Conv 7×7 

BN 
ReLU 

Maxpool

ResNet18

level 1
level 2
level 3

level 4

AVG Average Pooling

× Outer product

Element-wise product

Element-wise sum

Bilinear Attention

fc3cat

Loss2

Loss1 Loss3

cat Concatenate

304×304×3

heatmap

cat

C
C

M
Se

g 
M

ap

Grad CAM

Input

BA

Fig. 3. Schematic diagram of the BANet (stage 1). The concatenation of the CCM, Seg Map and then the CCM again is used as the input to the
network. li (i = 1, 2, 3, 4) indicates the ith residual layer of ResNet18. fc, fc1, fc2 and fc3 represent the fully connected layers. Note that we
can obtain the tortuosity activation regions based on the trained BANet and Grad CAM [36] at this stage.

`2 normalization to enhance the feature expression [47]:

B̂c =
sign(Bc)

√
|Bc|∥∥∥sign(Bc)

√
|Bc|

∥∥∥
2

, (2)

where B̂c ∈ RC2

is the enhanced bilinear vector. We then
feed B̂c into a fully connected (FC) and a dropout (ψ) layers
for dimensionality compression, where ψ is used to mitigate
over-fitting, and the FC is used to compress the number of
channels of B̂c to C. The compressed bilinear vector is finally
normalized by a Sigmoid function to generate the channel
weights ωba:

ωba =
1

1 + e−ψ(FC(B̂c))
, (3)

where ωba ∈ RC . In addition, we feed F into a global
average pooling (GAP) layer to obtain a feature vector with
the same dimension as that of ωba, denoted as ωavg. We can
then obtain the bilinear attention vector Batt of the corneal
nerves by performing residual learning [27] through element-
wise product (⊗) and element-wise sum (⊕) sequentially, i.e.:

Batt = ωavg ⊕ (ωavg ⊗ ωba). (4)

Such residual connection allows us to insert our proposed BA
module into any classification network of interest.

A fully-connected layer (fc1 in Fig. 3) is then applied over
the BA features Batt to perform a coarse tortuosity grading:
i.e., Θ(1) = FC (Batt), Θ(1) ∈ R4 (4 tortuosity levels). As
in the original ResNet18, we pass the output of l4 through
AVG and apply a fully connected layer to generate another
coarse grading result Θ(2) ∈ R4, shown as fc2 in Fig. 3. Two
different branches generate two different weighted grading
results. To optimize the grading performance, we integrate
the two grading results (Θ(1) and Θ(2)) by concatenation and
feed them into another classifier (fc3 in Fig. 3) for the final
tortuosity prediction Θ(a). Since the last classifier fc3 is an
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Fig. 4. Schematic diagram of the tortuosity grading framework (stage
2), which consists of a backbone classifier and an auxiliary classifier.
The circles with numbers indicate predicted tortuosity levels. All the
training samples of the auxiliary classifier are binary images.

integration of fc1 and fc2, we simultaneously minimize the
cross-entropy of the three predicted probabilities and labels to
obtain better grading performance.

B. Architecture of stage 2

The high similarity in tortuosity between two adjacent
tortuosity levels of the corneal nerves poses a great challenge
for their grading. Therefore, we need to find more fine-grained
discriminative features. In addition, CCM images with higher
tortuosity levels tend to contain fewer tortuous nerve fiber
segments as well. Therefore, mining the decisive tortuosity
features in an image is a key step to improve the grading per-
formance. To this end, we follow [36] to obtain the gradient-
based class activation mapping (Grad CAM) of the last layer
(l4) of BANet to visualize the tortuosity gradient and identify
the most likely representative regions of each grade in each
CCM image. A Grad CAM heatmap depicts the tortuosity level
responses of the CCM image. However, any given activation
region generated by Grad CAM will only roughly represent



L. MOU et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 5

level 1 level 2 level 3 level 4
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Fig. 5. Four example results of Grad CAM and N-ROI generator. Top
row shows the activated gradient of tortuosity generated by Grad CAM
heatmap, and the bottom row indicates the activated regions at t = 0.7.
The red pixels indicate the nerve fibers within the activated regions.

the tortuosity within that region, failing to accurately locate the
specific nerve fiber segments at the corresponding tortuosity
level. To address this limitation, we propose a generator to
obtain nerve fiber segments within the regions of interest,
namely N-ROI generator (as shown in the green box in Fig. 4),
so that we can more accurately characterize the tortuosity of
the image using the activated fiber segments. To achieve this,
we obtain a binarized class activation mask by thresholding
the normalized Grad CAM heatmap, where the threshold is
defined as t: we then chose t = 0.7 in this paper, which will be
justified and explained in Section III-E.3) below. Fig. 5 shows
four examples of activated regions generated by Grad CAM,
and their corresponding activated fibre segments generated by
our proposed N-ROI generator.

Once the activated nerve fiber segments have been iden-
tified, we can use them to assist the BANet for further
refinement of the grading. This is because the nerve fiber
segments within the N-ROI have more fine-grained discrimi-
native features when compared to the whole CCM image, as
demonstrated by the statistical comparison in Fig. 8 in the next
section. Therefore, we design an auxiliary network (AuxNet)
independent of the BANet to grade the N-ROIs, as illustrated
in Fig. 4. In the AuxNet, we resize the acquired activated
nerve fiber region to 112 × 112 pixels and treat it as input,
denoted as Iaux. It is worth noting that we use 112 × 112
pixels instead of 304× 304 pixels as input to reduce the GPU
memory consumption and to minimize the damage to the nerve
fiber topology caused by over downsampling. Next, in the
first step, Iaux passes through two successive convolutional
layers with a kernel size of 5, followed by a ReLU activation
and a batch normalization layer. Then a max-pooling layer is
applied to reduce the feature dimension, and to increase the
receptive field of the kernel. The second step takes the output
of the previous step as input and repeats the same operations
as the previous step. The last step is identical to the previous
step, except that the max-pooling layer is not included. The
AuxNet then outputs features of dimension 28×28, which are
fed into an AVG layer, followed by a fully connected layer
(fcaux in Fig. 4). For convenience, we denote the output of
the AuxNet as Θ(3). Thus, we integrate Θ(i) (i=1, 2, and 3)
by concatenation (cat(·)) to generate a new feature vector and

feed it into a classifier: i.e.,

Θ = FC
(

cat
(

Θ(1),Θ(2),Θ(3)
))

, (5)

where Θ is the output of the proposed framework. Compared
to the BANet, the final classifier (fc4 in Fig. 4) of the proposed
DeepGrading method integrates the predictions of the AuxNet,
and we therefore additionally minimize the cross-entropy of
AuxNet before the integration.

C. Loss function

There are two stages in the proposed method: stage 1
and stage 2, and each stage includes a training step and a
testing step. We first apply the CS-Net [43] to automatically
segment the raw CCM images (denoted as C) and obtain
the segmentation maps (denoted as S) of the nerve fibers.
Since the pre-trained ResNet18, which serves as the backbone
of the proposed method, takes 3-channel images as input
(denoted as I), we then concatenate the raw CCM images with
the corresponding segmentation masks to generate 3-channel
images that can be fed into the pre-trained model: i.e.,

I = cat (C, S,C) . (6)

An inadequate number of CCM images produces a network
that is insufficiently complex to characterize all the samples,
which drives the network to become over-confident. Inspired
by [48], we introduce label smoothing to reduce the risk of
over-fitting and to improve the generalization ability of the
network. Usually, the final fully connected layer of the neural
network outputs a vector z of dimension K, and outputs a
probability qi for ith class of all the K classes after a Softmax
operator: qi = exp(zi)/

∑K
j=1 exp(zj). It is important to note

that the proposed BANet outputs N predictions, where N = 3
in the first stage: Θ(1), Θ(2) and Θ(a), and N = 4 in the
second stage: Θ(1), Θ(2), Θ(3) and Θ. Therefore, we need to
minimize the cross-entropy between the nth prediction and the
hard label pi by:

Lce =
1

N

N∑
n=1

K∑
i=1

−pi log(qni ), (7)

where Lce denotes the cross-entropy loss of all the N predic-
tions, qni denotes the probability of the ith class in the nth

predictions, and pi is 1 for the correct class and 0 for the
other classes. For a network trained by label smoothing with
parameter α, we modify the hard label pi to a soft label plsi ,
where plsi = pi(1 − α) + α/K, and we follow [48] to set
α = 0.1. Hence, the cross entropy between plsi and qni can
finally be written as:

Lls =
1

N

N∑
n=1

K∑
i=1

− (pi(1− α) + α/K) log(qni ). (8)

In stage 2, we obtain the N-ROIs of all the segmentation
maps by performing the processes described in Section II-
B. Then we load all the original CCM images, segmentation
maps, and N-ROIs to train/validate/test DeepGrading. The
same labels are used for computing losses in both stage 1
and 2.
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III. EXPERIMENTAL SETUP AND RESULTS

A. Datasets
All the data described in this section have appropriate

approvals from the institutional ethics committees, and writ-
ten informed consent was obtained from each participant in
accordance with the Declaration of Helsinki.
• CORN-3 [16] is a subset of the publicly available

CORneal Nerve (CORN) dataset2, which was constructed by
iMED Lab, Cixi Institute of Biomedical Engineering, Chinese
Academy of Sciences, China. CORN has three subsets, and
was designed for corneal nerve segmentation [43], enhance-
ment [49], and tortuosity grading [16] purposes, respectively.
CORN-3 contains 403 CCM images of corneal subbasal
epithelium from 103 normal and pathological subjects. Each
image has a resolution of 384 × 384 pixels, covering a eld
of view of 400 × 400µm2. CORN-3 also provides reference
fiber centerlines, annotated by an ophthalmologist. Two senior
ophthalmologists (both with more than 15 years’ clinical ex-
perience) were invited to independently perform intra-observer
(twice) and inter-observer reproducible labeling of tortuosity
(level 1 through level 4) based on their clinical experience and
previous studies [50], [51], and their consensus were finally
selected as the ground truth, where level 1 through level 4
contain 54, 212, 10, and 29 images, respectively.
• CORN1500 is a new corneal nerve dataset which was

particularly designed for the tortuosity grading task. We con-
sidered CORN-3 to be a relatively small dataset, and the
image numbers at the different tortuosity levels are extremely
imbalanced. These limitations might easily lead to model over-
fitting. To this end, the newly-constructed CORN1500 dataset
aims to expand the datasets available for tortuosity grading.
As with CORN-3, all 1500 CCM images in CORN1500 were
acquired using a Heidelberg Retina Tomograph equipped with
a Rostock Cornea Module (HRT-III) microscope. Each image
has a resolution of 384×384 pixels covering a eld of view of
400 × 400µm2. All the images were manually annotated by
the same two ophthalmologists as before into four tortuosity
levels, with levels 1 through 4 containing 214, 461, 364,
and 461 images, respectively. We have made the CORN1500

available3 online.
• A clinical dataset is constructed and used to demon-

strate the effectiveness of the proposed method for grading
the corneal nerve tortuosity in a clinical setting. This data
was collected by the Department of Ophthalmology, Peking
University Third Hospital, Beijing, China. A total of 354
CCM images were collected, including 160 and 194 images
from healthy and diabetic subjects, respectively. All the CCM
images in this dataset were acquired using the same device,
and their imaging resolution and field of view are also in line
with those of the CORN-3 and CORN1500 datasets above.

B. Implementation details
We implemented the proposed DeepGrading on a PyTorch

platform with dual NVIDIA GPUs (GeForce GTX Titan Xp).
We employed mini-batch stochastic gradient descent (SGD),

2https://imed.nimte.ac.cn/data-index.html
3https://doi.org/10.5281/zenodo.5880419

with a weight decay of 0.0001, to optimize the model during
training. To speed up the training and the convergence of the
model, we used the pre-trained ResNet18 over ImageNet to
initialize its parameters. To fine-tune its weights and biases, we
set the initial learning rate before fc layer in the pre-trained
ResNet18 to 0.001, while setting the initial learning rate to
0.01 in the proposed bilinear attention module, as well as in
the fully connected layers. The cosine annealing learning rate
strategy [52] was employed to adjust the learning rate in the
training phase. We set the batch size to 64, and the maximum
epochs to 200.

We evaluated the network using a 5-fold cross-validation
method on the whole CORN1500 dataset, where each fold con-
tains 1000, 200 and 300 CCM images for training, validation
and testing, respectively. CCM images were divided according
to the percentages of images at each level in the dataset.
Early stopping strategy was used to avoid over-fitting: i.e.,
we stopped training if the validation accuracy didn’t improve
beyond 100 consecutive epochs. In stage 1, we trained the
BANet and saved the model with the best performance on
the validation set of CORN1500. We then used Grad CAM
to obtain the activation regions of the corneal nerves. The
Grad CAM maps and CCM images were then fed into the
DeepGrading network in stage 2 for training.

The preprocessing pipelines for training and testing were
different. During training, we applied random image rotation,
random brightness and contrast adjustment, random horizontal
and vertical flipping, and random cropping to 304×304 pixels.
Finally the gray maps were normalized, with a mean of 0.339
and a variance of 0.138, where the mean and variance were
computed based on the training set. However, for the N-ROI
images, we resized them to a size of 112×112 pixels in order
to reduce the GPU resource usage.

During testing, we resized each image and segmentation
map to 304 × 304 pixels, and each N-ROI image to 112 ×
112 pixels. Please note that we need to generate the N-ROIs
through the BANet and Grad CAM during testing, and then
normalize the gray channel, as in training. We did not perform
any random augmentations during testing.

C. Evaluation metrics

In order to quantitatively evaluate the proposed method,
we follow [2] to compute the weighted accuracy (wAcc),
sensitivity (wSe), and specificity (wSp) metrics:

wAcc =

K∑
l=1

rl
TPl + TNl

TPl + TNl + FPl + FNl
, (9)

wSe =

K∑
l=1

rl
TPl

TPl + FNl
, (10)

wSp =

K∑
l=1

rl
TNl

TNl + FPl
, (11)

where TPl, TNl, FPl, and FNl are the true positives, true
negatives, false positives, and false negatives, respectively, for
the lth level (l = 1, 2, · · · ,K). K = 4 denotes the total
number of the tortuosity levels. rl is the percentage of all
the available images belonging to the lth level.

https://imed.nimte.ac.cn/data-index.html
https://doi.org/10.5281/zenodo.5880419
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TABLE I
PERFORMANCE OF THE BASELINE METHODS AND THE PROPOSED

METHOD ON CORN1500 AT INDIVIDUAL LAYER LEVEL AND OVERALL.
ALL THE METRICS ARE EXPRESSED IN PERCENTAGE (%).

Methods Metrics level1 level2 level3 level4 overall p <

Annunziata [2]
wAcc 80.27 72.31 69.81 81.30 75.92

.001wSe 63.19 51.27 53.75 68.33 59.14
wSp 84.37 85.68 70.33 90.57 82.74

M4 [16]
wAcc 78.56 70.24 75.69 88.72 78.30

.001wSe 66.12 53.31 61.87 80.43 60.93
wSp 80.55 78.31 77.69 88.90 81.36

VGG16
wAcc 87.33 76.67 74.00 87.33 80.82

.001wSe 72.09 48.91 61.64 72.83 62.67
wSp 89.88 88.94 77.97 93.75 87.88

ResNet18
wAcc 89.33 75.33 79.00 90.33 82.83

.001wSe 65.12 55.43 64.38 81.52 67.00
wSp 93.39 84.13 83.70 94.23 88.45

ResNet34
wAcc 92.33 78.33 73.33 86.67 81.68

.001wSe 67.44 61.96 61.64 70.65 65.33
wSp 96.50 85.58 77.09 93.75 87.58

ResNet18-BP
wAcc 89.33 79.67 78.00 88.33 83.30

.001wSe 81.40 59.78 60.27 75.00 67.67
wSp 90.66 88.46 83.70 94.23 89.39

ResNet34-BP
wAcc 89.33 79.33 77.00 88.33 82.96

.001wSe 79.07 52.17 63.01 79.35 67.00
wSp 91.05 91.35 81.50 92.31 89.20

BANet18
wAcc 89.00 77.67 80.00 90.67 83.85

.001wSe 76.47 59.78 53.42 85.87 68.67
wSp 91.05 85.58 88.55 92.79 89.30

BANet34
wAcc 90.67 77.67 76.00 87.67 82.19

.001wSe 65.12 55.43 54.79 85.87 66.00
wSp 94.94 87.50 82.82 88.46 87.72

DeepGrading
wAcc 92.33 82.00 81.67 89.33 85.64

—wSe 59.52 68.82 66.67 87.10 72.67
wSp 97.67 87.92 86.40 90.34 89.67

D. Comparison with state-of-the-art methods

To demonstrate the superior performance of the proposed
DeepGrading method, we selected several baseline methods
for performance comparison on the CORN1500 dataset, in-
cluding Annunziata [2], M4 [16], VGG16 [53], ResNet18,
and ResNet34 [27]. Moreover, we embedded the proposed
BA module into ResNet18 (denoted BANet18) and ResNet34
(denoted BANet34), in order to verify the performance of
the BA module, independently of DeepGrading. In addition,
bilinear pooling (BP) [28] was also embedded into ResNet18
(denoted ResNet18-BP) and ResNet34 (denoted ResNet34-
BP), respectively, to highlight by contrast the performance
of the proposed BA module. Similarly, for all the learning-
based comparison methods, we initialized their parameters
pre-trained on ImageNet and fine-tuned them to achieve the
best performance by following the strategies used in training
the proposed method. We fine-tuned ResNet18 and ResNet34
directly based on the official code provided by PyTorch. We
implemented in Python ResNet18/34-BP, BANet18/34, and the
methods in [2] and [9], and carefully fine-tuned them for the
optimal performance according to the implementation details
provided in the original papers. To verify the superiority of
the proposed method, we computed the performance measures
both at an individual level and overall. In addition, we obtained
the predicted probabilities of all the methods and expanded the
labels and predicted probabilities into the one-vs-all manner.
Then AUC (area under the ROC curve) statistical significance

TABLE II
GRADING PERFORMANCE OF STATE-OF-THE-ART METHODS ON

CORN-3 IN TERMS OF ACCURACY, SENSITIVITY AND SPECIFICITY IN

PERCENTAGE (%).

Methods Metrics level1 level2 level3 level4 overall p <

Annunziata [2]
wAcc 85.80 78.00 75.90 84.30 79.00

.001wSe 71.80 64.40 66.00 70.70 66.30
wSp 86.70 78.00 75.90 84.30 79.00

M4 [16]
wAcc 88.40 80.30 80.00 86.60 82.40

.001wSe 74.30 68.00 68.80 73.80 71.70
wSp 90.10 80.10 81.40 88.10 85.90

BANet18
wAcc 90.32 76.18 80.89 96.53 80.80

.001wSe 96.30 69.81 58.33 93.10 71.96
wSp 89.40 83.25 89.15 96.79 86.63

BANet34
wAcc 88.83 74.69 80.15 96.28 79.60

.001wSe 96.30 62.74 66.67 86.21 69.98
wSp 87.68 87.96 85.08 97.06 87.81

DeepGrading
wAcc 86.85 79.90 87.10 98.51 84.10

—wSe 98.15 70.75 72.22 89.66 76.18
wSp 85.10 90.05 92.54 99.20 90.71

CCM images ResNet18 DeepGrading

level 1 level 2 level 3 level 4

Fig. 6. The t-SNE visualization of the CCM images, ResNet18 and
DeepGrading over the test images. The raw images were used as a
comparison baseline for the t-SNE [55] visualization, while for ResNet18
and DeepGrading, the feature vectors of their penultimate layers were
used instead.

test was performed using Delong’s test [54]4. All the statistics
hereinafter were performed on AUC similarly unless stated
otherwise. The test results are presented in Table I. They show
that the proposed DeepGrading produces superior grading
of the corneal nerve tortuosity with an overall accuracy of
85.64%, as evidenced by all p-values < 0.001.

To fairly compare the proposed method, we reported classi-
fication results of Annunziata [2], M4 [16], and the proposed
method on Dataset CORN-3. The tortuosity of the corneal
nerve in the CORN-3 images was manually divided into four
levels, which coincided with the number of levels that can
be graded by the proposed method. Accordingly, we used
the 1200 images from CORN1500 as the training set and the
remaining 300 images as the validation set to select the model
parameters. Finally, CORN-3 was served as the test set to
verify the grading performance of DeepGrading: the results
are shown in Table II. These results show that the proposed
DeepGrading achieves the best performance on the CORN-3
dataset, although the overall grading accuracy decreases by
1.54%. These results demonstrate that the proposed method
offers better generalization capability than the existing meth-
ods.

To demonstrate in-depth that the proposed DeepGrading can
better extract the tortuosity features of nerve fibers, we use
t-SNE [55] to visualize and interpret the high-dimensional

4https://www.medcalc.org/

https://www.medcalc.org/
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level 1 level 2 level 3 level 4

VGG16

ResNet18

ResNet18-BP

BANet18

DeepGrading

level 1 level 2 level 3 level 4

(a)

(b)

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 7. Grad CAM heatmaps. (a): Heatmaps obtained using different
methods over the images randomly selected at each tortuosity level.
From the top to the bottom: the class activation maps of VGG16,
ResNet18, ResNet18-BP, and the proposed BANet18 and DeepGrad-
ing, respectively. The nerve fibers within the dashed boxes basically
determine the tortuosity of the image, but they were not activated. For
the images at levels 1 and 4 in tortuosity, ResNet18-BP activated regions
without nerve fibers as well as lesion, as shown in the yellow box. (b):
Heatmaps obtained using the proposed method over the other randomly
selected images with fewer nerve fiber bifurcations at each tortuosity
level.

features acquired by the network. Fig. 6 illustrates the t-SNE
visualization of the high-dimensional features of the original
CCM images, ResNet18 and DeepGrading. Intuitively, the
features of the original CCM images at different tortuosity
levels are mixed, hard to decide the clustering centers. The
clusters become clearer after the CCM images have been pro-
cessed by ResNet18. However, it is still difficult to delineate
the clustering boundaries between levels 1, 2, and 3. The
integration of AuxNet enables the proposed DeepGrading to
focus on capturing the fine-grained variations among levels 1,
2 and 3, as evidenced by the t-SNE visualization with more

compact clusters in Fig. 6.
The class activation maps for VGG16, ResNet18, ResNet18-

BP, BANet18, and DeepGrading are illustrated in Fig. 7(a).
The heatmaps reflect visual representations of the feature
weights learned by the grading network. A darker red color in
the heatmap indicates that the region contributes more to the
tortuosity grading, and conversely a darker blue color indicates
less or even no contribution of a region to the tortuosity grad-
ing. Although all the methods were able to locate the regions
in the CCM images that determine fiber tortuosity, there are
significant differences in local details. For level 1, where the
nerve fibers are almost straight, VGG16 in the first column of
Fig. 7(a) performed worst, with narrowly mapped activation re-
gions. In contrast, DeepGrading located the activation regions
that contained most of the straight nerve fibers. As the local
variation in the CCM images became more significant with
higher tortuosity levels, all the networks tended to activate the
most representative regions. However, in the class activation
visualizations of levels 2 and 3, VGG16 contains mis-activated
regions, whereas ResNet18-BP activated almost all nerve
fibers in levels 1 and 4. In sharp contrast, the proposed BANet
improved the tortuosity activation accuracy, and DeepGrading
further refined the identification of the most representative
fibers. An interesting observation is that the heatmaps with
higher tortuosity of nerve fibers in Fig. 7(a) highlight the
regions with higher densities of bifurcations. To demonstrate
that the proposed method can also localize the regions with a
lower density of bifurcations, we randomly chose four other
images at each tortuosity level and the experimental results are
illustrated in Fig. 7(b). We can observe from Fig. 7(b) that the
proposed method can learn tortuosity features even in the CCM
images with a low density of bifurcations. These visualizations
clearly explain why the proposed DeepGrading achieved better
tortuosity grading performance. It is also worth noting that we
model the concerns of the clinicians when grading tortuosity
by generating the Grad CAM heatmaps, and thus allow the
grading model to possess better interpretability.

E. Ablation study

To better demonstrate the curvature grading performance of
the proposed DeepGrading, we conduct a series of ablation
experiments of the procedure on the CORN1500 dataset.

1) Role of BA: In this section, we document a series of com-
parisons in terms of wAcc, wSe, and wSp, intended to verify
the performance of the BA module. We validated the proposed
BA module on the original CCM images (denoted CCMs), the
corneal nerve segmentation maps (denoted SegMaps) and the
concatenation of the two (denoted CCMs + SegMaps). The
ablation results are shown in Table III, where Xand × indicate
that we trained the model with or without a BA module,
respectively. We can see that the grading performance of the
model was improved by adding a BA module. Concatenating
the CCM image with the segmentation map is equivalent to
adding hard attention to the CCM image, guiding the model to
focus more on the anatomical structure of the corneal nerves
when extracting features, as evidenced by the results in Table
III. In summary, concatenating the segmentation map with the
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TABLE III
ABLATION STUDY OF BA MODULE. ALL THE METRICS ARE EXPRESSED

IN PERCENTAGE (%). CCMS: CORNEAL CONFOCAL MICROSCOPY

IMAGES, SEGMAPS: CORNEAL NERVE SEGMENTATION MAPS, CCMS +
SEGMAPS: CONCATENATION OF CCMS AND SEGMAPS.

Ablation Sets w/ BA wAcc wSe wSp p

CCMs × 81.46 66.42 86.33
0.026

X 81.81 64.67 87.50

SegMaps × 80.93 65.16 85.84
< .01

X 81.18 66.17 85.90

CCMs + SegMaps × 82.91 68.42 88.76
< .001

X 83.85 68.67 89.30

TABLE IV
PERFORMANCE OF THE PROPOSED BANET AND THE PROPOSED

AUXNET UNDER DIFFERENT THRESHOLDS. ALL THE METRICS ARE

EXPRESSED IN PERCENTAGE (%).

Methods wAcc wSe wSp p
BANet 83.85 68.67 89.30 < .001

BANet + AuxNet

t = 0.5 85.34 72.13 90.03 0.024
t = 0.6 85.29 71.00 90.21 < 0.01
t = 0.7 85.64 72.67 89.67 —
t = 0.8 85.01 70.33 89.84 < 0.01

CCM image and the proposed BA module can significantly
improve tortuosity grading performance (p < 0.05).

2) Role of AuxNet: In this section, we verify the superiority
of the proposed AuxNet. First of all, we compare the proposed
BANet and BANet + AuxNet (DeepGrading) on the test set to
demonstrate the grading performance of DeepGrading. All the
experimental results are listed in Table IV. Statistical analysis
shows that the proposed DeepGrading performs significantly
better than the BANet (p < 0.05), as evidenced by increases
of 1.79% and 4.00% in terms of wAcc and wSe respectively.

3) Determination of parameter t: As described in Section II-
B, the acquisition of N-ROIs requires a threshold t. There-
fore, to find the optimal threshold t that enables AuxNet
to better assist DeepGrading for grading tortuosity, we con-
structed four experiments with different threshold values (t =
{0.5, 0.6, 0.7, 0.8}). The tortuosity grading results are shown
in Table IV. They show that the proposed DeepGrading
(BANet + AuxNet) achieved the best tortuosity grading per-
formance at t = 0.7 (p < 0.05, Delong’s test), which justifies
the fine-tuning of the threshold parameter.

4) Role of N-ROI: Furthermore, to verify that the thresh-
olded Grad CAM mask and the N-ROI generator filter out
the representative tortuosity level region, we trained AuxNet
with the CCM images (denoted as AuxNet-CCM) and the
CCM images multiplied with the thresholded Grad CAM
(denoted as AuxNet-tCCM) as input, respectively. The grading
performance is illustrated in Table V. It can be observed that
the grading performance improves significantly (p < 0.0001)
when the thresholded Grad CAM was directly multiplied with
the CCM, which confirms the effectiveness of the N-ROI
generator.

5) Impact of segmentation on grading: The proposed
method, especially AuxNet, relies on nerve fiber segmentation
for tortuosity grading. Therefore, to verify the impact of
neural fiber segmentation on tortuosity grading, we trained
the backbone ResNet18 and DeepGrading with neural fibers

TABLE V
GRADING PERFORMANCE OF AUXNET-CCM AND AUXNET-tCCM IN

TERMS OF ACCURACY, SENSITIVITY AND SPECIFICITY. ALL THE

METRICS ARE EXPRESSED IN PERCENTAGE (%)

Methods Metrics level1 level2 level3 level4 overall

AuxNet-CCM
wAcc 87.67 75.00 76.00 74.00 76.70
wSe 35.71 44.09 34.72 94.62 56.33
wSp 96.12 88.89 89.04 64.73 82.45

AuxNet-tCCM
wAcc 89.00 87.33 80.33 78.67 83.20
wSe 52.38 86.02 69.44 54.84 67.67
wSp 94.96 87.92 83.77 89.37 88.36

TABLE VI
CORNEAL NERVE SEGMENTATION PERFORMANCE OF DIFFERENT

METHODS AND THEIR IMPACT ON THE PROPOSED BANET ON

TORTUOSITY GRADING. UPPER TABLE: SEGMENTATION

PERFORMANCE; LOWER TABLE: GRADING PERFORMANCE. ALL THE

METRICS ARE EXPRESSED IN PERCENTAGE (%)

Methods SEN FDR
U-Net 77.57 ± 1.45 33.11 ± 2.08

CS-Net 83.80 ± 0.98 25.56 ± 0.28

Methods ACC SEN SPE p
ResNet18 (U-Net) 80.35 62.33 86.82

< 0.001DeepGrading (U-Net) 83.33 68.33 87.81
ResNet18 (CS-Net) 82.83 67.00 88.45

< 0.001DeepGrading (CS-Net) 85.64 72.67 89.67

segmented by U-Net [31] and CS-Net [43], respectively, where
U-Net and CS-Net were trained on the CORN-1 [43] dataset.
The segmentation and the tortuosity grading performance are
shown in the upper and lower tables of Table VI, respectively,
where the segmentation performance is measured in sensitivity
(SEN) and false discovery rate (FDR) [43]. They show that
the grading performance of our proposed method on non-ideal
segmentation (lower table of Table VI, second row) remains on
the whole superior to the competing method on ideal segmen-
tation (lower table of Table VI, third row), demonstrating that
the proposed method can significantly (p < 0.001) improve
the tortuosity grading performance.

IV. DISCUSSION

The proposed DeepGrading, in which the AuxNet module
was designed for challenging grading level prediction and de-
veloped from the perspective of interpretability [36], achieved
on the whole the best results among the tested methods.
Inspired by Bilinear CNN [28], we proposed a BA model using
the attention mechanism to exploit features with high-level
semantic information that might contribute to nerve fiber tor-
tuosity grading, thereby improving grading performance. The
experimental results demonstrate that the proposed method
can better classify corneal nerves into different tortuosity
levels. The tortuosity of the nerves is related to disease status:
the more critical the grading accuracy, the more reliable the
method.

A. Interpretable exploration of grading performance
By observing the Grad CAM heatmap in Fig. 7, it is

clear that the network pays more attention to local complex
variations in the CCM images, especially at higher tortuosity
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Fig. 8. Pairwise contrast histograms with Gaussian kernel density estimation (KDE) in 4 levels of nerve fibers in global CCM images and N-ROIs.
The first row shows the tortuosity density of global fiber segments, and the second row shows the tortuosity density of N-ROIs. The horizontal and
vertical axis indicate the curvature factors and the relative frequency of the training images of CORN1500, respectively.

level 1

level 3

level 4

level = 1 level = 2 level = 3 level = 4Seg Maps

level 2

0.9966
0.0034
0.0000
0.0000

0.0621
0.6407
0.2972
0.0000

0.0167
0.4224
0.5609
0.0000

0.0000
0.0001
0.0267
0.9732

(a) (b)

1�
2:
3:
4:

1�
2:
3:
4:

1�
2:
3:
4:

1�
2:
3:
4:

Prob.

0.1

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 9. Visual examples of activated nerve fiber segments. (a) indicates the nerve fiber segments that were activated in different CCM images in
each of the 4 levels; (b) indicates the nerve fiber segments and their probabilities that were activated at level = n (n = 1, 2, 3, 4) in the same
CCM image in each of the 4 levels. Best viewed in color. Prob. indicates the credibility when the tortuosity of the CCM image is predicted to be
level n.

levels. This means that we can further explore the fine-grained
features of local regions. In view of this, we propose AuxNet
to guide the backbone network to focus on capturing local
corneal nerve variations. The proposed AuxNet has contributed
significantly in further improving grading performance, es-
pecially the procedure of generating N-ROIs using Grad
CAM [36]. To demonstrate that the generated N-ROIs can
contain more discriminative fine-grained features and make an
interpretable comparison to explain why AuxNet can improve
performance, we constructed a statistical comparison analysis
of the tortuosity of local N-ROIs and global nerve fiber
segments, where the nerve fiber curvature factor is obtained
using the tortuosity estimation algorithm proposed in [56]. Fig.

8 illustrates the tortuosity density distribution of nerve fibers
in the training images of CORN1500 based on the Gaussian
kernel density estimation (KDE [57]) algorithm: the first and
second rows represent the tortuosity density of global nerve
fiber segments and N-ROIs, respectively. The horizontal axis
represents the curvature factors, the vertical axis represents the
relative frequency of the images with a particular curvature
factor. By observing columns (a) to (f) in Fig. 8, we can see
an increase in the discriminability of the tortuosity of level 1
versus levels 3 and 4, and level 2 versus levels 3 and 4 in the
N-ROIs, confirming that N-ROIs contain more discriminative
fine-grained information than the CCM images as a whole.
Especially, we proposed the AuxNet that takes the nerves in
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TABLE VII
NUMBERS OF CCM IMAGES AT DIFFERENT TORTUOSITY LEVELS

PREDICTED USING THE PROPOSED DEEPGRADING IN AN

INDEPENDENT DATASET ABOUT THE HEALTHY CONTROL (HC) AND

DIABETIC MELLITUS (DM) GROUPS.

Group level 1 level 2 level 3 level 4 Total p
HC 83 53 16 8 160

< 0.001DM 14 32 95 53 194

level 1 level 2 level 3 level 4

HC DM

Fig. 10. Distribution of corneal nerve tortuosity levels predicted using
the proposed DeepGrading in the healthy control (HC) and diabetic
mellitus (DM) groups.

the ROIs as input. The overall grading accuracy is determined
by BANet and AuxNet. Although levels 3 and 4 are more
challenging to differentiate, it is the nerves in the ROIs that
become less indicative, not the nerves of the whole image.
AuxNet was designed to improve the deficiencies in accuracy
when classifying levels 2 and 3 based on the whole images.

One of the purposes of the proposed method is to mimic
the ophthalmologists performing tortuosity grading so as to
predict the areas of interest to them, thus allowing us to
further improve the grading performance based on the nerve
fibers within the obtained highlighted areas. The Grad CAM
heatmap in Fig. 7 initially explains that the proposed method
can more accurately locate the tortuosity-determining regions.
However, the Grad CAM heatmap is a coarse representation
that cannot accurately show the tortuosity distribution of each
fiber segment. We generated a probability map of the entire
corneal nerve anatomy by overlaying the Grad CAM heatmap
on the segmented corneal nerve fibers, as illustrated in Fig.
9. Compared with the Grad CAM heat map, the probability
map accurately indicates the activation probability of the nerve
fibers at the pixel level. As shown in Fig. 9(a), we can obtain
the fiber segments that determine the tortuosity of the image at
various tortuosity levels: i.e., the fiber segments with higher
heating values can be used to determine the tortuosity. The
probability map can be used not only to explain network
performance, but also to aid clinical disease diagnosis, i.e.,
it can help physicians to identify the regions where tortuosity
occurs as well as the severity of the tortuosity.

However, images with higher tortuosity levels usually con-
tain nerve fiber segments with different tortuosities. To further
explore and characterize the nerve fibers with different tortu-
osities in a single CCM image, we assigned a specific level
to Grad CAM when generating the tortuosity probability map:
i.e., we assigned level = n (n = 1, 2, 3, 4), respectively.
In addition, the grading probabilities of nerve fibers under
different levels in the same image are output simultaneously,
as illustrated in Fig. 9(b), where the nerve fibers that were

activated under the assigned level are highlighted in red. As
in the first row of Fig. 9(b), most of the straight nerve fibers
under level 1 were activated as expected at level = 1 with a
probability of 99.66%. In contrast, a small number of nerve
fibers were still activated at level = 2, but the activation
probability is as low as 0.34%. Similarly, the activation
probabilities at level = 3 and level = 4 are 0, i.e., it is
not credible that the nerve fibers are activated at either level
3 or 4. Therefore, we believe that the tortuosity of the nerve
fibers reported in the first row is level 1. In the second row,
the activation probabilities of the nerve fibers at level = 2 and
level = 3 are 64.07% and 29.72%, respectively. Therefore, we
believe that there exist two levels of nerve fiber segments with
available locations in the CCM image. This is more evident in
the third row of Fig. 9(b), where the nerve fibers are activated
as level 2 and level 3 with 42.24% and 56.09% probabilities,
respectively. As in the first row, the activation probability for
level = 1/2/3 is too low to support that the CCM image in
the fourth row contains both levels 1, 2 and 3 nerve fibers.
Therefore, we conclude that this image contains only corneal
nerves of tortuosity level 4, with an activation probability of
97.32%.

B. Clinic evaluation

Our tortuosity grading was further validated by the clinical
practice. The clinical dataset was used to study the correlation
between the tortuosity levels and pathology state. This dataset
contains 160 and 194 images from healthy control (HC) and
Diabetic Mellitus (DM) groups. We performed the automated
tortuosity grading for each image and the results are shown in
Table VII. Since the predicted tortuosity levels were discrete,
Chi-square test was used to verify the statistically significant
difference between the two gradings. We can conclude from
Table VII that the tortuosity levels predicted by DeepGrading
are significantly different in the HC and DM groups (p <
0.001). Fig. 10 depicts the distribution of the tortuosity of the
CCM images in these two groups. It can be observed clearly
that the tortuosity of the HC group is mainly distributed in
levels 1 and 2, while that of the DM group falls mainly into
levels 3 and 4. It may be concluded that DM is highly related
to levels 3 and 4, but less related to levels 1 and 2, which is
consistent with the findings of previous studies [6], [8], [58]
that diabetic patients exhibit higher corneal nerve tortuosity.
These findings indicate that our automatic tortuosity grading
method has a potential to assist in differentiating the healthy
subjects from those with diabetes.

Although the proposed corneal nerve tortuosity grading
algorithm has yet to be applied for clinical diagnosis on a large
scale, it has great potentials to be introduced into a real clinical
pathway for early diagnosis and monitoring of many eye and
systemic diseases. For example, due to the high prevalence
of diabetic neuropathy (DN) in patients with type 1 diabetes,
early detection of DN is very important for risk stratification of
patients so that the endpoints of foot ulceration and premature
death can be prevented [59]. CCM examination and analysis
could represent a novel non-invasive method to accurately
quantify nerve morphology, and thus aid in the diagnosis and
determination of the severity of DN [60]. In order to make real
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benefits to clinicians and patients, the proposed method can
be further developed as a plug-in of existing software such
as ImageJ5, deployed as a web service, or distributed as a
standalone software tool. These research tools can be freely
used by clinicians to support their decision-making process at
their own risks. If the algorithm will be commercially used as
software as a medical device (SaMD) to make the diagnosis
alone, regulatory approvals such as FDA or CE mark will be
required in additional to rigorous clinical evaluations. On the
other hand, continuous refinement and improvement will be
always required to make the algorithm robust and accurate.

V. CONCLUSIONS AND FUTURE WORK

Accurate assessment of corneal nerve fiber tortuosity is
very important to facilitate the examination and diagnosis of
many ophthalmic diseases. Due to the subjectivity and slow
speed of diagnostic procedures in manual examination, it is
particularly important to develop a fully automated corneal
nerve tortuosity estimation method. In this paper, we proposed
a novel corneal nerve tortuosity grading method based on the
latest deep learning and interpretability mechanism, namely
DeepGrading. The proposed DeepGrading achieves overall
state-of-the-art grading performance using the proposed bi-
linear attention module and an auxiliary grading network. It
not only grades the overall tortuosity of CCM images but also
can locate and grade the tortuosity of nerve fibers at different
spatial locations in each CCM image. This method has huge
potential to be introduced into clinics after large population
studies in future. However, the CCM images involved in this
work are of limited field of view relative to the entire cornea,
and a small error in the estimation of clinical parameters
may lead to misdiagnosis. Therefore, we will introduce CCM
images with a larger field of view in the future work and
include clinical reliability validation of the obtained tortuosity.
On the other hand, we intend to apply this powerful method
to other imaging modalities, such as fundus images and
optical coherence tomography angiography (OCT-A) images,
for improved diagnosis of eye-related diseases in the future.
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[58] S. De Cillà, S. Ranno, E. Carini, P. Fogagnolo, G. Ceresara, N. Orzalesi,
and L. Rossetti, “Corneal subbasal nerves changes in patients with
diabetic retinopathy: an in vivo confocal study,” Investigative Ophthal-
mology & Visual Science, vol. 50, no. 11, pp. 5155–5158, 2009.

[59] S. Tesfaye, N. Chaturvedi, S. Eaton, J. Ward, C. Manes, C. Ionescu-
Tirgoviste, D. Witte, and J. Fuller, “Vascular risk factors and diabetic
neuropathy,” New England Journal of Medicine, vol. 352, no. 4, pp.
341–350, 2005.

[60] P. Hossain, A. Sachdev, and R. A. Malik, “Early detection of diabetic
peripheral neuropathy with corneal confocal microscopy,” The Lancet,
vol. 366, no. 9494, pp. 1340–1343, 2005.


	Introduction
	Proposed Method
	Architecture of BANet
	Architecture of stage 2
	Loss function

	Experimental Setup and Results
	Datasets
	Implementation details
	Evaluation metrics
	Comparison with state-of-the-art methods
	Ablation study
	Role of BA
	Role of AuxNet
	Determination of parameter t
	Role of N-ROI
	Impact of segmentation on grading


	Discussion
	Interpretable exploration of grading performance
	Clinic evaluation

	Conclusions and future work
	References

