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Abstract A key challenge in neuroimaging remains to understand where, when, and now partic-
ularly how human brain networks compute over sensory inputs to achieve behavior. To study such 
dynamic algorithms from mass neural signals, we recorded the magnetoencephalographic (MEG) 
activity of participants who resolved the classic XOR, OR, and AND functions as overt behavioral 
tasks (N = 10 participants/task, N-of-1 replications). Each function requires a different computation 
over the same inputs to produce the task-specific behavioral outputs. In each task, we found that 
source-localized MEG activity progresses through four computational stages identified within indi-
vidual participants: (1) initial contralateral representation of each visual input in occipital cortex, (2) 
a joint linearly combined representation of both inputs in midline occipital cortex and right fusiform 
gyrus, followed by (3) nonlinear task-dependent input integration in temporal-parietal cortex, and 
finally (4) behavioral response representation in postcentral gyrus. We demonstrate the specific 
dynamics of each computation at the level of individual sources. The spatiotemporal patterns of the 
first two computations are similar across the three tasks; the last two computations are task specific. 
Our results therefore reveal where, when, and how dynamic network algorithms perform different 
computations over the same inputs to produce different behaviors.

Editor's evaluation
How does the brain implement basic logical computations (AND, OR, XOR) regardless of stimulus 
types? This is one of the most fundamental questions in cognitive neuroscience. This MEG study, by 
combining interesting experimental paradigms and sophisticated signal analyses, demonstrates four 
serial neural components in different brain regions that correspond to four system-level computa-
tions, respectively.

Introduction
Extensive studies revealed that the primate visual system comprises the ventral and dorsal pathways, 
with specific anatomical and functional hierarchical organization (Van Essen et  al., 1992; Kravitz 
et al., 2013). These pathways compute over the high-dimensional visual input, starting separately in 
each hemisphere with contralateral detection of simple, small features with small receptive fields, that 
are then hierarchically integrated into more complex, broader receptive field features (Bugatus et al., 
2017; Hubel and Wiesel, 1962; Kay et al., 2015), leading to the integrated face, object, and scene 
features (DiCarlo and Cox, 2007; Grill-Spector and Weiner, 2014; Kriegeskorte et al., 2008; Sigala 
and Logothetis, 2002) that are compared with memory to produce behavior (Zhan et al., 2019b; 
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Wyart et  al., 2012; Ratcliff et  al., 2009; Alamia and VanRullen, 2019). This flow of information 
reverses when the same pathways predict the top-down input from memory (Friston, 2008; Linde-
Domingo et al., 2019; Engel et al., 2001).

There is broad agreement that such a bidirectional hierarchical architecture supports much of the 
information processing that subtends everyday face, object, and scene recognition. However, despite 
considerable progress, we have yet to understand where, when, and how specific algorithmic compu-
tations in the pathways dynamically represent and transform the visual input into integrated features 
to produce behavior (Kriegeskorte and Douglas, 2018; Naselaris et al., 2011; Wu et al., 2006) and 
vice versa, when reversing the flow in the hierarchy, to predict a cascade of features from complex 
to simpler ones. Furthermore, it is unclear that such an algorithmic understanding can be achieved 
with current analytical approaches to neuroimaging, even in simple tasks (Jonas and Kording, 2017). 
Here, we achieved such systems-level algorithmic understanding with magnetoencephalographic 
(MEG) measurements, in the context of well-defined visual inputs and tasks.

We framed this broad problem using the classic logical functions XOR, AND, and OR, in which 
different algorithms are required to produce correct responses from the same input stimuli (see these 
input-output relationships in Figures  1 and 2). XOR is famously a nonlinearly separable function, 
whereas AND or OR is linearly separable, implying nonlinear vs. linear transformations of the same 
inputs in the considered architectures (Minsky and Papert, 2017; Rumelhart et al., 1986; Gidon 
et al., 2020) (see Figures 1A and 2). We aimed to reverse engineer the different stages of linear and 
nonlinear computations in brain networks that implement the algorithms (O’Reilly and Mars, 2011).

To do so, we simultaneously presented the inputs laterally within the visual field (a pair of sunglasses 
on a face, with dark ‘on’ vs. clear ‘off’ lenses representing the binary inputs, Figure 1A) so that occip-
ital cortex initially represented each separately and contralaterally (i.e. in analogy to a network model 
that takes in two distinct inputs, see Figure 1A, here with left vs. right input projected in right vs. left 
occipital cortex; see Methods, Stimuli). Our analyses of the ensuing computations in the networks of 
individual participants systematically revealed four distinct stages that represent and transform the 
same inputs to produce different task-specific behavior. The first two stages of linear computations 
similarly represent the two inputs across the XOR, AND, and OR tasks. The last two stages of nonlinear 
computations differently represent the same inputs in a task-dependent manner (N = 10 participants 
per task, each analyzed separately to provide an independent replication; we further replicated the 
key results in different participants, using opposite-phase Gabor patches and also with sequentially 
presented inputs) (Little and Smith, 2018; Ince et al., 2021; Naselaris et al., 2021; Smith and Little, 
2018). A video (Figure  1—video 1) visualizes the key results in one typical participant, with four 
stages of computation in the brain between stimulus and behavior schematized in a network model, 
and examples of the different color-coded source-level dynamic computations on the same inputs that 
comprise each stage. We advise watching (Figure 1—video 1) stage by stage, to complement the 
presentation of the main results below.

Results
Starting with behavior, Table 1 shows that participants were both accurate and fast in all tasks, with no 
significant task differences on average accuracy and reaction times (RT), measured with independent 
sample t-tests. We reconstructed the dynamic neural representation of the inputs of each participant 
from concurrently measured, source modeled MEG activity (see Methods, MEG Data Acquisition, 
Source Reconstruction).

To simplify presentation, henceforth we use vector notation to denote the state of the two inputs 
and, for example, write left input ‘on’, right input ‘off’ as [1,0]. To preview the analysis and key results, 
for each source and every 4ms we fit linear models to explain the 2D MEG magnetic vector field 
activity in terms of the two presented binary inputs, with and without a nonlinear interaction term 
between them. The interaction term captures the nonlinear integration of the two inputs on this MEG 
source and time point—i.e., when source response to [1,1] differs from the sum of the responses to 
[1,0] and [0,1]. Additional metrics quantified how the 2D MEG responses match the response pattern 
expected in each task (see Methods, Representational Patterns). Our analyses reveal that individual 
MEG source responses reflect changing representations of the visual inputs in the brain, revealing four 
different stages of neural computations that lead to behavior in each task (see Methods, Linear vs. 
Nonlinear Representations, Representation Patterns and Figure 1—video 1).

https://doi.org/10.7554/eLife.73651
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Four systems-level stages of computation link stimulus to behavior
First, we performed a data-driven clustering analysis that delivered four stages of computation in the 
XOR, AND, and OR tasks (see Methods, Clustering the Stages of Computation and Figure 1—figure 
supplement 1). Figure 1B (XOR) and Figure 2 (AND and OR) show the time course of these four 
stages averaged across the 10 participants of each task (Figure 1—figure supplement 2 shows the 
results of each individual participant). Each task shows a similar dynamic unfolding: the first two stages 
represent and linearly discriminate the visual inputs; the third and fourth stages nonlinearly integrate 
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Figure 1. XOR task, four stages of computation in a schematic network and in the brain. (A) Hypotheses and schematic hierarchical brain network in 
the XOR task. Stimuli consisted of the image of a face wearing glasses, with dark (‘1’, ‘on’) and clear (‘0’, ‘off’) left and right lenses serving as inputs, for 
a total of four input classes for XOR behavioral decisions. (B) Four hierarchical stages of computations. Each colored curve shows the average (N = 10 
participants) time course of the maximum across sources that: (1) linearly discriminates in its magnetoencephalographic (MEG) activity the ‘on’ vs. ‘off’ 
state of the left (Lin, blue) and right (Lin, orange) inputs (weighted distance pattern), (2) linearly discriminates both inputs (LinBoth, magenta) (weighted 
distance pattern), (3) nonlinearly integrates both inputs with the XOR task pattern (NonLin, green) (weighted XOR pattern metric) and (4) nonlinearly 
integrates both inputs with the XOR task pattern and with amplitude variations that relate to reaction time (RT) (mutual information, MI (MEG; RT)) 
(yellow). Colored brains localize the regions where these computations start (onset times for left and right) or peak (peak latencies for both, XOR and 
RT) (p<0.05) familywise error rate corrected with a permutation test, (see Methods, Linear vs. Nonlinear Representations; Representation Patterns). Dots 
report the onset time of computation (1) and (2) and the peak time of computation (3) and (4) in each participant. See Table 2 and Figure 1—figure 
supplement 2 for individual participant replications of each computation in the same brain regions and time windows.

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. Clustering of computation stages.

Figure supplement 2. Results for individual participants.

Figure supplement 3. Replication of four stages of computation with Gabor stimuli.

Figure 1—video 1. Dynamic summary of the four stages of computation in the XOR task (data from the example XOR participant highlighted in 
Figure 1—figure supplement 2).

https://elifesciences.org/articles/73651/figures#fig1video1

https://doi.org/10.7554/eLife.73651
https://elifesciences.org/articles/73651/figures#fig1video1
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Figure 2. Stages of computations in AND and OR tasks. Each colored curve averages (N = 10 participants) the time courses of the maximum across 
sources that: (1) linearly discriminates (weighted distance pattern) in its magnetoencephalographic activity the ‘on’ vs. ‘off’ state of the left (blue) and 
right (orange) inputs, (2) linearly discriminates both inputs (magenta), (3) nonlinearly integrates both inputs with the respective task pattern and (4) 
nonlinearly integrates both inputs with the respective task pattern and with amplitude variations that relates to reaction time (RT) (yellow). Colored 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.73651
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them in a task-specific manner, revealing the solution of each task in the responses of individual MEG 
sources. The network model of Figure 1A schematizes these stages. Specifically, we show:

1.	 Linear, contralateral discrimination of each input state separately (‘Lin’) in V1-4 regions with 
onset from ~60ms poststimulus, quantified as the product of and the LEFT/RIGHT representa-
tion pattern metric (see Methods, Representation Patterns) and the multivariate R2 of a linear 
model for each binary input (see Methods, Linear Representation), color coded in light blue for 
the left input, in orange for the right input.

2.	 Linear discrimination of both inputs (‘LinBoth’) on the same occipital and ventral sources 
~ 100ms poststimulus, quantified as the product of the BOTH representation pattern metric 
(see Methods, Representation Patterns) and the multivariate R2 of a linear model considering 
both inputs with no interaction (see Methods, Linear Representation), color coded in magenta.

3.	 Nonlinear integration of both inputs (‘NonLin’) for task performance (XOR, AND, or OR) 
in temporal-parietal regions ~260ms, quantified as the product of the XOR representation 
pattern metric (see Methods, Representation Patterns) and the significant improvement in 
model fit with interaction term (see Methods, Nonlinear Representation), color coded in green.

4.	 Nonlinear integration of both inputs together with response-related activity (‘NonLin&RT’) 
in postcentral gyrus ~400ms, quantified as mutual information (MI) between the 2D MEG 
magnetic field and RT on the corresponding trial (see Methods, Information Theoretic Analyses), 
also thresholded by the product of the XOR pattern metric and the model interaction term, 
color coded in yellow.

In Figures 1 and 2, colored sources shown in glass brain localize the regions where each color-
coded computation onsets or peaks (cf. dashed lines) in different time windows poststimulus. Table 2 
shows independent replications of each computation within these regions and time windows, in at 
least 9/10 participants. We also replicated each 
color-coded computation at the level of indi-
vidual participants, using Gabor inputs in XOR 
(Figure 1—figure supplement 3) and a sequential 
presentation of the inputs in XOR, AND, and OR 
(Figure 2—figure supplements 1 and 2). Finally, 
we show that the four stages of computations 

brains localize the regions where these computations start (onset times for left and right) or peak (peak latencies for LinBoth, NonLin, and RT) p<0.05 
familywise error rates corrected with a permutation test, see Methods, Linear vs. Nonlinear Representations; Representation Patterns. Dots report the 
onset time of computation (1) and (2), and the peak time of computation (3) and (4) in each participant. See Table 2 and Figure 1—figure supplement 
2 for individual participant replication of each computation in the same brain regions and time windows. Single source plots in each task develop the 
data of one typical observer, where the green and yellow computations (cf. color-coded sources in the glass brain) differ between AND, OR, and XOR 
(see Figure 3 for caption).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Four stages of computations replicated with delayed stimulus presentation.

Figure supplement 2. Four stages of computations replicated with delayed stimulus presentation: individual participants’ results.

Figure 2 continued

Table 1. Mean behavioral accuracy and median 
reaction times in XOR, AND, and OR, 95% 
percentile bootstrap confidence interval shown 
in brackets.
All pairwise comparisons, p>0.05.

Accuracy Reaction time

XOR 98.5% [97, 99] 499ms [461, 557]

AND 99% [98.6, 99.5] 457ms [393, 505]

OR 99.3% [99.2, 99.5] 490ms [439, 541]

Table 2. Number of individual participant 
replications of the four color-coded 
computations, within the same region and time 
window.
Lin, left and right occipital sources [74–117ms]; 
LinBoth, occipital midline and right fusiform 
gyrus [74–117ms]; NonLin, XOR: parietal 
[261–273ms], AND: temporal-parietal [246–
304ms], OR: temporal-parietal [261–304ms]; 
RT, postcentral gyrus [386–398ms]. Bayesian 
population prevalence (Ince et al., 2021) of 
9/10 = 0.89 [0.61 0.99]; 10/10 = 1 [0.75 1] (MAP 
[95% HPDI]).

Lin LinBoth NonLin NonLin&RT

XOR 10/10 10/10
9/10 
(parietal) 9/10

AND 10/10 10/10 10/10 9/10

OR 10/10 10/10 10/10 10/10

https://doi.org/10.7554/eLife.73651
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generalize stage by stage in the XOR from face stimuli to Gabor stimuli (see Figure 1—figure supple-
ment 1).

Detailed dynamic unfolding of each computation at single source level
We next detail the dynamic unfolding of each color-coded computation on single sources, using an 
exemplar XOR participant (highlighted with colored curves in Figure 1—figure supplement 2, XOR, 
also reported in Figure 1—video 1). The selected sources maximize the metric of each computa-
tion—i.e., Lin: onset; LinBoth, NonLin, NonLin&RT: peak. The glass brain in Figure 3A locates the 
selected sources and color codes them by type of computation. The subpanels visualize the dynamic 
response trajectories of each source to the same four stimuli (representing the ‘on’ vs. ‘off’ combi-
natorics of the two inputs) over 72ms, with a 12ms timestep resolution (those indicated with triangle 
markers in Figure 1—figure supplement 2 and Figure 1—video 1). To preview the results, different 
source response trajectories to the same inputs detail the neural implementation of the different 
color-coded computations.

To illustrate, we start with the light blue right occipital source (Figure 3A). Its Lin computation (see 
Legend and Figure 3B) develops over seven time-steps (from 2 to 74ms) to linearly discriminate the 
‘on’ (dark) vs. ‘off’ (clear) state of the left input (see schematic in the bottom left quadrant). The plot 
shows how 2D source activity progressively separates left lens ‘on’ trials (red and gray stimuli, see blue 
line in schematic) from left lens ‘off’ trials (blue and black stimuli). The adjacent scatter (upper right 
quadrant) shows the source response to individual trials at 74ms (final plotted time point). The vector 
diagram (lower right quadrant) confirms that the linear addition of the vector responses [0, 1] and [1, 
0] (gray point, sum of blue and red vector) is close to the actual source response to [1, 1] (black point). 
The left occipital source (orange, Figure 3A,C) reflects a similar unfolding for the linear discrimination 
of the right input ‘on’ vs. ‘off’ state. Again, the response is close to the linear sum of the responses to 
each individual input.

The second computation (LinBoth, magenta) that linearly and jointly represents the ‘on’ vs. ‘off’ 
state of both inputs takes two distinct forms. In midline occipital sources (Figure  3A,D), all four 
stimuli are equally spread out in the quadrants of the source response space (i.e. all inputs are equally 
discriminated). In contrast, the right fusiform gyrus source (Figure 3A,E) discriminates the [1,0] and 
[0,1] stimuli with an opposite activity, whereas the [1,1] (black dot) and [0,0] (gray dot) stimuli are less 
discriminated. The vector diagrams of the two LinBoth examples confirm that the joint response to 
[1,1] is indeed the sum of [1,0] and [0,1] responses. Interestingly, the two LinBoth discriminations 
illustrate a progression toward an XOR representation. The first LinBoth midline occipital source 
(Figure 3D) discriminates equally each input in the quadrants of its 2D response. In contrast, the 
amplitude response of the LinBoth right fusiform gyrus source (Figure 3E) can linearly discriminate 
the XOR responses, but only if a nonlinear operation was added (i.e. drawing a circle that separates 
the two ‘same’ black and gray stimuli near the origin in the 2D source response space from the 
two ‘different’ blue and red stimuli). So, the right fusiform gyrus LinBoth stage likely represents an 
important intermediate step toward the computation of XOR. We will see next that the green compu-
tation adds the nonlinear computation.

The third and most critical computation that starts distinguishing the task (NonLin, green) occurs 
when the parietal source (Figure 3A, F) nonlinearly represents the XOR solution for behavior, with 
‘same’ vs. ‘different’ stimuli discriminated at 254ms. Like LinBoth in right fusiform gyrus, this repre-
sentation has black dot [1,1] and gray dot [0,0] responses close together, but with two crucial differ-
ences. First, the red and blue vectors (lower right quadrant) now point in the same direction, rather 
than in opposite directions, as happens in right Fusiform Gyrus LinBoth. Such different source-level 
responses to the same [1,0] and [0,1] stimuli likely reflect different activities of the neural populations 
in the regions where the two sources are located. In parietal source NonLin, responses to [1,0] and 
[0,1] stimuli are magnetic fields with the same dipole orientation, suggesting that the same pattern 
of cortical activity (i.e. the same neural population) responds to both stimuli. In right fusiform gyrus 
source LinBoth (Figure 3A, E), responses to [1,0] and [0,1] are magnetic fields with different dipole 
directions, suggesting that different neural populations within the region modeled by the source 
respond to each stimulus. Second, the representation of [1,1] (black dot) is now nonlinear (green 
vector), pointing away from the sum of the red and blue vectors of the individual inputs. Following this 
nonlinear transformation, the XOR outputs are now linearly decodable in the 2D MEG response space.

https://doi.org/10.7554/eLife.73651


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Jaworska et al. eLife 2022;11:e73651. DOI: https://​doi.​org/​10.​7554/​eLife.​73651 � 7 of 16

101 ms
D. Right Midline Occipital

B. Right Occipital C. Left Occipital
74 ms

E. Right Fusiform Gyrus
101 ms

254 ms
F. Right Parietal 386 msG. Post-Central Gyrus

MEG dim 1 

M
E

G
 d

im
 2

 

-1.5

-1.5

1.5

1.5

-3

-3

3

3

74 ms

0 ms
-12 ms
-24 ms
-36 ms
-48 ms
-60 ms
-72 ms

XOR XOR

Lin

Lin

LinBoth LinBoth

NonLin NonLin

[0,0]

[1,1]

[0,0]

[0,1]

[1,0]

[0,1]

[1,0]

[1,1]

[0,0]
[0,1]

[1,0]

[1,1]

A. Localized Sources Legend

Figure 3. Dynamic unfolding of different computations on the same inputs (e.g. XOR participant, see also Figure 1—video 1 ). (A) Localized sources. 
Color-coded source localized in the top glass brain illustrates each color-coded computations in each scatter plot. Legend. Axes of the scatter plots 
represent the 2D source magnetic field response. Small dots are single-trial source responses; larger dots their averages for each color-coded stimulus 
class, dynamically reported over seven timesteps (cf. legend) corresponding to the seven triangular markers in Figure 1—figure supplement 2, 

Figure 3 continued on next page
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Finally, the fourth stage on a postcentral gyrus source (Figure 3A, G, NonLin&RT, yellow) also 
nonlinearly represents the stimuli, also allowing linear readout of the XOR task outputs at 386ms. In 
addition, this source activity now relates trial by trial to behavioral RTs. Figure 3—figure supplement 
1 shows that this last postcentral gyrus fourth stage (also in frontal regions) primarily relates to behav-
ioral RTs.

Figure 2 shows that the key differences in the AND and OR tasks are at the third and fourth stages, 
where the temporal-parietal (green) and postcentral gyrus (yellow) sources represent AND and OR 
solutions for task behavior. The earlier stages linearly represent the two inputs, with light blue and 
orange Lin, magenta LinBoth discriminating the four stimuli as in XOR participants (see Figure 1—
figure supplement 2 for individual replications, prevalence = 1 [0.75 1], MAP [96% HPDI], Ince et al., 
2021). In NonLin and NonLin&RT stages, the representation is nonlinear and reflects the task (cf. 
vector diagrams inset, bottom right quadrant). In AND, the task output is linearly separable in the 
2D MEG response space: the black [1,1] response is further from the other stimulus classes than they 
are from each other, see Methods, Representational Patterns. In OR, the task outputs are also linearly 
separable, with the gray [0,0] stimulus class represented apart from the other ones. This shows how 
these later post-200ms computational stages involve nonlinear task-specific stimulus representations 
in ventral (NonLin) and parietal (NonLin, NonLin&RT) areas.

Discussion
Here, we addressed the challenge of understanding where, when, and how the brain dynamically 
implements different algorithmic computations over sensory inputs. We tightly controlled behavior 
using the simple logical functions XOR, OR, and AND as tasks that require different computations 
over the same tightly controlled binary inputs. Our analyses revealed, at the level of individual MEG 
sources, four main stages of computation that dynamically unfold from ~60 to 400 ms poststimulus. 
The first computation linearly discriminates the ‘on’ vs. ‘off’ state of each input in contral-lateral occip-
ital cortex ~60ms poststimulus. This is followed by the linear discrimination of both inputs on occipital 
and ventral sources ~100ms, followed by the nonlinear integration of both inputs, revealing the XOR, 
AND, or OR task solution in 2D source response space in the parietal-temporal regions ~260ms, 
and finally the nonlinear integration with RT-related activity in postcentral gyrus ~400ms. These four 
stages are common to XOR, AND, and OR, with the main task-related changes occurring in the latter 
two nonlinear stages. Notably, we performed all statistical analyses leading to these results within 
each individual participant, controlling the familywise error rate (FWER) over all considered sources 
and time points. By treating each participant as an N-of-1 study, 10 participants per task provide 10 
independent replications of the experiment. We replicated the four computational stages in at least 
9/10 participants (and in two further replication experiments with similarly high prevalence), providing 
strong evidence that a majority of individuals in the population sampled and tested in the same way 
would show the same effects (Ince et al., 2021).

Reverse engineering systems-level algorithms
Our systems-level approach aims to reverse engineer, from mass brain signals, the hierarchy of brain 
computations that represent and transform sensory inputs to produce behavior—i.e., the brain’s algo-
rithm of the behavioral task. The four stages of computation that we systematically found in each 

XOR. Increasing dot sizes, saturations, and connecting lines denote increasing timesteps of the dynamic trajectory. (B) Right occipital. The light blue 
discrimination line indicates the linear (LinLeft) computation that this source represents at the seventh timestep (cf. adjacent scatter for the distribution 
of individual trials at this time). Inset vector diagram provides a geometric interpretation of the linear computations. Using stimulus [0,0] as the origin: 
blue arrow illustrates source response to stimulus [0,1] (blue disk); red arrow shows source responses to [1,0] (red disk); gray disk illustrates linear 
summation of these vectors (opaque lines); black disk is the observed mean response to stimulus [1,1]. (C) Left occipital. Same caption for orange 
LinRight computation. (D) Right midline occipital and (E) right fusiform gyrus. Same caption for magenta LinBoth computation. (F) Right parietal and 
(G) postcentral gyrus. Same caption for green XOR nonlinear computations. Green vector shows discrepant nonlinear observed response to stimulus 
[1,1] and linear sum of responses to [0,1] and [1,0].

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Dynamics of relation of magnetoencephalographic (MEG) responses to reaction times (RTs).

Figure 3 continued

https://doi.org/10.7554/eLife.73651
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individual participant and tasks meet the five key properties of an algorithm: (1) the inputs were 
specified as the four possible combinations of two binary inputs; (2) the output responses were also 
specified as the responses of the logical functions XOR, OR, and AND; (3) the algorithms were definite 
in each task, with a sequence of two characterized Lin and two NonLin computations that transformed 
the same inputs into the task-specific outputs; the algorithms were also (4) effective in the brain, in the 
sense that they only relied on brain resources, and (5) finite in processing time, producing behavior 
with ~450–500ms.

Note that reverse engineering a systems-level algorithm at the granularity of MEG brain measures 
does not preclude the existence of different compositions of algorithms at lower levels of granularity 
of individual neurons that together implement the higher-level algorithm (much like the lower gran-
ularity algorithms of machine language implement the higher-level algorithms of C++). Rather, such 
systems-level analysis provides constraints on where (the brain regions) and when (the specific time 
windows) specific computations take place, enabling targeted studies of the algorithmic ‘how’ across 
modalities and granularities of brain measures. Jonas and Kording, 2017 used a related systems-
level approach to understand the hierarchy of computations of a microprocessor and concluded that 
there was risk that analytic approaches in neuroimaging could fall short of producing a meaningful 
algorithmic understanding of neural activity. We could do so here because we adhered to the main 
properties of an algorithm: our explicit behavioral tasks (i.e. XOR, OR, and AND) require an implemen-
tation of a specific computation on simple (i.e. fully characterized) binary inputs to achieve behavior. 
We could therefore trace the dynamic representations of the inputs into the 2D space of MEG activity 
to understand the stages of representation underlying the computation (i.e. Lin, LinBoth, and task-
specific NonLin). Such descriptive models of an algorithm enable explicit testing of the different stages 
of the computation hierarchy. For example, by manipulating the timing or nature of the presented 
stimuli, or by targeting causal interventions (e.g. magnetic stimulation, or stimulus manipulations) at 
specific brain regions and peristimulus times.

Generalization to naturalistic categorization tasks
Generalizing from our case study of the algorithms underlying the simple XOR, AND, and OR func-
tions to more naturalistic face, object, and scene categorization tasks will incur many challenges that 
we can frame in the context of the properties of an algorithm detailed above.

A key challenge is that the task-relevant features of real-world faces, objects, and scenes, may 
be completely different for different behaviors and participants, effectively changing the inputs to 
the algorithm. Unfortunately, task- or participant-specific features are generally not considered in 
studies of neural representation, processing, and categorization. Their understanding remains a 
similar challenge for deep convolutional neural network research, including instances when these 
are used as models of the brain. Specifically, a key property of an algorithm is that we specify 
its inputs as precisely as possible. In real-world categorizations, this implies understanding which 
specific features of the complex images are task relevant for each particular participant performing 
each specific behavioral task. Furthermore, specification of the outputs is another key property of 
an algorithm. Passive viewing, or one-back tasks do not provide this specification. For example, 
from the same face, the feature of a smiling mouth feature will be used to overtly respond ‘happy’, 
but the forehead wrinkles to respond ‘45 years of age’; from the same car picture, its specific shape 
to respond ‘New Beetle’, but the front tyre shape to respond ‘flat tyre’; or the specific roof tiles 
to respond ‘Chrysler building’ but the density of buildings on the horizon to respond ‘city’; and so 
forth. Relatedly, experts vs. novices will use different features to classify the same pictures of the 35 
different subtypes of sparrows that exist in North America. Such relative perceptual expertise and 
associated features generally characterize the relationship between visual cognition and outside 
world stimuli. Then, to infer the hierarchical stages of computation from the brain measures, we 
can start tracing the dynamic representation of these specific task-relevant input features, when 
we have formally characterized them, between stimulus onset and explicit output task behavior, as 
we did here. Different modalities or granularities of brain measures (e.g. M/EEG, 3/7T fMRI, NIRS 
vs. single electrodes (Gidon et al., 2020) and electrode arrays) will likely provide complementary 
understandings (e.g. timing vs. location) of the computations in different brain regions. And when 
we finally have a model of the computation hierarchy (even initially a descriptive model), we can 
test its key properties.

https://doi.org/10.7554/eLife.73651
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To conclude, we reverse engineered four stages of dynamic algorithmic computations over the 
same sensory inputs that produce different behaviors in the brain. We could do so because we explic-
itly controlled the input features and the explicit tasks that each individual participant was instructed 
to resolve while we modeled their brain response with MEG source level activity. Therefore, our results 
and methodology pave the way to study algorithmic computations when the stimuli and tasks are 
more complex (e.g. face, object, and scene and their explicit categorizations) but well controlled (e.g. 
with generative systems rather than uncontrolled 2D images), as they are in any algorithm.

Materials and methods
Participants
We recruited 35 participants (all right handed; 24 women). All reported normal or corrected-to-normal 
vision and gave written informed consent to participate in the experiment and for their data to be 
anonymously published. We conducted the study according to the British Psychological Society ethics 
guidelines and was approved by the ethics committee at the College of Medical, Veterinary and Life 
Sciences, University of Glasgow.

Stimuli
We synthesized an average face using a generative photorealistic 3D face model (Yu et al., 2012; 
Zhan et al., 2019a) to which we added glasses with an image editing program (Adobe Photoshop). 
Black and clear lenses produced four different input conditions corresponding to four classes of logical 
inputs: (1) both clear, in vector notation [0,0], (2) left clear/right dark, [0,1]; (3) left dark/right clear [1,0]; 
and (4) both dark, [1,1]. The edges of the left and the right lens were 0.5 deg of visual angle away from 
the centrally presented fixation cross.

Task procedure
Each trial began with a central fixation cross displayed for a randomly chosen duration (between 500 
and 1000ms), immediately followed by one of the four stimulus classes described above and displayed 
for 150ms. We instructed participants to maintain fixation on each trial, to pay attention to the left 
and the right lenses and to respond as quickly and accurately as possible by pressing one of two keys 
ascribed to each response choice with the index or middle fingers of their right hand. Responses were 
‘same’ vs. ‘different’ in the XOR task; ‘both dark’ vs. ‘otherwise‘ in AND; or ‘at least one dark’ vs. 
‘otherwise’ in OR. Participants were randomly allocated to one of the three tasks.

Stimuli were presented in blocks of 80 trials, with random intertrial interval of [800–1300ms] and 
randomized stimulus order in each block. Participants completed a total of 20–24 blocks split across 
2–3 single day sessions, with short breaks between blocks. Each session lasted 2.5–3hr. We selected 
this recording time and number of trials based on sensitivity of MEG for within-participant whole brain 
corrected feature representation in previous experiments using face stimuli (Zhan et al., 2019b; Ince 
et al., 2015). We focus on within-participant inference in which each participant serves as an indepen-
dent replication of the experiment. Inferring population prevalence of effects is less sensitive to the 
number of participants and more sensitive to the amount of data collected per participant (Ince et al., 
2021). Note that the 5–9hr of scanning time per participant we employ ( >200hr scanning in total for 
the 30 participants in the main experiment) is far higher than typical standards in the field in which N 
= 30 participants might be scanned for 45min each (total scanning time~22hr).

MEG data acquisition and preprocessing
We recorded the participants’ MEG activity using a 248-magnetometer whole-head system (MAGNES 
3600 WH, 4D Neuroimaing) at a 1017 Hz sampling rate. We discarded each participant’s runs with 
more than 0.6 cm head movement measured with prerun vs. postrun head position recordings. Partic-
ipants were excluded if the number of trials remaining after preprocessing (eye movement artifact 
rejection and rejecting runs for excessive head motion) was less than 700. We excluded five partici-
pants resulting in a final sample sizes of N = 30 (10 per task). Mean head movement (averaged across 
blocks) across participants was 0.3 cm (min = 0.12, max = 0.44).

We performed analyses with Fieldtrip (Oostenveld et al., 2011) in MATLAB, according to recom-
mended guidelines (Gross et al., 2013). We high-pass filtered the data at 0.5 Hz (fifth order two-pass 

https://doi.org/10.7554/eLife.73651
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Butterworth IIR filter), filtered for line noise (notch filter in frequency space), and denoised via a Prin-
ciptal Component Analysis (PCA) projection of the reference channels. We identified noisy channels, 
jumps, muscle, and other signal artifacts using a combination of automated techniques and visual 
inspection. The median number of trials for subsequent analyses was 1064 (min = 701, max = 1361).

Next, we epoched the data into trial windows ([−500 to 1000ms]) around stimulus onset, low-
pass filtered the data at 45  Hz (third order two-pass Butterworth IIR filter), resampled to 256  Hz, 
and decomposed using Independent Component Analysis (ICA), separately for each participant. We 
identified and projected out of the data the ICA sources corresponding to heartbeat and eye blinks or 
movements (2–4 components per participant).

Source reconstruction
For each participant, we coregistered their structural MRI scan with their head shape recorded on the 
first session and warped to standardized MNI coordinate space (Gross, 2019). Using brain surfaces 
segmented from individual warped MRI, we then prepared a realistic single-shell head model. Next, 
we low-pass filtered the clean dataset at 40 Hz, re-epoched the data between –100 and 400ms around 
stimulus onset, demeaned using a prestimulus baseline, and computed covariance across the entire 
epoch. Using average sensor positions across good runs (i.e. where head movement was <0.6 cm, 
see above), and a 6 mm uniform grid warped to standardized MNI space, we then computed the 
forward model, keeping the two orientations of MEG activity. We computed the Linearly Constrained 
Minimum Variance beamformer (Hillebrand and Barnes, 2005) solution with parameters ‘lambda = 
6%’ and ‘fixedori = no’. The resulting inverse filter applied to the sensor space MEG activity enabled 
reconstruction of the single-trial 2D MEG magnetic field vector (i.e. dipole with amplitude and direc-
tion) activity time courses on 12,773 grid points. Using a Talairaih-Daemon atlas, we excluded all cere-
bellar and noncortical sources and performed the statistical analyses on the remaining 5107 cortical 
grid points.

Linear vs. nonlinear representations
Linear representation
Every 4ms time point between –100 and 400ms poststimulus, we computed independent multivariate 
linear regressions to model the dynamic representation of the state of each input (i.e. 0, clear lens vs. 
1, dark lens) into the 2D MEG responses of each source. We computed three linear models covering 
each input separately (Left, L and right, R) and additively.

	﻿‍ y = β0 + β1L‍�

	﻿‍ y = β0 + β1R‍�

	﻿‍ y = β0 + β1L + β2R‍�

We fitted each model with ordinary least squares, resulting in beta coefficients for the intercept 
and slope. We quantified the fit in the 2D response space of the source with a multivariate R2 that 
quantifies multivariate variance as the determinant of the covariance matrix:

	﻿‍
R2 = 1 −

∣∣(y−ŷ)T (y−ŷ)
∣∣∣∣(y−ȳ)T (y−ȳ)
∣∣‍�

where ‍y, ȳ, ŷ‍ are the 2D source data, their mean, and model predictions respectively. This linear 
modeling produced a time course of R2 values per source with 4ms resolution.

To control the FWER over all considered time points and sources, we computed a nonparametric 
statistical threshold with the method of maximum statistics (Groppe et al., 2011). Specifically, on each 
of 100 permutations we randomly shuffled input state (‘on’ vs. ‘off’) across the experimental trials, 
repeated the linear modeling and R2 computation explained above, and extracted the maximum R2 
across all sources and time points. This produced a distribution of 100 maximum R2 values, of which 
we used the 95th percentile as statistical threshold (FWER p<0.05).

https://doi.org/10.7554/eLife.73651
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Nonlinear representation
A fourth model considered, for each source and time point the nonlinear interaction term between 
the left and Right inputs.

	﻿‍ y = β0 + β1L + β2R‍�

	﻿‍ y = β0 + β1L + β2R + β3L x R‍�

A log-likelihood ratio (LLR) tested whether the added interaction term significantly improved 
model fit (p<0.05), FDR corrected over time points and sources (Groppe et al., 2011; Benjamini and 
Yekutieli, 2001).

Representation patterns
Linear and nonlinear representations of the two inputs into 2D source activity could form a variety 
of different patterns. To ensure that these patterns corresponded to expectations (e.g. of an XOR 
solution), we applied two further computations at each source and time point. First, we computed the 
pairwise Mahalanobis distances as detailed below between the color-coded 2D distributions of single 
trial MEG activity in response to each input class (see Figure 3). To do so, we averaged the covariance 
matrices of each pair of input conditions and multiplied the inverse average covariance by the differ-
ence of the condition means:

	﻿‍ dist =
(
µ1 − µ2

)T ∗ C−1 ∗
(
µ1 − µ2

)
‍�

Then, we quantified the geometric relationships between the two-dimensional centroids of the 
source responses to each input class. We did so by combining the pairwise distances in the way that 
quantifies the expected representational pattern (see Figure 4, right):

•	 left lens representation (LL): mean([d1, d3, d5, d6]) – mean([d2, d4]). This measure contrasts 
distances where the left lens state changes, with distances where the left lens state does not 
change.

•	 right lens representation (RL): mean([d1, d2, d4, d6]) – mean([d3, d5]). As above, for the right 
lens.

•	 both lenses representation (BL): mean(all) – std(all)
•	 XOR representation: mean([d2, d3, d4, d5]) – mean([d1, d6]). Contrasts the distances between 

elements of the two different output classes with the distances between elements within each 
output class.

•	 AND representation: mean([d4, d3, d6]) – mean([d1, d2, d5])
•	 OR representation: mean([d6, d2, d5]) – mean([d4, d3, d1])

We tested the statistical significance of each pattern with permutation testing, using again the 
method of maximum statistics. Over 25 permutations, at each source and time point, we randomly 

Figure 4. Computation of representation patterns. Note: the face stimulus was artificially synthesized and so does 
not belong to any real person.

https://doi.org/10.7554/eLife.73651
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shuffled input ‘on’ and ‘off’, repeated the above distance calculations, computed the maximum differ-
ences, and used the 95th percentiles of these maxima as thresholds (FWER p<0.05, corrected).

Finally, we weighted the significant XOR, AND, and OR representation patterns (see above) with the 
significant R2 for linear representation patterns of the left or right input (see Methods, Linear Repre-
sentation) or with the significant nonlinear LLR test statistic (see Methods, Nonlinear Representation).

Localization of representation patterns
We quantified the temporal dynamics of the four stages of information processing in individual partic-
ipants as follows. For early representation of the left and right lenses, we computed representation 
onsets as the first significant time point of R2. For early representation of both lenses, we computed 
its R2 peak time. Finally, for XOR, AND, and OR nonlinear representations, we also selected the 
peak times of the respective representation task pattern distance measure. For each state, we then 
computed time stamps as median across observers and extracted the sourcewise representation aver-
aged across participants at the corresponding time stamp. We plotted these sources back onto glass 
brains in Figure 1C using Nilearn (Abraham et al., 2014).

Clustering of the computation stages
To compute the number of computation stages that characterize the whole information processing, 
we applied a data-driven clustering analysis (k-means) on the 5107 × 102 (source × time points) space 
separately in XOR, AND, and OR tasks as follows:

Step 1
First, we transformed each participant’s MEG data into the main computation that each source 
performs at each time point, by assigning to each source the computation (i.e. LinLeft, LinRight, 
LinBoth, XOR, AND, or OR) with highest representation pattern score at this time point (relative 
to the participant’s distribution across all sources and time points). This produced a source × time 
matrix of strongest source-level computations for this participant. Examination of the data revealed 
strong regularities of the computations performed in different time windows (e.g. LinLeft early on), 
though each computation could be performed across slightly different sources of the same region 
across participants (e.g. right occipital cortex). Across participants, we therefore computed the modal 
computation at each source and time point, producing one group-level computation matrix per task 
that we then clustered over time, rather than over source × time, as we next explain.

Step 2
In the task-specific computation matrix, we summed at each time point the number of sources that 
performed each computation (out of six, LinLeft, LinRight, LinBoth, XOR, AND, and OR). The resulting 
6 (computations) × 102 time points matrix represented the total brain volume of each computation 
over time in the task.

Step 3
We k-means clustered (k = 1–20, repeating 1000 times) each computation matrix from step 2, using 
the 102 time points as samples and selected k as the elbow of the within-cluster sums of point-to-
centroid distances metric—i.e., as the furthest point from straight line between k = 1–20. In the XOR, 
AND, and OR tasks, different clusters therefore represent different stages of the full process over 
time, with different brain volumes of source-level computations (i.e. LinLeft, LinRight, LinBoth, XOR, 
AND and OR).

Figure 1—figure supplement 1A shows that the XOR, AND, and OR tasks all had k = 5 as a good 
solution. First, a stage 0, before any computation starts, and then four distinct timed stages with 
different brain volumes of LinLeft, LinRight, LinBoth, XOR, AND, and OR computations. To visualize 
each stage, we used the onset time of stages 0, 1, and 2 and the central time point of stages 3 and 4. 
In each stage, we color coded at voxel level in the small brains the most frequent computation across 
participants (i.e. LinLeft, LinRight, LinBoth, XOR, AND, and OR).

Similarity of computation stages across tasks and stimuli
To test whether the XOR, AND, and OR tasks share stages of computation, we computed the 
percentage of sources that perform the same computations across any pair of stages. This produced 

https://doi.org/10.7554/eLife.73651
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a 12 (3 tasks × 4 stages)-by-12 similarity matrix that compares each stage in each task with all other 
stages in all other tasks. Figure 1—figure supplement 1B reveals that stage 1 (LinLeft and LinRight, 
cyan and orange) and stage 2 (LinBoth, magenta) are similar across all tasks, whereas stages 3 and 4 
(i.e. NonLin, green; NonLin & RT, yellow) are specific to each task.

To test the generalization of computation stages between face and Gabor stimuli, we computed 
the similarity matrix between the group-level stages in XOR, AND, and OR tasks with faces and the 
individual participant’s (N = 3) stages in XOR with Gabor stimuli (computed as explained with steps 
1–3 above, but here within participant). Figure 1—figure supplement 1B shows, for each Gabor 
participant, that their first two linear stages do indeed generalize to the first two linear stages of XOR, 
AND, and OR faces, whereas their third and fourth NonLinear stages only generalize to the third and 
fourth stages of XOR faces.

Information theoretic analyses
We used information theory to quantify the association between RTs and MEG activity, as MI (<RT; 
MEGt>), splitting RTs into four equiprobable bins and using continuous MEG (on all sources and time 
points). To this end, we used Gaussian-Copula mutual information Ince et al., 2017 on all sources and 
time points. We assessed statistical significance with a permutation test (p<0.05). Figure 3—figure 
supplement 1 shows the source × time point average MI and its prevalence across 10 participants in 
each task.
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