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Abstract 

 

The two main features of this thesis are (i) an account of contextualized (context indexed) 

counterfactuals, and (ii) a non-vacuist account of counterpossibles. Experience tells us that the truth 

of the counterfactual is contingent on what is meant by the antecedent, which in turn rests on what 

context is assumed to underlie its reading (intended meaning). On most conditional analyses, only the 

world of evaluation and the antecedent determine which worlds are relevant to determining the truth 

of a conditional, and consequently what its truth value is. But that results in the underlying context 

being fixed, when evaluating distinct counterfactuals with the same antecedent on any single 

occasion, even when the context underlying the evaluation of each counterfactual may vary. 

Alternative approaches go some of the way toward resolving this inadequacy by appealing to a 

difference in the consequents associated with counterfactuals with the same antecedent. That is, in 

addition to the world of evaluation and the antecedent, the consequent contributes to the 

counterfactual’s evaluation. But these alternative approaches nevertheless give a single, determinate 

truth value to any single conditional (same antecedent and consequent), despite the possibility that 

this value may vary with context. My reply to these shortcomings (chapter 4) takes the form of an 

analysis of a language that makes appropriate explicit access to the intended context available. That 

is, I give an account of a contextualized counterfactual of the form ‘In context C: If it were the case 

that … , then it would be the case that …’. Although my proposal is largely based on Lewis’ (1973, 

1981) analyses of counterfactuals (the logic VW and its ordering semantics), it does not require that 

any particular logic of counterfactuals should serve as its basis – rather, it is a general prescription 

for contextualizing a conditional language. The advantage of working with ordering semantics stems 

from existing results (which I apply and develop) concerning the properties of ordering frames that 

facilitate fashioning and implementing a notion of contextual information preservation.  

 

Analyses of counterfactuals, such as Lewis’ (1973), that cash out the truth of counterfactuals in terms 

of the corresponding material conditional’s truth at possible worlds result in all counterpossibles 

being evaluated as vacuously true. This is because antecedents of counterpossibles are not true at any 

possible world, by definition. Such vacuist analyses have already been identified and challenged by 

a number of authors. I join this critical front, and drawing on existing proposals, I develop an 

impossible world semantics for a non-vacuist account of counterpossibles (chapter 5), by modifying 

the same system and semantics that serve the basis of the contextualized account offered in chapter 

4, i.e. Lewis’ (1986) ordering semantics for the logic VW. I critically evaluate the advantages and 

disadvantages of key conditions on the ordering of worlds on the extended domain and show that 
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there is a sense in which all of Lewis’ analysis of mere counterfactuals can be preserved, whilst 

offering an analysis of counterpossibles that meets our intuitions.  

 

The first part of chapter 1 consists of an outline of the usefulness of impossible worlds across 

philosophical analyses and logic. That outline in conjunction with a critical evaluation of Lewis’ 

logical arguments in favour of vacuism in chapter 2, and his marvellous mountain argument against 

impossible worlds in chapter 3, serves to motivate and justify the impossible world semantics for 

counterpossibles proposed in chapter 5. The second part of chapter 1 discusses the limitations that 

various conditional logics face when tasked to give an adequate treatment of the influence of context. 

That introductory discussion in conjunction with an overview of conditional logics and their various 

semantics in chapter 2 – which includes an in-depth exposition of Stalnaker-Lewis similarity 

semantics for counterfactuals – serves as the motivation and conceptual basis for the contextualized 

account of counterfactuals proposed in chapter 4. 
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Chapter 1 

 

The role of Impossible Worlds in Philosophical Analysis, and  

The Problem of Context in the Analysis of Counterfactuals 

 

 
To retain all the new techniques of algebra 
that brought in not only ‘minus’ quantities but 
also their square roots, and to escape the 
‘impossible’ status of the last. 
 

Gerolamo Cardano, De aliza, 1570. 
 
 
And whether two actions are instances of the 
same behavior depends upon how we take 
them; a response to the command, “Do that 
again”, may well be the question: “Do what 
again? Swat another fly or move 
choreographically the same way?” 
 

Goodman (1972) 
 
 
But there may be a relevant difference in the 
occasions of evaluation, even when both the 
antecedent and the consequent of the 
conditional remain the same.  
 

Nute (1980) 

 

 

 

1.1 Introduction 

This chapter diagnoses the symptoms of analytic inadequacy evident in various formal 

accounts of counterfactual conditionals concerning two independent aspects – treatment of 

context and of impossible antecedents – and subsequently outlines the corresponding 

remedies. The first part of the chapter motivates impossible world semantics for 

counterpossibles by giving an introductory overview of the idea of impossible worlds and its 

success in applications to philosophical analysis, and the second part contains an introduction 

to the context-related issues that burden the analysis of counterfactuals (and subjunctive 

conditionals in general) and motivates an approach that is developed in the thesis. 
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The introductory overview of impossible worlds begins with intuitive and preliminary 

characterizations (§1.2), by noting their conceptual kinship to possible worlds and presenting 

their standard definitions and classifications. After this general introduction I give a detailed 

survey of a selection of notable applications (§1.3) of impossible worlds in philosophical 

analysis and logic. Throughout this survey emphasis is placed on how the idea and character 

of impossible worlds is a natural generalization of its conceptual and historical predecessor – 

the idea of possible worlds, by demonstrating how impossible worlds fare in their roles of 

aiding and extending possible world semantics whenever it proves inadequate. The selected 

applications, which I present in detail, are impossible world semantics for non-normal modal 

logics (§1.3.1.1) and relevant logics (§1.3.1.2).  

 

After an informal and general overview of possible world semantics for propositional content 

in terms of intensions (§1.3.2.1), I  describe the granularity problem (§1.3.2.2) and how 

impossible worlds aid the analysis of hyperintensions, and counterpossibles (§1.3.2.3). The 

only formal application to hyperintensionality that I present is an impossible world semantics 

for epistemic and doxastic logics that avoids the pitfalls of omniscience and omnidoxasticity, 

and does so by helping to fashion more realistic (non-ideal) models of the corresponding 

propositional attitudes of knowledge and belief (§1.3.3.1). The inadequacy of Lewis’ (1973) 

account of counterpossibles, which treats all counterpossibles as vacuously true, is a direct 

consequence of his rejection of impossible worlds. I give a critical evaluation of his reasons 

for doing so in chapters 2 and 3. This inadequacy is amended in the form of an account of 

counterpossibles and its impossible world semantics, given in chapter 5.   

 

The second part of the chapter (§1.4) is devoted to outlining the notoriously persistent, 

context-related issues that burden the analysis of subjunctive conditionals – in particular, the 

analysis of counterfactuals. I present and discuss (§1.4.1) famous examples from Goodman 

(1954) and Quine (1966) and evaluate the advantages (§1.4.3) and limitations (§1.4.4) of 

Gabbay’s (1972) response, which goes some way to resolving the context related issues that 

the examples illustrate. This evaluation is carried out by comparing Gabbay’s account to 

other notable approaches to counterfactual analysis. To facilitate this comparison, I formalize 

the pertinent and unique features of Gabbay’s account (§1.4.2)  in terms of frames that 

employ Priest’s (2018) notion of imported information. The entire discussion in this second 

part of the chapter serves to motivate the account of contextualized (context relativized) 

counterfactuals proposed in chapter 4, which accommodates and accounts for the changes in 
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a counterfactual’s truth value contingent on the context of its use. I close this discussion and 

the entire chapter (§1.4.5-1.4.6), by indicating how the account given in chapter 4 – whilst 

largely drawing on Lewis’ (1973, 1981) proposals – develops suggestions from Berto (2014, 

2017) and Nolan (1997).  

 

1.2  Preliminaries 

1.2.1   What are impossible worlds? 

Most of us will agree that the world may have turned out in ways other than it actually has. 

Some facts may not have been the case, while some other states of affairs may have, contrary 

to fact, come to be the case.1 Reference to such ways is ubiquitous in everyday language, e.g. 

“What would have been the consequences if the NASA Curiosity rover had, contrary to fact, 

found evidence of life on Mars during its mission?” Perhaps even the fundamental laws of 

nature may have turned out other than they actually are. Similarly, it seems right to say that 

the world could not just have turned out any old way. That is, most would also agree that 

there are ways in which the world just could not have turned out. But more pertinently, what 

are the criteria for ways that the world couldn’t have turned out? Insofar as we can aid our 

talk and understanding of ‘the ways that the world may have otherwise turned out’ with the 

idea of possible worlds, it seems natural to aid our talk and understanding of ‘the ways that 

the world couldn’t have turned out’ with the idea of impossible worlds.2 Or in short, just as 

we think of possible worlds as representing ways in which the world could be, we can think 

of impossible worlds as ways in which the world cannot be. But before such an idea can 

adequately serve as a means to aid our understanding, we should say what we mean by 

impossible and impossible world.  

 

1.2.2   Logical impossibility 

Impossible worlds then can serve as a paraphrase of the ways the world could not have turned 

out, much in the same way as possible worlds serve as a paraphrase of the ways that the 

                                                
1 Note that no ontological (metaphysical) qualification of any kind is assumed of ‘ways’, and I shall not make any 
commitments in that regard throughout the thesis.  
2 This is an extended version of an argument given by Lewis (1973, p.84). The original argument has been coined 
the argument from ‘ways’, or from ‘admissible paraphrase’. The extended version of the argument from ways, 
i.e. in support of impossible worlds (which can also be read as a reductio argument against them), was first 
formulated by (Naylor 1986, p.29). See (Yagisawa 1988, p.183) for a modal realist account, (Vander Laan 1997, 
p.598) for an abstractionist account, and (Berto 2009, p.3) for a hybrid account, whereby “possible worlds are 
taken as concrete Lewisian worlds, and impossibilities are represented as set-theoretic constructions out of 
them”. 
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world could have turned out. The criterion for impossibility however requires clarification. 

After all, there are different kinds of impossibility – historical, deontic, physical, epistemic, 

logical, mathematical, and metaphysical. The following thesis, for most part, focuses on 

logical impossibility, and accordingly – logically impossible worlds. Focus on logical 

impossibility narrows down the meaning of ‘impossible world’ substantially, but that 

refinement still has a number of meanings in the literature. For example, a ‘logically 

impossible world’ may either mean, a world where (i) the logically impossible happens, or 

merely that (ii) the laws of logic are different. The two are not the same – (ii) doesn’t entail 

(i), because even if the laws were different, they need not manifest themselves. Consider 

Priest’s (2008, p.172) intuitive analogy illustrating this point: 

 

Note that one might take ‘logically impossible world’ to mean something other 

than ‘world where the laws of logic are different’. One might equally take it to 

mean ‘world where the logically impossible happens’. This need not be the same 

thing. If this is not clear, just consider physically impossible worlds. The fact that 

the laws of physics are different does not necessarily mean that physically 

impossible things happen there (though the converse is true). For example, even 

if the laws of physics were to permit things to accelerate past the speed of light, 

it does not follow that anything actually would. Things at that world might be 

accelerating very slowly, and the world might not last long enough for any of 

them to reach super-luminal speeds. 

 

1.2.3   Logically impossible worlds 

Let us spell out the various characterizations of logically impossible worlds that an overview 

of the existing relevant literature reveals. I will proceed from the most specific to most 

general characterizations. Perhaps the most obvious, and quite restrictive characterization of 

an impossible world, is one which allows explicitly contradictory states of affairs, i.e. an 

impossible world is one where pairs of contradictory sentences of the form 𝐴 and ~𝐴 hold 

(Lycan 1994). Such a characterization would certainly apply if we are considering classical 

logic, since contradictory pairs are not satisfied by any classical interpretation.3 Thus, such a 

world is classically logically impossible. Continuing in this manner, a more general definition 

                                                
3 This is an introductory overview, where finer distinctions of what contradictions are, is omitted. For there may 
be worlds, and reasoning systems, tolerant of contradictory states of affairs, e.g. whereby some A holds and ~A 
holds the conjunction of A and ~A holding. For an explicit non-adjunctive account see Varzi (1997), and for 
schematic nonstandard worlds that display that property see Rescher and Brandom (1980). 
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of a (classically) logically impossible world would be achieved by lifting the restriction from 

pairs of sentences, to including inconsistent sets of sentences, i.e. sets of sentences containing 

contradictory pairs. That is, a (classically) logically impossible world would be one whose set 

of things holding at it is not satisfied by any (classical) interpretation (Priest 1997). 

Moreover, worlds may be logically impossible not merely by virtue of certain things holding 

at them, but also of certain things failing to hold at them that nevertheless hold for all 

classical interpretations – just consider some world where 𝐴 ∨ ~𝐴 fails to hold for some 

sentence 𝐴.4  

 

But obviously failure of things holding at a world to be satisfied by any (classical) 

interpretation need not imply that it is not satisfied by any non-classical interpretation. That 

is, a logically impossible world may be one governed by a logic other than classical logic. 

Then we would say that it is a world where the laws of logic are different. A natural way to 

generalize such a characterization of logically impossible worlds is to refrain from assuming 

some particular logic to be true (correct), and instead relativize logical impossibility to 

arbitrary logic L.5 Then by analogy to classically impossible worlds, an L-impossible world 

would just be one where the set of things that hold at it do not hold for any L-interpretation. 

We may for instance deem some paraconsistent logic L as the correct logic – then worlds 

where the laws of L fail would be logically impossible from the perspective of L. We look at 

such worlds in the context of relevant logics, in §1.3.1.2. Finally, we may consider worlds 

that fail to satisfy any logical closures.  

 

1.2.4 Closed worlds: deductive closure, closure under entailment 

Priest (1997, 2005) refers to the classes of worlds just described as logically impossible 

worlds – just as we can think of physically impossible worlds as those where the laws of 

logic are different from the ones in the actual world, we think of logically impossible worlds 

as those worlds where the logical laws are different than those that actually obtain.6 In this 

sense ‘logically impossible worlds’ is taken to mean ‘worlds where the laws of logic are other 

than those of the logic that is thought to govern the actual world’. Another way of 

                                                
4 Cresswell (1970, p.354) describes such worlds, dubbing them ‘non-classical’. There, the author employs such 
worlds in giving a semantics for a family of hyperintensional logics, which he calls ‘weakly intensional’ logics. 
5 A logical pluralist may even refrain from that assumption, i.e. there needn’t be any single correct logic. 
6 For an overview of logically impossible worlds see Priest (1997, pp.401-2), Priest (2001, Ch. 9), and Priest 
(2005, Ch.1). Also see the latter for more on the open/closed world distinction. See Nolan (1997, p.542) for his 
unrestricted comprehension principle for impossible worlds. 
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characterizing such worlds, is to say that such worlds are closed under entailment. Informally, 

this would mean that if a sentence 𝜑 (or any formula expressing some proposition) holds at 

some world 𝑤 and 𝜑 logically entails 𝜓 (for some logic L) then 𝜓 also holds at 𝑤. Since such 

worlds are closed under entailment, Priest (2005) has coined this class closed worlds.7  

 

1.2.5 Open worlds 

There is another broad class of impossible worlds that violate any kind of closure, save for 

identity (trivial consequence), i.e. save for the principle: if 𝐴 holds at world 𝑤, then 𝐴 holds at 

world 𝑤. I follow Priest’s (2005) terminology and refer to them as open worlds.8 

Specification of truth of open worlds is analogous to that of logically impossible (closed) 

worlds. Whereas, at logically impossible, closed worlds, modal (intensional) formulae are 

treated as atomic in terms of truth value assignment in any given model, at open worlds all 

formulae are treated this way. This means that at open worlds even the truth values of 

extensional formulae, i.e. containing only extensional connectives, do not respect recursive 

specification. For example, given some open world where 𝑝 ∧ 𝑞 is true, 𝑝 need not be true 

there, or ¬¬𝑝 may be true without 𝑝 being true. Even 𝐴 ∧ 𝐵 and 𝐵 ∧ 𝐴 need not have the same 

values at open worlds. This is how Priest motivates open worlds in the context of 

intensionality: 

 

Just as there are worlds that realize the way that things are conceived to be when 

that conception is logically possible, and worlds that realize how things are 

conceived to be when that conception is logically impossible, so there must be 

worlds that realize how things are conceived to be for the contents of arbitrary 

intentional states. Since such states are not closed under entailment, neither are 

these worlds. We are therefore led to posit a class of unclosed, or open, worlds. 

(Priest, 2005, pp.21-2) 

 

A way of characterizing a class of worlds that would include open worlds, is to place no 

restriction on the reading of the phrase ‘ways things could not have been’. A notable example 

of such a general characterization of impossible worlds is due to Nolan: 

 

                                                
7 Deductive closure of a set of sentences is to be understood as closure under logical consequence when the 
rules of deduction in question are logical. 
8 Some authors 
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I think the most plausible comprehension principle for impossible worlds is that 

for every proposition which cannot be true, there is an impossible world where 

that proposition is true. This comprehension principle, while natural, will be 

inconsistent with most accounts of impossible worlds, according to which 

impossible worlds obey some constraints, but not as many as possible worlds. [It] 

is at least a good working hypothesis […] we do not, it seems to me, require that 

the specifications of ways things cannot happen meet any particular requirement, 

except that they not be ways things could happen. (Nolan 1997, p.542) 

 

That his comprehension principle includes open worlds Nolan makes explicit in the model 

theory, by lifting any constrains on truth-value assignments to formulae at impossible 

worlds.9  

 

As I say on p. 542, I think that a very generous comprehension principle for 

impossibilities is called for: and I model this by not putting any constraints on 

assignment of truth values to propositions at impossible worlds. (Ibid, p.562) 

 

Such a characterization includes all impossible worlds conceivable – historical, nomical 

(physical), metaphysical, mathematical or logical kind, and any that I have not mentioned 

here. It’s an open-ended definition, pertaining to any ways that just could not be, and as such 

is useful to delineate what we mean when we speak of impossible worlds.  

 

Open worlds have proved to be helpful in in the analysis of intensionality, e.g. fashioning 

epistemic and doxastic logics that avoid counterintuitive consequences such as omniscience 

and omnidoxasticity. Historically, this particular context of application was also where the 

characterization of open worlds first appears. 10 (I attend to those issues in more detail in 

§1.3.2 and to how open worlds akin to open worlds resolve them in §1.3.4.1). 

 

1.3 Why impossible worlds? 

Impossible worlds possess a proudly robust track record of successfully extending the role 

                                                
9 To see that Nolan’s (1997) comprehension principle – modelled in this manner – includes open worlds, let us 
just consider any closure principle (valid inference form) C: if all premises 𝐴1, 𝐴2, … are true, then the conclusion 
𝐵 is true. Nolan’s model theory – which I take to be an attempt to make his comprehension principle formally 
precise – permits the existence of a world where all of 𝐴1, 𝐴1, … are true but 𝐵 is not true. Now since C was an 
arbitrary closure principle, Nolan’s comprehension principle includes open worlds. 
10 Priest (2005) relies on open worlds in support of the formal aspects of his general proposal for the logic and 
metaphysics of intentionality.  
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that possible worlds had played in aiding analyses across a variety of contexts, such as 

modality, intentionality, counterfactuals, and relevance. In particular, impossible worlds 

appear to be the natural candidates in at least two important contexts that are yet to see a 

thorough and adequate treatment. The first of those being the development of an adequate 

(non-vacuous) theory of counterpossible reasoning, and the second being an account of 

propositional content and an adequate analysis of hyperintensional phenomena.  

 

One of the major intellectual breakthroughs in early second half of 20th century analytic 

philosophy that fed off the widespread and fervent shift to analyses of intensionality at the 

time, was the pioneering work done in possible worlds semantics. This revolutionary shift 

received a significant impetus by Saul Kripke (1959), who gave a very intuitive interpretation 

of C.I. Lewis’ axiomatic systems S4 and S5. The Kripke, relational semantics approach, had 

soon found a number of generalizations and applications. Notable, pioneering contributors to 

this revolution were Dana Scott (1970) and Richard Montague (1970) who jointly developed 

neighborhood semantics; Robert Stalnaker (1968) and David Lewis (1973) who extended this 

approach to pioneer and develop a semantics for conditional logics based on world similarity 

modelled as nearness within stratified neighborhood frames, commonly known as similarity 

spheres; building on the pioneering insights of H.G. von Wright, Jaakko Hintikka’s (1962) 

interpretation of doxastic and epistemic operators on structures that bear a strong resemblance 

to Kripke models, consisting of possible states of affairs and an agent’s doxastic/epistemic 

alternatives. 

 

Possible world analysis, along Kripkean lines, had soon found its limits posed by the 

challenge of giving a semantics for of C.I. Lewis’ axiomatic systems weaker than S4. That is, 

systems where the Axiom of Necessitation fails, which expressed in English states that ‘all 

theorems of logic are necessary’, i.e. if ⊢ 𝐴 then ⊢ □𝐴. The corresponding semantic principle, 

sometimes called the Rule of Necessitation can be stated, as: if ⊨ 𝐴 then ⊨ □𝐴. 11  In order to 

widen the scope of applicability in the same vein, Kripke (1965) introduced impossible 

worlds (coining them non-normal) to his format of analysis. This pioneering technical ‘trick’ 

sufficed to give a (sound and complete) semantics with respect to C.I. Lewis’ systems weaker 

than S4, i.e. notably S3 and S2. Kripke’s motivation for delivering a semantics for those 

weaker logics may not have been entirely independent of the fact that C.I. Lewis endorsed S2 

                                                
11 Priest (2008, p.68). 
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as giving the correct account of logical necessity.12  

   

1.3.1 Applications of closed worlds: modal logic and relevant logic 

1.3.1.1     Kripke semantics for S2 and S3. 

Below I give a quick revision of Kripke model theory, which includes possible/impossible 

world semantics for normal and non-normal systems . It can be skipped by those familiar 

with the material. First let us start with the basic ingredients for our language ℒ i.e. a set of 

propositional variables 𝑃𝑉 = {𝑝𝑛: 𝑛 ∈ ℕ} the elements of which shall be denoted with 

lowercase Roman letters (𝑝, 𝑞, 𝑟, … ) or subscripted lowercase Roman 𝑝’s (𝑝1, 𝑝2, … , 𝑝𝑘 , … ), or 

lowercase Greek letters (𝜑, 𝜓, 𝜒, … ); unary connectives: ~ (negation), □ (necessity), ◊ 

(possibility); and binary connectives: ∧ (conjunction), ∨ (disjunction), ⊃ (material 

conditional). For the metalanguage, upper case letters (𝐴, 𝐵, 𝐶, … ) shall be used as variables 

ranging over complex formulae and propositional variables. 

 

Definition 1.0: Define the basic modal language, denoted ℒ, to be the set: {~, □,.◊, .∧, .∨, ⊃}. 

 

Definition 1.0.1: Let 𝐹𝑜𝑟 be the smallest set closed under the following well-formed formula 

formation rules: 

 

B:      All propositional variables are wffs, i.e. 𝑃𝑉 ⊆ 𝐹𝑜𝑟. 

R1:  If 𝐴 ∈ 𝐹𝑜𝑟 then {~𝐴, □𝐴,.◊𝐴} ⊆ 𝐹𝑜𝑟. 

R2:  If {𝐴, 𝐵} ⊆ 𝐹𝑜𝑟 then {𝐴 ∧ 𝐵, 𝐴 ∨ 𝐵, 𝐴 ⊃ 𝐵, 𝐴 > 𝐵} ⊆ 𝐹𝑜𝑟. 

 

Definition 1.1: A Kripke frame is a pair (𝑊, 𝑅), where 𝑊 is a set, and 𝑅 ⊆ 𝑊 × 𝑊.13 

Formally, 𝑊 is an arbitrary set of objects. On the intended interpretation, relevant to the 

semantics under consideration, its elements are possible worlds. 𝑅 is called the accessibility 

relation.14 So 𝑎𝑅𝑏 is read as ‘𝑏 is accessible from 𝑎’, or ‘𝑎 accesses 𝑏’. 

 

                                                
12 (Ibid, p.65). 
13 Various constraints on R, e.g. reflexivity, symmetry, or transitivity yield a variety of different conceptions of 
logical necessity. However, I shall not focus here on that category of constraints, and treat R in the most general 
sense, as not to distract from the focus of the discussion, which is the influence of admitting non-normal worlds 
on Kripke models. 
14 In general, W is any set, and its elements, depending on the context of application, have various names, e.g. 
points, states, nodes, scenarios, worlds. 
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Definition 1.2: A Kripke model is a triple (𝑊, 𝑅, 𝜈), where (𝑊, 𝑅) is a Kripke frame, and for 

each 𝑤 ∈ 𝑊, 𝜈𝑤: 𝑃𝑉 ⟶ {0,1} is the function assigning at each world 𝑤 either a 0 or 1 to each 

propositional variable p. Informally we think of 𝜈𝑤(𝑝) = 1 as 𝑝 being true at w in the model 

and 𝜈𝑤(𝑝) = 0 as 𝑝 being false at w in the model.  

 

Truth in a model is defined in terms the satisfiability relation ⊩  ⊆ 𝑊 × 𝐹𝑜𝑟. We read 𝑤 ⊩ 𝐴 

as ‘𝐴 is true at 𝑤’. Given a Kripke model (𝑊, 𝑅, 𝑉) and any 𝑤 ∈ 𝑊, define ⊩ as follows: 

 

   (1) 𝑤 ⊩ 𝑝    iff    𝜈𝑤(𝑝) = 1  

   (2) 𝑤 ⊩ ~𝐴 iff    not  𝑤 ⊩ 𝐴 

   (3) 𝑤 ⊩ 𝐴 ∧ 𝐵  iff    𝑤 ⊩ 𝐴  and  𝑤 ⊩ 𝐵 

   (4) 𝑤 ⊩ 𝐴 ∨ 𝐵  iff    𝑤 ⊩ 𝐴  or  𝑤 ⊩ 𝐵 

   (5) 𝑤 ⊩ 𝐴 ⊃ 𝐵  iff    𝑤 ⊩ ~𝐴  or  𝑤 ⊩ 𝐵15 

   (6) 𝑤 ⊩ □𝐴  iff    ∀𝑢 ∈ 𝑊, such that 𝑤𝑅𝑢, 𝑢 ⊩ 𝐴. 

   (7) 𝑤 ⊩ ◊𝐴 iff    ∃𝑢 ∈ 𝑊, such that 𝑤𝑅𝑢, 𝑢 ⊩ 𝐴. 

 

When we want to explicitly refer to truth at a world in a particular model 𝔄, we shall employ 

the following notation: 𝔄, 𝑤 ⊩ 𝐴.  

 

Definition 1.3: K-validity  

Let ⊨𝐾 ⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟, and define Σ ⊨𝐾 𝐴 iff for all Kripke models (𝑊, 𝑅, 𝑉), and all 𝑤 ∈ 𝑊, 

if 𝑤 ⊩ 𝐵 for all 𝐵 ∈ Σ, then 𝑤 ⊩ 𝐴. That is, valid inference is defined as truth preservation at 

all worlds in all Kripke models. A formula 𝐴 ∈ 𝐹𝑜𝑟 is said to be valid iff ∅ ⊨𝐾 𝐴. 

Now that we’ve defined Kripke models, and K-validity we can easily define Kripke frames 

and models that admit non-normal worlds, and the resulting logic. In non-normal models, 

modal formulae are assigned fixed values at non-normal worlds. All box-prefixed formulae 

are assigned the value corresponding to falsity in the interpretation, and all the diamond-

prefixed formulae are assigned the value corresponding to truth in the interpretation. The 

truth conditions for the remaining formulae at non-normal worlds remain unchanged, in 

particular, propositional tautologies remain true at all worlds. 

 

Definition 1.4: A Kripke non-normal frame is a triple (𝑊, 𝑁, 𝑅), where 𝑊 and 𝑅 are as 

before, but now 𝑁 ⊆ 𝑊 is the distinguished set of normal (possible) worlds and 𝑊\𝑁 is 

interpreted as the set of non-normal (impossible worlds).  

                                                
15 Note that 𝑤 ⊩ 𝐴 ⊃ 𝐵 iff 𝑤 ⊩ ~𝐴 ∨ 𝐵 for all 𝑤 ∈ 𝑊. 
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Definition 1.5: A Kripke non-normal model is a quadruple (𝑊, 𝑁, 𝑅, 𝜈), where (𝑊, 𝑁, 𝑅) is a 

Kripke (non-normal worlds) frame, and 𝜈 is as on normal Kripke models, with the exception 

of non-normal worlds, where all formulae with □ or ◊ as their main operator (i.e. □-formulae, 

and ◊-formulae), are assigned values directly, i.e. for all 𝑤 ∈ 𝑊\𝑁, and all 𝐴 ∈ 𝐹𝑜𝑟: 

 

   (N6) 𝜈𝑤(□𝐴) = 0  

   (N7) 𝜈𝑤(◊𝐴) = 1 

 

The only change to validity condition is that formula validity and valid inference are defined 

as truth at all normal worlds in all models and truth preservation at all normal worlds in all 

models, respectively. The motivation for this definition of logical truth and validity is 

justified if we characterize impossible worlds to be those where the laws of logic are different 

or where the laws of logic fail. Then when we define validity and valid inference, i.e. the 

laws and rules of logic, we should not consider worlds where the laws of logic are different or 

where they fail. 

 

Definition 1.6: N-validity  

Let ⊨𝑁 ⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟, and define Σ ⊨𝑁 𝐴 iff for all Kripke models (𝑊, 𝑁, 𝑅, 𝜈), and all 𝑤 ∈

𝑁, if 𝑤 ⊩ 𝐵 for all 𝐵 ∈ Σ, then 𝑤 ⊩ 𝐴. A formula 𝐴 ∈ 𝐹𝑜𝑟 is said to be valid iff ∅ ⊨𝑁 𝐴. 

 

Such extended truth conditions and validity conditions suffice to provide a counterexample to 

the Rule of Necessitation, thereby yielding a semantics for logics weaker than S4. To see this, 

consider the countermodel: let 𝔑 = (𝑊, 𝑁, 𝑅, 𝜈), 𝑊 = {𝑤, 𝑖}, 𝑁 = {𝑤}, 𝑅 = {(𝑤, 𝑤), (𝑤, 𝑖)}, and 

𝜈𝑤(𝑝) = 𝜈𝑖(𝑝) = 1. Now, the tautology 𝑝 ∨ ~𝑝 is true at all worlds, so in particular it is true at 

all worlds accessible to 𝑤. Hence 𝑤 ⊩ □(𝑝 ∨ ~𝑝), and consequently ⊨ □(𝑝 ∨ ~𝑝). However, it 

is not the case that ⊨ □□(𝑝 ∨ ~𝑝). To see this, note that 𝑤 ⊮ □□(𝑝 ∨ ~𝑝) since it’s not the case 

that at all worlds accessible from 𝑤 the formula □(𝑝 ∨ ~𝑝) is true, since we have 𝑖 ⊮

□(𝑝 ∨ ~𝑝) by (N6). Hence ⊭ □□(𝑝 ∨ ~𝑝), as required.16 

 

                                                
16 A similar result, of invalidating the rule of necessitation, could be achieved by models very similar to the non-
normal models just discussed, with the simplification of conditions (N6) and (N7) in a way that the valuation 
(interpretation) function instead of assigning to all □-formulae and ◊-formulae a fixed value at non-normal 
worlds, assigns arbitrary values (call it condition (N8)). This approach has been implemented by Cresswell (1966) 
in a semantics for Lemmon’s (1957) modal system S0.5 (Priest 2008, §4.4a; Berto & Jago 2019, §4.2). Note that 
models that satisfy (N6) and (N7) are subsets of the models satisfying the weaker condition (N8). I highlight this 
method, because we will encounter similar ones, later in this chapter and in chapter 5. 
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1.3.1.2    Relevant Logics  

Another area of logic where impossible worlds have found a natural application is relevant 

logic. The central idea of relevant logic is that the conclusion must be relevant to the 

premises in a valid inference. So the development of such logic has been motivated by giving 

a more intuitive characterization of deductive inference with the defining feature that forces 

the premises of an argument to be really used in deriving the conclusion.17 Among well-

known relevance-violating inference patterns are the following, commonly referred to as 

paradoxes of strict implication, where strict implication ⥽ is defined as 𝐴 ⥽ 𝐵 ∶= □(𝐴 ⊃ 𝐵).18 

 

      (P.1) □𝐵 ⊨ 𝐴 ⥽ 𝐵 

      (P.2) ~◊𝐴 ⊨ 𝐴 ⥽ 𝐵 

 

In general, relevant logics aim to avoid any irrelevant inference patterns 𝐴 ⊨ 𝐵 (or valid 

implications 𝐴 → 𝐵), i.e. where 𝐴 and 𝐵 do not have any propositional variables in common. 

One way of capturing the relevant connection between the antecedent and consequent is as 

follows:  

 

Definition 1.7: (Priest 2008, §9.7.8) A propositional logic is relevant iff whenever 𝐴 → 𝐵 

(where → denotes the conditional, i.e. logical implication) is logically valid, 𝐴 and 𝐵 have a 

propositional variable in common.  

 

Clearly both (P.1) and (P.2) fail to satisfy this condition, since in (P.1) the consequent can be 

any formula and in (P.2) the antecedent can be any formula, i.e. 𝐴 ⥽ 𝐵 is valid if either 𝐴 is 

necessarily false or 𝐵 is necessarily true. For example, we have the following special cases: 

 

     (P.1.1) ⊨ 𝐴 ⥽ (𝐵 ∨ ~𝐵) 

     (P.2.1) ⊨ (𝐴 ∧ ~𝐴) ⥽ 𝐵 

 

It is easy to show that the above are valid even on the weakest non-normal Kripke systems 

corresponding to weakest modal logics S2 and S3, which we have discussed in the previous 

section.19 By way of example, I will discuss a relevant logic 𝑁4 presented by Priest (2008, 

                                                
17 Mares (2004, p.3). 
18 Those are just the modal counterparts of analogous inference patterns characteristic of the classical logic 
material conditional (paradoxes of the material conditional): 𝐵 ⊨ 𝐴 ⊃ 𝐵 and ~𝐵 ⊨ 𝐴 ⊃ 𝐵. 
19 First let’s prove (P.1). Let 𝔑 = (𝑊, 𝑁, 𝑅, 𝜈) be any Kripke non-normal model, and 𝑤 ⊩ □𝐵 for some 𝑤 ∈ 𝑁. 
This means that 𝑢 ⊩ 𝐵 for all 𝑢 ∈ 𝑊, such that 𝑤𝑅𝑢. But that means that 𝑢 ⊩ 𝐴 ⊃ 𝐵 for all 𝑢 ∈ 𝑊, such that 
𝑤𝑅𝑢, by definition of ⊃. Hence 𝑤 ⊩ □(𝐴 ⊃ 𝐵), by definition of □. Hence 𝑤 ⊩ 𝐴 ⥽ 𝐵 by definition of ⥽, as 
required. Now to prove (P.2). Let 𝔑 = (𝑊, 𝑁, 𝑅, 𝜈) be any Kripke non-normal model, and 𝑤 ⊩ ~◊𝐴 for some 
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§9.4), in order to illustrate how impossible worlds can aid invalidating any relevance 

violating inference or conditional.20 The impossible worlds that we’ll encounter in this case 

are various classically impossible (truth value glut or gap admitting) closed worlds, and 

worlds where the laws of logic are different (logically impossible worlds), based on a similar 

idea to the ones fashioned by Cresswell (1966).21 However, here the focus of analysis is not 

the modal notions of possibility and necessity, but relevant implication.  

 

I will start by outlining the underlying paraconsistent (basis) of 𝑁4, which is the logic called 

First Degree Entailment (FDE) – first formulated by Nuel Benlap in his doctoral 

dissertation.22 The language of FDE is the propositional part of the modal language given in 

Definition 1.0, i.e. ℒ𝐹𝐷𝐸 = {~, .∧, .∨, ⊃}, where 𝐴 ⊃ 𝐵 is defined as ~𝐴 ∨ 𝐵. I give Dunn’s 

relational semantics.23 

 

Definition 1.8: An FDE interpretation 𝜌 is a binary relation between the set of propositional 

variables 𝑃𝑉 and truth values, i.e. 𝜌 ⊆ 𝑃𝑉 × {0,1} is a relation between 𝑃𝑉 and {0,1}. We read 

𝑝𝜌1 as ‘𝑝 relates to 1’ and 𝑝𝜌0 as ‘𝑝 relates to 0’. Also, I will employ the notation (𝑝, 𝑥) ∈ 𝜌 

and (𝑝, 𝑥) ∉ 𝜌 for ‘𝑝𝜌𝑥’ and ‘it’s not the case that 𝑝𝜌𝑥’, for 𝑥 ∈ {0,1}. We extend 𝜌 to the 

entire set of well-formed formulae 𝐹𝑜𝑟 as follows: 

 

 𝐴 ∧ 𝐵𝜌1  iff 𝐴𝜌1 and 𝐵𝜌1 

 𝐴 ∧ 𝐵𝜌0 iff 𝐴𝜌0 or 𝐵𝜌0 

 

 𝐴 ∨ 𝐵𝜌1 iff 𝐴𝜌1 or 𝐵𝜌1 

 𝐴 ∨ 𝐵𝜌0 iff 𝐴𝜌0 and 𝐵𝜌0 

 

 ~𝐴𝜌1  iff 𝐴𝜌0 

 ~𝐴𝜌0  iff 𝐴𝜌1  

 

                                                
𝑤 ∈ 𝑁. This means that there is no 𝑢 ∈ 𝑊, such that 𝑤𝑅𝑢 and 𝑢 ⊩ 𝐴, i.e. for all 𝑢 ∈ 𝑊 such that 𝑤𝑅𝑢, 𝑢 ⊮ 𝐴, 
i.e. 𝑢 ⊩ ~𝐴. But this means that 𝑢 ⊩ 𝐴 ⊃ 𝐵 for all 𝑢 ∈ 𝑊, such that 𝑤𝑅𝑢, by definition of ⊃. Hence 𝑤 ⊩
□(𝐴 ⊃ 𝐵), by definition of □. Hence 𝑤 ⊩ 𝐴 ⥽ 𝐵 by definition of ⥽, as required.  
20 The logics 𝐾4 and 𝑁4 given by Priest (2008, §8, §9), and discussed in this section are not to be found in any 
earlier literature. They serve as a satisfactory illustration of impossible world semantics for relevant logics. 𝑁4 
should not be confused with Wansing’s (2001) logic of constructible negation, by the same name. 
21 See footnote 16.  
22 For a history of FDE see (Omori & Wansing 2017). I base this presentation of FDE and the definition of 𝑁4 on 
Priest (2008, §8, §9). Note that relevant logics are paraconsistent, since the classically valid rule of inference 
known as ex contradictione quodlibet : 𝐴 ∧ ~𝐴 ⊨ 𝐵 is demonstrably relevance violating. 
23 Other notable semantics for FDE are many-valued semantics, and the Routley star, where negation is treated 
as an intensional operator (Priest 2008, §8). 
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Note that there are no restrictions on 𝜌 in place such that (𝑝, 1) ∉ 𝜌 wold imply (𝑝, 0) ∈ 𝜌. Nor 

does (𝑝, 1) ∈ 𝜌 imply (𝑝, 0) ∉ 𝜌. Call a formula 𝐴 a truth value glut whenever it relates to both 

1 and 0 on some interpretation 𝜌, i.e. 𝐴𝜌1 and 𝐴𝜌0 (equivalently, (𝑝, 1) ∈ 𝜌 and (𝑝, 0) ∈ 𝜌), 

and call a formula 𝐴 a truth value gap whenever it relates to neither 1 nor 0 on some 

interpretation 𝜌, i.e. neither 𝐴𝜌1 nor 𝐴𝜌0 (equivalently, (𝑝, 1) ∉ 𝜌 and (𝑝, 0) ∉ 𝜌).24 Validity 

and valid inference are defined as truth for all interpretations and truth preservation for all 

interpretations, respectively. 

 

Definition 1.9: FDE-validity  

Let ⊨𝐹𝐷𝐸 ⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟, and define Σ ⊨𝐹𝐷𝐸 𝐴 iff for FDE interpretations 𝜌: if 𝐵𝜌1 for all 

𝐵 ∈ Σ, then 𝐴𝜌1. A formula 𝐴 ∈ 𝐹𝑜𝑟 is said to be valid iff ∅ ⊨𝐹𝐷𝐸 𝐴. 

 

It should be noted that both 𝑝 ⊨𝐹𝐷𝐸 𝑞 ∨ ~𝑞 and 𝑝 ∧ ~𝑝 ⊨𝐹𝐷𝐸 𝑞 fail in FDE. Perhaps this 

should be obvious for two reasons – because both LEM and LNC are invalid in FDE (since 

truth value gaps and truth value gluts are allowed), and the formulae in the above inference 

patterns are independent.25 Also note that 𝑝 ∧ ~𝑝 ⊨𝐹𝐷𝐸 𝑞 is closely related to ECQ, the failure 

of which makes FDE a paraconsistent logic.26 

 

Proposition 1.0: 𝑝 ⊭𝐹𝐷𝐸 𝑞 ∨ ~𝑞, 𝑝 ∧ ~𝑝 ⊭𝐹𝐷𝐸 𝑞 

Proof : First for the counterexample to 𝑝 ⊨𝐹𝐷𝐸 𝑞 ∨ ~𝑞, let 𝜌 be an FDE interpretation such 

that (𝑝, 1) ∈ 𝜌, (𝑞, 1) ∉ 𝜌 and (𝑞, 0) ∉ 𝜌, i.e. 𝑞 is a truth value gap. It follows that (~𝑞, 1) ∉ 𝜌 

and (~𝑞, 0) ∉ 𝜌, i.e. ~𝑞 is also a truth value gap. It follows that (𝑞, 1) ∉ 𝜌 and (~𝑞, 1) ∉ 𝜌. 

Therefore, (𝑞 ∨ ~𝑞, 1) ∉ 𝜌, as required.           □ 

 

Now for a counterexample to 𝑝 ∧ ~𝑝 ⊨𝐹𝐷𝐸 𝑞, let 𝜌 be an FDE interpretation such that (𝑞, 1) ∉

𝜌, (𝑝, 1) ∈ 𝜌 and (𝑝, 0) ∈ 𝜌, i.e. 𝑝 is a truth value glut. It follows that (~𝑝, 0) ∈ 𝜌 and (~𝑝, 1) ∈

𝜌, i.e. ~𝑝 is also a truth value glut. It follows that (𝑝, 1) ∈ 𝜌 and (~𝑝, 1) ∈ 𝜌. Therefore, 

                                                
24 FDE is a sub-logic of classical logic and a number of other notable 3-valued logics, like Priest’s logic of paradox 
LP and Kleene’s 3-valued logic 𝐾3. It’s easy to show that FDE interpretations of the propositional language, that 
don’t admit truth value gaps are just LP interpretations, and those that don’t admit truth value gluts are just 𝐾3 
interpretations. FDE interpretations that don’t admit either truth value gluts or gaps are just classical 
interpretations. See (Priest 2008, §7, §8). 
25 LEM and LNC are acronyms of the laws of classical logic: the law of excluded middle ⊨ 𝐴 ∨ ~𝐴 and the law of 
non-contradiction ⊨ ~(𝐴 ∧ ~𝐴). 
26 I am saying ‘related’, because the standard form of ECQ (i.e. ex contradictione quodlibet) is from contradictory 
premises, i.e. 𝑝, ~𝑝 ⊨ 𝑞. But conjunction simplification, i.e. 𝑝 ∧ 𝑞 ⊨𝐹𝐷𝐸 𝑝 and 𝑝 ∧ 𝑞 ⊨𝐹𝐷𝐸 𝑞 is valid in FDE, 
hence 𝑝 ∧ ~𝑝 ⊭𝐹𝐷𝐸 𝑞 implies 𝑝, ~𝑝 ⊭𝐹𝐷𝐸 𝑞. Hence ECQ is invalid in FDE. See (Ibid). 
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(𝑝 ∧ ~𝑝, 1) ∈ 𝜌, as required.             □ 

 

We can now define a modal logic that models a counterpart to strict implication – one that 

inherits the relevant features of the base logic FDE. Informally speaking, the idea is to define 

a new (object language) intensional connective → and endow it with the same properties as 

the metalinguistic relation ⊨𝐹𝐷𝐸, i.e. have 𝐴 → 𝐵 modeled with 𝐴 ⊨𝐹𝐷𝐸 𝐵. For a formal 

treatment we require a proper model theory. The system I’ll describe is what Priest (2008, 

§9.2-9.3) calls 𝐾4.27 

 

The language of 𝐾4 is just the propositional language expanded by intensional connective →, 

intended to represent the relevant conditional, i.e. ℒ𝐾4
= {~, .∧, .∨, ⊃, →}. 

 

Definition 1.10: A 𝐾4 model is a pair 𝔄 = (𝑊, 𝜌) where 𝑊 is a non-empty set, regarded as a 

set of possible worlds, and 𝜌 = {𝜌𝑖: 𝑖 ∈ 𝑊} is a set of world-indexed relations 𝜌𝑖 ⊆ 𝑃𝑉 × {0,1}, 

such that each 𝜌𝑖 is an FDE interpretation.28 The truth and falsity conditions for the 

propositional part of ℒ𝐾4
, i.e. extensional connectives, are as given in Definition 1.8, only 

they’re relativized to worlds, e.g. 𝐴 ∧ 𝐵𝜌𝑖1 iff 𝐴𝜌𝑖1 and 𝐵𝜌𝑖1. Each 𝜌𝑖 is extended to account 

for the intensional connective → are as follows: 

 

𝐴 → 𝐵𝜌𝑖1  iff 𝐵𝜌𝑗1 for all 𝑗 ∈ 𝑊 such that 𝐵𝜌𝑗1 

𝐴 → 𝐵𝜌𝑖0 iff 𝐴𝜌𝑗1 and 𝐵𝜌𝑗0 for some 𝑗 ∈ 𝑊 

 

Call a world 𝑖 ∈ 𝑊 gappy if it contains any formulae that are truth value gaps, and glutty if it 

contains any formulae that are truth value gluts. Validity and valid inference are defined as 

truth at all worlds in all models and truth preservation at all worlds in all models, 

respectively. 

 

 

                                                
27 The name is an abbreviation for 𝐾𝜐4 where ‘𝐾’ indicates its Kripke structure and ‘𝜐’ (upsilon) indicates that 
the accessibility relation is an equivalence relation, much like in the Kripke system corresponding to S5 (Priest 
2008, §3.5). The subscript ‘4’ indicates that we’re dealing with a 4-valued logic. That becomes explicit on many-
valued semantics for FDE, but on our Dunn-approach it should be noted that there are 4 ways that truth values 
can be related to a propositional variable. Denote the image of some 𝑝 ∈ 𝑃𝑉 under 𝜌 with 𝜌[𝑝] ≔
{𝑥 ∈ {0,1}: 𝑝𝜌𝑥}. Then 𝜌[𝑝] could be any of the following four images: {0}, {1}, {0,1}, ∅, i.e. false and false only, 
true and true only, true and false (a truth value glut), and nether true nor false (a truth value gap). 
28 Since the accessibility relation is universal, i.e. 𝑅 = 𝑊 × 𝑊, it can be accounted for – as implicit – in the truth 
and falsity conditions for the intensional connective →. 
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Definition 1.11: 𝐾4-validity 

Let ⊨𝐾4
 ⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟, and define Σ ⊨𝐾4

𝐴 iff for every 𝐾4 model 𝔄 = (𝑊, 𝜌), and all 𝑖 ∈ 𝑊: 

if 𝐵𝜌𝑖1 for all 𝐵 ∈ Σ, then 𝐴𝜌𝑖1. A formula 𝐴 ∈ 𝐹𝑜𝑟 is said to be valid iff ∅ ⊨𝐾4
𝐴. 

 

Perhaps unsurprisingly → counterparts of (P.1.1) and (P.2.1) fail in 𝐾4, as required. That is: 

Corollary 1.1: ⊭𝐾4
𝑝 → (𝑞 ∨ ~𝑞), ⊭𝐾4

(𝑝 ∧ ~𝑝) → 𝑞 

Proof : First a countermodel to ⊨𝐾4
𝑝 → (𝑞 ∨ ~𝑞). It is really a corollary of Proposition 1.0, 

which proves the existence of an FDE interpretation 𝜌 such that (𝑝, 1) ∈ 𝜌 and (𝑞 ∨ ~𝑞, 1) ∉ 𝜌. 

Denote that interpretation with 𝜌∗. Now let (𝑊, 𝜌) be a 𝐾4 model such that 𝑊 = {𝑖} and 𝜌𝑖 =

𝜌∗. Then (𝑝, 1) ∈ 𝜌𝑖 and (𝑞 ∨ ~𝑞, 1) ∉ 𝜌𝑖. Hence (𝑝 → (𝑞 ∨ ~𝑞), 1) ∉ 𝜌𝑖, as required.      □ 

 

Now for a countermodel to ⊨𝐾4
(𝑝 ∧ ~𝑝) → 𝑞. Similarly, we use the FDE interpretation 𝜌 

from the proof of Proposition 1.0 such that (𝑝 ∧ ~𝑝, 1) ∈ 𝜌 and (𝑞, 1) ∉ 𝜌. Denote that 

interpretation with 𝜌†. Now let (𝑊, 𝜌) be a 𝐾4 model such that 𝑊 = {𝑖} and 𝜌𝑖 = 𝜌†. Then 

(𝑝 ∧ ~𝑝, 1) ∈ 𝜌𝑖 and (𝑞, 1) ∉ 𝜌𝑖. Hence ((𝑝 ∧ ~𝑝) → 𝑞, 1) ∉ 𝜌𝑖, as required.       □ 

 

Let us briefly examine the class of worlds just defined and see how they fit the classifications 

of impossible worlds outlined at the beginning of the chapter. Note that among 𝐾4 worlds are 

classically impossible worlds, since LNC and LEM fail at them, as we’ve seen directly in the 

proofs of Proposition 1.0 and Corollary 1.1. In fact, such worlds are impossible for any logic 

among whose logical laws are LNC and LEM.  However, each 𝐾4-world is not only closed by 

definition (i.e. 𝐾4-closed) but also closed in a variety of other interesting ways if we consider 

the propositional part of ℒ𝐾4
. It can be easily shown that non-gappy worlds are LP-closed and 

non-glutty-worlds are 𝐾3-closed, and worlds that admit nether truth value gaps or gluts are 

classically-closed.29 

 

As we have shown, 𝐾4 does go a fair way toward giving an account of a relevant conditional, 

but some problems remain. Note that if ⊨𝐾4
𝐴 then ⊨𝐾4

𝐵 → 𝐴. This is clear, since if (𝐴, 1) ∈

𝜌𝑖 for all  𝐾4 models (𝑊, 𝜌) and 𝑖 ∈ 𝑊, then in particular (𝐴, 1) ∈ 𝜌𝑗 for all 𝑗 ∈ 𝑊 such that 

(𝐵, 1) ∈ 𝜌𝑗. In particular, given that ⊨𝐾4
𝑝 → 𝑝, it follows that ⊨𝐾4

𝑞 → (𝑝 → 𝑝), which is 

                                                
29 LP denotes Priest’s paraconsistent logic (logic of paradox) and 𝐾3 denotes Kleene’s 3-valued logic. It suffices 
to observe that the propositional part of ℒ𝐾4

 is FDE-closed at each 𝐾4-world, by definition. For the rest of the 

argument see footnote 25. 
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demonstrably a relevance-violating formula. Therefore, despite invalidating a number of 

relevance violating formulae, 𝐾4 is not a relevant logic, by Definition 1.7. 

To avoid such commitments, we can introduce worlds where 𝐾4-valid formulae fail to be 

true. That is if we take → as expressing the laws of logic, we need worlds where those laws 

can fail. That is, we need to consider worlds where formulae of the form 𝐴 → 𝐵 can take 

values other than they take in 𝐾4. 30 This can be achieved by a similar method as employed by 

Kripke, that is, by assigning truth values directly to □-formulae, and ◊-formulae (formulae 

with a modal operator as the main connective) at non-normal worlds. However, for our 

purposes we will adopt the method employed by Cresswell (1966) of directly assigning 

arbitrary truth values to such formulae, since we do not wish to presuppose how different the 

logical laws are at non-normal worlds, just that they are different.   

 

Definition 1.12: An 𝑁4 model is a triple 𝔄 = (𝑊, 𝑁, 𝜌) where 𝑊 is a non-empty set, regarded 

as a set of worlds, 𝑁 ⊆ 𝑊 is the set of normal (possible) worlds and 𝑊\𝑁 is interpreted as the 

set of non-normal (impossible worlds), and for each 𝑖 ∈ 𝑁, 𝜌𝑖 is a set of world-indexed 

relations of the form 𝜌𝑖 ⊆ 𝑃𝑉 × {0,1}, i.e. just like on on 𝐾4 models. The only modification to 

𝜌 (of 𝐾4 models) is the additional condition for non-normal worlds. That is, for each 𝑖 ∈ 𝑊\𝑁, 

𝜌𝑖 is a set of world-indexed relations of the form 𝜌𝑖 ⊆ {𝐴 → 𝐵: 𝐴, 𝐵 ∈ 𝐹𝑜𝑟} × {0,1}. 

 

Truth conditions for all the ℒ𝐾4
 connectives are exactly the same as for 𝐾4 models, with the 

exception – evident in the definition of {𝜌𝑖: 𝑖 ∈ 𝑊\𝑁} – that truth values of → formulae are not 

determined recursively, but rather directly by 𝜌. Validity and valid inference are defined as 

truth at all worlds in all models and truth preservation at all normal worlds in all models, 

respectively. The thought here is that after all we are interested in what follows from what at 

worlds where logic is not different.31 The non-normal worlds defined in 𝑁4 models, above, 

are those that Priest (2008, §9.7.2) calls logically impossible worlds.32  

 

Definition 1.13: 𝑁4-validity 

Let ⊨𝑁4
 ⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟, and define Σ ⊨𝑁 𝐴 iff for every 𝑁4 model 𝔄 = (𝑊, 𝑁, 𝜌), and all 𝑖 ∈

𝑁: if 𝐵𝜌𝑖1 for all 𝐵 ∈ Σ, then 𝐴𝜌𝑖1. A formula 𝐴 ∈ 𝐹𝑜𝑟 is said to be valid iff ∅ ⊨𝐾4
𝐴. 

                                                
30 Priest (2008, §9.4.4, §9.4.5). 
31 Ibid (§9.4.9). 
32 Such worlds would be suitable to evaluate counterpossible conditionals, and indeed a very similar 
construction is used for an account of counterpossibles that I give in chapter 5, albeit where the base logic is 
classical. 
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Proposition 1.2: ⊭𝑁4
𝑝 → (𝑞 → 𝑞) 

Proof : Let (𝑊, 𝑁, 𝜌) be an 𝑁4 model where 𝑊 = {𝑖, 𝑗}, 𝑁 = {𝑖}, and let 𝜌 be such that (𝑝, 1) ∈

𝜌𝑗 and (𝑞 → 𝑞, 1) ∉ 𝜌𝑗. Hence (𝑝 → (𝑞 → 𝑞), 1) ∉ 𝜌𝑖, as required.        □ 

 

It is relatively easy to show that 𝑁4 is in fact a relevant logic, according to Definition 1.7.33 

This concludes our overview of closed, impossible worlds semantics for modal and relevant 

logics. 

 

1.3.2 Wider applications of impossible worlds 

1.3.2.1     Content as intension, via possible worlds 

Because this thesis focuses on the analysis of counterfactuals and counterpossibles, I will not 

give the full characterization of models for intensions and hyperintensions, but merely 

highlight the demarcation lines where possible worlds fall short of supplying an adequate 

analysis of these linguistic phenomena.  In order to appreciate the vast scope of applicability 

of impossible worlds, it will be helpful to give an overview of the role that possible worlds 

have played in aiding philosophical analysis. Also, it will be instructive to give an intuitive 

outline of those key insights that underpin possible world analysis of intensionality. By doing 

so, the method’s limits will be emphasized.  

 

The general character of such analyses can be traced back to Carnap’s (1947) account of 

content-as-intension via possible worlds.34 Carnap’s ideas were developed independently by 

Montague, Tichý, and Bressan, who all relied on some form of Kripke or Hintikka semantics 

(Fitting 2015, p.12). The key, underlying idea was to treat intensions as functions on worlds. 

More precisely, intensions were treated as functions from elements of the analyzed language 

and worlds, to worlds.35 So if 𝐴 is a singular term, its intension ℐ𝐴 is the function 

ℐ𝐴: (𝐴 × 𝑊) ⟶ 𝐷 that picks out, for each possible world 𝑤, an element ℐ𝐴(𝑤) of 𝑤’s domain 

𝐷𝑤 corresponding to 𝐴’s referent at 𝑤. For example, the intension of the singular term ‘the 

first man on the Moon’ would be the function that picks out the individual at each possible 

world that happened to be the first man on the Moon. The intension would pick out Neil 

Armstrong in the actual world, and possibly other Apollo 11 mission crew members at other 

                                                
33 For the proof, see (Ibid, §9.7.9). 
34 To be precise, Carnap spoke of state descriptions, which were maximally consistent sets of atomic sentences 
and their negations Fitting (2015). 
35 I give a characterization that aims to get across the general idea in a precise way yet without being technically 
overbearing. Whenever more technical precision will be required, it will be explicitly called upon. 
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possible worlds. It just so happens that the singular terms ‘Neil Armstrong’ and ‘the first 

person on the Moon’ are co-referential, since their referents coincide at the actual world. At 

worlds where humans never go to the moon, or worlds where there are no humans the 

intension will point to nothing. This approach to content analysis has the additional appeal of 

being in alignment with the intuition that to understand such an expression doesn’t require 

knowledge of its actual referent, e.g. ‘the tallest tree’.36  

 

The general idea is that if 𝐴 is a meaningful expression, its intension is the function 

ℐ𝐴: (𝐴 × 𝑊) ⟶ 𝑓(𝐷) that pics out 𝐴’s extension at each possible world—namely the class of 

objects at each world of which the expression is true. So if 𝐴 is a predicate, then for each 

possible world 𝑤, ℐ𝐴(𝑤)  is a subset of 𝐷𝑤 consisting of objects that have the property 

expressed by 𝐴 at 𝑤. This naturally generalizes to relations on the elements of the domain. 

So, if 𝐴 is an n-place relation, ℐ𝐴(𝑤) is a subset of 𝐷𝑤
𝑛 , i.e. its intension picks out, for each 

possible world 𝑤, a set of n-tuples of elements of 𝑤’s domain that stand in the relation 

expressed by 𝐴.37   

 

Finally, if 𝐴 is a sentence, then for each possible world 𝑤, ℐ𝐴 maps to the extension of 𝐴‘s 

truth predicate, namely the set of possible worlds where 𝐴 is true, i.e. ℐ𝐴: (𝑊) ⟶

{𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}. For the propositional language we can employ Kripke models to give a more 

precise characterization of ℐ𝐴.38 Namely, given a Kripke model 𝔄, let ℐ𝐴(𝑤) = 𝑡𝑟𝑢𝑒 if and 

only if 𝔄, 𝑤 ⊩ 𝐴, for each 𝐴 ∈ 𝐹𝑜𝑟. Then for each model 𝔄, the proposition expressed by 𝐴 

can be identified with the set of possible worlds where 𝐴 is true in that model, or 

equivalently, the set of possible worlds at which ℐ𝐴 maps 𝐴 to truth, i.e. 𝐴’s intension is the 

set {𝑤 ∈ 𝑊 ∶ ℐ𝐴(𝑤) = 𝑡𝑟𝑢𝑒} whose characteristic function is ℐ𝐴. Effectively, this method has 

an overall extensional character to content analysis. 

 

Intensions deal equally well in drawing distinctions between contingently coextensive 

predicates. Consider the example from Quine (1951, p.21): although it may just so happen 

that the property of ‘being a creature with a kidney’ is coextensive with ‘being a creature with 

a heart’, nevertheless these two properties mean something else – it is physically (or at least 

                                                
36 Speaks (2014, §2.1.5). 
37 The intension/extension distinction can be traced back to Frege’s sense/reference distinction, where  
intension corresponds to the expressions’ meaning, and extension to the things the expression designates 
(Fitting, 2015). 
38 This formulation can be traced back to Carnap’s (1947) early work on intensionality. 



20 
 

 

logically) possible for there to be creatures with hearts, but no kidneys, and the intensions of 

the two predicates would simply come apart at other possible worlds (as desired). A 

sentence’s intension, understood as the proposition it expresses, points to that sentence’s truth 

value at each world. The intended interpretation of the set {𝑤 ∈ 𝑊 ∶ ℐ𝐴(𝑤) = 𝑡𝑟𝑢𝑒} is the 

proposition expressed by A. Possible world semantics for propositional content as intension, 

conceived this way, had an enormous impact on philosophical analysis in the second half of 

the 20th century, before its general limitations began to appear. 

 

1.3.2.2     General limitations: “The Granularity Problem” 

However, this approach falls short of giving an adequate analysis of contexts containing 

hyperintensional phenomena, i.e. contexts where intensional equivalence is insufficient for 

identity, or contexts that do not respect logical equivalence (Cresswell, 1975, p.25), or more 

broadly, contexts that do not respect necessary equivalence (Nolan, 2013, p.366).39 Before 

demonstrating how intensions fall short of delivering hyperintensional distinctions, I will 

briefly discuss the analogous phenomenon, of the inadequacy that extensions display in 

drawing intensional distinctions. This will place the following discussion in a broader 

context. Consider the following example. ‘Canberra is the capital of Australia’ – the referent 

of ‘Canberra’ and ‘The capital of Australia’ is the city of Canberra.40 Now, despite its 

apparent innocuity, the counterfactual ‘If Brisbane were the capital of Australia, then 

Brisbane would be the capital of Australia’ gives rise to an intensional context41, where 

substitutivity of co-extensive expressions (and co-referential expressions in particular) isn’t 

guaranteed to be truth preserving. Consider an instance of substituting the co-referring 

singular terms, in this case ‘Canberra’ for ‘the capital of Australia’ in the consequent of (2). 

 

1. If Brisbane were the capital of Australia, then Brisbane would be the capital of 

Australia. 

2. If Brisbane were the capital of Australia, then Brisbane would be Canberra. 

 

Although the first counterfactual is an instance of counterfactual identity, the truth of the 

                                                
39 Nolan’s generalizes the definition by lifting the restriction to logical equivalence – necessity need not be just 
logical, e.g. it may also be metaphysical, which need not be the same as logical necessity: ‘A position in a 
sentence is said to be sensitive to hyperintensional differences, if the truth value of the sentence can be altered 
by replacing the expressions in that position with one that necessarily applies to the same things’ (Nolan, 2013, 
p.366). 
40 In this example I am treating co-referential terms as a special case of co-extensive predicates, where being the 
capital of some country is thought of as having that property. 
41 It is a shift of context, from the actual to the possible in general. 
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second one is context dependent. In particular there are contexts where it is false, e.g. when 

we intend (in the hypothetical scenario) both cities to remain where they actually are. 

Brisbane being the capital of Australia, and both cities remaining where they actually are is a 

perfectly possible scenario, which the reading of (2) doesn’t rule out. The general point I 

wish to stress is that just as co-reference (extensional equivalence) is inadequate for drawing 

intensional distinctions (‘Canberra’ doesn’t mean ‘the capital of Australia’), so intensional 

equivalence falls short of drawing hyperintensional distinctions. Consequently, just as 

extensional equivalence is inadequate for identity conditions that guarantee substitutivity 

salva veritate on intensional contexts, intensional equivalence is inadequate for identity 

conditions that guarantee substitutivity salva veritate on hyperintensional contexts. That is, 

the approach fails to distinguish sentences that are either necessarily true, or necessarily false 

– the former are identified with the set of all possible worlds, since necessity is modelled as 

truth at all possible worlds, and the latter with the empty set since necessary falsehoods are 

not true at any possible world.42 Let us denote the proposition expressed by sentence 𝐴 with 

[𝐴]. That is let us adopt the notation [𝐴] ≔ {𝑤 ∈ 𝑊 ∶ ℐ𝐴(𝑤) = 𝑡𝑟𝑢𝑒} for the reminder of our 

discussion, to distinguish [𝐴] from the sentence that expresses it. To illustrate this more 

formally, in terms of the Kripke models this would mean that for any two sentences 𝐴 and 𝐵 

that express a necessary truth, the following identity holds for all models (𝑊, 𝑅, 𝑉), [𝐴] =

[𝐵] = 𝑊, and likewise, for any two sentences 𝐴 and 𝐵 that express a necessary falsehood, the 

following identity holds for all models [𝐴] = [𝐵] = ∅ for all models. 

  

Consequently, propositional content modelled as intension leads to cointensive expressions 

being analyzed as meaning the same thing, which is strongly counterintuitive. Consider the 

following pairs of sentences, which on the just described possible world, meaning-as-

intension, analysis are analyzed as expressing the same proposition: 

 

1. There are no married bachelors. 

2. There are infinitely many primes. 

 

3. Some bachelors are married. 

4. There are finitely many primes. 

 

                                                
42 There is no general consensus regarding what kind of necessity represents absolute necessity, but there is a 
tendency of taking logical, mathematical, and metaphysical necessity as close approximations. The issue which 
of these necessities is more fundamental is also controversial (Berto & Jago, 2019, §1.2). In this thesis I will not 
make any assumptions in this regard. 
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Each sentence in the first pair expresses some necessary truth, so each is true in all possible 

worlds. So, their intensions are identical, and consequently both sentences are analyzed as 

having the same content, i.e. expressing the same proposition. This doesn’t seem right, since 

they appear to be saying different things – (2) says nothing about marriage or bachelorhood. 

The latter pair of sentences suffers from the same inadequacy of distinguishing their meaning 

due to the pair being cointensive. This fundamental shortcoming is inherited in the analysis of 

propositional attitudes that give rise to hyperintensional contexts, where substitutions of 

necessary equivalent terms in a sentence need not be truth preserving. Take the following 

pairs of necessarily true sentences: 

 

1. The axioms of Peano Arithmetic are true. 

2. [Any sentence that expresses a theorem of PA] is true. 

 

3. Water is water. 

4. Water is H2O. 

 

And consider the following substitutions of those sentences in sentences expressing doxastic 

and epistemic propositional attitudes: 

 

5. Giuseppe believes that the axioms of Peano Arithmetic are true. 

6. Giuseppe believes that [any sentence that expresses a theorem of PA] is true. 

 

7. It is known a priori that water is water.  

8. It is known a priori that water is H2O.  

 

It becomes clear that in such contexts, necessary sentences are not expected to be 

substitutable salva veritate. Surely, Giuseppe Peano believed the truth of his own axioms 

(that’s what it means to be an axiom – a truth that is immediately evident), but it doesn’t 

seem true that he believed all sentences, of arbitrarily complexity, that happen to express a 

consequence of those axioms, i.e. all theorems of PA. So, although (5) is (very likely) true, 

sentence (6) should be false. Also, whereas sentence (7) is true (it is probably among the least 

contested a priori truths out there), sentence (8) is false, since knowing that water is H2O 

requires empirical knowledge of the molecular structure of water.  

  

Counterpossible reasoning is another context where hyperintensional phenomena arise. A 

counterpossible conditional is a subjunctive conditional whose antecedent expresses a 

necessary falsehood. By direct analogy with the earlier example involving counterfactuals, 
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which illustrated the inadequacy of appeals to actually co-referring terms (material 

equivalence) in drawing intensional distinctions, it can be shown that appeals to necessarily 

co-referring terms (logical equivalence) are inadequate in drawing hyperintensional 

distinctions. This inadequacy in distinguishing between cointensive impossible expressions 

carries over to accounts of the counterpossible that restrict the analysis to intensions only.43 

All analyses of counterfactuals whose truth is cashed out in terms of the corresponding 

material conditional’s truth at possible worlds will result in all counterpossibles being 

evaluated as vacuously true. This is because antecedents of counterpossibles are not true at 

any possible world, by definition. A notable example of such an approach – one given by 

Lewis (1973, 1986) – meets the same predicament, by treating all counterpossibles as 

logically equivalent (in the case of Lewis, as true). As mentioned earlier, I will discuss 

Lewis’ analysis of counterfactuals and counterpossibles in depth in chapter 2, but for the 

purposes of the present introduction his analysis can be can be given informally: the 

counterfactual ‘if it were the case that …, then it would be the case that …’ is true at a 

possible world w just in case the consequent is true at all the most similar possible worlds to 

w where the antecedent is true. Since sentences expressing a necessary falsehood are true at 

no possible world, and in particular a possible world satisfying some additional similarity 

conditions, each counterpossible is analysed as vacuously true. Consider the following pair of 

counterpossibles. Whereas (1) is clearly true in all contexts, (2) could be false.  

 

1. If Sally were to square the circle, then Sally would have squared the circle. 

2. If Sally squared the circle and I doubled the cube, then I would be Sally.44 

So, on Lewis’ analysis (1) and (2) are logically equivalent (both are true at all possible 

worlds), which seems wrong. For a more emphatic demonstration that counterpossibles do 

                                                
43 Observation: (2) appears more readily read as false than its counterfactual analogue of Australia’s capital(s), 
since the property of being the capital of Australia counterfactually ascribed to Brisbane – which actually 
belongs to Canberra – is unique, whereas in the counterpossible (2) there is explicit talk of two properties, which 
only are identified as meaning the same thing by the underlying (content-as-intension) analysis. Also, 
independently of such reasons for the apparent disparity in readiness with which we would be inclined to read 
(2) and the earlier counterfactual example as false, it seems that we tend to “hold on” to numerical identity 
more than any other properties of objects, i.e. shifts in numerical identity seem to be contextually the most far-
fetched. Of course, there are contexts where (2) and its counterfactual analogue would be true, but they don’t 
seem to be among the first ones that we’re willing to consider. 
44 Squaring the circle refers to constructing a square of the same area as some circle in a finite number of steps. 
This construction is mathematically impossible. Doubling the cube is a related, impossible construction, whereby 
given the edge of a cube one is required to construct the edge of another cube that has twice the volume of the 
first one.  
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give rise to hyperintensional contexts, let us consider (3), where we substitute the consequent 

of (1) with a logically equivalent sentence, and observe that unlike (1), (3) could be false. 

 

3. If Sally were to square the circle, then Mariusz would have doubled the cube. 

As a matter of fact, Lewis’ analysis of the counterpossibles can be viewed as emblematic of 

the inadequacy of intensions in drawing hyperintensional distinctions. This example 

highlights how the matter of non-vacuous counterpossibles and the matter of adequate 

hyperintensional distinctions are closely related – counterpossibles do create hyperintensional 

contexts.  

 

1.3.2.3    Content as hyperintension, via impossible worlds 

A number of philosophers have suggested that one way of meeting the requirements of 

drawing hyperintensional distinctions, is by admitting impossible worlds to accompany 

possible ones in our world-semantics for propositional content, and proceeding much in the 

same general manner as the analysis of intensions on possible worlds.45 In terms of Kripke 

structures that would amount to either reinterpreting 𝑊 as a set of possible and impossible 

worlds, or explicitly adjoining a new set 𝑊∗ to 𝑊 (which retains its original interpretation), 

interpreted as containing impossible worlds, and defining models on the extended domain 

𝑊 ∪ 𝑊∗. This way cointensive expressions would not be represented as coextensive in all 

worlds, since impossible worlds would be precisely where their intensions would come apart, 

e.g. all necessary truths would remain true in all possible worlds, but some could fail to be 

true in some impossible worlds, and similarly for necessary falsehoods, as they all would still 

fail to be true in all possible worlds, but some could be true in some impossible worlds. 

 

Many of the reasons to switch to a possible-worlds framework for linguistic 

meaning also support employing a system with impossible worlds as well. Just 

as a predicate can be coextensive with another without being synonymous, two 

predicates can have matching extensions in every possible situation and yet fail 

to be synonymous. (Nolan 2013, p.366) 

 

The proposed refinement to the analysis is still extensional in character, since propositions 

are identified with subsets of the extended universe 𝑊 ∪ 𝑊∗, where 𝑊 is the same as before, 

                                                
45 E.g. Hintikka (1975), Rantala (1982), Yagisawa (1988), Priest (2005), Nolan (1997, 2013, 2014), Berto (2010, 
2014, 2017), Jago (2009, 2014), Bjerring (2010). 
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and 𝑊∗ is a set of impossible worlds. Let’s look how the analysis of propositional content on 

this extended account offers a way of drawing hyperintensional distinctions. Given a sentence 

𝐴, the function ℋ𝐴: 𝐴 × (𝑊 ∪ 𝑊∗) ⟶ ℘(𝑊 ∪ 𝑊∗), works much in the same way as 

ℐ𝐴: 𝐴 × 𝑊 ⟶ ℘(𝑊), with the exception of ranging over the extended universe. But the 

underlying idea of a sentence’s hyperintension ℋ𝐴 picking out worlds where that sentence is 

true, remains unchanged, i.e. we identify the hyperintension of 𝐴 with the set 

{𝑤 ∈ 𝑊 ∪ 𝑊∗ ∶ ℋ𝐴(𝑤) = 𝑡𝑟𝑢𝑒}, denoted ⟦𝐴⟧. 

The hyperintensions ℋ𝐴, ℋ𝐵 of cointensive sentences 𝐴 and 𝐵, still agree on their intensions, 

i.e. ⟦𝐴⟧ ∩ 𝑊 = ⟦𝐵⟧ ∩ 𝑊 = 𝑊, but also offer a way for their truth values to come apart at 

impossible worlds. That is, there may exist an impossible world 𝑤∗ ∈ 𝑊∗ where 𝐴 holds, 

but 𝐵 doesn’t, i.e. 𝑤∗ ∈ ⟦𝐴⟧ but 𝑤∗ ∉ ⟦𝐵⟧, which yields the desired result of a semantic 

distinction between the proposition expressed by 𝐴 and the proposition expressed by 𝐵, i.e. 

⟦𝐴⟧ ≠ ⟦𝐵⟧. Hyperintensional distinctions between necessarily falsehoods 𝐴 and 𝐵  are 

achieved much in the same way. Although [𝐴] = [𝐵] = ∅, it need not be the case that ⟦𝐴⟧ =

⟦𝐵⟧ = ∅, for there may exist an impossible world 𝑤∗ ∈ 𝑊∗ where 𝐴 holds, but 𝐵 does not 

hold, i.e. 𝑤∗ ∈ ⟦𝐴⟧ but 𝑤∗ ∉ ⟦𝐵⟧. 

 

The above general discussion has given a general, and largely informal outline of the idea of 

using impossible worlds in analyzing hyperintensionality. In the next section we look at a 

particular application of open impossible worlds to hyperintensional propositional attitudes. 

 

1.3.3     Applications of open worlds: doxastic logic and epistemic logic 

1.3.3.1     Fine-graining with Rantala worlds 

 

It is well known that it seems possible to have a situation in which there are two 

propositions p and q which are logically equivalent and yet are such that a person 

may believe the one but not the other. If we regard a proposition as a set of 

possible worlds then two logically equivalent propositions will be identical, and 

so if "x believes that' is a genuine sentential functor, the situation described in the 

opening sentence could not arise. I call this the paradox of hyperintensional 

contexts. (Cresswell 1975, p.25) 

 

The following application of impossible worlds involves the analysis of belief and 

knowledge. That is, an analysis of contexts where hyperintensional distinctions arise 



26 
 

 

naturally, and where failing to give an adequate account of such distinctions can lead to very 

bizarre (incorrect) consequences. Exploiting the intuitive analogies between epistemic and 

modal propositional attitudes – knowledge and necessity in particular – had opened the door 

to allowing epistemic (and doxastic) logic enjoy the same intuitive semantics that modal logic 

had.  

 

Hintikka (1962) pioneered an intuitive and successful Kripke-style interpretation of epistemic 

language, one in which epistemic space (set of epistemic alternatives) is identified with 

logical space (possible worlds) and epistemic operators are interpreted in a way analogous to 

modal operators of the modal language. Knowledge for an agent 𝑎 is interpreted as truth at all 

𝑎’s epistemic alternatives, i.e. truth at all worlds epistemically possible for 𝑎. Consequently, 

since only possible worlds are the available epistemic alternatives for any agent, then all 

logical truths are epistemically necessary for any agent on the above interpretation. That is, 

on this interpretation all agents know all logical truths, which is certainly not the case. 

Moreover, since among logical truths there are entailments, any agent will know all the 

logical consequences of what they know. This predicament of logical omniscience is a direct 

outcome of the above interpretation. Belief is analyzed analogously, and is burdened with 

analogous issues.  

 

That is, Hintikka’s (1962) analysis sanctioned the following principles, where 𝑲𝐴 is read as 

‘it is known that 𝐴’ and 𝑩𝐴 is read as ‘it is believed that 𝐴’:46 

 

(C1) If  𝑲𝐴 and 𝐴 ⊨ 𝐵, then 𝑲𝐵   (Closure under entailment) 

If 𝐴 is known, and 𝐴 entails 𝐵, then 𝐵 is known. 

 

If  𝑩𝐴 and 𝐴 ⊨ 𝐵, then 𝑩𝐵 

If 𝐴 is believed, and 𝐴 entails 𝐵, then 𝐵 is believed. 

 

(C2) If  ⊨ 𝐴, then 𝑲𝐴    (Knowledge of all valid formulae) 

If 𝐴 is a necessary truth, then 𝐴 is known. 

 

                                                
46 Hintikka (1962) relativizes knowledge and belief to agents, i.e. 𝐾𝑎𝐴 and 𝐵𝑎𝐴 read as ‘agent 𝑎 knows 𝐴’ and 
‘agent 𝑎 believes 𝐴’, respectively. But we can simplify the discussion by depersonalizing the analysis, since that 
is not where the relevant issues are, i.e. although the epistemic/doxastic accessibility relations 𝑅𝑎may be 
relativized to agents 𝑎, and for any to agents 𝑎 and 𝑏, 𝑅𝑎 ≠ 𝑅𝑏, nevertheless both 𝑅𝑎(𝑤) ⊆ 𝑊 and 𝑅𝑏(𝑤) ⊆
𝑊, where 𝑊 is a set of possible worlds (a model’s domain) and 𝑅𝑥(𝑤) = {𝑢 ∈ 𝑊: 𝑤𝑅𝑥𝑢}, i.e. the image of 𝑤 
under 𝑅𝑥. 
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If  ⊨ 𝐴, then 𝑩𝐴     (Belief in all valid formulae) 

If 𝐴 is a necessary truth, then 𝐴 is believed.47 

 

Both principles do not seem right, as people are neither omniscient, nor do they know all 

logical consequences of what they know. Similarly, people do not believe all necessary truths 

or logical consequences of their beliefs. For example, Giuseppe Peano, surely did not know 

all the theorems of arithmetic (logical consequences of PA axioms), even if he claimed to 

have justified belief for claiming the truth of PA axioms, i.e. the self-evident nature of their 

truth. Similarly, he would not believe all conjectures of arithmetic that would turn out to be 

theorems. The same holds for any other person. 

 

Hintikka’s (1975) key insight was to correctly identify the crux of the problem by observing 

that the theoretical responsibility for logical omniscience was not due to the method of 

possible world analysis per se, but rather the underlying assumption – which he had himself 

previously endorsed – that “every epistemically possible world is logically possible”.48 It had 

been precisely the assumption of such a close analogy between necessity and knowledge that 

gave rise to erroneously burdening epistemic logic with logical omniscience. So, if 

knowledge is not something that is closed under entailment, then perhaps for a more accurate 

world-analysis of epistemic and doxastic propositional attitudes epistemic and doxastic 

spaces should be modelled accordingly, by including worlds that fail to be closed under 

entailment. This is precisely what Hintikka (1975) proposed. Hintikka’s suggestion to get 

around the logical omniscience problem, although retrospectively rather straightforward, 

marked a revolutionary direction in possible world analysis of propositional attitudes. By 

abandoning the problematic assumption that all epistemically possible worlds are logically 

possible, he posited worlds that are not logically possible, i.e. “some epistemically possible 

worlds are not logically possible worlds”. 49 The main motivation for adopting impossible 

worlds as a means to refine the analysis of belief is the now retrospectively obvious 

observation that human beings are not perfectly (ideal) rational agents:  

 

The way to solve the problem of logical omniscience is hence to give up the 

assumption [that every epistemically possible world is logically possible]. This 

means admitting 'impossible possible worlds', that is, worlds which look possible 

                                                
47 Wansing (1990, p.526) Pietarinen (1998, pp.8-9), Berto & Jago (2019, §5.3). 
48 Hintikka (1975, p.476). 
49 Hintikka (1975, p.477). 
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and hence must be admissible as epistemic alternatives but which none the less 

are not logically possible. Admitting them solves our problem for good.   

(Hintikka 1975, p.477)  

 

Within a decade of Kripke’s non-normal semantics for S3 and S2, Hintikka (1975) and 

Rantala (1975) had extended Kripke’s model-theoretic “trick”  employed in non-normal 

models, and had developed a semantics for epistemic and doxastic logics that model non-

ideal agents. Introducing and employing impossible worlds gave a semantics that invalidated 

epistemic and doxastic versions of problematic closures (C1) and (C2), thereby doing away 

with omniscience and omnidoxasticity. On the impossible-world semantics this is done by 

having the valuation function, for each model, assign values directly to formulae at 

impossible worlds. Effectively, this technical move gives the set of impossible worlds the 

capacity to violate any closures, including entailment.  

 

For the doxastic logic we expand the  propositional language by an epistemic operator 

symbol 𝑩, where the intended reading of ‘𝑩𝐴’ is ‘it is believed that 𝐴’. Let the language of 

basic propositional doxastic logic be {~, .∧, .∨, ⊃, 𝑩}. Let 𝑃𝑉 = {𝑝𝑛: 𝑛 ∈ ℕ} be the set of 

propositional variables Finally, let 𝐹𝑜𝑟 be the smallest set closed under the following 

formation rules: 

 

B:      All propositional variables are wffs, i.e. 𝑃𝑉 ⊆ 𝐹𝑜𝑟. 

R1:  If 𝐴 ∈ 𝐹𝑜𝑟 then {~𝐴, 𝑩𝐴 } ⊆ 𝐹𝑜𝑟. 

R2:  If {𝐴, 𝐵} ⊆ 𝐹𝑜𝑟 then {𝐴 ∧ 𝐵, 𝐴 ∨ 𝐵, 𝐴 ⊃ 𝐵} ⊆ 𝐹𝑜𝑟. 

 

I present simplified Rantala models, which suffice to illustrate the role of impossible worlds 

in this context, for the present, introductory purposes. Multimodal systems for multiple 

agents are generally given, where belief is agent-relative and modelled by the corresponding 

accessibility relation, but for the introductory illustration purposes I only use a single 

accessibility relation for simplicity. The idea can be easily generalized to accommodate 

multiple agents.50  

 

Definition 1.14: An Impossible world “Rantala” Model is the triple (𝑊, 𝑊∗, 𝑅, 𝜈), where 𝑊 

and 𝑊∗ are nonempty sets, regarded as the set of possible worlds and the set of impossible 

                                                
50 For a detailed exposition see Rantala (1982a, 1982b), Wansing (1990), Sillari (2008). 
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worlds, respectively, and the binary relation 𝑅 ⊆ 𝑊 ∪ 𝑊∗ × 𝑊 ∪ 𝑊∗ regarded as the 

accessibility relation.  

 

For each 𝑤 ∈ 𝑊, 𝜈𝑤: 𝑃𝑉 ⟶ {0,1} is just as on Kripke models, where the truth conditions for 

extensional connectives at possible worlds are just like on Kripke models, and: 

 

𝜈𝑤(𝑩𝐴)    iff    ∀𝑢 ∈ 𝑊 ∪ 𝑊∗: if 𝑤𝑅𝑢, then 𝜈𝑢(𝐴). 

 

However, the truth or falsity of formulas need not be recursively specified at non-normal 

worlds. The only restriction is a semantic version of modus ponens, i.e. for all 𝑤∗ ∈ 𝑊∗, and 

𝐴, 𝐵 ∈ 𝐹𝑜𝑟: 

 

(†) If 𝜈𝑤(𝐴) = 𝜈𝑤(𝐴 ⊃ 𝐵) = 1, then 𝜈𝑤(𝐵) = 1. 

 

Note that such a constraint precludes Rantala impossible worlds from being fully fledged 

open worlds. The restriction is in place to validate the K-axiom 𝑩(𝐴 ⊃ 𝐵) ⊃ (𝑩𝐴 ⊃ 𝑩𝐵), 

which seems appropriate for knowledge and belief. Without it, Rantala impossible worlds 

would just be open worlds. The main difference between the impossible worlds employed in 

Kripke non-normal models or 𝑁4 models and the ones employed in Rantala models, is that 

whereas the former worlds display non-standard behaviour of intensional operators only at 

impossible worlds – box/diamond and → formulae are assigned values directly – in the latter 

worlds all formulae misbehave this way, which means that even extensional connectives 

behave non-standardly, i.e. they fail to be truth functionally recursive.51  

 

Validity and valid inference are defined as truth at all possible worlds, and truth preservation 

at all possible worlds, respectively. 52  

 

This way doxastic closure under entailment (C1) fails, since although 𝐴 ∧ 𝐵 ⊨ 𝐴, the 

semantics allows for some impossible world 𝑤∗: 𝜈𝑤∗(𝑝 ∧ 𝑞) = 1, yet 𝜈𝑤∗(𝑝) = 0. To see this, 

suppose that 𝜈𝑤(𝑩(𝑝 ∧ 𝑞)) = 1 at some possible world 𝑤. So, for all worlds 𝑢 ∈ 𝑊 ∪ 𝑊∗ such 

that 𝑤𝑅𝑢, 𝜈𝑢(𝑝 ∧ 𝑞) = 1. Now suppose 𝑤𝑅𝑤∗. Hence, we see that 𝜈𝑤(𝑩𝑝) = 0, as required. 

Similarly, such properties of 𝜈 at impossible worlds are sufficient to violate (C2) allowing 

belief in any counterexample to any logical law. For example, given ⊨ (𝐴 ∧ 𝐵) ⊃ 𝐴, the 

                                                
51 So according to Priest’s distinction Priest (2005, §1.5), whereas Kripke non-normal worlds are merely 

intensionally impossible, Rantala non-normal worlds, being extensionally impossible, display a higher degree of 
logical deviancy. 
52 Wansing (1990, pp.526-527). 
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semantics allow for 𝑩((𝑝 ∧ 𝑞) ⊃ 𝑝) to be invalidated, by choosing a possible world 𝑤 and 

impossible world 𝑤∗ such that 𝑤𝑅𝑤∗ and letting 𝜈𝑤∗((𝑝 ∧ 𝑞) ⊃ 𝑝 ) = 0, which implies 

𝜈𝑤(𝑩((𝑝 ∧ 𝑞) ⊃ 𝑝)) = 0. Hence, ⊭ 𝑩((𝑝 ∧ 𝑞) ⊃ 𝑝), as required. 53 

 

As we can see, on the open-world approach (practically open if we ignore the (†) rule) 

described above, whilst the feat of avoiding omnidoxasticity and omniscience can indeed be 

avoided, it comes at a cost. That is, the proposal goes too far, since it ultimately trivializes 

belief – anything and everything may be believed, and at the same time any logical or 

metaphysical truth may be doubted, if no restrictions are place on the impossible worlds. This 

is a problem. To put it another way, if all open worlds are admitted as legitimate doxastic or 

epistemic alternatives, then any sentence describes a doxastic or epistemic possibility. 

Conversely, no sentence would be safe from skepticism, even those expressing Frege’s 

cognitively insignificant identities (such as ‘water is water’). Surely this isn’t right. When 

distinctions are too fine, we also end up in trouble. The task is to avoid omniscience and 

omnidoxasticity without ruling out truths that would be self-evident to any rational agent. For 

proposals that address this problem see Yagisawa (1985), Hawthorne (2005), Chalmers 

(2010), Jago (2009, 2014), Williamson (2010), and Bjerring (2010, 2012), Berto & Jago 

(2019). 

 

1.4 Modifying Lewis’ account of the counterfactual 

1.4.1 Goodman and Quine’s context sensitivity objections 

Counterfactuals are notoriously context sensitive. Take the well-known example: 

 

1. If Caesar had been in command (in Korea), he would have used the atom bomb. 

2. If Caesar had been in command (in Korea), he would have used catapults.54 

 

Intuitively, the truth of each depends on contextual background assumptions. But how can we 

tell what they are? For (1) to be true, we require contexts where Caesar’s knowledge of 

modern warfare is assumed to be in line with the military knowledge of a modern military 

                                                
53 Examples, and their discussion are borrowed from Pietarinen (1998, p.10), and some definitional layout 
features from Sillari (2008, p.7). 
54 Quine (1960, p.22) bases this example on similar ones given by Goodman (1954). Lewis (1973, pp.66-7; 1986, 
p.251) offers a number of replies to the contention pointed out by Quine, but eventually settles on one whereby 
the uttered counterfactual taken as being asserted, and context is called upon in resolving the vagueness of the 
comparative similarity in favour of the truth of the uttered counterfactual. This solution seems unsatisfactory 
since it is ambiguous what context has been called upon in favour of the counterfactual’s truth. 
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general, whereas for the second to be true, no such contextual background assumption is 

required. 

The problem that conditional analyses face is that the role of context is left syntactically 

ambiguous. That is, at the level of the object language there are no indicators what context 

should underlie the evaluation of a counterfactual, although Gabbay’s (1972) analysis –which 

we will look at in this section – goes some way toward resolving this ambiguity.  

 

Such context dependence is starkly pronounced in the following pair of counteridenticals 

given by Goodman (1954). Here the antecedents are logically equivalent (their formulation 

intends to hint at what the underlying context is), but their consequents are clearly 

incompatible.55 

 

3. If I was Julius Caesar, I wouldn’t be alive in the 21th century. 

4. If Julius Caesar were I, he would be alive in the 21th century.56 

 

It seems that both can be true, or at least they can be heard as true. Indeed, but in different 

contexts, and they would hardly be true in any single context, which precludes inconsistent 

scenarios (possibilities). The truth of the above is contingent on what is meant by the 

antecedent, which in turn rests on what context is assumed to underlie the reading of the 

counterfactual and consequently its evaluation. However, what that context is on any given 

occasion is not determined by the counterfactual itself. (3) would be true in contexts where 

the time when Caesar actually lived is maintained as true in the hypothetical scenario, 

whereas for (4) to be true the fact that I am actually alive in the 21st century is also true in the 

hypothetical scenario. 

 

Chapter 2 gives a detailed overview of the semantics, and critical analysis of the general 

Stalnaker-Lewis similarity account of counterfactual conditionals and how it contrasts with 

the family of ceteris paribus conditionals. For the comparative purposes of this section it will 

suffice to highlight one fundamental feature that these analyses have in common. On these 

analyses, when evaluating the truth of a counterfactual at some possible world 𝑤, only 𝑤 and 

the antecedent determine what set of situations have the features we take to be relevant to our 

deliberations in evaluating the conditional. In other words, it is only 𝑤 and the antecedent 

                                                
55 I borrowed this emphasis from Priest (2017, §2.3). 
56 Goodman (1983, p.6). 
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that determine what context underlies the evaluation of the conditional at 𝑤. This stems from 

the general underlying idea, common to these accounts, of treating the conditional as a 

special kind of expression of relative necessity.  

 

We have said that conditionality can be regarded as a species of relative necessity. 

This idea is bolstered syntactically by redescribing a conditional 𝐴 > 𝐵 as [𝐴]𝐵 – 

so that the antecedent 𝐴 forms a unary operator, the box-like brackets being 

reminiscent of the operator □ of simple necessity. Thus described, conditionality 

assumes the aspect of a sententially indexed modality, in which [𝐴]𝐵 expresses 

the necessity of 𝐵 relative to 𝐴. Chellas (1975, p.138) 

 

1.4.2 Gabbay’s analysis of subjunctive conditionals 

Highlighting that feature of the aforementioned conditional analyses suffices for the task of 

discussing differences with Gabbay’s (1972) analysis of subjunctive conditionals, to which I 

now turn. Gabbay’s analysis follows this general modal idea of analyzing conditionals akin to 

expressions of sententially indexed modality described by Chellas, but instead of modelling a 

conditional 𝐴 > 𝐵 as [𝐴]𝐵 (or equivalently □𝐴𝐵), i.e. where the necessity operator is 

relativized to a single sentential parameter (the antecedent), 𝐴 > 𝐵 is modelled as 

[𝐴, 𝐵](𝐴 ⊃ 𝐵), following the notation suggested by Chellas, or equivalently □𝐴,𝐵(𝐴 ⊃ 𝐵).  This 

analysis still uses the same general idea of conditional necessity determining the subset of 

possible worlds to be considered in the evaluation of the conditional, but it takes its content to 

be relativized to both the antecedent and the consequent. 

 

Gabbay recognizes the role of context in determining the worlds relevant to the evaluation of 

the counterfactual, and because – he argues – the consequent carries key contextual 

information, which the antecedent alone fails to capture, its role is indispensable. In other 

words, the set of worlds we consider in evaluating 𝐴 > 𝐵 is determined by both 𝐴 and 𝐵. 

More specifically, the consequent determines which contingent aspects (facts) of the actual 

world are relevant to the evaluation of the conditional, and as such should remain unchanged 

in the hypothetical scenarios.  

 

Generally, whenever a statement 𝐴 > 𝐵 is uttered at a world 𝑡, the speaker has in 

mind a certain set of statements 𝛥(𝐴, 𝐵, 𝑡) (concerning the political situation or 

geographic situation, etc.) which is supposed to remain true, and the speaker 

wants to express that in all worlds in which all statements of Δ retain their 
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truth 𝐴 ⊃ 𝐵 must hold. What is Δ(𝐴, 𝐵, 𝑡)? Well, one can perhaps find out what Δ 

is from 𝐴, 𝐵 and the general knowledge and the circumstances at the time of 

utterance in the world of utterance (i.e. 𝑡). The following examples show that Δ 

depends on both 𝐴 and 𝐵. Consider the statements: 

(i)  If I were the Pope, I would have allowed the use of the pill in India. 

(ii)  If I were the Pope, I would have dressed more humbly. 

Clearly, in the first statement, we must assume that India remains overpopulated 

and poor in resources, while in the second example nothing of the sort is required.  

Gabbay (1972, p.98, emphasis added) 

 

I will adopt Priest’s terminology, and refer to whatever carries over invariantly into the 

relevant hypothetical scenarios (worlds) as information imported from the actual world. 

 

Definition 1.15: Priest (2018, §2.1). Let us call the information that is carried over [from the 

world of evaluation] the imported information.  

 

Applying Priest’s terminology to Gabbay’s example above, we would say that in the case of 

(i) we import the information that India is overpopulated, which doesn’t seem like the 

relevant kind of information to import for (ii). 

 

Consider the following pair of counterfactuals, inspired by Goodman, where the contextual 

input of the consequent is made salient, and which Gabbay uses as one of his examples to 

demonstrate that Δ depends on both the antecedent and the consequent:57 

 

5. If New York were in Georgia, then New York would be in the South. 

6. If New York were in Georgia, then Georgia would be in the North. 

 

Gabbay (1972, p.99) points out that at the worlds relevant to the evaluation of (1) and (2) are 

not the same, despite the counterfactuals sharing the same antecedent. In other words, the 

information that gets imported into the antecedent worlds for the truth of (5) is not the same 

as the information imported to the antecedent worlds for the truth of (6). ‘Georgia is in the 

South’ must retain its truth value in (5), whereas ‘New York is in the North’ must retain its 

truth value in (6). 

 

                                                
57 Gabbay (1972, pp.98-99) gives a similar example.  
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We can make Gabbay’s insight more precise, by an appropriate modification of Kripke 

frames. First, we add a third recursive clause to Definition 1.0.1, to expand the set of wffs 𝐹𝑜𝑟 

so it contains expressions 𝐴 > 𝐵 corresponding to counterfactuals:  

 

R3:  If 𝐴, 𝐵 ∈ 𝐹𝑜𝑟 then 𝐴 > 𝐵 ∈ 𝐹𝑜𝑟. 

 

We define a world accessibility relation 𝑅𝐴,𝐵 ⊆ 𝑊 × 𝑊 that depends on both the antecedent 

and consequent. The worlds in the image of 𝑅𝐴,𝐵 are regarded as those that are relevant to the 

evaluation of 𝐴 > 𝐵. To give a precise characterization of 𝑅𝐴,𝐵 in terms of Δ(𝐴, 𝐵, 𝑤) let us 

define models that reflect Gabbay’s idea. I am giving an account of Gabbay’s analysis in 

terms of the kind of models (for ceteris paribus conditionals) that appear in the next chapter. 

 

Definition 1.16: A Gabbay frame is a pair (𝑊, {𝑅𝐴,𝐵: (𝐴, 𝐵) ∈ 𝐹𝑜𝑟 × 𝐹𝑜𝑟}), where 𝑊 ≠ ∅, and 

for each (𝐴, 𝐵) ∈ 𝐹𝑜𝑟 × 𝐹𝑜𝑟, 𝑅𝐴,𝐵 ⊆ 𝑊 × 𝑊 is a reflexive relation satisfying:58  
 

(𝑥, 𝑦) ∈ 𝑅𝐴,𝐵   iff   𝑦 ⊩ 𝐶 for all 𝐶 ∈ Δ(𝐴, 𝐵, 𝑥) 
 

Reflexivity of 𝑅𝐴,𝐵 is naturally motivated, since Δ(𝐴, 𝐵, 𝑤) contains information to be 

imported, which is already in place at 𝑤 by definition of imported information.59 

 

Definition 1.16.1: For convenience, define 𝑓𝐴,𝐵(𝑤) ∶= {𝑢 ∈ 𝑊: 𝑤𝑅𝐴,𝐵𝑢}. 

 

Although Gabbay does not endorse a Stalnaker-Lewis kind of similarity approach to possible 

world semantics for conditionals, admitting that he feels “uneasy” about that concept, he still 

allows a similarity-related idiom and calls the worlds in 𝑓𝐴,𝐵(𝑤) Δ-similar.60 This makes his 

account conceptually closer to the family of ceteris paribus conditionals discussed in the next 

chapter. That is, we can view 𝑓𝐴,𝐵(𝑤) as those worlds that are ceteris paribus the same as 𝑤, 

or at least sharpen the ceteris paribus analysis to include the additional parameter. 

 

                                                
58 What I call G frames are special cases of structures widely known among computer scientists as labelled 
transition systems (𝑊, {𝑅𝑎: 𝑎 ∈ 𝐴}), where 𝑊 ≠ ∅ is a set of states, and 𝐴 ≠ ∅  is a set of labels (Blackburn 
2001, p.3). In the case of Gabbay frames we’re clearly labelling the accessibility relation by ordered pairs of 
elements of For. 
59 Gabbay (1972, p.100) emphasizes the reflexivity of the accessibility relation with that exact point, although he 
doesn’t use the information importation terminology. 
60 Gabbay (1972, pp.99-100). 
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Definition 1.17: A Gabbay model is a triple (𝔉, 𝑉), where 𝔉 is a Gabbay frame, 𝑉: 𝑃𝑉 ⟶

℘(𝑊), is the function that assigns to each propositional variable 𝑝 ∈ 𝑃𝑉 a subset of 𝑊. 

Informally we think of 𝑉(𝑝) as the set of worlds in the model where is 𝑝 true. 

 

Truth in a model is defined in terms the satisfiability relation ⊩  ⊆ 𝑊 × 𝐹𝑜𝑟. We read 𝑤 ⊩ 𝐴 

as ‘𝐴 is true at 𝑤’. Given a Gabbay model (𝑊, 𝔉, 𝑉) and any 𝑤 ∈ 𝑊, define ⊩ as follows: 

 

   (1) – (6) are as for Kripke models (see definition 1.2). 

   (7) 𝑤 ⊩ 𝐴 > 𝐵       iff    ∀𝑢 ∈ 𝑊, such that 𝑤𝑅𝐴,𝐵𝑢, 𝑢 ⊩ 𝐴 ⊃ 𝐵. 

            That is,  iff 𝐴 ⊃ 𝐵 is true at all 𝑅𝐴,𝐵-accessible worlds. 

 

Definition 1.17.1: For convenience, define [𝐴] ∶= {𝑤 ∈ 𝑊: 𝑤 ⊩ 𝐴}. 

Equivalently we can express the truth conditions for 𝐴 > 𝐵 more concisely in terms of 

previously defined sets of worlds: 

 

   (7’) 𝑤 ⊩ 𝐴 > 𝐵       iff    𝑓𝐴,𝐵(𝑤) ∩ [𝐴] ⊆ [𝐵]. 

            That is,  iff 𝐵 is true at all 𝑅𝐴,𝐵-accessible worlds. 

 

1.4.3 Advantages of Gabbay’s account 

Let us highlight some interesting implications of the differences in the treatment of 

contextual information. From what has already been said, it follows that ceteris paribus and 

Lewis-Stalnaker similarity accounts preclude any context shifts between counterfactuals with 

the same antecedents in any given situation. Broadly speaking, on any given instance of 

utterance for counterfactuals with the same antecedent there’s a single choice of the worlds 

that are considered (as relevant) – the underlying context is ambiguous and fixed.  

 

Given a pair of counterfactuals with the same antecedents (but different consequents), as in 

the examples we have looked at, on Gabbay’s account, an element of the modelled object 

language, i.e. the consequent, allows for a context shift on any single occasion, cashed out in 

terms of considering different sets of worlds when evaluating counterfactuals with different 

consequents. On ceteris paribus and Stalnaker-Lewis similarity accounts there is an 

ambiguity regarding the context which should underlie the evaluation of counterfactuals in 

each pair. The inexplicit influence of context reigns at the (metalinguistic) level of models. 

That is, given any model, a counterfactual’s truth value may vary across worlds, but also, 

crucially, its truth at a single world (say the actual world) varies across models. Gabbay’s 
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analysis provides the additional linguistic parameter in the form of the consequent to decide 

the matter.  

 

Gabbay's analysis of conditionals has one apparent advantage that other analyses 

we’ve examined lack – it offers a semantic counterpart for the fact, which we 

have observed, that the evaluation of two conditionals with the same antecedent 

may require consideration of different sets of situations. (Nute 1980, p.75)  

 

That is, given two conditionals with the same antecedent, Gabbay’s analysis can account for a 

relevant difference in the intended meaning (and evaluation) of the antecedent by appeal to a 

difference in the consequents associated with the same antecedent. This can be best illustrated 

by a pair of counterfactuals whose truth depends on such radical context shifts that they can 

never be jointly true (although they could be both false) on the ceteris paribus or Stalnaker-

Lewis accounts. Let us revisit the earlier example of the pair of counteridenticals with Caesar. 

 

3. If I was Julius Caesar, I wouldn’t be alive in the 21th century. 

4. If Julius Caesar were I, he would be alive in the 21th century. 

 

For analyses whose truth conditions depend on the world of evaluation 𝑤 and the antecedent 

only, as is the case with the ceteris paribus and Stalnaker-Lewis analyses, there will be a 

single set of worlds (the closest antecedent worlds to 𝑤, or antecedent worlds that are ceteris 

paribus the same as 𝑤) that is considered in the evaluation of both counterfactuals. 

Consequently, the two are always evaluated as contraries. They cannot be true together 

because at all those worlds I, Julius Caesar either am or am not alive in the 21st century, in 

which case either (3) or (4) is true. Alternatively, I, Julius Caesar am alive in the 21st century 

at some of those worlds and am not alive in the 21st century at others, in which case both (3) 

and (4) turn out false. There are many more examples of pairs of counterfactuals similar to 

this one, which I discuss in chapter 4, where I also give formal arguments demonstrating their 

(contrary) relationship on ceteris paribus and Stalnaker-Lewis models. 

 

Let us translate (3) as 𝐴 > 𝐵 and (4) as 𝐴 > 𝐶. On Gabbay’s analysis however, both (3) and 

(4) can be simultaneously true, since the sets 𝑓𝐴,𝐵(𝑤) and 𝑓𝐴,𝐶(𝑤) need not be the same, and in 

particular, they could be disjoint, thereby making it possible for both 𝑓𝐴,𝐵(𝑤) ∩ [𝐴] ⊆ [𝐵] and 

𝑓𝐴,𝐶(𝑤) ∩ [𝐴] ⊆ [𝐶] to be satisfied. That is 𝑓𝐴,𝐵(𝑤) ∩ [𝐴] may be the worlds where I (i.e. Julius 

Caesar) am not alive in the 21st century, and 𝑓𝐴,𝐶(𝑤) ∩ [𝐴] may be worlds where Julius Caesar 
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(i.e. me) is alive in the 21st century.  

 

1.4.4 Limitations of Gabbay’s analysis 

Ignoring the fact that Gabbay’s proposed logic invalidates certain very plausible conditional 

inference forms61, there’s a pertinent shortcoming of particular interest to us, regarding how 

the analysis fares with drawing finer contextual distinctions.  

 

The problem is that Gabbay's analysis, just like the other analyses we have 

examined, will give a single, determinate truth value to the conditional, regardless 

of the circumstances under which the conditional is evaluated. The formal 

semantics does not explicitly make provisions for the conditional being accepted 

on one occasion and rejected on another due to the different circumstances of 

those occasions. [But] there may be a relevant difference in the occasions of 

evaluation, […] even when both the antecedent and the consequent of the 

conditional remain the same. (Nute 1980, p.76) 

 

As Nute observes, Gabbay’s semantics fares no better than the aforementioned accounts in 

terms of offering a semantic mechanism that would allow flexibility in reading a conditional 

(and giving a corresponding truth value) in a manner that accounts for distinct circumstances 

(intended contextual considerations). Under some circumstances we may read (2) as true and 

false under others – recall the contextual considerations we discussed earlier. 

 

2. If Caesar had been in command (in Korea), he would have used catapults. 

 

But on the analysis offered by Gabbay, we appear to have run out of syntactic resources 

present in the conditional that could be employed in making such a distinction. It seems 

natural to consider a language that would make such explicit access to intended context 

available, e.g.:  

 

7. In context a: If Caesar had been in command (in Korea), he would have used 

catapults. 

 

If context a assumes Caesar’s actual military knowledge (7) comes out as true, but if context 

a assumes Caesar’s military knowledge to be that of a 20th century military general – whilst 

maintaining his actual traits of a strategic and ruthless genius determined to use the most 

                                                
61 See Nute (1980, pp.75-76). 
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effective means available to him in order to defeat the enemy – then (7) would come out as 

false.  

 

Note that using the enumeration of conditionals in this section, (7) is just ‘in context a: (2)’. 

The object language, defined in chapter 4, offers a corresponding, context-indexed 

connective, so for ‘in context a: (2)’ we would have an expression 𝐴 >𝑎 𝐵 and a different one 

for ‘in context b (2)’, i.e. 𝐴 >𝑏 𝐵, both of which need not be evaluated as having the same 

value. This is the approach that I adopt in the account given in chapter 4. 

 

1.4.5  Berto’s context-indexation suggestion 

It is difficult to say whether the approach I chose – expanding the language by introducing 

additional syntactic parameters – to address those concerns is optimal, but it does appear 

natural. I have found some supporting evidence for this in a recurring suggestion made by 

Berto (2014, 2017). It was in Berto’s work on the analysis of conceivability and imagination 

that I have found a parallel of what I have been considering in counterfactuals. It was the 

manner in which Berto (2014, 2017) chose to analyze ‘representational acts’ underlying our 

conceivability and imagination, and ‘imagination acts’ that initially captured my attention, 

and in particular, his suggestion regarding how one may go about contextualizing those acts. 

Let me outline those features of Berto’s (2017) semantics of imagination that are relevant to 

his suggestion how one may go about contextualizing the object language.62 

 

In Berto’s (2017) analysis of imagination, a basic propositional modal language is expanded 

by the inclusion of a family of sententially indexed modal operators [𝐴], where 𝐴 ranges over  

formulae that express possible acts. Expressions central to the analysis [𝐴]𝐵, are read as ‘It is 

imagined in act 𝐴 that 𝐵 or, more accurately ‘It is imagined in the act whose explicit content 

is 𝐴, that 𝐵’, where 𝐵 is any well-formed formula.63 On Berto’s analysis [𝐴] acts like a 

relative necessity operator, ranging over possible and impossible worlds, and [𝐴]𝐵 receives 

an analysis akin to expressions of sententially indexed modality described by Chellas (1975, 

p.138). Fundamentally Berto’s analysis of [𝐴]𝐵 rests on the same idea as the one employed in 

the analysis of ceteris paribus conditionals such as 𝐴 > 𝐵. 

 

                                                
62 Berto (2014, p.113, f.9) makes the exactly the same suggestion in the context of conceivability. 
63 Berto (2017, §4). 



39 
 

 

This brings conceiving in [sic] the vicinity of ceteris paribus conditionals. The 

explicit content of a representation may play a role similar to a conditional 

antecedent. (Berto 2014, p.8) 

 

The explicit fictional content corresponds to the explicit content of our 

imagined scenarios, and works, in Lewis’ approach, too, like the antecedent of a 

ceteris paribus conditional. (Berto 2017, p.7) 

 

Berto (2014, p.113, f.9; 2017, §5) identifies the same worry in the analysis of intensional 

states like imagination that had been identified by Quine (1960), concerning the contextual 

ambiguity of counterfactuals with the same antecedents. “Is it so that, when one imagines in 

one act [𝐴] that 𝐵 and that 𝐶, one automatically imagines that 𝐵 ∧ 𝐶?” – he asks. On a given 

act of imagination [𝐴] with the same explicit content of Caesar being in command of the US 

troops in Korea, one can imagine Caesar using the atom bomb 𝐵, and one can imagine that he 

uses catapults 𝐶, however it doesn’t follow that one would thereby imagine Caesar using both 

the bomb and catapults. Berto observes that naturally, one could also imagine that, but the 

inference pattern [𝐴]𝐵, [𝐴]𝐶 ⊨ [𝐴](𝐵 ∧ 𝐶), should not be an automatic logical entailment.   

 

The heart of the problem rests in the fact that different acts of imagining the same explicit 

content can give rise to imagining a different scenario in different contexts – in general, the 

imported information that makes [𝐴]𝐵 true is not the same as the imported information that 

makes [𝐴]𝐶 true. That is, it seems clear that different contexts underlie the truth of [𝐴]𝐵 and 

[𝐴]𝐶, and so it is not obvious that [𝐴](𝐵 ∧ 𝐶) should follow, unless we restrict what contexts 

should be at play throughout the inference. This can be done via a modification of the object 

language, by indexing representational acts [𝐴] with contexts, e.g. [𝐴]𝑥, [𝐴]𝑦, which would 

allow for an explicit syntactic restriction of inferences to a single context, for example 

[𝐴]𝑥  𝐵, [𝐴]𝑥  𝐶 ⊨ [𝐴]𝑥  (𝐵 ∧ 𝐶). Below is how Berto expresses this idea. 

 

I think that Adjunction can be maintained by fixing some contextual parameter. 

The formalism may represent this, if wanted, by adding a set of contexts to the 

interpretations and variables ranging on them in the language, and by directly 

indexing representational acts with contexts: [𝐴]𝑥, [𝐴]𝑦, for instance, will stand 

for two distinct acts with the same explicit content, 𝐴, performed in contexts x 
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and y. Once the adjunctive inference is parameterized to same-indexed contents, 

it should work fine. Berto (2017, p.11) 64   

 

Naturally, this solution has its counterpart in the analysis of counterfactuals. Given the 

already noted similarity between the analysis of Berto’s intensional expressions [𝐴]𝐵 and 

ceteris paribus (or Lewisean) conditionals expressed as 𝐴 > 𝐵, the move to introduce a 

family {>𝑥: 𝑥 ∈ 𝒞} of context-indexed conditional connectives that range over a set of context 

indices 𝒞 seems natural, and it is precisely the method I adopt. One could apply an analogous 

restriction to the counterpart inference patterns, i.e. 𝐴 >𝑥 𝐵, 𝐴 >𝑥 𝐶 ⊨ 𝐴 >𝑥 (𝐵 ∧ 𝐶) in order 

to ensure truth preservation. In fact I show, in agreement with Berto, that this and other 

generally accepted inferences65 hold for the contextualized language, whenever all instances 

of the counterfactual appearing in the inference are restricted to a single context index. 

However, I chose to not apply such a restriction in general, which I feel departs from an 

opportunity to make the logic relevance-sensitive in an interesting way (not only single 

context index premise sets).  

 

My proposal allows for premises to range over more than one context index, so in this sense 

the restrictions that are in place are weaker than the one suggested by Berto. However, on top 

of the usual truth (preservation) condition for validity, a contextual information preserving 

condition is introduced. That is, I demand the existence of relevant content connection 

(properly defined and developed in the model theory) between the context indices over which 

the premises range and the conclusion context index. For example, in the case of 

𝐴 >𝑥 𝐵, 𝐴 >𝑦 𝐶 ⊨ 𝐴 >𝑧 (𝐵 ∧ 𝐶) for the inference to be valid, aside from truth preservation at 

all worlds in all models, it is additionally required that the conclusion context index z 

preserves the mutual contextual information of context indices x and y, which make the 

premises true. Clearly, this condition is met trivially with Berto’s restriction in place. 

Naturally, the model theory ensures that all the relevant terms such as context, context index, 

contextual information preservation, and mutual contextual information are properly and 

carefully motivated and defined. So although standard inferences fail to hold in general, when 

we lift Berto’s restriction, all of their instances that are said to preserve contextual 

information (have a suitably contextualized form) do hold.  

                                                
64 My emphasis. By Adjunction Berto means the semantic condition that guarantees the validity of the inference 
pattern [𝐴]𝐵, [𝐴]𝐶 ⊨ [𝐴](𝐵 ∧ 𝐶). I shall refer to it as Adjunction of Consequents. 
65 That is, valid on all weakly centered sphere systems, i.e. those characterizing Lewis’ logic VW. 
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1.4.6 Nolan’s context-relativization suggestion 

A suggestion along similar lines to Berto’s can be found in Nolan (1997). It proposes a 

modification of Stalnaker-Lewis similarity semantics for counterfactuals in a manner that 

emphasizes the role of context in order to account for the interpretation of similarity as 

similarity in relevant respects. Whereas Berto offers advice on addressing the matter 

syntactically, by accounting for contextual differences explicitly in the object language with 

an indication of how an index set should feature in a model, Nolan hints at a corresponding 

modification of similarity assignments that would accommodate such contextual 

disambiguation. The two suggestions are complimentary (in my view) – jointly amounting to 

a rudimentary recipe for an analysis of counterfactuals that explicitly accounts for the 

influence of context.  

 

A more sophisticated approach would be to employ, instead of a function from 

worlds to sets of spheres, a function from worlds and contexts to sets of spheres. 

This may deal better with representing our use of relevant similarity in 

determining the spheres, since what is more relevantly similar than what is often 

(always?) a matter of context. Contexts themselves are not monolithic, of course, 

and there is a potential to develop a quite sophisticated formal mechanism for 

modelling the selection of sets of spheres. (Nolan 1997, n.28) 

 

This will become clearer when I introduce Lewis’ similarity sphere models in the next 

chapter. It will suffice to say at this point that Berto (2017) and Nolan’s (1997) suggestions 

have one thing in common – how to include objects interpreted as contexts into a model 

theory. The account I give in chapter 4, develops and implements these nascent ideas. 
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Chapter 2 

 

Conditional logics and David Lewis’ analysis of counterfactuals. 

 

 

 
‘If kangaroos had no tails, they would topple 
over’ is true (or false, as the case may be) at our 
world, quite without regard to those possible 
worlds where kangaroos walk around on 
crutches, and stay upright that way. Those 
worlds are too far away from ours. What is 
meant by the counterfactual is that, things being 
pretty much as they are – the scarcity of crutches 
for kangaroos being pretty much as it actually is, 
and so on – if kangaroos had no tails they would 
topple over. 
  

  Lewis (1973, pp.8-9) 
 

 

 

 

2.0   Introduction 

In this chapter I give a detailed and critical exposition of Lewis’ similarity semantics for 

counterfactuals in terms of his similarity spheres. In the first part of the chapter I give a brief 

overview of a popular semantics for ceteris paribus conditionals. Then I give an account of 

Lewis’ (1973) critique of the strict conditional and his argument that counterfactuals don’t 

correspond to any strict conditional, but rather a variably strict conditional. In the second, and 

main part of the chapter, I present Lewis’ semantics for the counterfactual in terms of 

similarity sphere systems $ and give an in-depth survey of various conceptions of 

comparative similarity of worlds and the corresponding restrictions on $. This exposition 

includes a critical comparison of Lewis’ semantics with another well-known similarity 

semantics for conditionals due to Stalnaker (1968, 1970). In the latter part of the chapter I 

offer a critical reply to Lewis’ logical arguments in favor of the vacuous account of 

counterfactuals with impossible antecedents, i.e. counterpossibles, and show them to be either 

inconclusive or unconvincing. This reply to Lewis comprises one of three replies to Lewis’ 

defense of vacuous analysis of counterpossibles. The remaining replies are given in Chapter 

3. Throughout the entire chapter I endorse the system characterized by weakly centered 

systems of similarity spheres, which is the weakest system that validates Modus Ponens, yet 

strong enough to invalidate problematic inferences burdening Lewis’ preferred logic, which 

is characterized by a system satisfying a stronger centering condition. 
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2.1   Conditional logic 

From a Kripke semantics perspective, conditional logics are modal logics, with a multiplicity 

of accessibility relations of a certain kind.66 That is, the semantics for conditional logics 

extends the conceptual mechanism developed by Kripke. This approach has been motivated 

by giving a better account of the conditional – both the indicative and the subjunctive – by 

developing a semantics that invalidates a number of questionable inference forms, such as 

transitivity, antecedent strengthening, and contraposition, which remain valid in classical 

logic, for both the material and strict conditionals. Below are the formal patterns of those 

inferences, accompanied by examples from natural language where they appear to fail. 

 

Transitivity: 𝐴 ⊃ 𝐵, 𝐵 ⊃ 𝐶 ⊨ 𝐴 ⊃ 𝐶 

If Hoover had been born in Russia, he would have been a communist.  

If Hoover had been a communist, he would have been a traitor.  

∴ Hence, if Hoover had been born in Russia, he would have been a traitor. 

 

Antecedent Strengthening: 𝐴 ⊃ 𝐵 ⊨ (𝐴 ∧ 𝐶) ⊃ 𝐵 

If I strike a match, the match will light up.  

∴ Therefore, if I submerge myself in the pool and strike a match, the match will light up. 

 

Contraposition: 𝐴 ⊃ 𝐵 ⊨ ~𝐵 ⊃ ~𝐴 

If I have any coffee, I only have a little.  

∴ So, if I have a lot of coffee, I don’t have any. 

 

2.1.1 The formal language 

Let’s start by describing the formal language, relevant to this chapter, and the corresponding 

set of well-formed formulae over that language. First let us start with the basic ingredients for 

our language, i.e. a set of propositional variables 𝑃𝑉 = {𝑝𝑛: 𝑛 ∈ ℕ} the elements of which shall 

be denoted with lowercase Roman letters (𝑝, 𝑞, 𝑟, … ) or subscripted lowercase Roman 𝑝’s 

(𝑝1, 𝑝2, … , 𝑝𝑘 , … ), or lowercase Greek letters (𝜑, 𝜓, 𝜒, … ); unary connectives: ~ (negation), □ 

(necessity), ◊ (possibility); and binary connectives: ∧ (conjunction), ∨ (disjunction), ⊃ 

(material conditional). ⥽ (strict conditional), > (counterfactual conditional). For the 

                                                
66 Priest (2008, p.82). Or rather, treating them as modal logics with such properties of the accessibility relation is 
one of the ways conditionals can be analyzed. Much of the presentation and discussion of conditional logics, 
ceteris paribus conditionals in particular in this chapter, follows Priest (2008, §5). 
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metalanguage, upper case letters (𝐴, 𝐵, 𝐶, … ) shall be used as variables ranging over formulae 

and propositional variables. The recursive formation rules for the set of well-formed formulae 

(𝐹𝑜𝑟) of the formal language are given below. 

 

Definition 2.1: Let 𝐹𝑜𝑟 be the smallest set closed under the following well-formed formula 

formation rules: 

 

B:      All propositional variables are wffs, i.e. 𝑃𝑉 ⊆ 𝐹𝑜𝑟. 

R1:  If 𝐴 ∈ 𝐹𝑜𝑟 then {~𝐴, □𝐴,.◊𝐴} ⊆ 𝐹𝑜𝑟. 

R2:  If {𝐴, 𝐵} ⊆ 𝐹𝑜𝑟 then {𝐴 ∧ 𝐵, 𝐴 ∨ 𝐵, 𝐴 ⊃ 𝐵, 𝐴 ⥽ 𝐵, 𝐴 > 𝐵} ⊆ 𝐹𝑜𝑟. 

 

2.1.2 Strict conditionals 

It’s easy to check that transitivity, antecedent strengthening, and contraposition inference 

forms are valid for the material conditional. They’re also valid for the strict conditional on the 

class of Kripke frames, as I’ll shortly demonstrate. The strict conditional ⥽, is defined in the 

following way 𝐴 ⥽ 𝐵 ∶= ▭(𝐴 ⊃ 𝐵). The key thing to note here is the fact that the accessibility 

relation R remains invariant with respect to the antecedent on Kripke semantics for the strict 

conditional.  Kripke frames and models provide a point of reference to the sphere frames that 

Lewis uses in setting up his argument that the counterfactual is not any strict conditional – an 

argument to the layout of which section §2.2 is devoted. For Kripke semantics for normal 

modal logics – which I will be referring to often throughout the following few sections – see 

definitions 1.0 through 1.3, in §1.3.1, the weakest of which is the system K.67 

 

Extensions of the basic logic K are achieved by placing various constraints on the 

accessibility relation 𝑅, e.g. reflexivity, symmetry, or transitivity. Each such constraint 

defines a class of models (a subclass of all Kripke models) characterizing a different 

conception of necessity corresponding to some normal modal logic. The key thing to note 

here is that if an inference is valid on all Kripke models, then a fortiori it is valid on a subset 

of Kripke models. In particular, by demonstrating that inference forms such as transitivity, 

antecedent strengthening, and contraposition are K-valid for the strict conditional, then they 

are valid for all extensions of K. It should be noted that because on a Kripke model (𝑊, 𝑅, 𝑉) 

                                                
67 I shall not focus here on the constraints on R that may be put in place, and instead focus on the relevant 
distinction here, between a single accessibility relation on Kripke frames and entire families of accessibility 
relations (indexed by formulae) on frames for conditional logics. 
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the truth of the strict conditional 𝐴 ⥽ 𝐵 at a world 𝑤 ∈ 𝑊 reduces to the truth of its material 

counterpart 𝐴 ⊃ 𝐵 at all worlds accessible from 𝑤, and since the above inferences are valid 

for the material conditional, the validity for the strict conditional follows. I’ll provide a proof 

of the validity of antecedent strengthening, by way of illustration. The remining inference 

forms can also be easily shown to be K-valid. 

 

Proposition 2.1: 𝐴 ⥽ 𝐵 ⊨𝐾 (𝐴 ∧ 𝐶) ⥽ 𝐵   

Proof : Suppose that 𝑤 ⊩ 𝐴 ⥽ 𝐵 on some Kripke model (𝑊, 𝑅, 𝑉) and 𝑤 ∈ 𝑊. So, 𝑤 ⊩

□(𝐴 ⊃ 𝐵) by definition of ⥽. Hence, ∀𝑢 ∈ 𝑊, such that 𝑤𝑅𝑢, 𝑢 ⊩ 𝐴 ⊃ 𝐵, So, ∀𝑢 ∈ 𝑊, such 

that 𝑤𝑅𝑢, either 𝑢 ⊩ ~𝐴  or  𝑢 ⊩ 𝐵. If 𝑢 ⊩ ~𝐴, then not 𝑢 ⊩ 𝐴, and therefore not 𝑢 ⊩ 𝐴 ∧ 𝐶, 

for any 𝐶 ∈ 𝐹𝑜𝑟. Hence 𝑢 ⊩ ~(𝐴 ∧ 𝐶) for any 𝐶 ∈ 𝐹𝑜𝑟. So, 𝑢 ⊩ (𝐴 ∧ 𝐶) ⊃ 𝐵 for any 𝐶 ∈ 𝐹𝑜𝑟. 

Now, if 𝑢 ⊩ 𝐵, then 𝑢 ⊩ 𝐷 ⊃ 𝐵 for any 𝐷 ∈ 𝐹𝑜𝑟. In particular 𝑢 ⊩ (𝐴 ∧ 𝐶) ⊃ 𝐵. In conclusion, 

it follows that ∀𝑢 ∈ 𝑊, such that 𝑤𝑅𝑢, 𝑢 ⊩ (𝐴 ∧ 𝐶) ⊃ 𝐵, as required.        □ 

 

2.1.3 Ceteris paribus conditionals 

A way of getting around the validation of those inference forms is to fashion conditional 

semantics whereby the single accessibility relation 𝑅 is replaced with a whole family of 

accessibility relations {𝑅𝐴: 𝐴 ∈ 𝐹𝑜𝑟}, indexed by formulae. The philosophical motivation here 

is that not all worlds count as relevant in the evaluation of the conditional at some world, but 

rather only those worlds that are ceteris paribus the same as the world of evaluation. The 

model-theoretic means of capturing this intuition has been to have 𝑅𝐴 access only those 

worlds where 𝐴 is true and which are ceteris paribus the same as the actual world. So, it’s 

clear that unlike on Kripke frames, for any world, conditionals with different antecedents 

need not be evaluated on the same accessible worlds. The truth conditions for the ceteris 

paribus conditional > are almost the same as for the strict conditional, save for the newly 

introduced variability of the accessibility relation: 𝐴 > 𝐵 is true at a world 𝑤 iff at all worlds 

in {𝑢: 𝑤𝑅𝐴𝑢} 𝐴 ⊃ 𝐵 is true. And since {𝑢: 𝑤𝑅𝐴𝑢} = {𝑢: 𝑤𝑅𝐵𝑢} need not be true in general, for 

any world 𝑤 and distinct antecedents 𝐴 and 𝐵, the problematic inference forms are 

invalidated.68 Before I continue discussing other key differences of this approach to Kripke 

semantics, I’ll present the formal definition of the frames and models underlying the 

semantics of thusly conceived ceteris paribus conditionals. 

 

                                                
68 See (Priest 2008, §5.2-5.3). 
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Definition 2.2: A C frame is a pair (𝑊, {𝑅𝐴: 𝐴 ∈ 𝐹𝑜𝑟}) where 𝑊 is a nonempty set, and for 

each 𝐴 ∈ 𝐹𝑜𝑟, 𝑅𝐴 ⊆ 𝑊 × 𝑊.69 Formally, 𝑊 is an arbitrary set of objects. On the intended 

interpretation, relevant to the semantics under consideration, its elements are as possible 

worlds. 𝑅𝐴 is still called the accessibility relation, just like on Kripke frames, with one 

obvious key addition regarding the interpretation of the formula index. Intuitively 𝑤𝑅𝐴𝑢 

means that 𝑢 is an 𝐴-world accessible from 𝑤, which is ceteris paribus, the same as 𝑤.  

 

Definition 2.2.1: For convenience, define 𝑓𝐴(𝑤) ∶= {𝑢: 𝑤𝑅𝐴𝑢}, i.e. the set of worlds accessible 

from 𝑤 under 𝑅𝐴.  

 

Definition 2.2.2: It will also be convenient to define [𝐴]ℳ ∶= {𝑤 ∈ 𝑊: ℳ, 𝑤 ⊩ 𝐴} for any 

model ℳ with domain 𝑊, and any class of models discussed in this chapter. The superscript 

will be often omitted in cases when its absence will not lead to ambiguity. 

 

Definition 2.3: A C model is a triple (𝑊, {𝑅𝐴: 𝐴 ∈ 𝐹𝑜𝑟}, 𝑉), where (𝑊, {𝑅𝐴: 𝐴 ∈ 𝐹𝑜𝑟}) is a C 

frame, as defined earlier, and 𝑉: 𝑃𝑉 ⟶ ℘(𝑊), is the function that assigns to each 

propositional variable 𝑝 ∈ 𝑃𝑉 a subset of 𝑊. Informally we think of 𝑉(𝑝) as the set of worlds 

in the model where is 𝑝 true. 

Truth in a model is defined in terms the satisfiability relation ⊩  ⊆ 𝑊 × 𝐹𝑜𝑟. We read 𝑤 ⊩ 𝐴 

as ‘𝐴 is true at 𝑤’. Given a C-model (𝑊, {𝑅𝐴: 𝐴 ∈ 𝐹𝑜𝑟}, 𝑉) and any 𝑤 ∈ 𝑊, define ⊩ as 

follows: 

 

   (1) – (6) are as for Kripke models. 

   (7) 𝑤 ⊩ 𝐴 > 𝐵    iff    ∀𝑢 ∈ 𝑊, such that 𝑤𝑅𝐴𝑢, 𝑢 ⊩ 𝐵. 

 

Equivalently we can express the truth conditions for 𝐴 > 𝐵 more concisely in terms of 

previously defined sets of worlds: 

 

   (7’) 𝑤 ⊩ 𝐴 > 𝐵    iff    𝑓𝐴(𝑤) ⊆ [𝐵]. 

        That is, iff 𝐵 is true at all 𝑅𝐴-accessible worlds. 

 

 

                                                
69C stands for conditional. I’m basing the frame theory and model theory for conditional logics on Priest (2008, 
§5.3). What I call C frames are special cases of structures widely known among computer scientists as labelled 
transition systems (𝑊, {𝑅𝑎: 𝑎 ∈ 𝐴}), where 𝑊 ≠ ∅ is a set of states, and 𝐴 ≠ ∅  is a set of labels (Blackburn 
2001, p.3). 
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Definition 2.4: C validity  

Let ⊨ ⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟, and define Σ ⊨𝐶 𝐴 iff for all Kripke models (𝑊, {𝑅𝐴: 𝐴 ∈ 𝐹𝑜𝑟}, 𝑉), and 

all 𝑤 ∈ 𝑊, if 𝑤 ⊩ 𝐵 for all 𝐵 ∈ Σ, then 𝑤 ⊩ 𝐴. That is, valid inference is defined as truth 

preservation at all worlds in all C models. A formula 𝐴 ∈ 𝐹𝑜𝑟 is said to be valid iff it is true in 

all C models (notation: ∅ ⊨𝐶 𝐴).  

 

Priest (2008, §5.3) calls the logic characterized by the class of C models conditional logic C. 

Since no constrains are placed on the relations 𝑅𝐴, C is the analogue for conditional logics of 

the modal logic K. Below is a counterexample to antecedent strengthening in C. 

 

Proposition 2.2: 𝑝 > 𝑞 ⊭𝐶 (𝑝 ∧ 𝑟) > 𝑞 

Proof : Consider the following countermodel: 𝑊 = {𝑤, 𝑢}, 𝑅𝑝 = ∅, 𝑅𝑝∧𝑟 = {(𝑤, 𝑢)}; for all 

other 𝐴 ∈ 𝐹𝑜𝑟, 𝑅𝐴 can be anything; and 𝑉 is such that 𝑢 ∉ [𝑞]. Now 𝑤 ⊩ 𝑝 > 𝑞, since ∅ =

𝑓𝑝(𝑤) ⊆ [𝐴] for any 𝐴 ∈ 𝐹𝑜𝑟, but 𝑤 ⊮ (𝑝 ∧ 𝑟) > 𝑞, since {𝑢} = 𝑓𝑝∧𝑟(𝑤) ⊈ [𝑝].70      □ 

 

However, C is a rather weak logic, as it doesn’t even validate Modus Ponens for >. There’s 

an important extension of C, which is strong enough to validate Modus Ponens for >, while 

being sufficiently weak to invalidate the aforementioned questionable inference forms.71 An 

important extension of C is the logic C+, which results from placing additional constraints on 

𝑅𝐴. 

 

Definition 2.5: A C+ model is a C model where for each 𝐴 ∈ 𝐹𝑜𝑟 the accessibility relation 𝑅𝐴 

satisfies the following additional constraints: 

    (1) 𝑓𝐴(𝑤) ⊆ [𝐴] 

All worlds that are 𝑅𝐴-accessible from 𝑤, are 𝐴-worlds. 

 

    (2) If 𝑤 ∈ [𝐴] then 𝑤 ∈ 𝑓𝐴(𝑤)  

If 𝐴 holds at a world then that world is self 𝑅𝐴-accessible.  

 

One may impose additional conditions on 𝑅𝐴 thereby generating other extensions of C. This 

is what we turn to now – discussing the general approach suggested by Stalnaker and Lewis 

                                                
70 I have borrowed this counter-model from Priest (2008, pp.86-87). 
71 Giving the corresponding proofs is beyond the relevant scope of this chapter. For a comprehensive discussion 

of C and C+ and their respective proof theories, see Priest (2008, §5.4-5.5). 
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in their seminal work on conditional logics. The next section gives a detailed account of 

Lewis’ similarity spheres semantics, which begins with an outline of Lewis’ reasoning and 

motivations that led him to the formulation of that approach to analyzing the counterfactual. 

Most of that is captured in my critical paraphrase of Lewis’ argument why the counterfactual 

can’t be any strict conditional. The manner in which Lewis chooses to express that argument 

serves also as an excellent introduction to some of the formal foundations of his systems of 

similarity spheres semantics.72 

 

2.2   Lewis’ general proposal for counterfactuals 

2.2.1 Why the counterfactual is not a strict conditional 

Lewis (1973) suggests a possible-world semantics for the counterfactual conditionals based 

on the idea of variably strict necessity, conceived as variable overall similarity of worlds. 

That account, being a milestone in the work on counterfactuals, and owing to its remarkably 

intuitive appeal has been a popular starting point to recent directions of research containing 

proposals for non-vacuous treatments of counterpossibles, unlike on Lewis’ own account 

(more on that later). I will presently cover Lewis’ motivations for claiming that the 

counterfactual is more like a variably strict conditional, since – as he argues – it can’t be any 

single strict conditional.  

 

Lewis argues that since in general the necessity operator acts like a restricted universal 

quantifier over possible worlds, necessity of a certain kind is just truth at worlds that satisfy 

some restriction. Such worlds are called accessible, in the sense of satisfying the conditions 

of the necessity under consideration.73 For example, physical necessity is truth at worlds 

satisfying the accessibility restriction of having the actual physical laws hold at them.  

For the purposes of his argument that the counterfactual is not any single strict conditional 

Lewis defines an alternative, yet clearly equivalent (which I’ll prove) class of frames to 

Kripke’s – a move that aims to shift emphasis from talking about various accessibility 

relations to talking about various spheres of accessibility (essentially, such spheres are just 

images of worlds under the accessibility relation) when modelling necessity. That picture 

aims to make salient the role of necessity operators as restricted universal quantifiers over 

possible worlds, thereby facilitating talk of variable necessity, which is the key idea 

                                                
72 For some interesting, current work on ceteris paribus conditionals see Girard & Triplett (2018). 
73 The reminder of this section is my paraphrase of Lewis’ discussion given in (Lewis 1973, pp.5-9).  
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underlying the notion of strict conditionals of varying strictness, and a foundational step to 

developing the notion of a variably strict conditional, as a model for the counterfactual. The 

next few definitions are devoted to that class of models. Aside from aiding his argument in 

the manner described above, these models are also the first conceptual step toward 

formulating Lewis’ sphere semantics for counterfactuals, which I precisely define and discuss 

in the next section.74 What follows is a detailed paraphrase of Lewis’ argument. 

 

Definition 2.6: A sphere frame is a pair (𝑊, 𝑆), where 𝑊 is as for Kripke frames, and 𝑆: 𝑊 ⟶

℘(𝑊).75 For each 𝑤 ∈ 𝑊, the set 𝑆𝑤 is called the sphere of accessibility around 𝑤, regarded as 

the set of worlds accessible from 𝑤. So, ‘𝑢 ∈ 𝑆𝑤’ is read as ‘𝑢 is accessible from 𝑤’. 

 

It should be noted that Sphere frames are essentially equivalent to Kripke frames. Roughly, 

whereas on Kripke frames 𝑅 is an arbitrary binary relation on 𝑊, on sphere frames, each 𝑆𝑤 

corresponds to the image of 𝑤 under 𝑅, and 𝑆 is just the set {(𝑤, 𝑆𝑤): 𝑤 ∈ 𝑊}. A precise 

argument for this correspondence is given below, i.e. Lemma 2.3. 

 

Definition 2.7: A sphere model is the triple (𝑊, 𝑆, 𝑉), where (𝑊, 𝑆) is a sphere frame, and 𝑉 is 

as for Kripke models.  

Truth in a model is defined in terms the satisfiability relation ⊩  ⊆ 𝑊 × 𝐹𝑜𝑟. We read 𝑤 ⊩ 𝐴 

as ‘𝐴 is true at 𝑤’. Given a sphere model (𝑊, 𝑆, 𝑉) and any 𝑤 ∈ 𝑊, define ⊩ as follows: 

   (1) – (5) are as for Kripke models in Definition 1.2. 

   (6) 𝑤 ⊩ □𝐴    iff    ∀𝑢 ∈ 𝑆𝑤: 𝑢 ⊩ 𝐴. 

 

Lemma 2.3: The exists a one-to-one correspondence ℎ: 𝐊 ⟶ 𝐒 between the classes of Kripke 

frames 𝐊 and sphere frames 𝐒, such that 𝔉 is isomorphic to ℎ(𝔉) ∈ 𝐒 for each frame 𝔉 ∈ 𝐊. 

 

Proof : First to prove (1). I’ll proceed by showing that there exist injections: 𝑓: 𝐊 ⟶ 𝐒 and 

𝑔: 𝐒 ⟶ 𝐊, between K as and S, such that if 𝑓(𝔉𝐊) =  𝔉𝐒, then 𝑔(𝔉𝐒) = 𝔉𝐊, and if 𝑔(𝔉𝐒) = 𝔉𝐊, 

then 𝑓(𝔉𝐊) = 𝔉𝐒, for any 𝔉𝐊 and 𝔉𝐒. That is, 𝑔(𝑓(𝔉𝐊)) = 𝑓(𝑔(𝔉𝐒)), for any 𝔉𝐊 and 𝔉𝐒. This 

will justify the existence of the bijection ℎ: 𝐊 ⟶ 𝐒 defined as ℎ = 𝑓 and ℎ−1 = 𝑔.  

                                                
74 The entire discussion and setting up of the argument which I’m formally rephrasing here, plus the argument it 
leads up to, is to be found in (Lewis 1973, pp.5-9). 
75 These are not to be confused with sphere systems, discussed in the next section. Lewis (1973, p.7) states that 
the sphere formulation is obviously equivalent to the general (Kripke) semantics, but I demonstrate the required 
correspondence.  
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To compete the proof, it will also be shown that ℎ satisfies the isomorphic property, that is, 

ℎ(𝑅|𝑤) = 𝑆ℎ(𝑤), by showing that 𝑓(𝑅|𝑤) = 𝑆𝑓(𝑤) and 𝑔(𝑆𝑤) = 𝑅|𝑔(𝑤), for all 𝑤 ∈ 𝑊. 

 

Definition: for a relation 𝑅 ⊆ 𝑊2, let the image of 𝑤 under 𝑅 be the set 𝑅|𝑤 ≔ {𝑢: 𝑤𝑅𝑢}. 

 

Definition: Let the map 𝑓: 𝐊 ⟶ 𝐒 be defined as follows: 

(i) 𝑓(𝑊) = 𝑊. 

(ii) 𝑓(𝑅|𝑤) = 𝑆𝑤 = {𝑢: 𝑤𝑅𝑢}, and 𝑓(𝑅) = {(𝑤, 𝑆𝑤): 𝑤 ∈ 𝑊}. 

 

Definition: Let the map 𝑔: 𝐒 ⟶ 𝐊 be defined as follows: 

(i) 𝑔(𝑊) = 𝑊. 

(ii) 𝑔(𝑆𝑤) = 𝑅|𝑤 = {(𝑤, 𝑢): 𝑢 ∈ 𝑆𝑤}, and 𝑔(𝑆) = ⋃{𝑅|𝑤: 𝑤 ∈ 𝑊}. 

 

Definition: Let the map ℎ: 𝐊 ⟶ 𝐒, be as follows: ℎ = 𝑓 and ℎ−1 = 𝑔. 

 

Now to show that if 𝑓(𝑅) = 𝑆, then 𝑔(𝑆) = 𝑅, and if 𝑔(𝑆) = 𝑅, then 𝑓(𝑅) = 𝑆, for any 𝑅 and 𝑆, 

that is 𝑓 ∘ 𝑔 = 𝑔 ∘ 𝑓 = 𝑖𝑑, for any 𝑅 and 𝑆, which will justify the definition of the bijection ℎ 

as ℎ = 𝑓 and ℎ−1 = 𝑔. The functions are clearly injective. 

 

Start with some Kripke frame (𝑊, 𝑅) with 𝑅 ⊆ 𝑊 × 𝑊, and let 𝑓(𝑅) = {(𝑤, 𝑆𝑤): 𝑤 ∈ 𝑊}, such 

that for each 𝑤 ∈ 𝑊, 𝑓(𝑅|𝑤) = 𝑆𝑤 = {𝑢: 𝑤𝑅𝑢}. Now we consider the sphere frame 

(𝑓(𝑊), 𝑓(𝑅)) obtained this way, where 𝑆 = 𝑓(𝑅): 𝑓(𝑊) ⟶ ℘(𝑓(𝑊)), and show that 

𝑔(𝑓(𝑅)) = 𝑅. We start by establishing that 𝑔(𝑓(𝑅|𝑤)) = 𝑔(𝑆𝑤) = 𝑅|𝑤 for each 𝑤 ∈ 𝑊. Clearly 

𝑅 = ⋃{𝑅|𝑤: 𝑤 ∈ 𝑊}, but since 𝑆 = 𝑓(𝑅), it follows from the definition of 𝑔 that 𝑔(𝑓(𝑅)) =

𝑔(𝑆) = ⋃{𝑅|𝑤: 𝑤 ∈ 𝑊} = 𝑅.                □ 

 

Now, we start with some sphere frame (𝑊, 𝑆) with 𝑆: 𝑊 ⟶ ℘(𝑊), and let 𝑔(𝑆) =

⋃{𝑅|𝑤: 𝑤 ∈ 𝑊}, such that 𝑔(𝑆𝑤) = 𝑅|𝑤 = {(𝑤, 𝑢): 𝑢 ∈ 𝑆𝑤} for each 𝑤 ∈ 𝑊. Now we consider 

the Kripke frame (𝑔(𝑊), 𝑔(𝑆)) obtained this way, where 𝑅 = 𝑔(𝑆) ⊆ 𝑔(𝑊) × 𝑔(𝑊), and show 

that 𝑓(𝑔(𝑆)) = 𝑆. We start with noting that 𝑓(𝑔(𝑆𝑤)) = 𝑓(𝑅|𝑤) = 𝑆𝑤 for each 𝑤 ∈ 𝑊. Clearly 

𝑆 = {(𝑤, 𝑆𝑤): 𝑤 ∈ 𝑊}, but since 𝑅 = 𝑔(𝑆), it follows that 𝑓(𝑔(𝑆)) = 𝑓(𝑅) = {(𝑤, 𝑆𝑤): 𝑤 ∈

𝑊} = 𝑆, by definition of 𝑓.                 □ 

 

Theorem 2.3.1: To any Kripke model ℳ there corresponds a unique sphere model ℳ′ such 

that for all 𝑤 ∈ 𝑊 and 𝐴 ∈ 𝐹𝑜𝑟:  ℳ, 𝑤 ⊩ 𝐴  iff  ℳ′, 𝑤 ⊩ 𝐴. Extend ℎ in the following way: 

(iii) 𝑓(𝑉) = 𝑔(𝑉) = 𝑉 

 



51 
 

 

Now ℎ has been extended to a bijection between Kripke models and sphere models. The 

corresponding models have the same domain and same value assignments to propositional 

variables. Only 𝑅 and 𝑆 differ. Note that the only difference between Kripke models and 

sphere models are the truth conditions for □: 

 

For Kripke models: 𝑤 ⊩ □𝐴  iff    ∀𝑢 ∈ 𝑊, such that 𝑤𝑅𝑢, 𝑢 ⊩ 𝐴. 

For sphere models: 𝑤 ⊩ □𝐴    iff    ∀𝑢 ∈ 𝑆𝑤: 𝑢 ⊩ 𝐴. 

 

Now assume ℳ, 𝑤 ⊩ □𝐴 for some Kripke model ℳ = (𝑊, 𝑅, 𝑉). Then by definition ∀𝑢 ∈ 𝑊, 

such that 𝑤𝑅𝑢, 𝑢 ⊩ 𝐴. Now, consider ℳ′ = 𝑓(ℳ). Now, it will be shown that 𝑓(ℳ), 𝑤 ⊩ □𝐴, 

on the assumption that ∀𝑢 ∈ 𝑊, such that 𝑤𝑅𝑢, 𝑢 ⊩ 𝐴. By definition, 𝑓(𝑅|𝑤) = {𝑢: 𝑤𝑅𝑢}, 

which consists of all worlds 𝑢 ∈ 𝑊, such that 𝑤𝑅𝑢. But if for all those worlds 𝑢 ⊩ 𝐴, by 

hypothesis, then 𝑢 ⊩ 𝐴 for all 𝑢 ∈ 𝑓(𝑅|𝑤). Hence 𝑓(ℳ), 𝑤 ⊩ □𝐴, as required.      □ 

 

Now assume ℳ′, 𝑤 ⊩ □𝐴 on the sphere model ℳ′ = 𝑓(ℳ) = (𝑓(𝑊), 𝑓(𝑅), 𝑓(𝑉)). We need to 

show that 𝑔(𝑓(ℳ)), 𝑤 ⊩ □𝐴. Note that, since 𝑓(ℳ) = ℳ′, then 𝑔(𝑓(ℳ)) = 𝑔(ℳ′). So, now 

we start by assuming ℳ′, 𝑤 ⊩ □𝐴 and need to show that 𝑔(ℳ′), 𝑤 ⊩ □𝐴. Assuming ℳ′, 𝑤 ⊩

□𝐴, if follows that 𝑢 ⊩ 𝐴 for all 𝑢 ∈ 𝑆𝑤. Now, 𝑔(𝑆𝑤) = 𝑅|𝑤 = {(𝑤, 𝑢): 𝑢 ∈ 𝑆𝑤}, so given the 

hypothesis, it follows that for all (𝑤, 𝑢) ∈ 𝑅, if (𝑤, 𝑢) ∈ 𝑔(𝑆𝑤) then 𝑢 ⊩ 𝐴. That is, if 𝑤𝑅𝑢 then 

𝑢 ⊩ 𝐴. Therefore, 𝑔(ℳ′), 𝑤 ⊩ □𝐴, as required. This completes the proof.       □ 

 

2.2.1.1   Various kinds of necessity 

Lewis’ argument hinges on the demonstration that the counterfactual can’t be any single strict 

conditional. But in order to define strict conditionals of varying strictness, necessity operators 

corresponding to varying restrictions of the universal quantifier over possible worlds need to 

be defined. Variable necessity operators can be modelled in terms of correspondingly varying 

spheres of accessibility as the intended restrictions of the universal quantifier over worlds. 

There are infinitely many kinds of restrictions that one may impose on the range of 

accessibility for any world 𝑤, and to each such restriction there corresponds a necessity 

operator. I’ll gradually make the notion of such restrictions (and variable necessity operators) 

more precise. Let’s start with an intuitive description.  

 

Example 

Here are a few examples of such restrictions, relevant to the current discussion: 

  -   Logical necessity: 𝑆𝑤 is restricted to logically possible worlds. 
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  - Physical necessity: 𝑆𝑤 is restricted to worlds where the laws of nature prevailing at 𝑤 hold.  

  -  Necessity in respect of facts of so-and-so-kind: for example, 𝑆𝑤 is restricted to worlds 

where kangaroos have no tails. 

 

To each restriction there corresponds a necessity operator: □𝐿 corresponding to logical 

necessity, □𝑃 corresponding to physical necessity, □𝐾 corresponding to necessity in respect of 

facts of so-and-so-kind (e.g. kangaroos not having tails).  

 

Definition 2.8: Denote the index set of all restrictions on the range of accessibility with ℐ.  

Intuitively, each 𝑖 ∈ ℐ corresponds to some kind of necessity, e.g. logical, physical, etc. 

 

This gives rise to a class of operators {□𝑖: 𝑖 ∈ ℐ}. Intuitively, each □𝑖 is a necessity operator 

corresponding to some kind of necessity 𝑖 ∈ ℐ. Each such operator corresponds to a restriction 

of the universal quantifier over possible worlds to i-possible worlds. The next few definitions 

make this intuitive description more precise.  

To accommodate the new class of connectives, we need to expand the formal language 

described in §2.1.1 by the addition of the set of operators {□𝑖: 𝑖 ∈ ℐ}, and the class of 

abbreviations for the corresponding strict conditionals {>𝑖: 𝑖 ∈ ℐ}, thereby extending the set 

𝐹𝑜𝑟 of well-formed formulae in the following way:  

 

R3: If 𝐴 ∈ 𝐹𝑜𝑟 and 𝑖 ∈ ℐ, then □𝑖𝐴 ∈ 𝐹𝑜𝑟. 

R4: If {𝐴, 𝐵} ⊆ 𝐹𝑜𝑟 and 𝑖 ∈ ℐ, then 𝐴 >𝑖 𝐵 ∈ 𝐹𝑜𝑟. 

 

In order to accommodate the expansion of our language, the original sphere frames need to be 

modified accordingly, by admitting sphere functions that correspond to each kind of variable 

necessity operator. 

 

Definition 2.9: A variable sphere frame is a pair (𝑊, {𝑆𝑖: 𝑖 ∈ ℐ}) where 𝑊 is a nonempty set 

of objects, and ℐ is a nonempty set of indices, and 𝑆𝑖: 𝑊 ⟶ ℘(𝑊) for each 𝑖 ∈ ℐ. We can 

denote {𝑆𝑖: 𝑖 ∈ ℐ} with 𝒮, for brevity when its content is unambiguous.76 

 

On the intended interpretation, the elements of 𝑊 are possible worlds, ℐ is as given in 

Definition 2.8, and for each 𝑤 ∈ 𝑊, the set 𝑆𝑤
𝑖  is called the i-sphere of accessibility around 𝑤, 

                                                
76 Thus variable sphere frames are sets paired with families of their subsets. 
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which is  regarded as the set of worlds accessible from 𝑤 corresponding to the restriction of 

the universal quantifier to i-possible worlds, relative to 𝑤.  

 

Definition 2.10: A variable sphere model is a triple (𝑊, 𝒮, 𝑉), where (𝑊, 𝒮) is a variable 

sphere frame, and 𝑉 is as for Kripke models.  

Truth in a model is defined in terms the satisfiability relation ⊩  ⊆ 𝑊 × 𝐹𝑜𝑟. We read 𝑤 ⊩ 𝐴 

as ‘𝐴 is true at 𝑤’. Given a variable sphere model (𝑊, 𝒮, 𝑉) and any 𝑤 ∈ 𝑊, define ⊩ as:  

 

   (1) – (5) are as for Kripke models in Definition 1.2, (the non-modal part of the language) 

   (6) 𝑤 ⊩ □𝑖𝐴    iff    ∀𝑢 ∈ 𝑆𝑤
𝑖 : 𝑢 ⊩ 𝐴. 

 

2.2.1.2   Strict conditionals of varying strictness 

Now we’re ready to define a whole class of strict conditionals of varying strictness. Given a 

variable sphere model (𝑊, 𝒮, 𝑉) and any 𝑤 ∈ 𝑊, define ⊩ as follows: 

   (7) 𝑤 ⊩ □𝑖(𝐴 ⊃ 𝐵)    iff    ∀𝑢 ∈ 𝑆𝑤
𝑖 : 𝑢 ⊩ 𝐴 ⊃ 𝐵. 

 

Notation: Denote □𝑖(𝐴 ⊃ 𝐵) with 𝐴 >𝑖 𝐵 for each 𝐴, 𝐵 ∈ 𝐹𝑜𝑟 and 𝑖 ∈ ℐ. 

 

Definition 2.11: Hierarchy of strictness. For all 𝑖, 𝑗 ∈ ℐ and all 𝐴, 𝐵 ∈ 𝐹𝑜𝑟:  

The conditional 𝐴 >𝑖 𝐵 is stricter at world 𝑤 than 𝐴 >𝑗 𝐵 iff  𝑆𝑤
𝑗

⊊ 𝑆𝑤
𝑖 . The conditional 

𝐴 >𝑖 𝐵 is stricter than 𝐴 >𝑗 𝐵 iff for all 𝑤 ∈ 𝑊, 𝐴 >𝑖 𝐵 is stricter at world 𝑤 than 𝐴 >𝑗 𝐵.  

 

2.2.1.3   The intended model 

The discussion throughout next section, mainly in the formulation of Lewis’ argument that no 

strict conditional is adequate to model the counterfactual will be done with reference to the 

intended variable sphere model ℳ0 = (𝑊ℳ0 , 𝒮ℳ0 , 𝑉ℳ0), where 𝑊ℳ0 is the set of all possible 

worlds. Among its accessibility assignments, on top of those corresponding to logical 

necessity 𝑆𝐿, 𝒮ℳ0 also contains those corresponding to other kinds of necessity, like physical 

necessity 𝑆𝑃, and a whole plethora of necessities in respect of facts of so-and-so-kind, e.g. 

kangaroos not having tails 𝑆𝐾. On the intended model, 𝑆𝑤
𝐿 = 𝑊ℳ0 for all 𝑤 ∈ 𝑊ℳ0, whereas 

𝑆𝑤
𝑃  is the set of possible worlds where the laws of nature (physical laws) prevailing at 𝑤 hold. 

Finally, 𝑆𝑤
𝐾 is the set of possible worlds where the sentence 𝐾: ‘kangaroos have no tails’ is 

true i.e. 𝑆𝑤
𝐾 = [𝐾]ℳ0. As far as necessity in respect of facts of so-and-so-kind, this generalizes 

to 𝑆𝑤
𝐴 = [𝐴]ℳ0 for any facts expressed by 𝐴 ∈ 𝐹𝑜𝑟. 
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Truth conditions for various strict conditionals on the intended model are as on any variable 

sphere models. Now those various kinds of necessity that only received an intuitive 

description in the example at the beginning of §2.2.1.1, can now be defined precisely: 

 

   (1) – (5) are as for Kripke models in Definition 1.2, (the non-modal part of the language) 

   (6) ℳ0, 𝑤 ⊩ □𝑖𝐴    iff    ∀𝑢 ∈ 𝑆𝑤
𝑖 :  ℳ0, 𝑢 ⊩ 𝐴. 

   (7) ℳ0, 𝑤 ⊩ □𝑖(𝐴 ⊃ 𝐵)    iff    ∀𝑢 ∈ 𝑆𝑤
𝑖 :  ℳ0, 𝑢 ⊩ 𝐴 ⊃ 𝐵. 

 

Some special kinds of various necessity operators: 

 

    ℳ0, 𝑤 ⊩ □𝐿𝐴   iff   ∀𝑢 ∈ 𝑆𝑤
𝐿 :  ℳ0, 𝑢 ⊩ 𝐴.  

    ℳ0, 𝑤 ⊩ □𝑃𝐴   iff   ∀𝑢 ∈ 𝑆𝑤
𝑃:  ℳ0, 𝑢 ⊩ 𝐴. 

    ℳ0, 𝑤 ⊩ □𝐾𝐴   iff   ∀𝑢 ∈ 𝑆𝑤
𝐾:  ℳ0, 𝑢 ⊩ 𝐴.  

 

To tie the above with the notion of varying strictness, note that, 𝐴 >𝑃 𝐵 is stricter at the 

actual world than 𝐴 >𝐾 𝐵 on the intended model, and 𝐴 >𝐿 𝐵 is stricter than 𝐴 >𝐾 𝐵 on the 

intended model. 

 

2.2.1.4   Strict conditionals and comparative similarity of worlds  

The counterfactual proposed by Lewis, is closely related to ceteris paribus conditionality, and 

as such is not fundamentally different from the logics C and C+ discussed earlier. The 

difference lies in how the ceteris paribus clause is explained. It is evident from the passage 

below, that the kind of strict conditional Lewis has in mind is effectively based on 

accessibility that satisfies certain ceteris paribus constrains, which he then suggests are best 

expressed in terms of comparative similarity of worlds.  

 

Counterfactuals are related to a kind of strict conditional based on comparative 

similarity of possible worlds. A counterfactual 𝜑 > 𝜓 is true at a world w if and 

only if 𝜓 holds at certain 𝜑-worlds; but certainly not all 𝜑-worlds matter. ‘If 

kangaroos had no tails, they would topple over’ is true (or false, as the case may 

be) at our world, quite without regard to those possible worlds where kangaroos 

walk around on crutches, and stay upright that way. Those worlds are too far 

away from ours. What is meant by the counterfactual is that, things being pretty 

much as they are –the scarcity of crutches for kangaroos being pretty much as it 

actually is, and so on – if kangaroos had no tails they would topple over. Lewis 

(1973, pp.8-9) 
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Lewis also observes that in our consideration regarding what kind of restricted necessity 

should underlie the strict conditional that best captures counterfactual reasoning, aside from 

ruling out worlds that are grossly dissimilar from the actual world (e.g. where tailless 

kangaroos use crutches to stay upright), we also must avoid deeming as accessible worlds 

that are too similar (or at least be careful when doing so). For if we include into the 

accessibility sphere worlds where kangaroos have no tails, but otherwise everything else is 

exactly the same as the actual world, then kangaroos despite being tailless would 

nevertheless leave tail tracks in the sand, and their genetic make-up, being as it actually is, 

would nevertheless somehow still code for different phenotypical traits (absence of tail). 

Lewis concludes that counterfactuals are apparently based on a strict conditional 

corresponding to an accessibility assignment determined by an overall similarity of worlds, 

where respects of difference and respects of similarity are “somehow” balanced off against 

each other.  

 

In the light of this, let’s consider again our earlier example of tailless-kangaroos necessity. It 

is clear from the above concerns regarding the intended notion of comparative similarity of 

worlds that the strict conditional □𝐾(𝐾 ⊃ 𝑇) would fall short of being the adequate model for 

the evaluation of the counterfactual ‘If Kangaroos had no tails, they would Topple over’. 

This inadequacy stems from the fact that the restriction corresponding to □𝐾, namely [𝐾]ℳ0, 

includes all possible 𝐾-worlds, and as such it may include worlds that have just been argued 

to be “too far” to be regarded as relevant to the evaluation of the counterfactual in question.  

 

What we require, is a restriction that meets the similarity criteria that Lewis has in mind. That 

is, we are interested in 𝑠 ∈ ℐ corresponding to an accessibility restriction 𝑆𝑤
𝑠 ∈ 𝒮ℳ0 

determined by an overall similarity of worlds such that 𝑆𝑤
𝑠 ∩ [𝐾]ℳ0 doesn’t contain worlds 

where kangaroos manage to stay upright with the aid of crutches, or worlds where kangaroos 

leave a tail track behind in the sand as they actually do (despite their taillessness). That is, all 

𝐾-worlds in 𝑆𝑤
𝑠  are sufficiently similar to 𝑤 to count as relevant in the evaluation of the 

counterfactual with antecedent 𝐾 at 𝑤. Then the strict conditional □𝑠(𝐾 ⊃ 𝑇) would meet the 

accessibility assignment requirement as determined by an overall similarity of worlds in the 

manner intended by Lewis. It’s apparent that Lewis intends there to be a fitting restriction 𝑠 ∈

ℐ of this kind in general, for any antecedent 𝐴 ∈ 𝐹𝑜𝑟 of any strict conditional based on 

comparative similarity of worlds. 
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This would yield the following account of the counterfactual when considered as a single 

strict conditional based on the comparative similarity of worlds, i.e. the intended model truth 

conditions for the counterfactual in terms of a single strict conditional based on the 

comparative similarity of worlds are as follows: 

 

Definition 2.12: The counterfactual ‘If 𝐴, then 𝐵’ is true at a world 𝑤 iff  ℳ0, 𝑤 ⊩ 𝐴 >𝑠 𝐵. 

 

Recalling that ℳ0, 𝑤 ⊩ 𝐴 >𝑠 𝐵  iff  ∀𝑢 ∈ 𝑆𝑤
𝑠 :  ℳ0, 𝑢 ⊩ 𝐴 ⊃ 𝐵 for all 𝐴, 𝐵 ∈ 𝐹𝑜𝑟, 𝑤 ∈ 𝑊, and 

where all worlds in 𝑆𝑤
𝑠  are regarded as sufficiently similar to 𝑤 to count as relevant in the 

evaluation of the counterfactual with antecedent 𝐴 at 𝑤.  

 

To be precise, the intended accessibility restriction 𝑆𝑤
𝑠  corresponding to 𝑠 ∈ ℐ isn’t constant, 

but rather a function of the antecedent. Lewis’ argument that the counterfactual cannot be any 

strict conditional amounts to showing that this can’t be done on the intended model, where 

we are only equipped with a class of strict conditionals of fixed strictness. The accessibility 

restriction index denoted with 𝑠, used throughout the discussion in the next section is just to 

remind us that we’re not talking about arbitrary elements of ℐ, but ones that correspond to 

accessibility restrictions determined by an overall similarity of worlds. I devote the next 

section to Lewis’ argument, and given that it is expressed with direct reference to the 

intended model ℳ0, I shall omit any model-denoting superscripts. 

 

2.2.1.5   The argument 

Lewis gives the following argument in support of the claim that no single strict conditional 

𝐴 >𝑠 𝐵, fashioned in the manner just discussed, is adequate to model the counterfactual: 

counterfactuals, modelled this way – by any single strict conditional – fare well when 

considered in isolation from other counterfactuals, but problems arise if several 

counterfactuals are considered together.77 Naturally, this is unacceptable if an adequate 

analysis is to be given for a language that contains conjunctions. The argument makes use of 

the fact that the antecedent-strengthening rule, which is valid for strict conditionals – see 

Proposition 2.1 – and a fortiori for strict conditionals corresponding to an accessibility 

assignment determined by an overall similarity of worlds. Suppose we’re using a 

counterfactual modelled by any single strict conditional ‘>𝑠’ of some fixed strictness (as 

                                                
77 Paraphrasing Lewis (1973, pp.910). 
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defined above, in Definition 2.12). Lewis invites us to consider the following list of 

counterfactuals, with their respective translations into the object language given below:78  

 

If I walked on the lawn, no harm would come of it. 

  𝑝1 >𝑠 𝑞 

 

If I walked on the lawn and everyone did that, the lawn would be ruined.  

 (𝑝1 ∧  𝑝2) >𝑠 ~𝑞   

 

If I walked on the lawn and everyone did that, but everyone was careful,  

no harm would come of it.  

(𝑝1 ∧ 𝑝2 ∧ 𝑝3) >𝑠 𝑞   

 

If … 

 

This sequence of counterfactuals listed below on the left, is accompanied by a corresponding 

list of their respective negated opposites on the right, to aid the argument.79  For the kind of 

cases that are being considered, both the counterfactual and its negated opposite are held true.  

 

 (1) 𝑝1 >𝑠 𝑞    and    ~(𝑝1 >𝑠 ~𝑝) 

 (2) (𝑝1 ∧  𝑝2) >𝑠 ~𝜓    and   ~((𝑝1 ∧ 𝑝2) >𝑠 𝑞) 

 (3) (𝑝1 ∧ 𝑝2 ∧ 𝑝3) >𝑠 𝜓    and   ~((𝑝1 ∧ 𝑝2 ∧ 𝑝3) >𝑠 ~𝑞) 

   :  : 

 

We can imagine prolonging such sequences to arbitrary length. All the above counterfactuals 

are intuitively true. However, it’s evident that they can’t all be true on any single strict 

conditional of fixed strictness. That is, it should be observed that each counterfactual (on the 

left) at each stage n, contradicts the opposite of the counterfactual at stage n+1. That is, the 

expression in the left column at stage n contradicts the expression in the right column at stage 

n+1.  

Consider, the first two stages. No matter what degree of similarity of worlds is captured by 

𝑆𝑤
𝑠 , if 𝑤 ⊩ 𝑝1 >𝑠 𝑞, then 𝑞 is true in all 𝑝1-worlds in 𝑆𝑤

𝑠 . That is,  𝑆𝑤
𝑠 ∩ [𝑝1] ⊆ [𝑞], so in 

particular 𝑞 is true in all (𝑝1 ∧  𝑝2)-worlds in 𝑆𝑤
𝑠 , i.e.  𝑆𝑤

𝑠 ∩ [𝑝1 ∧  𝑝2] ⊆ [𝑞], since 𝑆𝑤
𝑠 ∩ [𝑝1] ∩

[𝑝2] ⊆ 𝑆𝑤
𝑠 ∩ [𝑝1] and 𝑆𝑤

𝑠 ∩ [𝑝1 ∧  𝑝2] = 𝑆𝑤
𝑠 ∩ [𝑝1] ∩ [𝑝2]. So, if the counterfactual is any strict 

                                                
78 Lewis (1973, p.10). The negated opposites (listed on the right of each counterfactual) are included since the 
cases Lewis has in mind are such that they’re also hold. 
79 Lewis refers to 𝐴 > ~𝐵 as the opposite of 𝐴 > 𝐵, and vice versa, 𝐴 > 𝐵 as the opposite of 𝐴 > ~𝐵. 
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conditional >𝑠, then 𝑝1 >𝑠 𝑞 implies (𝑝1 ∧  𝑝2) >𝑠 𝑞 and contradicts ~((𝑝1 ∧ 𝑝2) >𝑠 𝑞). This 

argument holds for any 𝑠 ∈ ℐ, as a corollary of Proposition 2.1. 

 

Therefore – Lewis concludes – the counterfactual is not any strict conditional, and he uses 

this argument as motivation to suggest a variably strict conditional as the better alternative 

for the account of the counterfactual. In the next section I give a detailed account of that 

proposal. 

 

2.2.2 Counterfactuals as variably strict conditionals 

In the last section we gave an overview of Lewis’ reasons for claiming that strict conditionals 

best corresponding to counterfactuals are those whose accessibility assignment (conceived of 

as a sphere of accessibility) is determined by an overall similarity of worlds, and we also saw 

Lewis’ argument that no single strict conditional suffices to give an adequate account of the 

counterfactual. This means that a fortiori no single strict conditional whose accessibility 

assignment is determined by an overall similarity of worlds suffices to give an adequate 

account of the counterfactual. In this section I present Lewis’ solution to this in the form of a 

variably strict conditional account of the counterfactual, and then I’ll move onto giving a 

comprehensive overview (and discussion) of various conceptions of comparative similarity in 

terms of the model theory offered by Lewis for that account. 

 

The systems of similarity spheres model theory developed by Lewis (1973) is a proposal to 

analyze he counterfactual as a variably strict conditional, rather than any single strict 

conditional of fixed strictness. On that novel proposal, instead of a single sphere of 

accessibility, being a subset of 𝑊, for each world and 𝑖 ∈ ℐ  – as in the case of sphere frames 

(𝑊, 𝑆) or variable sphere frames (𝑊, 𝒮) – each world is assigned a set of accessibility spheres 

$𝑤 ⊆ ℘(𝑊) that satisfy certain restrictions. Each $𝑤 is a variable accessibility assignment. On 

this picture, the criteria deeming worlds as relevant to the evaluation of a counterfactual at 

some world w is expressed in terms of comparative overall similarity of worlds, whereby any 

given sphere of accessibility 𝑆 ∈ $𝑤, determined by such considerations, is thought to contain 

worlds that are similar to w to some fixed degree. This way, in conjunction with other spheres 

of accessibility 𝑆′ ∈ $𝑤 a basis for comparative similarity of worlds to w is established. The 

intuition here is that worlds in some sphere 𝑆 ∈ $𝑤, around some world w, are more similar to 

w than those worlds that are outside 𝑆. Below is an excerpt from Lewis that captures the heart 
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of the idea of systems of similarity spheres as representations of comparative similarity of 

worlds:  

 

The system of spheres used in interpreting counterfactuals is meant to carry 

information about the comparative overall similarity of worlds. Any particular 

sphere around a world w is to contain just the worlds that resemble w to at least a 

certain degree. This degree is different for different spheres around w. The 

smaller the sphere the more similar to w must a world be to fall within it. 

[W]henever one world lies within some sphere around w and another world lies 

outside that sphere, the first world is more closely similar to w than the second. 

(Lewis 1973, p.14) 

 

Before giving the formal definition, we can illustrate the core idea of such systems of spheres 

with the aid of the notion of a hierarchy of strictness, introduced earlier in Definition 2.11. 

This illustration will employ elements of Lewis’ explanation of the ceteris paribus clause in 

terms of comparative similarity of worlds, and key observations he made in the argument, 

which has been discussed at the end of the previous section. Consider the two counterfactuals 

(1) and (2) given below, which I’ll presently use to set up a scenario highlighting the link 

between Lewis’ view that counterfactuals are strict conditionals corresponding to an 

accessibility assignment determined by an overall similarity of worlds, and the limitations of 

strict conditionals to meet this task (as discussed at the end of the previous section). In this 

example I’ll only rely on the first two stages employed in Lewis’ argument, i.e. with the 

stipulation that all (i), (ii), and (iii) are true (which agrees with intuition). 

 

(1) If I walked on the lawn, no harm would come of it. 

 (i)  𝑝1 >𝑠 𝑞 

 

(2) If I walked on the lawn and everyone did that, the lawn would be ruined.  

 (ii) (𝑝1 ∧  𝑝2) >𝑠 ~𝑞           and            (iii)     ~((𝑝1 ∧ 𝑝2) >𝑠 𝑞) 

 

If the above counterfactuals were analysed as any strict conditional, then the stipulated 

scenario would be impossible, since if 𝑝1 >𝑠 𝑞 is true, then so is (𝑝1 ∧ 𝑝2) >𝑠 𝑞, by 

Proposition 2.1, which contradicts ~((𝑝1 ∧ 𝑝2) >𝑠 𝑞). In other words, there is no variable 

sphere model (𝑊, 𝒮, 𝑉) such that all (i)-(iii) are true at some world 𝑤 ∈ 𝑊. However, we 

could assume (1) as true, based on the strict conditional >𝑠 that corresponds to an 

accessibility assignment 𝑆𝑤
𝑠  determined by an overall similarity such that worlds where 
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‘everyone else walks on the lawn’, denoted [𝑝2], would be disregarded as irrelevant to its 

evaluation at world 𝑤. That is, the choice of 𝑠 ∈ ℐ would be such that 𝑆𝑤
𝑠 ∩ [𝑝2] = ∅ for the 

same reasons as worlds where kangaroos walk upright with the aid of crutches would be 

disregarded as irrelevant to analyzing the counterfactual ‘If kangaroos had no tails, they 

would topple over’.  

 

As for (2), we could analyse it by a stricter conditional than >𝑠 (recall Definition 2.11), 

denoted >𝑠′, that corresponds to an accessibility assignment 𝑆𝑤
𝑠′ determined by overall 

similarity of worlds such that 𝑆𝑤
𝑠 ⊆ 𝑆𝑤

𝑠′ and 𝑆𝑤
𝑠′ ∩ [𝑝2] ≠ ∅, and all the 𝑝2-worlds in 𝑆𝑤

𝑠′ are ~𝑞-

worlds. On a system of spheres, we would analyse the counterfactuals (1) and (2) in the above 

scenario by a variably strict conditional >, fashioned in a manner so that the evaluation of the 

counterfactual (1) is done in terms of  >𝑠 at some world 𝑤 ∈ 𝑊, and the evaluation of the 

counterfactual (2) at 𝑤 is done in terms of  >𝑠′. In other words, a system of spheres model 

(𝑊, $, 𝑉) for the variably strict conditional can be fashioned such that the variable 

accessibility assignment $𝑤 = {𝑆𝑤
𝑠 , 𝑆𝑤

𝑠′} satisfies the intended comparative similarity 

relationship 𝑆𝑤
𝑠 ⊆ 𝑆𝑤

𝑠′, thereby allowing all 𝑝1 > 𝑞, (𝑝1 ∧  𝑝2) > ~𝑞 and ~((𝑝1 ∧ 𝑝2) > 𝑞) to be 

true at 𝑤 ∈ 𝑊. The intuition that worlds in 𝑆𝑤
𝑠  are more similar to 𝑤 than those in 𝑆𝑤

𝑠′\𝑆𝑤
𝑠  

appears to be preserved, because on the supposition that actually nobody walks on the lawn, 

it seems strongly intuitive that worlds where only I walk on the lawn are more similar to the 

actual world than those worlds where the lawn is stampeded by everyone in the neighborhood 

(or by everyone on Earth).  

 

Given that much of which worlds are deemed relevant to the analysis is determined by the 

antecedent, there is no need to adjoin any indices to the variably strict conditional – there’s 

only one. I have already touched on this in the previous section, when discussing the relevant 

antecedent worlds (sufficiently similar worlds) to the evaluation of the counterfactual and 

noting that Lewis intends there to be a fitting restriction of that kind for any antecedent of any 

strict conditional based on comparative similarity of worlds. I will also say more about this in 

the next section, once the formal model theory has been defined, but what has been illustrated 

by the above example should suffice for an intuitive outline of the rationale underlying the 

systems of spheres models for the variably strict conditional. Such a framework turns out to 
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be robust enough to express, not only Stalnaker’s theory80 of the counterfactual, but also 

other notable reformulations, and analogies in temporal and deontic logic, of which Lewis 

(1973) gives a comprehensive analysis. I won’t discuss those general correspondences here – 

it will suffice to say that most theories of the counterfactual (as variably strict conditional), 

relevant to the current chapter, can be expressed in terms of Lewis’ ‘similarity sphere’ 

semantics, which I define and discuss in detail in the next section.  

 

2.2.3 Similarity Spheres semantics for counterfactuals81 

In the previous couple of sections, we have shown how Lewis argues in favour of the view 

that counterfactuals are based on a strict conditional corresponding to an accessibility 

assignment determined by an overall similarity of worlds, and that no single strict conditional 

fashioned this way can adequately serve as a model for the counterfactual. I have also given 

an informal discussion in the previous section how Lewis’ proposal to model the 

counterfactual as a variably strict conditional can be viewed as a direct modification of the 

intended variable sphere model. In this section I present the formal definition of the most 

basic model theory for the variably strict conditional, i.e. systems of spheres models, and give 

a critical overview of various conceptions of comparative similarity of worlds and the 

corresponding restrictions on the systems of spheres assignments, with attention to inferences 

that such restrictions validate. This overview will include a critical comparison of Lewis’ and 

Stalnaker’s theories, as well as a case for the system that I believe to be the most suitable.  

 

Definition 2.13: A system of spheres $ is a function82 

$:  𝑊 ⟶ ℘(℘(𝑊)) 

that assigns to each 𝑤 ∈ 𝑊 a set of subsets of 𝑊, and satisfies the following condition: 

   (S1)   $𝑤 is nested: for all 𝑆, 𝑇 ∈ $𝑤 either 𝑆 ⊆ 𝑇 or 𝑇 ⊆ 𝑆. 

 

 

                                                
80 Stalnaker (1968), Lewis (1973, §3.4). I’ll say more about Stalnaker’s account of the counterfactual in sections 
§2.2.7 and §2.2.8, when contrasting it with Lewis’ account. 
81 To place Lewis’ semantics in a broader semantic perspective, see (Pacuit 2017, §1.4.3) for an exposition of the 
fact that his systems of spheres are an instance of neighbourhood semantics. That is, sphere frames (𝑊, $) are 
just neighbourhood frames (𝑊, 𝑁), where 𝑁(𝑤) is interpreted as the neighbourhood around 𝑤, with the kinds 
of constraints placed on $𝑤 that Lewis believed best represented the intended notion of overall similarity of 
worlds, applicable to his analysis of the counterfactual. 
82 Based on Lewis (1973, pp.13-14). 
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Theorem 2.4: For all 𝑤 ∈ 𝑊, each $𝑤 such that ∅ ∈ $𝑤 has the following properties:83 

(S2)   $𝑤 is closed under finite unions: for every finite 𝒮 ⊆ $𝑤, ⋃𝒮 ∈ $𝑤.  

(S3)   $𝑤 is closed under finite intersections: for every finite 𝒮 ⊆ $𝑤 such that 𝒮 ≠ ∅, ⋂𝒮 ∈ $𝑤. 

 

Both follow directly from S1. 

 

Proof : Proof by induction on the size of 𝒮. First, consider the trivial cases when 𝒮 = ∅, and 

the case when 𝒮 is a singleton. When 𝒮 = ∅, then ⋃𝒮 = ∅, so ⋃𝒮 ∈ $𝑤, by stipulation. When 

𝒮 = {𝑆}, then ⋃𝒮 = ⋂𝒮 = 𝑆 ∈ $𝑤. Now for the base case when 𝒮 = {𝑆, 𝑇}. By S1, either 𝑆 ⊆ 𝑇, 

in which case ⋃𝒮 = 𝑇 ∈ $𝑤 and ⋂𝒮 = 𝑆 ∈ $𝑤, or 𝑇 ⊆ 𝑆 in which case ⋃𝒮 = 𝑆 ∈ $𝑤 and ⋂𝒮 =

𝑇 ∈ $𝑤.  

Now, suppose that both ⋃𝒮 ∈ $𝑤 and ⋂𝒮 ∈ $𝑤 for |𝒮| = 𝑘, for some 𝑘 ∈ ℕ. Next, suppose that 

|𝒮| = 𝑘 + 1, and take any 𝒯 ⊆ 𝒮 such that |𝒯| = 𝑘. Then by the induction hypothesis, we have 

both ⋃𝒯 ∈ $𝑤 and ⋂𝒯 ∈ $𝑤. Next consider 𝒮\𝒯 = {𝑆}. Then 𝑆 ∈ $𝑤. By S1, either 𝑆 ⊆ ⋃𝒯 in 

which case ⋃𝒮 = ⋃𝒯 ∈ $𝑤, or ⋃𝒯 ⊆ 𝑆 in which case ⋃𝒮 = 𝑆 ∈ $𝑤. Similarly, either 𝑆 ⊆ ⋂𝒯 

in which case ⋂𝒮 = 𝑆 ∈ $𝑤, or ⋂𝒯 ⊆ 𝑆 in which case ⋂𝒮 = ⋂𝒯 ∈ $𝑤, as required.      □ 

 

Note that from the definition of a system of spheres we have ⋃$𝑤 ⊆ 𝑊. All worlds outside 

⋃$𝑤 are to be regarded “as being all equally similar to 𝑤, and less similar to 𝑤 than any 

world that the spheres reach” (Lewis, 1973, p.16). 

 

Definition 2.14: The ordered pair (𝑊, $) is a frame based on a system of spheres, where W is 

a set, and $ is as given in Definition 2.13. For brevity, call such ordered pairs S-frames. On 

the intended interpretation, relevant to the semantics under consideration, the elements 0f 𝑊 

are possible worlds. 

 

Having established the basic frame theory, we can now define the formal truth conditions for 

the extended language and give the basic model theory. 

 

 

                                                
83 Lewis (1973, p.15) argues that although somewhat unintuitive, it is technically convenient to leave the empty 
set in as a sphere around each centered world. However, it can be easily verified that the presence of the empty 
sphere has no effect at all on the difference to the truth conditions. I haven’t stipulated S2 and S3, as Lewis did, 
but instead I have shown them to be a consequence of S1 (for arbitrary unions and nonempty intersections we 
need additional conditions, which I address in §2.2.7). Lewis stipulates S2 and S3 alongside S1, so the closure 
under unions implies ∅ ∈ $𝑤 for each 𝑤. Not stipulating S2, I had to stipulate ∅ ∈ $𝑤. 



63 
 

 

Definition 2.15: A system of spheres model (or S-model) is the triple (𝑊, $, [. ]) such that:84  

(1)   (𝑊, $) is an S-frame 

(2)   [. ]: 𝐹𝑜𝑟 ⟶ ℘(𝑊) assigns to each 𝐴 ∈ 𝐹𝑜𝑟 a subset of 𝑊 (worlds where 𝐴 is true)85. . . 

. . ..Below  is the recursive definition of [. ].  

(3)   [~𝐴] = 𝑊\[𝐴] 

  [𝐴 ∧ 𝐵] = [𝐴] ∩ [𝐵] 

  [𝐴 ∨ 𝐵] = [𝐴] ∪ [𝐵] 

  [𝐴 ⊃ 𝐵] = [~𝐴] ∪ [𝐵] 

(4)   𝑤 ∈ [□𝐴]   iff   [𝐴] = 𝑊 

  𝑤 ∈ [◊𝐴]   iff   [𝐴] ∩ 𝑊 ≠ ∅ 

  𝑤 ∈ [𝐴 > 𝐵]   iff   [𝐴] ∩ ⋃$𝑤 = ∅  or  ∃𝑆 ∈ $𝑤(∅ ≠ (𝑆 ∩ [𝐴]) ⊆ [𝐵]) 

 

Definition 2.16: S-validity  

Let ⊨𝐒 ⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟, and define Σ ⊨𝐒 𝐴 iff for all models (𝑊, $, [. ]), and all 𝑤 ∈ 𝑊, if 𝑤 ⊩

𝐵 for all 𝐵 ∈ Σ, then 𝑤 ⊩ 𝐴. That is, valid inference is defined as truth preservation at all 

worlds in all systems of spheres models. A formula 𝐴 ∈ 𝐹𝑜𝑟 is said to be valid iff ∅ ⊨𝐒 𝐴. 

Call this logic S. 

 

Definition 2.17: Entertainability 

A formula 𝐴 ∈ 𝐹𝑜𝑟 is said to be entertainable at a world 𝑤 ∈ 𝑊 iff  [𝐴] ∩ ⋃$𝑤 ≠ ∅. 

 

2.2.4 Centering: strict vs. weak 

Condition S1 leaves open a number of conceptions of comparative similarity of worlds. In 

particular, with regard to the location of 𝑤 in $𝑤. This is important, since each $𝑤 for each 

world 𝑤 has been set up for the purpose of evaluating counterfactuals at 𝑤. It should be noted 

that some additional constraint regarding the location of 𝑤 in $𝑤 is required to validate 

Modus Ponens for >, since S alone doesn’t. That is: 

 

Proposition 2.5:   𝑝, 𝑝 > 𝑞 ⊭𝐒 𝑞 

Proof : Consider the countermodel: 𝑊 = {𝑢, 𝑤}, $𝑤 = {{𝑢}, {𝑢, 𝑤}}, {𝑢, 𝑤} ⊆ [𝑝], 𝑢 ∈ [𝑞], 𝑤 ∉

[𝑞]. It’s clear that the system of spheres $𝑤 satisfies S1-S3. Also, 𝑤 ∈ [𝑝 > 𝑞], since there is 

some sphere 𝑆 ∈ $𝑤, namely {𝑢}, such that {𝑢} ∩ [𝑝] = {𝑢} ⊆ [𝑞] = {𝑢}.        □ 

                                                
84 Based on Lewis (1970, p.76), where he calls them 𝛽 models. 
85 Thus 𝑤 ∈ [𝐴] means ‘A is true at world w’. 
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Let us discuss two important restrictions on $, whose addition validates Modus Ponens, and 

critically examine any other implication that their addition would have for the theory. Lewis 

(in agreement with Stalnaker) insisted on the additional constraint, called the centering 

condition, motivated by the conception of comparative similarity of worlds whereby (i) any 

world w is as similar to itself as any other world is to it, and (ii) no other world is as similar to 

a world w as w is to itself.86 This conception of comparative similarity motivates the 

following restriction on $: 

 

Definition 2.18: Call the system $ centered on 𝑤 iff for every 𝑤 ∈ 𝑊: {𝑤} ∈ $𝑤. 

Abbreviation: (C). 

 

However, the system S+C validates inferring 𝐴 > 𝐵 from assuming both the antecedent and 

the consequent, without regard for any connection, or lack thereof for that matter, between A 

and B. 

 

Proposition 2.6:   𝐴, 𝐵 ⊨𝐒+C 𝐴 > 𝐵 

Proof : Suppose 𝑤 ∈ [𝐴] ∩ [𝐵] for some 𝑤 ∈ 𝑊 and $ satisfying S1 and C. Then {𝑤} ∈ $𝑤, and 

{𝑤} ∩ [𝐴] = {𝑤} ⊆ [𝐴] ∩ [𝐵] ⊆ [𝐵]. Hence 𝑤 ∈ [𝐴 > 𝐵], as required.        □ 

 

But consider the following examples, which have the above form, yet seem intuitively 

invalid. 

(1) Suppose I toss a fair coin and it lands heads, so the counterfactual ‘If I tossed a fair 

coin, it would land heads’ would be, erroneously evaluated as true, given that it is just 

as likely to land tails. 

(2) Suppose I have scrambled eggs for breakfast, and (as usual) the Sun rises in the East, 

then ‘Were I to have scrambled eggs for breakfast, the Sun would rise in the East’ 

would be true, despite the absence of a causal, or any other relevant connection 

between the antecedent and consequent. 

 

In general, most would agree that the truth of the counterfactual doesn’t merely depend on the 

truth of the antecedent and consequent, but some connection obtaining between the two. 

Read (1995, p.94) suggested that if we interpreted similarity as similarity in relevant respects, 

then other worlds could tie in similarity with the actual world, thereby providing a 

                                                
86 Stalnaker (1968), Lewis (1973). 
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mechanism for invalidating the above inference.87 This motivates a weaker centering 

condition than C – formulated, but not adopted by Lewis – which corresponds to the 

conception of comparative similarity of worlds whereby any world w is as similar to itself as 

any other world is to it. This conception of comparative similarity of worlds motivates the 

following restriction on $: 

 

Definition 2.19: Call $𝑤 weakly centered on 𝑤 if and only if 𝑤 belongs to every nonempty 

sphere around 𝑤, and there is at least one nonempty sphere around 𝑤, that is: $𝑤 is weakly 

centered on 𝑤 iff 𝑤 ∈ ⋂($𝑤 ∖ ∅) and ∃𝑆 ∈ $𝑤(𝑆 ≠ ∅). 

Abbreviation: (W). 

 

The worlds that are allowed to tie in similarity to w, i.e. worlds in ⋂$𝑤 are interpreted as 

being as similar in relevant respects to w as w is to itself.   

 

NOTE: C implies W, since {𝑤} ∈ $𝑤 and S1 implies 𝑤 ∈ ⋂$𝑤 = {𝑤}. Hence, S+C is a proper 

extension of S+W.88 

 

It turns out that adding W to S1, has the virtue of making the logic strong enough to validate 

Modus Ponens, but not as strong as to validate the aforementioned problematic inference that 

an advocate of C is committed to. That is, S +W has the following virtues: 

 

Proposition 2.7:   𝐴, 𝐴 > 𝐵 ⊨𝐒+W 𝐵 

Proof : Assume that 𝑤 ∈ [𝐴] and 𝑤 ∈ [𝐴 > 𝐵] for some 𝑤 ∈ 𝑊 according to some weakly 

centered system of spheres $. Now, 𝑤 ∈ [𝐴] and 𝑤 ∈ [𝐴 > 𝐵], from hypothesis, which implies 

that there is some 𝑆 ∈ $𝑤 such that 𝑆 ∩ [𝐴] ⊆ [𝐵]. Given W and S1 we infer that 𝑤 ∈ ⋂$𝑤 ⊆ 𝑇 

for any 𝑇 ∈ $𝑤, so in particular 𝑤 ∈ 𝑆. Hence 𝑤 ∈ [𝐵], as required.        □ 

 

Proposition 2.8:   𝑝, 𝑞 ⊭𝐒+W 𝑝 > 𝑞 

Proof : Consider the following countermodel: 𝑊 = {𝑤, 𝑢}, $𝑤 = {{𝑤, 𝑢}}, 𝑤 ∈ [𝑝] ∩ [𝑞], 𝑢 ∈

[𝑝], and 𝑢 ∉ [𝑞]. It’s clear that $𝑤 satisfies S1 and W. But, {𝑤, 𝑢} = {𝑤, 𝑢} ∩ [𝑝] ⊈ [𝑞] = {𝑤}. □ 

 

This makes S +W the weakest system of that validates Modus Ponens. 

                                                
87 Nolan (1997, p.543) also endorses that approach. 
88 The system S+W is what Lewis (1973) calls VW, which is obtained from Lewis’ preferred system VC (commonly 
referred to as C1) by replacing the strict centering condition with the weak centering condition, or equivalently 
removing the axiom (𝐴 ∧ 𝐵) ⊃ (𝐴 > 𝐵) from the axiomatized version of VC (Lewis 1973, p.132). 
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2.2.5 Universality condition 

We saw earlier, in §2.2.1.3 that on the comparative similarity of worlds approach to 

expressing ceteris paribus constrains not all antecedent-worlds matter in determining whether 

a counterfactual is true at some world – some worlds may be so dissimilar from the world at 

which the counterfactual is being considered that including them in the analysis would lead to 

a wrong result (recall the example with worlds where tailless kangaroos stay upright using 

crutches). This means that there may also be possible worlds that are so bizarre as to be left 

out of consideration to determining the truth of any counterfactual at the world of evaluation. 

Call such worlds absolutely irrelevant. In other words, given some $𝑤, the question is 

whether there are any worlds that are precluded from determining the truth of any 

counterfactual at 𝑤 due to their dissimilarity to 𝑤. Whether one wishes to completely rule out 

some worlds from the analysis (or not) motivates the formulation of another restriction on $: 

 

Definition 2.20: Call the system $ universal iff for every 𝑤 ∈ 𝑊: ⋃$𝑤 = 𝑊.  

Abbreviation: (U). 

 

This condition offered in Lewis’ general proposal is highly relevant to the semantics of 

counterpossibles. It concerns the limits of the accessibility relation, or equivalently, the limits 

of the similarity of worlds. Lewis leaves it open whether the union of all similarity spheres 

around some centered world should contain all possible worlds – it may not, and those worlds 

that are left out are to be interpreted as irrelevant to the evaluation of the counterfactual.  

 

If ⋃$𝑖 is the set of all worlds, for each i, I will call $ universal. If not, then I regard 

the worlds that the spheres around i do not reach – those that lie outside of the 

union of ⋃$𝑖 – as being all equally similar to i, and less similar to i than any world 

that the spheres reach. We will see that any such world will be left out of 

consideration in determining whether a counterfactual is true at i. It is as if, from 

the point of view of i, these remotest worlds were not possible at all.  (Lewis 

1973, p.16) 

 

This is yet another example of how the character of Lewis’ (1973) work makes his semantics 

not only amenable to the kind of extensions that shall be considered in this thesis, but also 

highly suggestive with regard to how one may actually proceed in doing so. From the above 

passage, it’s reasonable to interpret impossible worlds in relation to the universality 
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restriction as those that are among the absolutely irrelevant worlds in evaluating a 

counterfactual at some possible world. I will return to this interpretation in Chapter 5. 

 

2.2.6 The Limit Assumption 

In the last few sections we have discussed a variety of conceptions of comparative similarity 

of worlds and saw how they translate to corresponding restrictions on $𝑤 and what 

characteristic inference forms the respective systems validate. The assumptions underlying 

those various notions of comparative similarity included general limits on the similarity 

(centering conditions) and dissimilarity (universality condition) of worlds to 𝑤. The aspect of 

comparative similarity that we now turn to involves an assumption about similarity of 

antecedent-worlds to 𝑤, and the corresponding properties of $𝑤 – namely whether for any 

entertainable antecedent 𝐴 there should always exist the most similar 𝐴-worlds. 

 

Because this assumption has consistently drawn the attention of philosophers, ever since its 

initial formulation, I’ll devote a whole section to describing it and highlighting some of its 

key implications for comparative similarity theories of the counterfactual. Lewis (1973, §1.4) 

identifies a subtle and important property that one could very well assume comparative 

similarity of worlds to have, yet which isn’t implied by S1. As we’ll shortly see, the property 

in question corresponds to a generalization of the derived property S3 in Theorem 2.4.  

 

If there are finitely many spheres $𝑤 around some world 𝑤, then any non-empty set of those 

spheres has a smallest member (the same would hold if $𝑤 was infinite and we only 

considered finite and non-empty subsets of $𝑤). In particular, for any entertainable antecedent 

𝐴, the set of all 𝐴-permitting spheres, i.e. the set {𝑆 ∈ $𝑤: 𝑆 ∩ [𝐴] ≠ ∅}, has a smallest member, 

which is just the intersection of all 𝐴-permitting spheres: ⋂{𝑆 ∈ $𝑤: 𝑆 ∩ [𝐴] ≠ ∅}. This sphere 

is said to contain the closest (or most similar) 𝐴-worlds to w, i.e. all and only those 𝐴-worlds 

than which no other 𝐴-world is closer (more similar) to w. But if there are infinitely many 

spheres, there may not always exist smallest antecedent-permitting spheres around w, for 

every antecedent. If there are infinite sequences of smaller and smaller spheres without end, 

then there are sets of spheres without a smallest member (least element). In particular, for 

some world w and antecedent 𝐴 there may not always be the smallest 𝐴-permitting sphere 

around w (containing the most similar 𝐴-worlds to w). To assume otherwise is to make the 
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Limit Assumption.89 That is, it need not be the case that for every entertainable antecedent 

there always exists at least one most similar world.90 

 

Definition 2.21: The Limit Assumption: for any 𝐴 ∈ 𝐹𝑜𝑟, if ⋃$𝑤 ∩ [𝐴] ≠ ∅ then there exists a 

smallest 𝐴-permitting sphere (containing the most similar antecedent-worlds to w). We can 

formalize it as follows: for any 𝐴 ∈ 𝐹𝑜𝑟 if ⋃$𝑤 ∩ [𝐴] ≠ ∅ then ⋂{𝑆 ∈ $𝑤: 𝑆 ∩ [𝐴] ≠ ∅} ∈ $𝑤.  

Abbreviation: (LA) 

 

With LA the truth conditions for the counterfactual could be greatly simplified:  

 

Definition 2.22: Truth conditions for the counterfactual with the Limit Assumption 

The counterfactual 𝐴 > 𝐵 is true at world w (according to $) if and only if  
 

   There is no A-permitting sphere in $𝑤: ⋃$𝑤 ∩ [𝐴] ≠ ∅ 

  or 

   B holds at every A-world in the smallest A-permitting sphere: ⋂{𝑆 ∈ $𝑤: 𝑆 ∩ [𝐴] ≠ ∅} ⊆ [𝐵] 

 

Or even simpler:  

 

The counterfactual 𝐴 > 𝐵 is true at world w (according to $) if and only if  
 

    B holds at every closest (most similar) 𝐴-world: [𝐴] ⊆ [𝐵]  

 

(Where [𝐴] ∶= ⋂{𝑆 ∈ $𝑤: 𝑆 ∩ [𝐴] ≠ ∅} ∩ [𝐴] and no world outside of ⋃$𝑤 is closest). 

 

Lewis observes that this assumption can’t always be made, and consequently decides against 

adding it to the conditions that characterize $. He argues that because there may be cases 

where LA is simply false, truth conditions from Definition 2.22 would give the wrong 

analysis. Consider the following argument: I’m thinking (at this moment) of a line that is half 

a unit in length (in Euclidian 3-space). But let us suppose, counterfactually, that I thought 

(just then) of a line that was longer than a unit. That is, the counterfactual antecedent is ‘I’m 

thinking of a line that is longer than a unit’, abbreviated with ‘1 < 𝐿’. Next, we see that 

{𝑆 ∈ $@: 𝑆 ∩ [1 < 𝐿] ≠ ∅} is the set of all (1 < 𝐿)-permitting spheres, i.e. spheres containing 

worlds where I’m thinking about a line that is longer than a unit. Now, here’s a key step in 

Lewis’ argument: the worlds where I’m thinking of a line that is 1½ units long are more 

similar to the actual world than worlds where I’m thinking of a line that is 2 units long, and 

                                                
89 (Lewis 1973, §1.4, pp.19-20) 
90 The Limit Assumption is explicit in Stalnaker’s truth conditions for the counterfactual – which I discuss in the 
next section – so this argument can be viewed as being indirectly aimed at Stalnaker’s analysis. 
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likewise the worlds where I’m thinking of a line that is 1¼ units long are more similar to the 

actual world than worlds where I’m thinking of a line that is 1½ units long, and so on, ad 

infinitum.91 The shorter we make the line (above 1 unit), the more similar we make it to the 

length that I actually thought about, so presumably, the closer we come to the actual world.92 

But how long is the line that I’m thinking about in the closest (most similar) (1 < 𝐿)-worlds? 

The short answer is that there is no such length. 93 Since there is no smallest length that is 

greater than one unit, there are no worlds where I’m thinking about a line with such length, 

and consequently no smallest sphere containing all and only such worlds. Hence, 

⋂{𝑆 ∈ $𝑤: 𝑆 ∩ [1 < 𝐿] ≠ ∅} = ∅.94 

 

On the truth conditions given in Definition 2.22, the counterfactual ‘If I thought just then 

about a line that is longer than one unit, then…’ would be vacuously and erroneously 

evaluated as true for any consequent. In particular, the following counterfactual would be 

erroneously evaluated as true: ‘Had I been thinking about a line that is longer than one unit, 

then I would have been thinking about a line that is not longer than one unit’. But it would be 

evaluated vacuously as true not because the antecedent does not express an entertainable 

proposition (clearly it does, e.g. take worlds where I was thinking of the line being 1½ units 

long), but because there are no closest (most similar) accessible worlds where it is true. 

 

There have been a number of replies to Lewis’ argument against LA.95 Some (Pollock 1976, 

Stalnaker 1980) demonstrate questionable implications of denying LA, others (Hájek 2014) 

argue that the implications about comparative similarity stemming from Lewis’ formulation 

of the argument against LA commit him to the truth of clearly false counterfactuals. Another 

                                                
91 Lewis uses a different example – one involving a physical line (that is actually less than an inch long and the 
counterfactual supposition is that it is more than 1’’ long), printed on a page, but admits that such examples 
aren’t decisive, since given the printing process, there would be a limit on how long a line can be printed, being 
contingent on the printing process (e.g. the number of ink molecules on the page being finite). To avoid this, I 
have chosen a to exemplify an idealized (mathematical) line, which isn’t subject to these kinds of physical 
restrictions. To make it unambiguous and precise, say that I’ve been actually thinking about the half-unit vector 
0.5𝒊 in the representation of Euclidian 3-space ℝ3 (where 𝒊 is the unit vector in the 𝑥-coordinate direction), and 
in the counterfactual supposition I’m thinking of some 𝑙𝒊 where 1 < 𝑙 ∈ ℝ. 
92 This part of Lewis’ argument gets him in trouble (a point I’ll return to shortly) and seems to be at odds with 
what he says earlier: “And so it goes; respects of similarity and difference trade off. If we try too hard for exact 
similarity to the actual world in one respect, we will get excessive differences in some other respect” (Lewis 
1973, p.9). 
93 This follows from the property of real numbers that for any two real numbers 𝑥 < 𝑦 there is a third real 
number 𝑧 such that 𝑥 < 𝑧 < 𝑦. 
94 Based on Lewis (1973, §1.4, p.20). 
95 (Pollock 1976; Stalnaker 1980; Hájek 2014)  
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family of replies (Stalnaker 1980, Brogaard & Salerno 2013) involve appeal to a conception 

of comparative similarity – one that emphasizes the respects of similarity that are relevant to 

the context in which a counterfactual is being considered – which can diffuse the problematic 

consequence of accepting LA, identified by Lewis, and avoid the aforementioned issue raised 

by (Hájek 2014). I adopt a version of this conception of comparative similarity – one that is 

consistent with S1+W – and devote part of Chapter 4 to motivating and defending it. For 

now, we turn to an example of a theory that has adopted the limit assumption. 

 

2.2.7 Stalnaker’s theory and conditional excluded middle 

Having discussed various conceptions of comparative similarity of worlds in the previous 

sections, we have only hinted at the character of Stalnaker’s theory. In this section we 

examine carefully the systems of spheres corresponding to the account of the conditional 

given by Stalnaker (1968, 1970), which, aside from the limit assumption places another 

significant restriction on $. It’s yet another addition to the kinds of assumptions about 

comparative similarity that result in logics that are misaligned with the intended logic of 

counterfactuals. 

 

I won’t discuss the formal account of Stalnaker’s (1968, 1970) original model theory, other 

than saying that he had originally based his semantics on Kripke frames, augmenting them 

with a world selection function 𝑓: 𝐹𝑜𝑟 × 𝑊 ⟶ 𝑊 that selects for each antecedent-world pair 

(𝐴, 𝑤) a single world 𝑓(𝐴, 𝑤) regarded as the most similar 𝐴-world to 𝑤. Lewis (1973, §3.4) 

shows how such selection-function models can be equivalently expressed in terms of his own 

similarity sphere models (given appropriate restrictions on $) – and that’s the manner in 

which I choose to talk about Stalnaker’s theory in this chapter, which after all is devoted to 

Lewis’ semantics.96  

 

Stalnaker’s truth conditions for the counterfactual: 

“Consider a possible world in which A is true, and which otherwise differs minimally from 

the actual world. ‘If A, then B’ is true (false) just in case B is true (false) in that possible 

world.”97 

                                                
96 For an account of conditional logics in terms of the selection functions, and a comprehensive comparison of 
Stalnaker’s and Lewis’ theories in terms of selection functions see (Priest 2008, §5) or (Lewis 1973, §2.7, §3.4). 
For a general discussion of the selection-function semantics for conditional logics see (Chellas 1975) or (Nute 
1980, §3.2). 
97 (Stalnaker 1968, p.102) 
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Apparently, in addition to the limit assumption – that for any world w and entertainable 

antecedent A there is at least one A-world that is most similar to w – Stalnaker makes a 

stronger assumption, i.e. that there is a unique world like this.98 It leads to an important 

difference between Lewis’ and Stalnaker’s accounts of the counterfactual. Adding this 

assumption to S1 validates Conditional Excluded Middle (abbr. CEM), i.e. ‘(𝐴 > 𝐵)  ∨  (𝐴 >

~𝐵)’.99 Lewis calls CEM the “principal virtue and the principal vice” of Stalnaker’s theory, 

presumably because although it may appeal to the intuitions of ordinary language users, 

nevertheless it’s hardly true of the subjunctive conditional – as I’ll shortly demonstrate via 

Lewis’ argument against CEM.  

 

Definition 2.23: Stalnaker’s uniqueness assumption: for every world 𝑤 and antecedent 𝐴, that 

is entertainable at 𝑤, there is a smallest 𝐴–admitting sphere around 𝑤 containing exactly one 

𝐴–world. Formally, $ is said to satisfy Stalnaker’s uniqueness assumption if and only if for 

all 𝑤 ∈ 𝑊 and 𝐴 ∈ 𝐹𝑜𝑟:  

if ⋃$𝑤 ∩ [𝐴] ≠ ∅, then (∃𝑆 ∈ $𝑤)(∃𝑢 ∈ 𝑊)(𝑆 = ⋂{𝑇 ∈ $𝑤: 𝑇 ∩ [𝐴] ≠ ∅}  ∧  𝑆 ∩ [𝐴] = {𝑢}). 

Abbreviation: (SA).100 

 

Clearly, the uniqueness component of SA does all the work in the validation of CEM, since if 

for each antecedent there exists a smallest antecedent-permitting sphere containing only a 

single antecedent-world, then given that LEM is valid, the consequent of either disjunct must 

be either true or false at that world, thus making exactly one of the disjuncts true. Below is a 

proof. 

 

Proposition 2.9:    ⊨𝐒+SA (𝐴 > 𝐵) ∨ (𝐴 > ~𝐵) 

Proof : Either ⋃$𝑤 ∩ [𝐴] = ∅, or ⋃$𝑤 ∩ [𝐴] ≠ ∅. Both disjuncts are true for the vacuous case. 

If ⋃$𝑤 ∩ [𝐴] ≠ ∅, then SA allows us to infer that ∃𝑆 ∈ $𝑤∃𝑢 ∈ 𝑊(𝑆 ∩ [𝐴] = {𝑢}). Either 𝑢 ∈

                                                
98 In the relevant literature, this condition is sometimes referred to as Stalnaker’s assumption (Lewis 1973), or 
the uniqueness assumption (Stalnaker 1980), or Stalnaker’s uniqueness assumption (Nute 1980).  
99 (Lewis 1973, p.79). 
100 As for the treatment of impossible antecedents, Stalnaker also includes the absurd world where everything is 
the case and where all counterpossibles are evaluated, so SA also holds for impossible antecedents (Stalnaker 
1970), (Lewis 1973, p.77). In that regard their theories are the same: on Lewis’ account all counterpossibles 
come out vacuously true, by definition. They’re also all true for Stalnaker since all consequents of 
counterpossibles are true at the absurd world. For good discussions of the differences between Stalnaker’s and 
Lewis’ similarity semantics for the counterfactual and the corresponding theories see (Lewis 1973, §3.4), (Read 
1995, pp.82-95) and (Priest 2008, §5.7). I will return to the problem of vacuous counterpossibles in §2.3. 
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[𝐵] or 𝑢 ∈ [~𝐵], by LEM, so, {𝑢} = 𝑆 ∩ [𝐴] ⊆ [𝐵] ∋ 𝑢 or {𝑢} = 𝑆 ∩ [𝐴] ⊆ [~𝐵] ∋ 𝑢. So, exactly 

one of the disjuncts must be true, by Definition 2.15.         □ 

 

Proposition 2.10:    ⊭𝐒+C (𝑝 > 𝑞) ∨ (𝑝 > ~𝑞)101 

Proof : Consider the countermodel: 𝑊 = {𝑤, 𝑢, 𝑣}, $𝑤 = {{𝑤}, {𝑤, 𝑢, 𝑣}} and let 𝑤 ∈ [~𝑝], and 

𝑢, 𝑣 ∈ [𝑝]. The model clearly satisfies S1 and C. Also, let 𝑢 ∈ [𝑞] and 𝑣 ∈ [~𝑞]. Now, 𝑊 ∩

[𝑝] ≠ ∅, since {𝑤, 𝑢, 𝑣} ∩ [𝑝] = {𝑢, 𝑣} ≠ ∅, but neither {𝑢, 𝑣} ⊆ [~𝑞] nor {𝑢, 𝑣} ⊆ [𝑞]. So, neither 

disjunct is true, by Definition 2.15, as required.          □ 

 

The system corresponding to Stalnaker’s theory is in fact a proper extension of all the 

systems we’ve discussed so far, since, if we recall he favors the stronger of the centering 

conditions C, so by adding SA, his preferred system S+C+SA is clearly a proper extension of 

Lewis’ preferred system S+C. The logics corresponding to systems S+C and S+C+SA are 

known in the relevant literature as C1 (or VC) and C2, respectively.102 

 

Lewis admits that his theory was motivated by the observation that the whole appeal of CEM 

is due to ordinary language speakers rarely making the distinction between the external 

negation of a whole counterfactual, i.e. ~(𝐴 > 𝐵) and the same counterfactual with a negated 

consequent i.e. 𝐴 > ~𝐵. This results in many ordinary language speakers choosing to reject 

the violation of CEM, because prima facie it appears to be a contradiction. Stalnaker’s theory 

aligns with that intuition.  

 

Lewis (1973) brings up Quine’s (1950) example involving the renowned composers Bizet 

and Verdi, where their nationalities are counterfactually identified: as a matter of fact, Bizet 

was French, and Vivaldi was Italian. However, it’s neither the case that if they were 

compatriots, Bizet would be Italian, nor is it the case that if they were compatriots, Vivaldi 

would be French. Nevertheless, certainly if they were compatriots, they’d be either French or 

Italian. That is, Lewis claims that the following conjunction is true, but given CEM it can’t 

be, since it insists on the first or second conjunct being false: ~(𝐴 > 𝐵) ∧ ~(𝐴 > ~𝐵) ∧

(𝐴 > (𝐵 ∨ ~𝐵)).103 

                                                
101 Hence, ⊭𝐒+W (𝐴 > 𝐵) ∨ (𝐴 > ~𝐵). 
102 Lewis (1973, p.130), Nute (1980, p.53), Priest (2008, §5.7). 
103 (Lewis 1973, p.80). Note that ~(𝐴 > 𝐵) ∧ ~(𝐴 > ~𝐵) is equivalent to the negation of CEM, by De Morgan 
laws. 
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Therefore, to allow for the aforementioned distinctions, CEM needs to be invalidated. On the 

similarity sphere semantics this is achieved by allowing similarity ties between worlds (as 

exemplified in the countermodel to CEM given earlier). That is, there is a tie in similarity to 

the actual world between a world 𝑤𝐹 where the two composers are both French, and the 

world 𝑤𝐼 where they’re both Italian. Presumably a world 𝑤𝐺 where they’re both German, say, 

would be less similar to the actual world than 𝑤𝐼 and 𝑤𝐹 are.104 So, if Bizet and Verdi were 

compatriots, then it seems that neither of the following is true: 

 

- If Bizet and Verdi were compatriots, then they would both be Italian. 

- If Bizet and Verdi were compatriots, then they would both be French (i.e. not Italian). 

 

A more recent counterexample to CEM, inspired by Hájek (2014), is based on a probabilistic 

argument. Suppose I didn’t toss a fair coin just now. But were I to toss that coin just now, 

would it land heads or tails? Surely it would land heads or tails, but it seems that both of the 

following would be false: 

 

- If I tossed the coin just now, it would land Heads. 

- If I tossed the coin just now, it would land Tails (i.e. not Heads). 

 

On the assumption that we’re dealing with a fair coin, claiming that either of the above is true 

would run in the face of the fact that we’re dealing with probabilistic (stochastic) process. It 

appears that Lewis’ original qualms with CEM have gathered wider acceptance among 

philosophers.105 There are many other counterexamples, once the form of the error is 

understood, but I chose to highlight the one above since Hájek (2014) employs the stochastic 

character of such a coin-toss event in setting up a nondeterministic version of Fine’s (1975) 

argument against Lewis’ similarity account of the counterfactual. The point is that the failure 

of CEM makes Lewis’ theory more resistant than Stalnaker’s to such a family of objections.  

 

2.3  Lewis’ analysis of counterpossibles 

One of the major drawbacks of Lewis’ account of the counterfactual is that it evaluates all 

counterfactuals with impossible antecedents as true. Since ⋃$𝑤 ⊆ 𝑊, for all models, and on 

the intended interpretation 𝑊 is a set containing possible worlds, there are no spheres 

containing impossible worlds. In other words, impossible worlds are not entertainable. So, 

                                                
104 (Priest 2008, p.95) 
105 As it will be shown in Chapter 4, the failure of CEM serves as a good counter to some recent (Hájek 2014) 
objections to Lewis’ general account. 
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considering the truth conditions for the counterfactual, then for all worlds 𝑤 ∈ 𝑊 and any 

antecedent 𝐴 ∈ 𝐹𝑜𝑟 of a counterfactual 𝐴 > 𝐵 that expresses an impossible proposition [𝐴] ∩

⋃$𝑤 = ∅.  Consequently, for any 𝐵 ∈ 𝐹𝑜𝑟, the counterfactual 𝐴 > 𝐵 is evaluated as true – 

vacuously so, by Lewis’ truth conditions for, as given in Definition 2.15. Hence, ⊨𝐒 𝐴 > 𝐵 

holds for any 𝐵, whenever 𝐴 expresses an impossible proposition, and a fortiori it holds for 

all extensions of S. 

 

Proposition 2.11:    ⊨𝐒 𝐴 > 𝐵 whenever 𝐴 expresses an impossible proposition. 

Proof : Antecedents expressing an impossibility are not entertainable, so by Definition 2.15 

any counterfactual with such an antecedent satisfies the vacuous condition at all worlds.     □ 

 

However, the claim that all counterpossibles are vacuously true – and as such semantically 

uninformative, since their consequents make no contribution to the truth value – conflicts 

with our intuitions, as there appears to exist a plethora of cases where a counterpossible is 

clearly false or non-vacuously true. Consider the examples given below. In addition to their 

intuitive appeal (of non-vacuously meaningful truth values), a good case can be made for 

either their falsity or non-vacuous truth (to which I devote a large part of Chapter 3), yet 

Lewis’ account falls short of offering the corresponding, adequate analysis. 

  

(1) If Sally were to square the circle, then someone would have squared the circle. 

(2) If Sally were to square the circle and I were to double the cube, then I would be Sally. 

(3) If paraconsistent logic were correct, ex contradictione quodlibet would still be valid.  

Consider the first two - whereas (1) seems true and non-vacuously so, it would seem odd to 

insist that (2) is false, yet a vacuous-account doesn’t distinguish between their truth values. 

We can argue for the falsity of (3) as follows: since paraconsistent logics invalidate ex 

contradictione quodlibet by definition, the consequent of (3) runs contrary to the meaning of 

the antecedent.  

 

To justify his position, Lewis gives the following argument, which to no lesser extent 

employs intuition than the examples of apparently false and non-vacuously true 

counterpossibles listed in the previous paragraph:106 

 

                                                
106 This isn’t the only argument that Lewis gives in support of the vacuous analysis. There are others, but their 
adequate treatment is beyond the scope of this chapter. E.g. there’s Lewis’ famous marvellous mountain 
argument (Lewis 1986, p.7) against impossible worlds, which I discuss in the next chapter. 
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Confronted by an antecedent that is not really an entertainable supposition, one 

may react by saying, with a shrug: If that were so, anything you like would be 

true!  

Further, it seems that a counterfactual in which the antecedent logically implies 

the consequent ought always to be true; and one sort of impossible antecedent, a 

self-contradictory one, logically implies any consequent. (Lewis 1973, p.24) 

 

There are two justifications given by Lewis there. My reply is in line with the analysis given 

by Brogaard and Salerno (2013, pp.648-9). Even if we grant Lewis the claim that all 

counterfactuals with antecedents that aren’t entertainable suppositions invoke triviality, it 

doesn’t mean that (unless assumed) all impossibility-expressing antecedents fail to be 

entertainable suppositions. So apparently Lewis’ first justification rests on the unwarranted 

assumption that all counterpossibles involve antecedents that are not entertainable.  

In the second justification contained in the above passage, Lewis states that a counterfactual 

whose antecedent logically implies the consequent ought to always be true. That is, Lewis 

appeals to the validity of conditional proof (CP) for counterfactuals: if 𝐴 ⊨ 𝐵 then ⊨ 𝐴 > 𝐵. 

He then points to the validity of ex contradictione quodlibet (ECQ), i.e. 𝐴 ∧ ~𝐴 ⊨ 𝐵 to 

suggest that at least counterpossibles with contradictory antecedents (or more generally, 

antecedents corresponding to a conjunction of formulae that form an inconsistent set) should 

be trivially true, i.e. ⊨ (𝐴 ∧ ~𝐴) > 𝐵.  

There are two things to note here: the first is that assuming CP and ECQ, as Lewis does, can 

only support the less general claim that only counterfactuals logically impossible antecedents 

are trivially true, rather than the general claim that all counterpossibles are trivially true – 

which would require a further assumption that every impossibility, of every kind, is 

equivalent to some contradiction. So even if we granted Lewis the right to make those 

assumptions in this context, then his argument justifies a vacuous analysis of only a narrow 

subclass of counterpossibles. The second thing to note is a point made by Brogaard and 

Salerno (2013) that assuming CP in this context is very much theory-laden, since anyone who 

is already convinced that there are false counterpossibles will hardly be persuaded by appeals 

to an inference to which false counterpossibles constitute a counterexample.107 That is, CP is 

valid if and only if all counterpossibles are vacuously true. It appears that Lewis’ above 

attempt at justifying vacuously true analysis of counterpossibles, amounts to little more than 

an expression of skepticism regarding the alternative. 

                                                
107 For example, Nolan’s (1997) proposal is based on the rejection of CP for the counterfactual/counterpossible. 
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2.4  Summary 

We have seen that conditional logics, to which Lewis’ analysis of the counterfactual belongs, 

avoid commitment to some troublesome inference forms. We have also discussed Lewis’ 

motivations for settling on a model of the counterfactual based on a variably strict conditional 

based on comparative similarity of worlds and argued for the system S+W as the one with the 

least number of questionable commitments. However even S+W gives a vacuous analysis of 

counterpossibles, which I believe is an inadequate analysis of the more general conception of 

the counterfactual. I’ve addressed some of Lewis’ justifications for the vacuous analysis and 

shown them to be inconclusive or unconvincing. In Chapter 3 I address some the 

metaphysical reasons that potentially explain Lewis’ insistence on the vacuous analysis – that 

reply of mine is part of the general case I make for a possible and impossible worlds 

semantics as a very natural approach to a non-vacuous account of counterpossibles. The 

approach to developing a non-vacuous analysis of counterpossibles that I endorse and follow, 

is one which has gained a fair amount of interest in the last couple of decades, and which 

takes the Lewis-style account of the counterfactual (just presented) as a starting point, and 

introduces impossible worlds as a means of giving content to impossible antecedents.108 An 

account of non-vacuous counterpossibles in terms of impossible world semantics, developed 

and given in Chapter 5 proceeds in that manner, whereas Chapter 4 develops a conception of 

comparative similarity that places emphasis on the respects of similarity that are relevant to 

the context in which a counterfactual is being considered. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
108 Nolan (1997); Mares (1997); Vander Laan (2004); Brogaard & Salerno (2013); Bjerring (2014); Berto (2014, 
2017). 
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Chapter 3 

 

David Lewis’ Marvelous Mountain argument against impossible worlds. 

 

 
‘On the mountain both P and Q’ is equivalent to ‘On the 
mountain P, and on the mountain Q’; likewise ‘On the 
mountain not P’ is equivalent to ‘Not: on the mountain P’; 
putting these together, the alleged truth ‘On the mountain 
both P and not P’ is equivalent to the overt contradiction 
‘On the mountain P, and not: on the mountain P’.  

Lewis (1986) 
 
According to the consistent theory of objects, the 
traditional and widespread idea that impossible objects 
are quite beyond logical reach […] depends upon the long-
standing confusion between attributing inconsistent 
properties to an item (e.g. f and ~f) and inconsistently 
attributing properties to it (e.g. saying it has f and that it 
is not the case that it has f). 

Routley (1980)   

 

 

3.0   Introduction 

This chapter contains a defense of the extended argument from admissible paraphrase, 

against Lewis’ (1986) objection. The central feature of this defense is a refutation of Lewis’ 

(1986) famous ‘marvelous mountain’ argument which was set up as a reductio ad absurdum 

in Counterpart Theory (CT), and which amounts to a rejection of impossible individuals 

(impossibilia) and by extension of impossible worlds. To ensure the clarity of that refutation, 

an overview of the CT elements on which the success of the reductio hinges, will be 

summarized beforehand.109  

 

The following defense of impossibilia in Lewis’s theory – which ultimately reduces to 

pointing out that the commutative property (e.g. ‘at world w: not A’ being equivalent to ‘it is 

not the case that at world w: A’ ) is illicitly ascribed to the restricting modifier and truth-

functional connectives on the extended domain – parallels Meinong’s defense of impossibilia 

                                                
109 The extended argument from admissible paraphrase, aka ‘argument from ways’ (Vander Laan 1997), is a 
quite common strategy in the literature that is employed in support of impossible worlds (Yagisawa 1988), 
(Vander Laan 1997), (Berto 2009), (Nolan 1997). See (Yagisawa 1988, p.183) for a modal realist account, 
(Vander Laan 1997, p.598) for an abstractionist account, and (Berto 2009, p.3) for a hybrid account, whereby 
“possible worlds are taken as concrete Lewisian worlds, and impossibilities are represented as set-theoretic 
constructions out of them”. 
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in his theory of objects against Russell’s charge that the theory violates LNC.110 Both 

arguments defend the consistency of theories of impossibilia, by pointing to a key distinction 

between a wider and a narrower negation (and the corresponding rules), and pointing out that 

their scopes differ. In Meinong’s case, the narrower, property negation ‘there is an object that 

is not blue’ is to be distinguished from sentential negation ‘it’s not the case that there is an 

object that is blue’ when impossible objects are considered. Thus, similarly to the foregoing 

denial of the derivability of a contradiction from the admission of world-bound individuals 

that instantiate contradictions, Meinong denies the derivability of a contradiction from the 

admission of object-bound contradictory properties. That is, given the incongruence of 

predicate/sentence negation scopes in the presence of impossible objects one cannot infer the 

contradiction ‘a is round and it is not the case that a is round’ from ‘a being both round and 

not round’. Routley’s summing up of Meinong’s defense of a consistent theory of impossible 

objects places the following refutation of Lewis’s reductio in historical perspective whilst 

highlighting the essential feature of contention. 

 

According to the consistent theory of objects, the traditional and widespread idea 

that impossible objects are quite beyond logical reach (that they violate the 

fundamental laws of logic, are not amenable to logical treatment, and hence 

cannot be proper subjects of logical investigation) depends upon the long-

standing confusion between attributing inconsistent properties to an item (e.g. f 

and ~f) and inconsistently attributing properties to it (e.g. saying it has f and that 

it is not the case that it has f). Only in the second case would impossibilia be 

beyond the scope of consistent logic. It is now evident that this hoary confusion 

can be cleaned up by making appropriate negation scope distinction.  

(Routley 1980 p.89, my emphasis). 

 

3.1  The extended argument from admissible paraphrase – a defense. 

In the context of investigating the nature of the truth of subjunctives asserted by way of 

reductio, where he considers them as being instances of non-trivially true counterpossibles, 

Lewis (1973, p.24) for the sake of argument accurately envisages the overview character of 

                                                
110 Routley (1980,n p.89). 
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such an extension, which would proceed by positing impossible worlds, before quickly 

dismissing it, on grounds of it being founded on a ‘confused fantasy’.111  

 

[O]ne sometimes asserts counterfactuals by way of reductio in philosophy, 

mathematics, and even logic. These counterfactuals are asserted in argument, and 

must therefore be thought true; but their antecedents deny what are thought to be 

philosophical, mathematical, or even logical truths, and must therefore be thought 

not only false but impossible. These asserted counterphilosophicals, 

countermathematicals, and counterlogicals look like examples of vacuously true 

counterfactuals. 

There are other things they might be, however. They might not really be 

counterfactuals, but subjunctive conditionals of some other kind. More 

interesting, they might be non-vacuously true counterfactuals, understood in the 

way I have proposed; but so understood under the pretense that along with the 

possible possible worlds that differ from our world only in matters of contingent, 

empirical fact, there also are some impossible possible worlds that differ from 

our world in matters of philosophical, mathematical, and even logical truth. (The 

pretense need not be taken very seriously to explain what happens in 

conversation; it just might be that this part of our conversational practice is 

founded upon a confused fantasy.) (Lewis 1973, p.24) 

 

What is contained in the phrase ‘a confused fantasy’? It refers to the claim, which Lewis 

labels ‘a pretense’, that posits the existence of impossible worlds that differ from the actual 

one in matters of philosophical, mathematical and logical truth. Does Lewis label such an 

extension of his analysis a fantasy because there are no ways the world could not have turned 

out? But then we could use Lewis’ own justification for possible worlds given in the form of 

his argument from admissible paraphrase, by merely extending it in support of impossible 

worlds, whilst maintaining its form.112 So, if Lewis’ argument from admissible paraphrase for 

possible worlds is sound, then the soundness of the extended justification is only conditioned 

                                                
111 I take that what Lewis means by subjunctives asserted by way of reductio, are subjunctives of the form 
where the antecedent is the hypothesis of the reductio argument and the consequent the absurd conclusion 
derived. That is given the reductio ‘HYP… ⊥,’ Lewis has in mind the subjunctive ‘HYP > ⊥’. 
112 The argument appears throughout Lewis’ work. The versions of the argument I’m primarily relying on are 
taken from Lewis (1973, p.84) and Lewis (1986, p.2). Vander Laan (1997, §3) refers to it as ‘the argument from 
ways’. 
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on whether one accepts the rather uncontroversial premise that not everything is possible.113 

Here is the original version of Lewis’ argument: 

 

Ordinary language permits the paraphrase: there are many ways things could have 

been besides the way they actually are. On the face of it, this sentence is an 

existential quantification. It says that there exist many entities of a certain 

description, to wit ‘ways things could have been’. I believe that things could have 

been different in countless ways; I believe permissible paraphrases of what I 

believe; taking the paraphrase at its face value, I therefore believe in the existence 

of entities that might be called ‘ways things could have been’. I prefer to call 

them ‘possible worlds’. (Lewis 1973, p.84) 

  

To reiterate, if we accept this argument, then why should we not accept the following 

argument that there are impossible worlds?114 The extended argument is a conditional thesis: 

if the paraphrase argument justifies belief in possible worlds, as ways things could have been, 

then by parity of reasoning, the same form of the argument justifies belief in impossible 

worlds, as ways things could not have been.115 Being a conditional thesis, the full parity of 

reasoning argument can also be viewed as a reductio of genuine realism, directed to those 

who commit to concrete possible worlds only.116   

 

The conditional argument first appears in Naylor (1986, pp.28-29) where it is presented in a 

way that could be interpreted as a direct reductio of genuine realism. It has also been taken up 

by Yagisawa (1988, p.183) where it serves as a lynchpin thesis in the conditional 

endorsement of extended modal realism. However, Yagisawa leaves it up to the reader 

whether the conditional thesis is to be taken as serving the modus ponens argument endorsing 

concrete impossible worlds, or the modus tollens arguments that would effectively echo 

Naylor’s (1986) intended reductio of Lewis’s justification of possible worlds, the soundness 

of which is premised on a consensus that impossible worlds do indeed lead to trouble. In 

Naylor’ (1986) note to Lewis, the implication seems to be that a conclusion to the effect that 

the argument can be shown to speak equally in favour of impossible worlds is trouble 

enough. This is implicit since Naylor appears to expect the extended conclusion to speak for 

                                                
113 Mortenson (1989), is the rare exception to that view. 
114 Naylor (1986, p.29) 
115 Divers (2002, p.68) 
116 In fact the extended argument can be viewed as a reductio of Lewis’s theory of genuine possible worlds 
(Yagisawa 1988), (Divers 2002). 
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itself without any further comment, since he doesn’t bother to make one. But this is not really 

enough without an independent reason as to what is troublesome about positing impossible 

worlds. Moreover, Skyrms (1976, p.326) had already warned against caricaturizing Lewis’s 

argument in a way that ignores the included proviso that taking the paraphrase at face value is 

only justified insofar as it doesn’t lead to trouble.  

 

I do not make it an inviolable principle to take seeming existential quantifications 

in ordinary language at their face value. But I do recognize a presumption in favor 

of taking sentences at their face value, unless (1) taking them at face value is 

known to lead to trouble, and (2) taking them some other way is known not to. 

Lewis (1973, p.84) 

 

But naturally there is no consensus as to what ‘trouble’ exactly amounts to. There is however 

a predicament that a classicist would wish to avoid, which would be taken as sufficient 

grounds to reject the extended argument, without abandoning the original one – namely, 

theoretical inconsistency. As it will be shown, Lewis gives an argument precisely to that 

effect, albeit a bad one. For him this is reason enough to reject the parity of reasoning 

argument, but it is a reason premised on a misunderstanding highlighted in the fragment from 

Routley, which I demonstrate in the sext section. Consequently, I conclude that the extended 

argument from admissible paraphrase in favour of impossible worlds is safe from the charge 

of running into the kind of trouble that Lewis believes it does. 

 

To appreciate Lewis’s reasons for banishing impossibilia from his ontology, it is necessary to 

give at least a rudimentary outline of those key elements of his metaphysics that are the 

primary suspects in being responsible for this “impossibilia phobia”.  

 

3.2 The status of objects in possibilist realism: an outline of Genuine Realism (GR). 

Possible worlds exist simpliciter according to genuine realism, henceforth abbreviated with 

GR. They are spatiotemporally and causally isolated individuals, made up of mereological 

sums (fusions) of their parts. All parts of a world w stand in some spatiotemporal relation to 

each other, and if anything is spatiotemporally related to any part of w, then it is also a part of 
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w. Modal idioms reduce to unrestricted existential quantification over that which exists 

simpliciter, i.e. worlds, and objects that stand in a parthood relation to them.117  

 

You might say that strictly speaking, only this-worldly things really exist; and I 

am ready enough to agree; but on my view this ‘strict’ speaking is restricted 

speaking, on a par with saying that all the beer is in the fridge and ignoring most 

of the beer there is. When we quantify over less than all there is, we leave out 

things that (unrestrictedly speaking) exist simpliciter. Lewis (1986, p.3). 

 

The genuine realist (GR) takes unrestricted first-order existential quantification 

to range over a domain of individuals among which only some actually exist. 

Divers (2002, p.21) 

 

GR possible worlds are just as real as our world. That is, actuality is indexical, i.e. relative to 

the world where ‘this world’ is uttered.118 So the sentence token ‘our world’ in the previous 

sentence renders the world where it has been written down (this(!) world) as actual.  

 

When such expressions occur with their primary sense, their function is 

straightforwardly token-reflexive – that is, in any world w (in any sentential 

context of any sentence token) the expression introduces the world in which the 

token is uttered. To call a world ‘actual’ in this primary sense, is like referring to 

this place as ‘here’, or to this time as ‘now’ or to oneself as ‘I’.  

(Divers 2002, p.44) 

 

Modality reduces to quantification over worlds and their parts. This isn’t unique to GR. 

However, GR has the virtue of a single, metaphysically undifferentiated domain of 

quantification – all worlds, and their parts are of the same ontological kind, i.e. differing not 

in kind, but only what goes on at them.119 This allows GR to make use of unrestricted 

existential quantification – existence of any x is existence simpliciter; either x is itself a 

world, or it is part of some world. 

 

                                                
117 There is the odd feature of GR that worlds are taken to be individuals, not sets, even though they seem to 
contain stuff just as sets would. That is, in GR worlds don’t contain their respective parts, but rather consist of 
them, or more precisely stand in a parthood relation to them. For details, see Divers (2002, pp.45-46). 
118 Ref. Lewis’ indexical theory of actuality expressed in Lewis (1970) Anselm and Actuality. 
119 Lewis (1973, p.85). 
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The domain of quantification is to contain every possible world and everything 

in every world. Lewis (1968, p.114) 

 

If asked what sort of thing [possible worlds] are […] I can only ask [my 

questioner] to admit that he knows what sort of thing our actual world is, and then 

explain that other worlds are more things of that sort, differing not in kind but 

only what goes on at them. Lewis (1973, p.85) 

 

The difference between this and the other worlds is not a categorical difference. 

Nor does this world differ from the others in its manner of existing.  

Lewis (1986, p.2) 

 

This means that modal extensionalism has a metaphysical edge over 

intensionalism, which postulates an extra sui generis metaphysical kind. And that 

is a significant philosophical virtue of modal extensionalism.120   

Yagisawa (1988, p.178) 

 

This is a good place to introduce the key distinction (one that will be highly relevant in this 

chapter) between GR and actualist realism (aka actualist representationism) (AR), where 

according to the latter only the actual world exists, and non-actual possible worlds are mere 

abstractions (conceived of in one way or another). 

 

Broadly, GR conceives of the possible worlds as a vast plurality of non-actual, 

concrete things while AR conceives of the possible worlds as a vast plurality of 

actual, abstract things. (Divers 2002, p.22) 

 

GR gives an eliminative extensionalist account of intension, modality in particular (Yagisawa 

calls it modal extensionalism), much in the same way as actualist extensionalism eliminates 

intensional notions such as properties and relations by replacing them with some extensional 

entities found in the actual world.121  

Lewis (1965) proposes a translation of  the language of quantified modal logic (QML) into a 

first-order logical theory, which he coins Counterpart Theory (CT). “Conceptually, GR 

intends CT as an element in the non-modal analysis of modal concepts. Semantically, GR 

                                                
120 Yagisawa (1988) calls Realist Possibilism and its (proposed therein) extension, which admits impossible 
worlds, Realist Impossibilism by what he considers to be their essential feature, i.e. modal extensionalism. 
121 Yagisawa (1988, pp.177-178). 
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holds CT essential to capturing the expressive capacity of modal English and CT may serve 

as a metalanguage that articulates a PW-semantics for QML” (Divers, 2002, p.123). 

 

Instead of formalizing our modal discourse by means of modal operators, we 

could follow our usual practice. We could stick to our standard logic 

(quantification theory with identity and without ineliminable singular terms) and 

provide it with predicates and a domain of quantification suited  to the topic of 

modality. That done, certain expressions are available which take the place of 

modal operators. The new predicates required, together with postulates on them, 

constitute the system I call Counterpart Theory. Lewis (1968) 

 

For the purposes of this chapter the following characterization will suffice. I present below 

those elements of CT that will be relevant to our discussion. The primitive predicates of 

counterpart theory relevant to our discussion are: 

 

𝑊𝑥 (𝑥 is a possible world) 

𝐼𝑥𝑦 (𝑥 is in possible world 𝑦) 

 

The domain of quantification is to contain every possible world and everything in every 

world. The primitives are to be understood according to their English readings and the 

following postulates: 

 

    P1: ∀𝑥 ∀𝑦(𝐼𝑥𝑦 →  𝑊𝑦)   Nothing is in anything except a world. 

    P7: ∃𝑥(𝑊𝑥 & ∀𝑦(𝐼𝑦𝑥 ↔  𝐴𝑦))  Some world contains all and only actual things. 

 

Key relevant GR predicates used by Divers (2002) are defined as follows: 

 

𝑊𝛼 (𝛼 is a world) 

𝑃𝛼𝛽 (𝛼 is a part of 𝛽) 

 

Consider the following absolute alethic de dicto possibility and its translation from English 

(1), to its admissible paraphrase with a direct reference to possible worlds (2), and finally its 

explicit GR interpretation (3), and the explicit CT translation in (4).122 

 

(1) There may have been blue swans. 

(2) There is a possible world at which there are blue swans. 

                                                
122 The translations (1)-(3) are given by Divers (2002, p.43), and the latter (4)-(6) being the original formulation 
and translation given by Lewis (1968). 
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(3) ∃𝑥∃𝑦[𝑊𝑥 & 𝑃𝑦𝑥 & 𝑆𝑦 & 𝐵𝑦]. 

(4) ∃𝑦(𝑊𝑦 & ∃𝑥(𝐼𝑥𝑦 & 𝑆𝑥 & 𝐵𝑥)). 123 

Note the restricting modifier 𝑊𝑦 & ∃𝑥(𝐼𝑥𝑦 & … ) in the scope of the outermost quantifier in 

(4). Its purpose is to restrict the domains of quantifiers that appear in its scope. Universal 

quantifiers would be restricted analogously. Below is the standard translation of the modal 

formulas, which is not unique to GR. What is unique to GR, as the Black/blue Swans example 

(below) from Lewis’ Counterpart Theory (CT) will show, is the manner in which the world-

indexed (world-restricted) formulae are treated. 
 

(5) □𝜑 translates to ∀𝑦(𝑊𝑦 ⊃ 𝜑𝑦) 

(6) ◊𝜑 translates to ∃𝑦(𝑊𝑦 & 𝜑𝑦) 

To form the world-indexed (world-restricted) sentence 𝜑𝑦(𝜑 holds in world 𝑦), the range of 

each quantifier appearing in 𝜑 is restricted to the world 𝑦. That is, the quantification ‘∀𝑥’ 

appearing in the formula 𝜑 is replaced by ∀𝑥(𝐼𝑥𝑦 ⊃ ⋯ ), and similarly, ‘∃𝑥’ in 𝜑 is replaced 

by ∃𝑥(𝐼𝑥𝑦 & … ), as we’ve already seen in (4).124 Recall that existence at some possible world 

is the same kind of existence as at the actual world, so the usual quantifiers (albeit restricted 

to the given world) are used.  

 

[T]he phrase ‘at w’ […] works mainly by restricting the domains of quantifiers in 

their scope, in much the same way that restricting modifier ‘in Australia’ does. In 

Australia, all swans are black – all swans are indeed black, if we ignore everything 

not in Australia; quantifying only over things in Australia, all swans are black. At 

some strange world w, all swans are blue – all swans are indeed blue, if we ignore 

everything not part of the world w; quantifying only over things that are part of w, 

all swans are blue. (Lewis 1986, p.5) 

 

The above, brief characterization of the role of such modifiers was primarily intended to aid a 

clear appreciation of Lewis’ argument for rejecting the admission of impossible worlds into 

his modal realist ontology. Let’s now turn to the analysis of his argument. 

 

 

                                                
123 To be precise, (4) is the Counterpart Theory (CT) translation of the quantified modal logic de dicto expression 
‘◊∃𝑥𝐹𝑥’. Lewis (1968, p.118). Also, Lewis (1968) uses and Divers (2002) uses for propositional conjunction. I 
leave in the distinct symbols for fidelity’s sake. 
124 Lewis (1968, p.118). 
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3.3   Trouble in paradise? – impossibilia and CT.125 

The ‘marvellous mountain’ argument against impossible worlds. 

Lewis’s rejection of impossibilia, and consequently impossible worlds is, more precisely, the 

rejection of the existence of genuine world-bound individuals that instantiate 

impossibilities.126 Lewis goes on to argue that the admission of inconsistent objects in a GR 

framework (hence impossible from a classical perspective) leads to a literal contradiction, 

and that is trouble enough for him to turn down impossible worlds, since he endorses ECQ 

(and needless to say he is not a trivialist). That is, Lewis argues that CT, which is a GR 

theory, is rendered inconsistent on the assumption of the existence of some classical 

impossibilia (objects with contradictory properties). I’ll show in the next section that this 

argument is unsound since Lewis assumes that classically impossible worlds have classical 

properties – in particular, he assumes that the ‘at world’ restricting modifier commutes with 

truth-functional connectives for formulae that hold at inconsistent worlds.127  

 

[S]uppose travellers told of a place in this world – a marvellous mountain, far 

away in the bush – where contradictions are true. Allegedly we have truths of the 

form ‘On the mountain both P and not P’. But if ‘on the mountain’ is a restricting 

modifier, which works by limiting domains of implicit and explicit quantification 

to a certain part of all that there is, then it has no effect on the truth-functional 

connectives. Then the order of modifier and connectives makes no difference. So 

‘On the mountain both P and Q’ is equivalent to ‘On the mountain P, and on the 

mountain Q’; likewise ‘On the mountain not P’ is equivalent to ‘Not: on the 

mountain P’; putting these together, the alleged truth ‘On the mountain both P 

and not P’ is equivalent to the overt contradiction ‘On the mountain P, and not: 

on the mountain P’. That is, there is no difference between a contradiction within 

the scope of the modifier and a plain contradiction that has the modifier within it. 

So to tell the alleged truth about the marvellously contradictory things that 

happen on the mountain is no different from contradicting yourself. But there is 

                                                
125 Lewis refers to modal realism as ‘A Philosopher’s Paradise’. Also, that’s the title of Ch.1 in Lewis (1986). Here 
‘trouble’ is taken to be anything that would be unacceptable to Lewis – in this case an inconsistent theory.  
126 (Divers 2002, p.67). Because in CT all individuals are by definition part of some world, so “individuals” whose 
parts are not spatiotemporally related, i.e. cross world “individuals” do not count as possibilia. I follow Divers in 
interpreting Lewis’ marvellous mountain as a world-bound impossible individual. 
127 Commutativity here is understood as functional commutativity, where one function is the ‘at w:’ modifier 
and the other functions are the truth functions, e.g. negation, appearing in the scope of the modifier ‘at w: not 
A’. On the assumption of commutativity ‘at w: not A’ is equivalent to ‘not at w: A’. I’ll make this more precise 
later. 
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no subject matter, however marvellous, about which you can tell the truth by 

contradicting yourself. (Lewis 1986, p.7, f.1) 

 

 

3.4   No trouble: the ‘marvellous mountain’ argument is unsound. 

Lewis assumes that all restricting modifiers such as ‘In Australia’, ‘On a mountain far away’ 

or ‘at world w’ (abbreviated ‘at w’) commute with respect to truth-functional connectives in 

regimes other than classical ones. 

 

The following objection to Lewis’ ‘marvellous mountain’ argument, which he gave against 

the existence of inconsistent worlds, is not widely proposed among rival theories to GR.128 

There is a tendency among authors working in impossible world semantics, especially those 

who endorse non GR approaches to possible and impossible worlds to see the force of Lewis’ 

argument stemming from the metaphysical aspect of its concretism – of the assumed nature 

of possible worlds in CT – as being a sufficient condition (and the key culprit), and only few 

take issue with the commutativity of the 'at w’ modifier with the truth-functional connectives. 

That is, it seems to me that some authors are a little too quick to accept Lewis’ derivation of 

the literal contradiction, and blame its success on the GR ontology ― an alleged shortcoming 

of GR they like to point out as the fulcrum of that derivation.129 For those authors, granting 

Lewis this apparently absurd consequence seems just a little too convenient, and indeed often 

serves as their cue to endorse less committal ontologies.130 For example, Nolan (1997, p.541) 

thinks that Lewis’ emphatic rejection of impossible worlds largely flows from what he takes 

them and their parts to be – namely as existing simpliciter. This, Nolan identifies as reason 

enough to derive a contradiction from positing objects with inconsistent properties.  

 

Extending this approach to impossible objects produces literal impossibilities, it 

seems: if the impossibilium corresponding to the blue swan-and-not-a-swan is 

literally a swan and is literally not a swan, then a contradiction is literally true. 

(Nolan 1997, p.541) 

 

                                                
128 A similar version of the argument can be found in Kiourti (2010, Ch. IV, §4.41). Mares (2004, pp.84-87) sees 
the problem with this property in the case of negation, which as a matter of fact is the key culprit. Lycan (1994, 
pp.39-41) believes that Lewis’ argument fails, observing that a truly inclusive quantifier would require the 
invalidation of the entailment: at w: ~P entails ~(at w: P). 
129 E.g. (Nolan 1997, p.541), (Jago 2012, p.64), (Vander Laan 1997, p.606). 
130 Kiourti (2010, p.102) also makes this observation. 
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But this analysis takes it for granted that Lewis’ reductio argument is sound. That is, Nolan 

takes it for granted that it’s fine to go from there being some individual that is both a swan 

and not a swan, to it being the case that the said individual is a swan and it not being the 

case that it is a swan. However, the applicability of that inference doesn’t rest on the 

metaphysical nature of the objects whose existence is being posited, but on the logical 

principles thought as correspondingly fitting the metaphysical view, and consequently 

employed in the analysis. Vander Laan (1997, p.606) thinks that Lewis’ reasons for rejecting 

impossibilia stem from his concretism and his insistence to take ‘at w’ as a restricting 

modifier, i.e. as merely restricting quantification over concrete worlds that are said to exist 

much in the same way as our world.  

 

Lewis goes on to say that ‘at so-and-so world’ is indeed a restricting modifier, 

unlike ‘in such-and-such story’, since worlds are like the actual world, not like 

stories. It is this last point that is of interest here. Lewis’s reasons for rejecting 

impossible worlds stem from his concretism, that is, his view that worlds are 

concrete objects much like us and our surroundings. (Vander Laan 1997, p.606) 

 

But this analysis assumes as correct Lewis’ analysis of concrete impossibilia. Lewis’ 

rejection of classically impossible worlds does not rely on the metaphysical nature of the 

objects in the quantifier’s scope, but rather on the logical assumptions he makes about them, 

which are embodied by the posited properties of the ‘at w’ modifier. Vander Laan then 

suggests an abstractionist approach that treats worlds more like stories rather than concrete 

objects, i.e. where ‘at so-and-so world’ modifier is intended along the lines of  ‘according to 

such-and-such story’. Such an approach, he observes, would avoid the problem of ending up 

in contradiction, since stories, unlike worlds, need not be maximal nor consistent. 

 

How should we read ‘on the mountain’? Let’s recall that such modifiers act by restricting the 

quantifiers in their scope to the domain of a single world, much in the same way as the ‘in 

Australia’ restricting modifier restricts all talk to that which exists in Australia. So, all swans 

are indeed black if we restrict our discourse only to what exists in Australia. Lewis assumes 

the existence of a domain―the marvellous mountain―where contradictions are true, but for 

simplicity we can speak of maximal domains, i.e. worlds, where contradictions are true. The 

objection to Lewis doesn’t hinge in any way on such domain generalisation, but rather will 

simplify the discussion – it will be a lot simpler to speak of worlds than their subdomains.  
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The premise that assumes the existence of a mountain such that ‘On the mountain P and not 

P’, amounts to assuming the existence of an inconsistent world, since according to Lewis’s 

version of GR anything that exists must do so at some world.131 So were anything to exist ‘on 

the mountain’, it would exist ‘on the mountain at some world’. So, since we’re considering 

the marvellous goings-on ‘on the mountain’ then a fortiori we’re considering those goings-on 

at the world whose part is the marvellous mountain.  

 

The key point to appreciate here is that since Lewis insists that the modifier and truth 

functional connectives commute in general, then it follows that this commutativity holds for 

the particular case when the modifier restricts quantification to the entire domain of some 

world. This shift of domain does somewhat reduce the generality of the original argument, 

but the refutation works equally well. That is, given that individuals are world bound in CT, 

and assuming in line with Divers that the marvellous mountain is intended as a world-bound 

impossibilium, extending the scope of the ‘on the mountain’ restricting quantifier to the 

world 𝑤 of which the mountain is a mereological part of, and employing ‘at 𝑤’ instead, will 

not result in an omission of what happens on the mountain relative to the actual world. The 

point is that if a special case (here, about certain spatiotemporally related mereological sums 

of individuals) of a general claim (here, about any individual) is refuted, then so is the general 

claim. And the choice to lay out the refutation focusing on the special case is motivated only 

by clarity and simplicity of presentation. 

 

One further thing to note is that given some world 𝑤 (say the actual world) and some 

mereological subdomain of it (of the actual world X, say ‘Australia in the year 2015’) the 

truth of ‘at X: 𝜑’ implies the truth of ‘at 𝑤: 𝜑’ if and only if 𝜑 expresses an existential 

proposition, and the converse is true if 𝜑 expresses a universal proposition, for any X that is 

part of 𝑤. To see this, observe that ‘in Australia in 2015, there are wombats’ implies ‘at the 

actual world (i.e. in some spatiotemporal location), there are wombats’, but ‘in Australia in 

2015 all swans are black’ doesn’t imply that ‘actually, all swans are black’. Conversely 

actually ‘every human is a mammal’ implies ‘all humans in Australia are mammals’, but 

‘there exist giant black holes’ doesn’t imply that ‘in Australia there are black holes’. In my 

shift of domain (to worlds, from mountains) in the present refutation, I have taken care to 

avoid any possible issues that could arise due to the negligence of those relationships.  

                                                
131 In (Lewis 1968, p.114) axiom P1. 
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Lewis wants us to accept a certain property of the ‘at w’ modifier – namely that it commutes 

with the truth-functional connectives. Let’s denote this alleged property of the modifier with 

MC, for modifier commutativity with truth-functional connectives: 

 

(MC) For any domain 𝑋, and corresponding restricting modifier 𝜂𝑋, truth-functional 

connective/operator 𝑓, and sentence(s) 𝜑: 132 

(𝜂𝑋 ∘ 𝑓)(𝜑)  iff  (𝑓 ∘ 𝜂𝑋)(𝜑) 

 

For clarification (examples), see the special cases of MC defined on the next page – namely 

MCC and MCN. Naturally, in this general definition worlds are just special kinds of domains. 

So, it is clear that if 𝑋 is a subdomain of some world and is equivalent to a proposition with 

the I or O form, then the truth of 𝜂𝑋(𝜑) entails the truth of 𝜂𝑤(𝜑), and the converse is true 

when 𝜑 is either of the A or E form.133 

 

What reasons does Lewis give in support of that property of the modifier? Well, given that 

the modifier restricts the domain of all quantifiers within its scope to one possible world, and 

given that worlds are (by definition of Lewis’ CT) just mereological sums of their parts, what 

occurs at any given world, or region of some world, is amenable to purely mereological 

(extensional analysis). That is, saying ‘in the box there’s a green marble and a red marble’ is 

the same as saying that ‘in the box there’s a green marble’ and ‘in the box there’s a red 

marble’. That is ‘at w: A and B’ should be equivalent to ‘at w: A’ and ‘at w: B’, which indeed 

most people will accept as intuitively reasonable (by MC).  

 

So far so (almost) good, it would seem. But Lewis then swiftly proceeds to harness our 

intuitions further (as if that was a completely seamless, immediate step), whilst we’re still 

under the spell of the apparently innocuous134 nature of the instance of MC just presented, 

and asks us to accept as equally innocuous to have MC extended to apply to yet another truth-

functional connective – namely negation, i.e. ‘at w: not A’ and ‘not at w: A’ being equivalent 

– in other words, negation and the restricting modifier commute. That is, we’re supposed to 

accept this broader applicability as equally unproblematic, and not only when applied to 

possible worlds, but apparently to impossible ones as well, since it is explicitly applied to the 

                                                
132 Where ∘ denotes the function-composition relation. When f is a unary operator (e.g. negation) then it acts 
on a single sentence, else if f is a dyadic connective (e.g. conjunction) acts on a pair of sentences. For 
clarification (examples), see the special cases MCC and MCN, further below. 
133 A: Every S is P. E: No S is P.  I: Some S is P. O: Some S is not P. 
134 Varzi (1997) gives a coherent account of non-adjunctive worlds. 
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‘on the mountain’ restricting modifier, and the mountain has been stipulated to be an 

inconsistent regime. Let’s denote these instances of MC as follows: 

 

(MCC)  ‘at w: A and B’   iff   ‘at w: A and at w: B’. 

(MCN)  ‘at w: not A’  iff  ‘not at w: A’. 

 

In fact, the argument hinges on MCN holding. But it cannot hold.135 To be sure, MC holds for 

classical worlds. That is, the commutativity of the ‘at w’ restricting modifier holds for 

classical truth-functional connectives, i.e. whose properties do not violate the principles of 

classical logic, but such principles are not guaranteed to obtain at non-classical worlds and 

the corresponding commutativity principle fails in such situations. Hoping that the reader’s 

intuitions about classical mereology can work in his favour, in a way that they may be guided 

by the common-sense analogy: ‘in the box there is no green marble’ therefore it’s not the 

case that ‘in the box there is a green marble’. But affirming this purported property of the 

restricting modifier, as I will show, makes the unwarranted assumption that it ought to hold 

for inconsistent worlds, which ultimately boils down to wrongly assuming that inconsistent 

objects, and worlds of which they are a part, are to be analysed classically; in particular, that 

LNC ought to hold there. That is, MCN presupposes LNC, i.e. if LNC fails so does MCN.136 

 

It will be of benefit to have a clear outline of the essential elements of Lewis’s argument and 

its immediate consequences. 

 

 (Hyp) There is a world w such that at w: A and not A. 

 (P1) MCC and MCN are true of the domain restricting modifier for all worlds. 

(C1)     There is a world w such that at w: A and not at w: A.       (Hyp.+P1) 

 (P2) There is no subject matter whereby one can tell the truth by contradicting  

  themselves (LNC). 

 (C2) Therefore, there is no such w. 

                                                
135 Kiourti (2010, pp.116-119) raises similar objections to accepting MCN and consequently follows a very similar 

line of reasoning to mine in demonstrating what this assumption amounts to. My conclusion differs by virtue of 
how I have formulated the objection – Kiourti concludes that Lewis begs the question against the hypothesis of 
concrete impossibilia, where I conclude that the argument is unsound on grounds of the falsity of hypothesis 
concerning the properties of the ‘at w’ modifier, where w needn’t be a classical world. 
136 Given that Lewis is committed to a classical truth conditional theory of meaning, his adherence to MCN is 
understandable. After all, denying MCN may require a denial of the classical truth conditional theory of meaning 
or denying that the connective ‘¬’ means not (classical negation) at impossible worlds. However, these 
alternatives cannot be ignored without the risk of begging the question. For example, one may reject MCN by 
adopting an information theoretic theory of meaning, e.g. see (Mares 1997, 2004) – a theory which requires 
dialethism and a paraconsistent view of negation, both of which Lewis rejects emphatically. 
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 (C3) Therefore there are no inconsistent worlds.137   (RAA) 

 (C4) There are no impossible worlds. 

 

Why assume that MCN ought to always hold for all worlds, both possible and impossible?138 

Let’s think of circumstances that would violate MCN. Consider a world w* that contains 

some genuinely inconsistent object a. That is, let us assume that ‘at w*: Pa and not Pa’ for 

some property P. Now, given that Pa is a truth value glut (both true and false, but in 

particular true) at w*, we should analyse it accordingly, which means we have no justified 

recourse to MCN, which presupposes LNC, precisely because the existence of a at w* is a 

counterexample to LNC! That is, we cannot infer ‘not at w*: Pa’ from ‘at w*: not Pa’, 

precisely because both Pa and not Pa hold at w.139   

 

In other words, the assumption of the universality of MCN, rests on the erroneous supressed 

assumption that LNC ought to hold for inconsistent worlds in much the same way as it does 

for consistent ones, like boxes and fridges, which we are familiar with. But we are not 

considering consistent worlds, so appeal to MCN is unjustified, precisely because w* is an 

inconsistent world. We will run into literal contradictions, i.e. ‘at w Pa’ and ‘not at w Pa’ 

being true simpliciter, only if we assume the existence of truth value gluts, and then proceed 

to analyse them classically by unwarranted appeal to MCN. This is what Lewis in fact does. 

By refraining from any such questionable steps, we don’t end up in explicit contradiction. So, 

although w* is a genuinely inconsistent world, the theory remains consistent. That is, 

assuming the existence of w*, doesn’t lead to a contradiction simpliciter. But if the only 

reason for Lewis’ rejection of the existence of genuine inconsistent worlds is the success of 

this reductio ad absurdum, then his argument fails, because the attempted reductio ad 

absurdum from assuming the existence of w* is unsound (since P1 is false). Consequently, 

using only Lewis’s reasons for rejecting the existence of genuine inconsistent worlds, it 

doesn’t follow that they don’t exist. 

 

                                                
137 The argument has the form of reductio ad absurdum. 
138 An analogue of this argument has been made in the context of extended theories of objects that include 
non-existent objects, e.g. Parsons’s theory – a succinct summary of Parsons’s analogue to the foregoing 
argument is given in (Zalta 1988, p.132). 
139 An analogous issue arises, concerning a questionable principle in theories of non-existent objects, e.g. 
Parsons (1980, p.19, p.105), Zalta (1988, pp.131-4). The analogy is along the lines possible vs. impossible and 
existent vs. non-existent. Parsons points out that the analogous principle to MCN holds for all existing objects, 
but not all objects (where impossible ones are among the non-existent). In that theory inconsistent objects are 
classified as non-existent objects, much in the same way as Lewis would classify them as classically impossible. 
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For similar reasons, a “Lewis-type” reductio ad absurdum against the existence of genuine 

incomplete worlds isn’t sound either.140 That is, given the breakdown of Lewis’s argument 

above, the argument with the following conclusion is unsound, also due to P1’ being false. 

 

 (Hyp’) There is a world w such that it’s neither the case that at w: A nor is it the case 

  that at w: not A. 

 (P1’) MCC and MCN are true of the domain restricting modifier for all worlds. 

 (C1’) There is a world w such that at w: A and not at w: A.          (Hyp+P1)

 (P2’) There is no subject matter whereby one can tell the truth by contradicting  

  themselves (LNC). 

 (C2’) Therefore, there is no such w. 

 (C3’) Therefore there are no incomplete worlds.          (RAA) 

 (C4’) There are no impossible worlds. 

 

Let us assume the existence of an incomplete world w° that has, as one of its parts, an object 

a such that neither Pa nor not Pa is true at w°, and then let us investigate what is really doing 

the work in a "successful” derivation of a contradiction. That is, Pa is a truth value gap at w°, 

so we have both ‘not at w° Pa’ and ‘not at w° not Pa’. How is MCN justified here, and can it 

be used to derive a contradiction? In particular, can we use MCN to infer ‘at w°: not Pa’ from 

not ‘at w°: Pa’? Call that particular MCN instance MCNI for importing negation, i.e. going 

from not ‘at w A’ to ‘at w not A’, as the dual move to MCNE from the previous, inconsistent 

world w* example, which hinged on exporting negation, i.e. from ‘at w not A’ to not ‘at w A’. 

 

 (MCNI)     Importing negation: If ‘not at w: A’, then ‘at w: not A’. 

 (MCNE)  Exporting negation: If ‘at w: not A’, then ‘not at w: A’. 

 

That would suffice for a derivation of a contradiction, since we already have ‘not at w° not 

Pa’. This is also necessary since I have already argued that the other direction, i.e. MCNE is 

unwarranted, thereby disabling the only other way of deriving a contradiction. (In passing we 

can quickly set out that other means of deriving a contradiction, were MCNE to be allowed in 

the case of incomplete worlds. Given MCNE we can go from not ‘at w° not Pa’ to not [not 

‘at w° Pa’], and from there to ‘at w° Pa’, and given that we also have not ‘at w° Pa’, a 

contradiction ensues. But MCNE fails (as argued earlier), so let’s focus on the inapplicability 

of MCNI in the case at hand.) The use of MCNI would seem wrong, since w° is an 

                                                
140 The next two paragraphs can be skipped. 
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incomplete world, so we cannot assume that the failure of Pa being true at w° means that not 

Pa should be true there. To do so would be to assume that there is a logical connection 

between the failure of Pa being true at w° and the truth of not Pa at w° after all. As a matter 

of fact, it would amount to assuming that LEM ought to hold at w°, but it needn’t because w° 

isn’t a classically possible world, and as a matter of fact it doesn’t, precisely because Pa is a 

truth value gap at w°. 

 

So, the above shows that Lewis-type arguments against the existence of impossible worlds 

fail, because they fail to rule out the existence of inconsistent and incomplete worlds, which 

are classically impossible. 

 

3.5   No trouble: the ‘marvellous mountain’ argument is invalid.  

The objection that shows ‘the marvellous mountain’ argument to be unsound can be modified 

to showing the argument to be invalid if we observe that assuming (and that what Lewis 

does) that MCC and MCN should always hold of the restricting modifier, amounts to 

assuming that there are no worlds where MCC or MCN fails to hold of the modifier, i.e. there 

are no inconsistent or incomplete worlds. Insisting on MCN always holding of the modifier, 

amounts to insisting that all worlds obey LNC, which consequently rules out there being any 

inconsistent worlds – the precise and particular conclusion that Lewis argues for (C3). But 

having already employed a principle (MCN) that doesn’t hold for inconsistent worlds, Lewis 

has effectively assumed that there are no such worlds (since the use of MCN is blatantly 

illicit at such worlds), in particular the world from the hypothesis, where the marvellous 

mountain is said to exist. This begs the question against the existence of genuinely 

inconsistent individuals. 

 

Consider the contrast in the applicability of MCN in the two following cases; the first based 

on an example from Lewis (Lewis 1986), where MCN intuitively and uncontroversially 

applies, and the second one borrowed from Priest’s story Sylvan’s Box (Priest 1997) where it 

just obviously cannot apply, since the box is stipulated to be an impossible object. That is, the 

box from the story is both empty and contains a wooden figurine fixed to its bottom, whereas 

the fridge is a classical object, as are its contents. 

 

(1)  In the fridge: there is no beer. 

(2)  In the box: there is no wooden figurine.  



95 
 

 

These two propositions have the negation within the scope of their respective domain 

restricting modifiers. Now if MCN was valid for both classical and non-classical domains its 

application would warrant salva veritate the following transformations of (1) and (2):141 

 

(3)  It’s not the case that in the fridge: there is some beer. 

(4)  It’s not the case that in the box: there is a wooden figurine. 

 

It’s rather obvious that the move from (1) to (3) via recourse to MCN is not only natural and 

intuitive, but justified, under the (stipulated) assumption that the fridge and its contents are 

classical – in particular they obey LNC. In fact the two propositions are classically equivalent 

– (1) is true if and only if (3) is true. By contrast, given that the box is what it is – an 

impossibilia of the truth value glut kind, (2) doesn’t imply (4) because whereas (2) is true (4) 

is as a matter of fact false (and false only), and its negation is true. Hence assuming MCN as 

valid rules out talk of inconsistent worlds, because we have just seen such worlds are 

counterexamples to MCN’s validity. The fallacy is clear once we reveal all the enthymematic 

content that the premises carry: 

 

(Hyp) There is an inconsistent world w such that at w: A and not A. 

(P1) MCC and MCN are true of the domain restricting modifier for all worlds, 

which implies that there are no inconsistent worlds (question begging). 

(C1)     There is a world w such that at w: A and not at w: A.       (Hyp+P1) 

(P2) There is no subject matter whereby one can tell the truth by contradicting  

  themselves (LNC).  

(C2) Therefore, there is no such w. 

(C3) Therefore there are no inconsistent worlds.    (RAA) 

(C4) There are no impossible worlds. 

 

3.6 Conclusion 

In conclusion let’s clearly emphasize what the above means for the extended argument from 

admissible paraphrase. Let’s recall that the explicit position of Lewis (1973) is that such face-

value interpretation ought to be regarded as affording the best semantic theory of the 

discourse if it does not lead to trouble and the alternatives do (Divers 2002, p.68): 

 

                                                
141 I’m aware of the implicit fictionalist account of possible and impossible worlds, which the story can be seen 
to endorse. The box from the story is to be considered as a Lewisean kind of impossibilia, i.e. real and concrete. I 
only use this example for historical reasons 
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I do not make it an inviolable principle to take seeming existential quantifications 

in ordinary language at their face value. But I do recognize a presumption in favor 

of taking sentences at their face value, unless (1) taking them at face value is 

known to lead to trouble, and (2) taking them some other way is known not to. 

(Lewis 1973, p.84) 

 

It has been shown that, on the extended account, the most obvious kind of trouble to 

Lewis―an inconsistent theory―does not arise, so although not entirely dismissed (1) is 

substantially weakened. 
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Chapter 4 

 

Ordering Semantics for Counterfactuals  

&  

A Contextualized Account of Counterfactuals 

 

 

We may separate the contribution of 
practice and context from the contribution 
of the world, evaluating counterfactuals as 
true or false at a world, and according to a 
'frame' determined somehow by practice 
and context.  
 

(Lewis, 1981) 
 

Our system of spheres is nothing but a 
convenient device for carrying information 
about the comparative similarity of worlds. 
We could do away with the spheres, and give 
the truth conditions for counterfactuals 
directly in terms of comparative similarity of 
worlds […]  
 

(Lewis 1973) 

 

 

 

 

4.0 Introduction 

This chapter gives an account of a contextualized (context relativized) counterfactual of the 

form ‘In context C: If it were the case that … , then it would be the case that …’, based on 

Lewis’ (1974, 1981) analysis of the counterfactual. Drawing on earlier work by Lewis (1973, 

1981) I first give an ordering semantics for counterfactuals, based on the idea of comparative 

similarity, interpreted as ‘similarity in relevant respects’ or as ‘relevant similarity’, and 

modelled by total preorderings of possible worlds. Subsequently, building on that analysis I 

develop model-theoretic methods for a semantic consequence relation of contextualized 

counterfactuals (contextualized validity), which is given as the culminating item of the 

chapter. 
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The early part of the chapter (§4.1-§4.2) is devoted to defining the counterfactual language 

and an ordering semantics model theory, where comparative similarity of worlds is modelled 

by total preorders. In section §4.2, drawing on arguments given earlier in chapter 2, the 

resulting logic CS that I endorse is much like Lewis’ preferred account of the counterfactual 

save for strict centering being replaced with a weaker centering condition. That is, CS is just 

the logic that Lewis (1973) calls VW, which is obtained from Lewis’ preferred system VC 

(commonly referred to as C1) by replacing the strict centering condition with the weak 

centering condition, or equivalently removing the axiom (𝐴 ∧ 𝐵) ⊃ (𝐴 > 𝐵) from the 

axiomatized version of VC (Lewis 1973, p.132). The system CS has a special relationship to 

the system S of chapter 2. The appendix on page 163 contains the proof of the equivalence of 

the class of CS models and the class of S models. That is, these classes validate the same sets 

of formulae and inferences. 

 

In section §4.3 I further develop those features of CS model theory that are designed to 

provide a foundation for the logics of contextualized counterfactuals CS+, CS1+ and CS2+ 

developed in sections §4.4.3-§4.4.5. Because those features are central in their significance, 

they deserve a fitting prelude at this point.  

 

Ordering  frames, which constitute the basis of CS model theory given in §4.2 are – much 

like systems of spheres – a means of carrying information about the comparative similarity of 

worlds, relative to the actual world (or any other world where a counterfactual’s truth is being 

evaluated). On Lewis’ (1981, §2) conception of comparative similarity (which I adopt) as 

being largely determined by contextual considerations – contingent both on the facts that 

obtain at the actual world and what (counter-facts) we deem as relevant in any given 

conversational setting – ordering frames can be viewed as carriers of contextual information. 

On the reading of similarity as similarity in relevant respects, which I also maintain, 

comparative similarity of worlds is closely tied to relevance. Just as we think of possible 

worlds as the ways the world could be, we can think of ordering frames as ways that all facts 

and propositions could be distributed as a function of their relevance (importance, 

significance) to any given conversation.  

This role of ordering frames – as contextual information carriers – can be developed further, 

in order to account for transformations (on ordering frames) interpreted as adding or 

subtracting contextual information. In §4.3 I define special classes of ordering frames, viz. 
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refinements and their duals, dilutions, which result from adding or subtracting contextual 

information, respectively to/from other ordering frames.  

As an introductory example, consider the domain of integers and let us stipulate absolute 

value as the sole relevant parameter of “similarity to zero” – the smaller the absolute value, 

the greater the similarity to zero. Then any integer n and its negative counterpart -n are said to 

be equivalent in terms of their comparative similarity to zero, yielding the following 

ordering, (where the leftmost item indicates zero as being the most similar integer to itself, 

and rightward being the direction of increasing dissimilarity to zero): 

 

(4.1)   {0}, {-1, 1}, {-2, 2}, … , {-n, n}, … 

 

This ordering (which is a total preordering of the integers) can be said to carry the 

information about all integers’ relevant similarity to zero, where relevant similarity in this 

case is the integer’s absolute value. We could add more information to this ordering – that is, 

we could refine the information in this ordering by adding a parameter that would introduce 

distinctions where none previously existed on account of their irrelevance, i.e. +/- sign 

distinction irrelevance.  

 

A refinement of (4.1) would be an ordering that results from introducing new distinctions 

(interpreted as adding contextual information to the original ordering), whilst preserving the 

previous relevant comparative similarity differences (interpreted as preserving contextual 

information carried by the original ordering).142 For example, consider a refinement in which 

all positive integers are taken to be more similar to zero than their negative counterparts: 

 

(4.2)   {0}, {1}, {-1}, {2}, {-2}, … , {n}, {-n}, … 

 

Note that the original comparative similarity distinctions (original contextual information) 

have been preserved, i.e. as before any m is more similar to zero than any n iff |m|<|n|.  

The central idea of refinements immediately gives rise to a more general and equally 

important concept of mutual refinements which are refinements of more than one ordering 

frame, and which are central to the notion of contextual information preservation underlying 

the semantic consequence relation defined on the contextualized language in §4.4.5.  

 

                                                
142 There are rudimentary parallels between what I call refinements and set partition refinements. 
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Sections §4.4.1-§4.4.3 constitute the model theory of the proposed analysis of contextualized 

counterfactuals, consisting of context representation, a formal language and its semantics. 

Setting up the basics of the semantics for the contextualized language in §4.4.1 I designate 

the role of context representation to CS ordering frames (which constitute the basis of the CS 

account of counterfactuals given earlier) and argue that they are adequate for that purpose. 

 

The formal language for contextualized counterfactuals, given in section §4.4.2, introduces 

context-indexed connectives >𝑐 for each context c. That is, expressions like 𝐴 >𝑐 𝐵 in the 

formal language intend to model contextualized counterfactuals of the form ‘In context c: If it 

were the case that 𝐴, then then it would be the case that 𝐵’, where 𝐴 and 𝐵 express 

propositions. Subsequently, the corresponding semantics (CS+ model theory) of thus 

contextualized language allows making distinctions in the truth value of counterfactuals with 

the same antecedents (and even the same antecedents and consequents), by appeal to 

contextual considerations explicitly indicated by their respective context indices.  

 

The semantics for the contextualized language, is developed in §4.4.2 and §4.4.3,  and draws 

strongly on CS model theory (intended to serve as the foundation for CS+ model theory), i.e. 

by developing a mechanism that reduces the truth conditions of 𝐴 >𝑐 𝐵 on a CS+ model to 

those of 𝐴 > 𝐵 on a corresponding CS model whose underlying ordering frame is taken to 

represent context c.143 That is, contextual considerations underlying a context-indexed 

expression are cashed out in terms of contextual information carried by ordering frames. The 

greater expressive power of the contextualized formal language gives the proposed analysis 

clear advantages over some alternative accounts.144   

  

The culmination of the chapter is the logic of contextualized counterfactuals CS2+, offered in 

the form of a semantic consequence (contextualized validity), developed throughout sections 

§4.4.3-§4.4.5. I begin with the most basic system of the contextualized language CS+, 

defined at the end of f §4.3, which is hardly a logic of contextualized counterfactuals, since it 

                                                
143 The general character of the model theory of the contextualized language doesn’t require the use any 
particular counterfactual analysis as its basis. The formalism is not entirely dependent on the base conditional 
logic. The proposal is a general prescription of how to  contextualize a conditional language. The advantage of 
CS are the results about ordering frames and mutual refinements that allow to fashion a meaningful notion of 
contextual information preservation when defining semantic consequence.  
144 Gabbay’s (1972) account has allowed for distinguishing between counterfactuals with same antecedents but 
different consequents, however falls short of distinguishing counterfactuals with the same antecedent and 
consequent, an observation also made by Nute (1980, p.76).  



101 
 

 

doesn’t place any formal validity constraints on semantic consequence that require a 

contextual link between the premises and conclusion.  

 

To develop such a notion of a contextual connection between the premises and the conclusion 

– a form of contextual information preservation – I show in §4.4.4 that CS+ preserves much 

of CS, if certain contextual restrictions are in place, and then I define the first proper logic of 

contextualized counterfactual CS1+ at the beginning of §4.4.5 with those contextual 

constraints included. To give a sense the contextual constraints placed on CS1+ semantic 

consequence, let us consider the following example: 

 

In context a : If Caesar had been in command, he would have used the A-bomb. 

In context b : If Caesar had been in command, he would have used catapults. 

       Therefore 

In context c : If Caesar had been in command, he would have used the A-bomb and catapults. 

 

The fundamental idea underlying contextualized validity is to add a condition of the existence 

of a link between the contextual information underlying the premises and the conclusion. To 

put it simply, for the contextualized inference to be valid it is required that the conclusion 

context c preserves the contextual information of the contexts a and b that make the premises 

true.145 Only then a truth preserving inference can be said to be contextually valid. There is an 

interesting parallel between this requirement and the syntactic necessary condition for valid 

relevant conditionals that we have encountered earlier (chapter 1, Definition 1.7), which 

demands that the antecedent and consequent share a common propositional variable. Here, on 

the other hand, we have an analogous semantic necessary condition for valid inference, which 

demands that the premises and the conclusion share a common structure, interpreted as a 

carrier of contextual information. 

 

                                                
145 Berto (2014, p.113; 2017, p.11) notices – in the context of a logic of imagination – that the conclusion 
shouldn’t come automatically, as a logical entailment. However, the solution he suggests (Berto 2014, p.113, f.9; 
Berto 2017, p.11), of fixing the premises to range across a single context, although sound, needn’t be that 
strong. The challenge, as I see it is to allow premises to range over more than one context and propose a means 
for contextual information that ensures truth preservation. There are some parallels between my conditions for 
contextualized validity and those suggested by Priest (2017, §3.2), for what he calls material validity, albeit 
expressed in terms of imported information. 
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I conclude §4.4.5 and the chapter by defining the system CS2+, which is weaker than CS1+ 

due to an alteration of the contextual constraints – one motivated by the invalidation of some 

questionable inferences whose formal validity CS1+ inherits from CS. 

 

The main results of section §4.3, devoted to the model theory based on ordering frames, are 

Lemma 4.3, regarding the duality between refinements and dilutions, Proposition 4.5 which 

establishes important truth preserving property of refinements, and the dual result concerning 

falsity preserving properties of dilutions is given by Corollary 4.5.1. The main results in 

section §4.4 of the modified model theory for the contextualized language are Theorem 4.9, 

and Theorem 4.10, which say that depending on the extent of restrictions on the kind of 

context indices appearing in the premises and conclusion, CS+ preserves either all of the 

logic CS, or some of it. Corollaries 4.9.1 and 4.9.2 say that CS+ reduces to S5 or CS if the 

context index-set is empty or a singleton, respectively.  

 

4.1 The formal language 

First let’s start with the basic ingredients for our language, i.e. a set of propositional variables  

𝑃𝑉 = {𝑝𝑛: 𝑛 ∈ ℕ} the elements of which shall be denoted with lowercase Roman letters 

(𝑝, 𝑞, 𝑟, … ) or subscripted lowercase Roman 𝑝’s (𝑝1, 𝑝2, … , 𝑝𝑘 , … ), or lowercase Greek letters 

(𝜑, 𝜓, 𝜒, … ); unary connectives: ~ (negation), □ (necessity), ◊ (possibility); and binary 

connectives: ∧ (conjunction), ∨ (disjunction), ⊃ (material conditional), > (counterfactual 

conditional). For the metalanguage, upper case letters (𝐴, 𝐵, 𝐶, … ) shall be used as variables 

ranging over complex formulae and propositional variables. 

 

Definition 4.1.1: Define our language of interest, denoted ℒ, to be the set: {~, □,.◊, .∧, .∨, ⊃, >}.  

 

Definition 4.1.2: Let the set of propositional variables be 𝑃𝑉 = {𝑝𝑛: 𝑛 ∈ ℕ}. 

 

Now we define the set of well-formed formulae.146 

Definition 4.1.3: Let 𝐹𝑜𝑟 be the smallest set closed under the following well-formed formula 

formation rules: 

 

                                                
146 E.g. the counterfactual ‘If kangaroos had no tails, they would topple over’ would have the form: 𝑝 > 𝑞, 
where 𝑝 stands for ‘kangaroos have no tails’ and 𝑞 stands for ‘kangaroos topple over’. This is the same 
language, as defined in §2.1.1. 
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B:      All propositional variables are wffs, i.e. 𝑃𝑉 ⊆ 𝐹𝑜𝑟. 

R1:  If 𝐴 ∈ 𝐹𝑜𝑟 then {~𝐴, □𝐴,.◊𝐴} ⊆ 𝐹𝑜𝑟. 

R2:  If {𝐴, 𝐵} ⊆ 𝐹𝑜𝑟 then {𝐴 ∧ 𝐵, 𝐴 ∨ 𝐵, 𝐴 ⊃ 𝐵, 𝐴 > 𝐵} ⊆ 𝐹𝑜𝑟. 

 

Definition 4.1.4: 𝐴 ∈ 𝐹𝑜𝑟. The set of subformulae of 𝐴 is the smallest set 𝑆𝑢𝑏(𝐴) satisfying 

the following conditions:  

1. 𝐴 ∈ 𝑆𝑢𝑏(𝐴) 

2. For each ∗ ∈ {~, □,.◊. } if ∗ 𝐵 ∈ 𝑆𝑢𝑏(𝐴), then 𝐵 ∈ 𝑆𝑢𝑏(𝐴). 

3. For each ∘ ∈ {∧,∨, ⊃, >} if 𝐵 ∘ 𝐶 ∈ 𝑆𝑢𝑏(𝐴), then 𝐵 ∈ 𝑆𝑢𝑏(𝐴) and 𝐶 ∈ 𝑆𝑢𝑏(𝐴). 

Next, we proceed to defining structures on which > is to be defined. The conditions that have 

been adopted are those thought to be best in terms of what Lewis’ account offers, i.e. what 

inferences it validates and which ones it invalidates, as discussed in Chapter 2.  

 

Note that for all 𝐴, 𝐵 ∈ 𝐹𝑜𝑟: if 𝐵 ∈ 𝑆𝑢𝑏(𝐴), then 𝑆𝑢𝑏(𝐵) ⊆ 𝑆𝑢𝑏(𝐴). 

Proof : It’s immediate, from the definition. 

 

Definition 4.1.5: It will be helpful to define the subset of 𝐹𝑜𝑟 that contains all and only 

formulae that contain occurrences of >. Denote that subset with 𝐹𝑜𝑟>.  

More formally: 𝐴 ∈ 𝐹𝑜𝑟>  iff   ∃𝐵 ∈ 𝑆𝑢𝑏(𝐴) such that 𝐵 = 𝐶 > 𝐷 for some 𝐶, 𝐷 ∈ 𝐹𝑜𝑟.  

 

Definition 4.1.6: Denote the set 𝐹𝑜𝑟\𝐹𝑜𝑟> with 𝐹𝑜𝑟>
̅̅ ̅̅ ̅̅ , which is just the set of wffs of basic 

modal language. 

 

Definition 4.1.7: Define 𝐹𝑜𝑟>0 ⊆ 𝐹𝑜𝑟> as follows: 𝐶 ∈ 𝐹𝑜𝑟>0 iff whenever 𝐴 > 𝐵 ∈ 𝑆𝑢𝑏(𝐶), 

then both 𝐴 ∈ 𝐹𝑜𝑟>
̅̅ ̅̅ ̅̅  and 𝐵 ∈ 𝐹𝑜𝑟>

̅̅ ̅̅ ̅̅ . 

 

That is, 𝐹𝑜𝑟>0 is just like 𝐹𝑜𝑟>, but any instances of 𝐴 > 𝐵 are restricted in the above sense. 

Example: ~(𝑝 > (𝑞 ⊃ 𝑟)) ∧ (((𝑝 ∧ ~𝑞) > 𝑟) ∨ (𝑞 > ~𝑟)) ∈ 𝐹𝑜𝑟>0 but 𝑝 > (𝑝 > 𝑝) ∉ 𝐹𝑜𝑟>0. 

 

Definition 4.1.8: Define 𝐹𝑜𝑟(>) ≔ {𝐴 > 𝐵: 𝐴, 𝐵 ∈ 𝐹𝑜𝑟}.  That is, 𝐹𝑜𝑟(>) is just the set of 𝐹𝑜𝑟 

formulae whose main connective is >. 
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4.2 Comparative Similarity 

In order to know what the relations in our semantics are, we need to introduce their intended 

meaning and basic properties. The systems of spheres discussed in §2.2 are just a convenient, 

and intuitive way for representing information about the comparative similarity of worlds.147 

We can do the same, directly in terms of comparative similarity of worlds, together with 

accessibility. To make this explicit let’s consider the following definitions. 

 

Definition 4.2.1: A binary relation 𝑅 ⊆ 𝑆 × 𝑆 on a set 𝑆, denoted by ≲, is a preorder iff it is:  

(1)    Transitive: ∀𝑥, 𝑦, 𝑧 ∈ 𝑆 ((𝑥 ≲ 𝑦 ∧ 𝑦 ≲ 𝑧) ⟶ 𝑥 ≲ 𝑧). 

(2)    Reflexive: ∀𝑥 ∈ 𝑆 (𝑥 ≲ 𝑥). 

If ≲ satisfies (1), (2), and (3), it is a total preorder (also called a non-strict weak order). 

(3)   Totality: ∀𝑥, 𝑦 ∈ 𝑆 (𝑥 ≲ 𝑦 ∨ 𝑦 ≲ 𝑥 ). 148 

 

Definition 4.2.1.1: For any preorder ≲, denote (𝑥, 𝑦) ∉ ≲, i.e. ‘it is not  the case that 𝑥 ≲ 𝑦’ 

with 𝑦 < 𝑥, and let us write 𝑥~𝑦 to mean that both 𝑥 ≲ 𝑦 and 𝑦 ≲ 𝑥. 

 

Corollary 4.0.1: If ≲ is a preorder on 𝑆 then for no 𝑥 ∈ 𝑆: 𝑥 < 𝑥. 

Proof : This follows directly from reflexivity of ≲, i.e. 𝑥 < 𝑥 means (𝑥, 𝑥) ∉ ≲, contradicting 

reflexivity of ≲.                         □ 

 

Corollary 4.0.2: If ≲ is a total preorder on 𝑆 then for all 𝑦, 𝑥 ∈ 𝑆: 

(i) 𝑥 < 𝑦  iff  (𝑥, 𝑦) ∈ ≲  and  (𝑦, 𝑥) ∉ ≲  

(ii) 𝑥 ≲ 𝑦  iff  𝑥 < 𝑦  or  𝑥~𝑦   

Proof : (i) (𝑦, 𝑥) ∉ ≲  follows from definition of 𝑥 < 𝑦, and (𝑥, 𝑦) ∈ ≲ follows from totality of  

≲. (ii) Given totality, either (𝑥, 𝑦) ∈ ≲  and (𝑦, 𝑥) ∉ ≲  or both (𝑥, 𝑦) ∈ ≲  and (𝑦, 𝑥) ∈ ≲. The 

third, totality satisfying option (𝑥, 𝑦) ∉ ≲ and (𝑦, 𝑥) ∈ ≲ is clearly impossible.      □ 

 

My definition of ordering frames based on comparative similarity closely follows the 

definition of comparative similarity system in Lewis (1973, p.48), save for the condition 

corresponding to what Lewis calls centering, i.e. 

 

                                                
147 Lewis (1973, p.48). 
148 Lewis (1973, p.48) refers to this property as strongly connected. 
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(CS3.1)      The element 𝑖 is <𝑖-minimal: ∀𝑗 ∈ 𝑊(𝑗 ≠ 𝑖 ⟶ 𝑖 <𝑖 𝑗 ). 

 

which I replace with a weaker condition (CS3) corresponding to weak centering for reasons 

already given in §2.2.5.  

 

Definition 4.2.2: An ordering frame based on comparative similarity is a pair (𝑊, ≲), where 

𝑊 is a nonempty set and ≲: 𝑊 ⟶ ℘(𝑊) × ℘(𝑊 × 𝑊) is a function that assigns to each 𝑖 ∈ 𝑊 

a pair (𝑆𝑖, ≲𝑖), consisting of a set 𝑆𝑖 ⊆ 𝑊, regarded as the set of worlds accessible from 𝑖, and 

a binary relation ≲𝑖 on 𝑊, regarded as the ordering of worlds in respect of their comparative 

similarity to 𝑖 and satisfying the following conditions, for each 𝑖 ∈ 𝑊:  

 

(CS1)       ≲𝑖 is a total preorder on 𝑊 

(CS2)      𝑖 is self-accessible: 𝑖 ∈ 𝑆𝑖. 

(CS3)      𝑖 is ≲𝑖-minimal: ∀𝑗 ∈ 𝑊(𝑖 ≲𝑖 𝑗 ). 

(CS4)      Inaccessible worlds are ≲𝑖-maximal: ∀𝑗, 𝑘 ∈ 𝑊(𝑘 ∉ 𝑆𝑖 ⟶ 𝑗 ≲𝑖 𝑘). 

(CS5)      Accessible worlds are more similar to 𝑖 than inaccessible worlds: 

∀𝑗, 𝑘 ∈ 𝑊((𝑗 ∈ 𝑆𝑖 ∧ 𝑘 ∉ 𝑆𝑖) ⟶ 𝑗 <𝑖 𝑘) 

 

On the intended interpretation, elements of 𝑊 are possible worlds, 𝑆𝑖 is regarded as the set of 

worlds accessible from 𝑖, and ≲𝑖 is regarded as the ordering of worlds in respect of their 

comparative similarity to 𝑖, with the following intended meaning: 

 

𝑗 ≲𝑖 𝑘 :  𝑗 is at least as similar to 𝑖 as 𝑘 is. 

𝑗 <𝑖 𝑘 :  𝑗 is more similar to 𝑖 than 𝑘 is. 

𝑗 ∼𝑖 𝑘 :  𝑗 and 𝑘 are equally similar to 𝑖.149 

 

Definition 4.2.3: Denote the class of ordering frames from Definition 4.2.2 by CS. 

Note that since centering implies weak centering, the class of ordering frames where we 

substitute (CS3) for centering is a proper subclass of CS.150 

 

                                                
149 Lewis’ (1981, p.220) definition of ∼𝑖  in terms of a strict comparative similarity relation <𝑖  is logically 

equivalent to the one he gave earlier, in Lewis (1973, p.48) – the one I choose to use in the remainder of the 
chapter. In terms of <𝑖  the comparative similarity equivalence ∼𝑖 is defined as follows: 𝑗 ∼𝑖 𝑘: neither 𝑗 <𝑖 𝑘 
nor  𝑗 <𝑖 𝑘. 
150 Since, if 𝑗 <𝑖

𝐹 𝑘, then 𝑗 ≲𝑖
𝐹 𝑘 for any 𝑖, 𝑗, 𝑘 ∈ 𝑊, by totality and definition of <𝑖

𝐹. 
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Definition 4.2.4: Given some 𝐹 ∈ CS, let 𝑊𝐹 denote the domain of 𝐹 and let ≲𝐹 denote 𝐹’s 

ordering/accessibility assignment on 𝐹’s domain, i.e. 𝑊𝐹 ⟶ ℘(𝑊𝐹) × ℘(𝑊𝐹 × 𝑊𝐹) as 

defined in 4.2.2. Also, let 𝑆𝑖
𝐹 and ≲𝑖

𝐹 denote the elements of the image (𝑆𝑖
𝐹 , ≲𝑖

𝐹) of 𝑖 ∈ 𝑊𝐹 

under ≲𝐹.  

 

It may be of use to define comparative similarity equivalence classes. 

 

Definition 4.2.4.1: Let ⟦𝑘⟧𝑖
𝐹 = {𝑗~𝑖

𝐹𝑘: 𝑗 ∈ 𝑆𝑖
𝐹} for 𝐹 ∈ CS and all 𝑖 ∈ 𝑊𝐹.  

That is, ⟦𝑘⟧𝑖
𝐹 is the similarity equivalence class of worlds that are equally similar to 𝑖 as 𝑘 is, 

according to the ordering assignment (𝑆𝑖
𝐹 , ≲𝑖

𝐹).151 

 

To define the notion of truth according to an ordering frame, we need to define models. I’m 

tempted to adopt a valuation relation from Dunn’s (1976) semantics for FDE, which will 

facilitate generalizing the model theory once impossible worlds are introduced in Chapter 5. 

That is, use a valuation relation 𝜌 ⊆ (𝑊 × 𝑃𝑉) × {0,1}, and for Lewis’ account restrict 𝜌 so it 

is a function.152  

 

Definition 4.2.5: A model based on comparative similarity is the triple (𝑊, ≲, 𝜌) such that 

(𝑊, ≲) is an ordering frame and for each 𝑖 ∈ 𝑊, 𝜌𝑖 ⊆ 𝑃𝑉 × {0,1} is a relation between 𝑃𝑉 and 

{0,1}. Informally we think of {𝑖 ∈ 𝑊: 𝑝𝜌𝑖1} as the set of worlds in the model where is 𝑝 true, 

and {𝑖 ∈ 𝑊: 𝑝𝜌𝑖0} as the set of worlds in the model where is 𝑝 false.  

For the duration of this chapter, we constrain 𝜌 so that for all 𝑝 ∈ 𝑃𝑉 and 𝑖 ∈ 𝑊 either 𝑝𝜌𝑖0 or 

𝑝𝜌𝑖1, but not both. That is, for the time being we place the following constraints on 𝜌: 

 

Exclusion: for no 𝑝 ∈ 𝑃𝑉 and 𝑖 ∈ 𝑊, both 𝑝𝜌𝑖0 and 𝑝𝜌𝑖1. 

Exhaustion: for all 𝑝 ∈ 𝑃𝑉 and 𝑖 ∈ 𝑊, either 𝑝𝜌𝑖0 or 𝑝𝜌𝑖1.153 

 

Note that thus restricted 𝜌 is effectively a function 𝜌𝑖: 𝑃𝑉 ⟶ {0,1} for each 𝑖 ∈ 𝑊. Truth in a 

model is defined in terms the satisfiability relation ⊩  ⊆ 𝑊 × 𝐹𝑜𝑟. We read 𝑖 ⊩ 𝐴 as ‘𝐴 is true 

at 𝑖’. Given a model (𝑊, ≲, 𝜌) and any 𝑖 ∈ 𝑊, define ⊩ as follows: 

 

   (1) 𝑖 ⊩ 𝑝     iff    𝑝𝜌𝑖1 

                                                
151 Note that for every assignment (𝑆𝑖

𝐹 , ≲𝑖
𝐹), the set of all ~𝑖

𝐹  equivalence classes {⟦𝑗⟧𝑖
𝐹: 𝑗 ∈ 𝑆𝑖

𝐹} partitions 𝑆𝑖
𝐹. 

152 To be precise, I will use Priest’s reconstruction of Dunn’s (1976) formulation, where in the latter truth values 
are identified with subsets of {0,1}. 
153 Borrowed from Priest (2008, §8.4). 
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   (2) 𝑖 ⊩ ~𝐴  iff    not  𝑖 ⊩ 𝐴 

   (3) 𝑖 ⊩ 𝐴 ∧ 𝐵  iff    𝑖 ⊩ 𝐴  and  𝑖 ⊩ 𝐵 

   (4) 𝑖 ⊩ 𝐴 ∨ 𝐵  iff    𝑖 ⊩ 𝐴  or  𝑖 ⊩ 𝐵 

   (5) 𝑖 ⊩ 𝐴 ⊃ 𝐵  iff    𝑖 ⊩ ~𝐴  or  𝑖 ⊩ 𝐵 

   (6) 𝑖 ⊩ □𝐴   iff    ∀𝑗 ∈ 𝑊: 𝑗 ⊩ 𝐴. 

   (7) 𝑖 ⊩ ◊𝐴   iff    ∃𝑗 ∈ 𝑊: 𝑗 ⊩ 𝐴. 

   (8) 𝑖 ⊩ 𝐴 > 𝐵  iff   (i)  ~∃𝑘 ∈ 𝑆𝑖: 𝑘 ⊩ 𝐴, or 

       (ii)    ∃𝑘 ∈ 𝑆𝑖: 𝑘 ⊩ 𝐴   and   ∀𝑗 ∈ 𝑆𝑖 (𝑗 ≲𝑖 𝑘 ⟶ 𝑗 ⊩ 𝐴 ⊃ 𝐵) 

 

• Any reference to 𝜌 for the remainder of this chapter assumes 𝜌 satisfying both 

exclusion and exhaustion. For convenience, let’s introduce the following notation: 

𝑖 ⊩ Σ    iff     𝑖 ⊩ 𝐴  for all 𝐴 ∈ Σ 

• When we want to explicitly refer to truth at a world in a particular model 𝔄, we shall 

employ the following notation: 𝔄, 𝑖 ⊩ 𝐴 and  𝔄, 𝑖 ⊩ Σ.  

 

• Also denote with 𝔄 ⊩ 𝐴 when 𝔄, 𝑖 ⊩ 𝐴 for all 𝑖 ∈ 𝑊𝔄. 

 

Definition 4.2.6: It will also be convenient to define [𝐴]𝔄 ∶= {𝑖 ∈ 𝑊: 𝔄, 𝑖 ⊩ 𝐴} for any model 𝔄 

with domain 𝑊. The superscript will be omitted in cases when its absence will not lead to 

ambiguity. 

 

Definition 4.2.7: Let ⊨𝐂𝐒 ⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟, and define Σ ⊨𝐂𝐒 𝐴 iff for all models (𝑊, ≲, 𝜌), and 

all 𝑖 ∈ 𝑊, if 𝑖 ⊩ 𝐵 for all 𝐵 ∈ Σ, then 𝑖 ⊩ 𝐴. We say an inference from Σ to 𝐴 is valid iff 

Σ ⊨𝐂𝐒 𝐴. That is, valid inference is defined as truth preservation at all worlds in all CS-

models. A formula 𝐴 ∈ 𝐹𝑜𝑟 is said to be valid iff ∅ ⊨𝐂𝐒 𝐴. Call this logic CS. 

 

Note that since the truth conditions for □ and ◊ formulae are defined in terms of unrestricted 

quantification over possible worlds, i.e. only >-formulae truth conditions contain 

accessibility restrictions, the above validity conditions give the modal logic S5 for the basic 

modal language. 

 

Just as we have relativized formula validity to a model 𝔄 ⊩ 𝐴 it will be of use to define valid 

inference relativized to a model. 
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Definition 4.2.7.1: Let ⊨𝔄 ⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟, and given a CS model 𝔄 = (𝑊, ≲, 𝜌) write 

• ⊨𝔄 𝐴  iff   𝔄 ⊩ 𝐴 

• Σ ⊨𝔄 𝐴  iff  for all 𝑖 ∈ 𝑊, if 𝔄, 𝑖 ⊩ 𝐵 for all 𝐵 ∈ Σ, then 𝔄, 𝑖 ⊩ 𝐴. 

 

This allows us to give a more succinct definition of semantic consequence: 

    Σ ⊨𝐂𝐒 𝐴   iff   for all CS models 𝔄:  Σ ⊨𝔄 𝐴   

Note that it is immediate from the above definitions that ⊨𝐂𝐒 ⊆ ⊨𝔄 .  

 

4.3 Ordering frame refinements and dilutions 

Let us start now turn to defining ordering frame refinements and dilutions.154 

 

Definition 4.3.1: Let ℛ ⊆ 𝐂𝐒 × 𝐂𝐒 and call an ordering frame 𝐺 a refinement of ordering 

frame 𝐹 iff (𝐹, 𝐺) ∈ ℛ. And define (𝐹, 𝐺) ∈ ℛ  iff:  

(i) 𝑊𝐺 = 𝑊𝐹,  

and for all 𝑖 ∈ 𝑊𝐹:  

(ii) ≲𝑖
𝐺  ⊆ ≲𝑖

𝐹 

(iii) 𝑆𝑖
𝐺 = 𝑆𝑖

𝐹 

 

Definition 4.3.1.1: A proper refinement of 𝐹 is a refinement 𝐺, such that 𝐺 ≠ 𝐹. 

 

Definition 4.3.1.2: Let ℛ[𝐹] ≔ {𝐺 ∈ 𝐂𝐒: (𝐹, 𝐺) ∈ ℛ} denote the image of 𝐹 under ℛ, i.e. the 

set of all refinements of 𝐹. 

 

Definition 4.3.2: Let 𝒟 ⊆ 𝐂𝐒 × 𝐂𝐒 and call an ordering frame 𝐺 a dilution of ordering frame 𝐹 

iff (𝐹, 𝐺) ∈ 𝒟. And define (𝐹, 𝐺) ∈ 𝒟 iff: 

(i) 𝑊𝐺 = 𝑊𝐹,  

and for all 𝑖 ∈ 𝑊𝐹: 

(ii) ≲𝑖
𝐹 ⊆ ≲𝑖

𝐺 

(iii) 𝑆𝑖
𝐺 = 𝑆𝑖

𝐹 

 

                                                
154 The essential idea of refinements is based on Lewis (1981, pp.226-7). However, Lewis (1981) defines 

refinements on strict preorder relations: if 𝑗 <𝑖
𝐹 𝑘, then 𝑗 <𝑖

𝐺 𝑘 (where 𝐺 is a refinement of 𝐹). Given the way I 
have defined refinements (using total preorders) Lewis’ definition is a derived property of refinements, i.e. 
Lemma 4.1. 
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Definition 4.3.2.1: A proper dilution of 𝐹 is a dilution 𝐺 of 𝐹, such that 𝐺 ≠ 𝐹. 

 

NOTE: the orderings of refinements and dilutions are total, by definition of ordering frames.  

 

Definition 4.3.2.2: Let 𝒟[𝐹] ≔ {𝐺 ∈ 𝐂𝐒: (𝐹, 𝐺) ∈ 𝒟} denote the image of 𝐹 under 𝒟, i.e. the 

set of all dilutions of 𝐹. 

 

4.3.1 Intended role and meaning of ordering frame refinements & dilutions 

The following informal discussion intends to give a better understanding of what refinements 

and dilutions are, and how it is precisely that they represent what they are intended to 

represent. It includes a number of examples and important limit cases. It is important that the 

readers’ intuitions about refinements and dilutions are secured, since these structures are 

central to most of the content in this chapter. 

 

4.3.1.1  Representing total preorders 

If will be useful to employ useful representations of total preorders in our discussion to aid 

the explanation how they are intended to carry contextual information. The definition below 

offers an intuitive means of representing total preorders. 

 

Definition 4.3.3: Let (𝑆, ≲) be a total preorder. Let 𝑎 | 𝑏 represent 𝑎 < 𝑏 and 𝑎 𝑏 or 𝑏 𝑎 (or 

with commas, e.g. 𝑎, 𝑏 or 𝑎, 𝑏) represent 𝑎~𝑏 for any 𝑎, 𝑏 ∈ 𝑆, such that 𝑎 ≠ 𝑏.155 Reflexivity 

in this picture is left as implicit. For larger, or infinite collections, I may write 

𝑎1 … 𝑎𝑛 | 𝑏1𝑏2 …  

 

Example: Let (𝑊, ≲) = ({𝑎, 𝑏, 𝑐, 𝑑}, {(𝑎, 𝑏), (𝑎, 𝑐), (𝑎, 𝑑), (𝑏, 𝑐), (𝑏, 𝑑), (𝑐, 𝑏), (𝑐, 𝑑), … }), where 

the ellipsis denotes the remaining reflexive pairs. We say that 𝑎 | 𝑏 𝑐 | 𝑑 represents (𝑊, ≲). 

Note that 𝑎 | 𝑐 𝑏 | 𝑑 is the other valid representation. 

 

Example: Let 𝑃 = (ℤ, ≲𝑃) be the total preorder on the integers, defined: 𝑚 ≲𝑃 𝑛 iff |𝑚| ≤ |𝑛|. 

Intuitively we can say 𝑚 ≲ 𝑛 iff m is at least as close to zero as n. We can represent (ℤ, ≲) as: 
 

0 | − 1, 1 | − 2, 2 | −3, 3 | …  
 

Clearly, −𝑛 ~𝑃𝑛 for all 𝑛 ∈ ℤ, and 𝑚 <𝑃 𝑛 for all 𝑚, 𝑛 ∈ ℤ such that |𝑚| < |𝑛|. 

                                                
155 Recall from definition 4.2.1.1 that for any preorder ≲ on a set S, we denote (𝑥, 𝑦) ∉ ≲, i.e. ‘it is not the case 
that 𝑥 ≲ 𝑦’ with 𝑦 < 𝑥, and we write 𝑥~𝑦 to mean that both 𝑥 ≲ 𝑦 and 𝑦 ≲ 𝑥. 
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4.3.1.2  Refinements and Dilutions 

Strictly speaking, the terms refinement and dilution apply to entire ordering frames (which 

are more like families of total preorders), not the particular ordering assignments (similarity 

assignments). That is, ordering frames have the general structure (𝑊, {(𝑆𝑖, ≲𝑖): 𝑖 ∈ 𝑊}), and 

refinements are defined on such structures, but in the following explanation of the basic 

properties of refinements and dilutions I’ll also extend the use of the term 

refinement/dilution, to the individual assignments themselves, i.e. if 𝐺 is a refinement of 𝐹, 

I’ll also refer to (𝑆𝑖
𝐺 , ≲𝑖

𝐺) as the refinement of (𝑆𝑖
𝐹, ≲𝑖

𝐹) for some 𝑖 ∈ 𝑊, since after all it is the 

ordering relationships of such individual assignments between ordering frames and their 

refinements/dilutions that are key. The following examples focus on the motivation and 

intended meaning of conditions (ii) of definitions 4.3.1 and 4.3.2 regarding the relationship of 

the particular ordering assignments to their refined/diluted counterparts. That is, we’re going 

to discuss the meaning (formal and the intended interpretation) of the relationship between an 

assignment ≲𝑖
𝐹 and its counterparts when the frame 𝐹 is refined or diluted. 

 

Example: Form the earlier example featuring (ℤ, ≲𝑃), there are infinitely many proper 

refinements, each resolving some tie in “closeness to zero”, e.g.  

 

0 | −1 |  1  | − 2, 2 |−3, 3 | …  

or 

0 | − 1, 1 |  2  | − 2  |−3, 3 | …  

or 

0 | − 1, 1 | … | −𝑘 |  𝑘  | …  
 

for some integer 𝑘. We could define a refinement where positive integers are deemed as more 

similar to zero than negative integers, despite their absolute value tie in closeness: 

 

0 |   1   | − 1  |   2   | − 2  |   3   | − 3  | …  

Or vice-versa: 

0 | −1   |  1  | −2   |  2  | −3   |  3  | …  

 

Example: The total preorder on some world major cities is defined in terms of population 

size as compared to Brisbane (i.e. weakly centered on Brisbane), and we’ll consider a 

refinement that includes distance to Brisbane as an additional similarity parameter. Below are 

the relevant similarity parameters, i.e. the demographics and distance from Brisbane (~ 

denotes approx.).  
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Population (million):   Distance from Brisbane (1000 km): 

Brisbane:  ~2         0  

Perth:    ~2   ~4.3  

Auckland:   ~2   ~2.3  

Warsaw:  ~2   ~15 

Gold Coast:  ~0.6   ~0.1  

Sydney:   ~5   ~1 

Athens   ~0.7   ~15  

St. Petersburg:  ~5   ~14  

 

The similarity assignment F, or more precisely 

({Br, Per, Auc, War, G. Coa, Ath, Syd, St. Pet}, ≲Br
𝐹 ) carries the information about the comparative 

similarity of cities, relative to Brisbane, where the only relevant similarity parameter is a 

city’s population.  

The refinement R1 of F takes distance as an additional relevant parameter, but in a very 

coarse-grained manner – distance differences relative to Brisbane within two thousand 

kilometres don’t register as sufficiently relevant for the distinction i.e. Perth and Auckland 

aren’t distinguished nor are Sydney and the Gold Coast, nor St. Petersburg and Athens.  

The refinement R2 of R1 and a fortiori a refinement of F, introduces more resolution, 

making differences in distance relative to Brisbane below a thousand kilometres relevant, 

thereby distinguishing even the distance-to-Brisbane difference between Sydney and the Gold 

Coast, which is approximately a thousand kilometres. 

 

F Brisbane, Perth, Auckland Warsaw | Gold-Coast, Athens, Sydney, St. Petersburg 

R1  Brisbane, Perth, Auckland | Warsaw | Gold-Coast, Sydney | Athens, St. Petersburg 

R2   Brisbane | Perth, Auckland | Warsaw | Gold-Coast | Sydney | Athens | St. Petersburg 

 

Basically, in total preorders a proper refinement resolves at least a single symmetric pair, i.e. 

contains exactly one pair from the two contained in the original preorder, so for any total 

preorder (𝑊, ≲) = (𝑊, {(𝑎, 𝑏), (𝑏, 𝑎), … }), there exist refinements (𝑊, ≲𝛼) = (𝑊, ≲ ∖ {(𝑎, 𝑏)}) 

and (𝑊, ≲𝛽) = (𝑊, ≲ ∖ {(𝑏, 𝑎)}). We interpret this as refinements resolving comparative 

similarity ties (symmetric pairs). Clearly, both ≲𝛼 and ≲𝛽 are subsets of  ≲. It follows that 

maximal (in the sense of most symmetric pairs being resolved) refinements are linear (in the 

sense that if (𝑊, ≲𝛼) is some maximal refinement of (𝑊, ≲), then (𝑎, 𝑏) ∈ ≲𝛼 and (𝑏, 𝑎) ∈ ≲𝛼 
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implies 𝑎 = 𝑏). There are two important limit cases. Namely, each maximal refinement is a 

linear order on 𝑊, and there’s a single maximal dilution i.e. 𝑊 × 𝑊. 

 

Example: Let (𝑊, ≲) = ({𝑎, 𝑏, 𝑐, 𝑑}, {(𝑎, 𝑏), (𝑎, 𝑐), (𝑎, 𝑑), (𝑏, 𝑐), (𝑏, 𝑑), (𝑐, 𝑏), (𝑐, 𝑑), … }), where 

the ellipsis denotes the remaining reflexive pairs. Let’s consider the only two proper 

refinements of (𝑊, ≲), namely (𝑊, ≲ ∖ {(𝑐, 𝑏)}) and (𝑊, ≲ ∖ {(𝑏, 𝑐)}). 

 

𝑎 | 𝑏 𝑐 | 𝑑  (𝑊, ≲) 

𝑎 | 𝑏 | 𝑐 | 𝑑  (𝑊, ≲ ∖ {(𝑐, 𝑏)}) 

𝑎 | 𝑐 | 𝑏 | 𝑑  (𝑊, ≲ ∖ {(𝑏, 𝑐)}) 

 

Clearly ≲ ∖ {(𝑐, 𝑏)} ⊆ ≲ and ≲ ∖ {(𝑏, 𝑐)} ⊆ ≲. Note that both refinements happen to be 

maximal refinements of (𝑊, ≲). Also, (𝑊, ≲) is a dilution of (𝑊, ≲ ∖ {(𝑐, 𝑏)}) and 

(𝑊, ≲ ∖ {(𝑏, 𝑐)}), by definition of dilutions. 

 

4.3.1.3  Interpretation: Contextual Information 

Refinements, whilst containing more contextual information (when we refine, we add 

contextual information by making additional distinctions), preserve the contextual 

information of the original ordering frame. Another way of looking at this is to view those 

distinctions (absent from the original ordering frame) as becoming relevant on the context 

represented by the refinement. Dilutions do the opposite – they remove previously existing 

distinctions, so when we dilute we are removing contextual information (irrelevant 

information), i.e. distinctions that have been relevant on the original frame are no longer 

relevant on the dilution. 

 

Usually we tend to think of submodels as providing less information than their extensions. 

But in this case, there is a sense in which the opposite seems to be happening. When we 

refine, we are taking submodels, and we can keep going until we get to a linear ordering: that 

direction feels like we are adding information. On the other hand, if we take supermodels 

(dilute), the limit is the case where everything is related to everything else, which feels like 

we are losing information. This tends to go against the usual intuitions.156  

 

 

                                                
156 I owe this observation to Toby Meadows. 



113 
 

 

4.3.2 Properties of ordering frame refinements and dilutions 

Now we resume the formal discussion and prove some basic properties of refinements and 

dilutions. Frame refinements preserve the strict ordering of original ordering frames in the 

following sense: 

 

Lemma 4.1: If 𝐺 is a refinement of 𝐹, then if 𝑗 <𝑖
𝐹 𝑘 for any 𝑖, 𝑗, 𝑘 according to some 

comparative similarity assignment (𝑆𝑖
𝐹 , ≲𝑖

𝐹), then 𝑗 <𝑖
𝐺 𝑘 according to (𝑆𝑖

𝐺 , ≲𝑖
𝐺). 

Proof : It suffices to note that, since ≲𝑖
𝐹 is total and ≲𝑖

𝐺  ⊆ ≲𝑖
𝐹 for each 𝑖, then if (𝑗, 𝑘) ∈ ≲𝑖

𝐹 and 

(𝑘, 𝑗) ∉ ≲𝑖
𝐹, i.e. 𝑗 <𝑖

𝐹 𝑘, then it follows that both (𝑗, 𝑘) ∈ ≲𝑖
𝐺 and (𝑘, 𝑗) ∉ ≲𝑖

𝐺, i.e. 𝑗 <𝑖
𝐺 𝑘. 

Denying (𝑘, 𝑗) ∉ ≲𝑖
𝐺 contradicts the subset property, and (𝑗, 𝑘) ∈ ≲𝑖

𝐺 contradicts totality.     □ 

 

We have a dual result to Lemma 4.1 for frame dilutions. That is, frame dilutions preserve the 

non-strict ordering of original ordering frames in the following sense: 

 

Lemma 4.2: If 𝐺 is a dilution of 𝐹 then if 𝑗 ≲𝑖
𝐹 𝑘 for any 𝑖, 𝑗, 𝑘 according to some comparative 

similarity assignment (𝑆𝑖
𝐹 , ≲𝑖

𝐹), then 𝑗 ≲𝑖
𝐺 𝑘 according to (𝑆𝑖

𝐺 , ≲𝑖
𝐺). 

Proof : It suffices to observe that, since ≲𝑖
𝐹⊆ ≲𝑖

𝐺 for each 𝑖, if (𝑗, 𝑘) ∈ ≲𝑖
𝐹 then (𝑗, 𝑘) ∈ ≲𝑖

𝐺.     □ 

 

Corollary 4.2.1: If 𝑗~𝑖
𝐹𝑘 for any 𝑖, 𝑗, 𝑘 according to some comparative similarity assignment 

(𝑆𝑖
𝐹 , ≲𝑖

𝐹) on a frame 𝐹, then 𝑗~𝑖
𝐺𝑘 according to any dilution 𝐺 of 𝐹.  

Proof :  Immediate from Lemma 4.2 and definition of ∼𝑖.         □ 

 

The dual relationship between frame refinements and frame dilutions, although implicit in the 

definition, deserves highlighting. 

 

Lemma 4.3: For any ordering frames 𝐹, 𝐺 ∈ CS, (𝐹, 𝐺) ∈ ℛ  iff  (𝐺, 𝐹) ∈ 𝒟. 

Proof :  It’s immediate from definitions of refinements and dilutions.                 □ 

 

Lemma 4.4: For any ordering frames 𝐹 = (𝑊𝐹 , ≲𝐹), 𝐺 = (𝑊𝐺 , ≲𝐺), and any 𝜌:  

If  𝑊𝐹 = 𝑊𝐺 and 𝐴 ∈ 𝐹𝑜𝑟>
̅̅ ̅̅ ̅̅ , then (𝐹, 𝜌), 𝑖 ⊩ 𝐴  iff  (𝐺, 𝜌), 𝑖 ⊩ 𝐴. 

Proof : It suffices to observe that the truth of formulae in 𝐹𝑜𝑟>
̅̅ ̅̅ ̅̅  is independent of ≲.     □ 
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The result below is central to some key applications in this chapter. Refinements are truth-

preserving in the following sense:157   

 

Proposition 4.5: If a counterfactual 𝐴 > 𝐵 ∈ 𝐹𝑜𝑟>0 is true at a world according to some 

ordering frame 𝐹, then it is true at that world according to any refinement of 𝐹. That is, for all 

𝐹 = (𝑊𝐹 , ≲𝐹) ∈ CS, and for all 𝐴, 𝐵 ∈ 𝐹𝑜𝑟>
̅̅ ̅̅ ̅̅ , 𝑖 ∈ 𝑊𝐹, and 𝜌:  

 

(𝐹, 𝜌), 𝑖 ⊩ 𝐴 > 𝐵    iff    (∀𝐺 ∈ ℛ[𝐹])((𝐺, 𝜌), 𝑖 ⊩ 𝐴 > 𝐵) 

 

Proof : (⟵) Is immediate, since 𝐹 ∈ ℛ[𝐹]. (⟶) Consider some 𝐹 ∈ CS, 𝐴 ∈ 𝐹𝑜𝑟>
̅̅ ̅̅ ̅̅ , 𝑖 ∈ 𝑊𝐹, 

and 𝜌, such that (𝐹, 𝜌), 𝑖 ⊩ 𝐴 > 𝐵, Hence, for all 𝐴, 𝐵 ∈ 𝐹𝑜𝑟>
̅̅ ̅̅ ̅̅ , 𝑖 ∈ 𝑊𝐹, 𝜌 either ~∃𝑘 ∈ 𝑆𝑖

𝐹: 

(𝐹, 𝜌), 𝑘 ⊩ 𝐴 or ∃𝑘 ∈ 𝑆𝑖
𝐹: (𝐹, 𝜌), 𝑘 ⊩ 𝐴 and ∀𝑗 ∈ 𝑆𝑖

𝐹(𝑗 ≲𝑖
𝐹 𝑘 ⟶ (𝐹, 𝜌), 𝑗 ⊩ 𝐴 ⊃ 𝐵). Let us start 

with the vacuous case (first disjunct) and assume for arbitrary 𝐴 ∈ 𝐹𝑜𝑟>
̅̅ ̅̅ ̅̅ , 𝑖 ∈ 𝑊𝐹, and 𝜌 that 

~∃𝑘 ∈ 𝑆𝑖
𝐹: (𝐹, 𝜌), 𝑘 ⊩ 𝐴. From this, Lemma 4.4, and the fact that 𝑆𝑖

𝐺 = 𝑆𝑖
𝐹 we can infer that 

~∃𝑘 ∈ 𝑆𝑖
𝐺: (𝐺, 𝜌), 𝑘 ⊩ 𝐴. Next, let us assume (the main hypothesis) ∃𝑘 ∈ 𝑆𝑖

𝐹: (𝐹, 𝜌), 𝑘 ⊩ 𝐴 and  

∀𝑗 ∈ 𝑆𝑖
𝐹(𝑗 ≲𝑖

𝐹 𝑘 ⟶ (𝐹, 𝜌), 𝑗 ⊩ 𝐴 ⊃ 𝐵). To distinguish it from other assumptions call this 

assumption the main hypothesis. It follows that ∃𝑘 ∈ 𝑆𝑖
𝐺 and (𝐺, 𝜌), 𝑘 ⊩ 𝐴 for all 𝐺 ∈ ℛ[𝐹], by 

Lemma 4.4 and the fact that 𝑆𝑖
𝐺 = 𝑆𝑖

𝐹. Now, to show that ∀𝑗 ∈ 𝑆𝑖
𝐺(𝑗 ≲𝑖

𝐺 𝑘 ⟶ (𝐺, 𝜌), 𝑗 ⊩ 𝐴 ⊃ 𝐵) 

we’ll proceed by assuming 𝑗 ≲𝑖
𝐺 𝑘 for arbitrary 𝑗 ∈ 𝑆𝑖

𝐺, 𝐺 ∈ ℛ[𝐹], and show (𝐺, 𝜌), 𝑗 ⊩ 𝐴 ⊃ 𝐵. 

So, let’s assume 𝑗 ≲𝑖
𝐺 𝑘 for arbitrary 𝑗 ∈ 𝑆𝑖

𝐺, 𝐺 ∈ ℛ[𝐹], and note that since 𝐺 is a refinement of 

𝐹, then 𝐹 is a dilution of 𝐺, by Lemma 4.3. Also, it should be noted that dilutions are ≲-

preserving in the sense of Lemma 4.2. Hence, we conclude 𝑗 ≲𝑖
𝐹 𝑘, by Lemma 4.2 and 4.3 . 

From this, and the main hypothesis we infer (𝐹, 𝜌), 𝑗 ⊩ 𝐴 ⊃ 𝐵, which in conjunction with the 

fact that 𝑊𝐹 = 𝑊𝐺 gives (𝐺, 𝜌), 𝑗 ⊩ 𝐴 ⊃ 𝐵, by Lemma 4.4. Therefore, we finally conclude that 

∀𝑗 ∈ 𝑆𝑖
𝐺(𝑗 ≲𝑖

𝐺 𝑘 ⟶ (𝐺, 𝜌), 𝑗 ⊩ 𝐴 ⊃ 𝐵), by conditional proof.  

 

This completes the proof.                        □ 

 

                                                
157 Lewis (1981, pp.226-227) has proven a similar result. His result is more general than Proposition 4.5 in one 
sense, and less general in another. Whereas Proposition 4.5 holds only for a class of frames based on total 
preorderings, Lewis has proven a similar result for ordering frames based on partial orderings (where only 
refinements are required to be based on total preorderings). On the other hand, whereas Lewis has proven this 
only for (strongly) centered ordering frames, Proposition 4.5 holds for weakly centered orderings frames, i.e. 
satisfying (CS3), so a fortiori it holds for ordering frames satisfying the (stronger) centering restriction (CS3.1). 
Also, the employment of frame dilutions and Lemmas 4.2 and 4.3. makes the proof of Proposition 4.5 
substantially simper than Lewis’ proof. 
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We have a dual result for dilutions, which are falsity-preserving in the following sense: 

 

Corollary 4.5.1: For all frames 𝐹, 𝐺 ∈ CS and for all 𝐴, 𝐵 ∈ 𝐹𝑜𝑟>
̅̅ ̅̅ ̅̅ , and 𝜌: 

      (𝐺, 𝐹) ∈ 𝒟 ⟶ (∀𝑖 ∈ 𝑊𝐺)((𝐺, 𝜌), 𝑖 ⊮ 𝐴 > 𝐵 ⟶ (𝐹, 𝜌), 𝑖 ⊮ 𝐴 > 𝐵) 

Proof : We have the following from Proposition 4.5, for all 𝐹, 𝐺 ∈ CS, 𝐴, 𝐵 ∈ 𝐹𝑜𝑟>
̅̅ ̅̅ ̅̅ , and 𝜌: 

    1.  (𝐹, 𝐺) ∈ ℛ ⟶ (∀𝑖 ∈ 𝑊𝐹)((𝐹, 𝜌), 𝑖 ⊩ 𝐴 > 𝐵 ⟶ (𝐺, 𝜌), 𝑖 ⊩ 𝐴 > 𝐵) 

Contraposing the consequent yields: 

  2. (𝐹, 𝐺) ∈ ℛ ⟶ (∀𝑖 ∈ 𝑊𝐹)((𝐺, 𝜌), 𝑖 ⊮ 𝐴 > 𝐵 ⟶ (𝐹, 𝜌), 𝑖 ⊮ 𝐴 > 𝐵) 

Finally, we obtain 3 by substituting an equivalent term in the antecedent of 2, by Lemma 4.3,  

  3.  (𝐺, 𝐹) ∈ 𝒟 ⟶ (∀𝑖 ∈ 𝑊𝐺)((𝐺, 𝜌), 𝑖 ⊮ 𝐴 > 𝐵 ⟶ (𝐹, 𝜌), 𝑖 ⊮ 𝐴 > 𝐵) 

and note that whenever the antecedents of 2 and 3 are true, then 𝑊𝐹 = 𝑊𝐺 is true, and the 

consequents of 2 and 3 are identical. If the antecedents of 2 and 3 are false, then both 2 and 3 

are vacuously true, so the quantifier change is justified.             □ 

 

4.4 Contextualized counterfactuals 

4.4.1 Context representation 

In order to account for contextualized counterfactuals, the formal language will be modified 

to include a family of connectives indexed by contexts. For that purpose, we need to posit the 

existence of an appropriate context (index) set. To sketch the background of the motivation 

for this approach, consider Lewis’ (1981, p.218, my emphasis) view on the role of ordering 

frames: 

 

The ordering that gives the factual background depends on the facts about the 

world, known or unknown; how it depends on them is determined – or 

underdetermined – by our linguistic practice and by context. We may separate 

the contribution of practice and context from the contribution of the world, 

evaluating counterfactuals as true or false at a world, and according to a 'frame' 

determined somehow by practice and context. 

 

In some sense what I am proposing is a little bit of a cheat, because prior to defining what 

contexts are I have already intended ordering frames to be the corresponding context-

representations. That is, I have decided on a very precise character of representations of 

objects whose existence I merely stipulate. However, this correspondence is not only intuitive 

but also partly justified, since we have already shown that ordering frames can be 
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meaningfully interpreted as carriers of contextual information.158 So, at least for our purpose 

of the minimal role of offering a means of distinguishing the truth of counterfactuals by 

explicit appeal to context in the object language – ordering frames serve as adequate model-

theoretic candidates.  

 

For an intuitive characterization of the proposed analysis and its capacity, let us proceed by 

examining some paradigmatic cases. Consider the following pairs of counterfactuals: 

 

1. If Caesar had been in command, he would have used the atom bomb. 

2. If Caesar had been in command, he would have used catapults. 

 

3. If Everest was in New Zealand, Everest would be in the Southern Hemisphere.  

4. If Everest was in New Zealand, New Zealand would be in the Northern Hemisphere. 

 

Each counterfactual in the first pair can be true in some context, but rarely would we think of 

them both true in a single context (although that may be possible), and likewise not all 

contexts that make (1) true would make (2) true. That is, intuitively, each counterfactual can 

be true by virtue of distinct contextual assumptions. So, for instance (1) can be true in a 

context (call it context a) where Caesar’s knowledge of weaponry is assumed to be that of a 

20th century military general, and moreover that he would resort – the strategic and ruthless 

genius that he undoubtedly was – to the most effective means (available to him) of defeating 

the enemy. However (1) would hardly be true in a context (call it context b) where Caesar’s 

knowledge of weaponry is restricted to that which he actually had in the 1st century BCE. 

 

The current proposal meets this challenge and allows distinctions between the truth of 

counterfactuals with the same antecedent and consequent on any single occasion, by explicit 

appeal to contingent contextual considerations. For example, we could have (1) evaluated as 

true and false on the same occasion of utterance, since the object language (developed in the 

next section) allows for explicit reference to distinct contexts that influence the truth of (1), 

e.g. so (1.a) may be true, and (1.b) may be false, in particular if they’re explicitly indexed by 

contexts a and b, characterized in the previous paragraph. 

 

  (1.a)   In context a : If Caesar had been in command, he would have used the atom bomb. 

  (1.b) In context b : If Caesar had been in command, he would have used the atom bomb. 

                                                
158 Following Lewis (1973, §2.3; 1981, §2) in that regard. 
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By extension, the proposal accommodates truth differences and coincidences of 

counterfactuals with the same antecedent, but different consequents.159 So, continuing our 

example, we could have (1) and (2) come apart in truth by appeal to a single context, i.e. have 

(1.b) remain false whilst having (2.b) correctly analysed as true. 

 

  (1.b)   In context b : If Caesar had been in command, he would have used the atom bomb. 

  (2.b) In context b : If Caesar had been in command, he would have used catapults. 

 

There may even be a single, peculiar context c where both (1) and (2) are true, however 

arguably there is no single context where both (3) and (4) are true, since once the 

enthymematic content is accounted for (all the relevant information is imported into the 

relevant antecedent worlds) we end up with inconsistency.160 Now we turn to defining the 

contextualized language. 

 

4.4.2 Modified languages  

 Each modified language is just like ℒ given in Definition 4.1.1 that generates 𝐹𝑜𝑟, but instead 

of the single connective >, each contains a family of indexed connectives. 

 

Definition 4.4.1: Let ℒ𝒞 ∶= {~, □,.◊, .∧, .∨, ⊃} ∪ {>𝑐 : 𝑐 ∈ 𝒞}, where 𝒞 is a set, regarded as a set 

of contexts.  

 

Here are some noteworthy special cases. Note that when 𝒞 = ∅, then ℒ𝒞 is just the basic 

propositional modal language, and when 𝒞 is a singleton, ℒ𝒞 resembles ℒ from Definition 

4.1.1 in the sense of being the basic propositional modal language expanded by a single 

additional dyadic modal connective.  

 

Well-formed formulae will reflect the intended analysis, so context-indices will not vary 

across nested >𝑐-formulae. I propose that the context-index of the main conditional 

connective >𝑐 of a nested conditional, e.g. 𝐴 >𝑐 (𝐵 >𝑐 𝐶) should settle the matter of what 

information is imported into counterfactual worlds when evaluating its subformulae. I do this 

                                                
159 Gabbay’s (1972) account allows for this, but not for distinguishing in truth value counterfactuals with the 
same antecedent and consequent. Nute (1980, p.76) also makes this observation. 
160 This is because the consequents are not formulated in a manner as to suggest partial containment by either 
hemisphere, and the hemispheres are disjoint. I return to this example in §4.4.5 and give formal arguments 
demonstrating that we end up with inconsistency by granting the truth of both (3) and (4) in claims 4.5.2 and 
4.5.3. 
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in Definition 4.4.6 by stipulating that nested indexed-conditionals inherit the context-index of 

the outermost indexed conditional. This proposed approach goes some way of meeting the 

challenge posed by Priest’s (2018, §3.1, f.14) question regarding what information from the 

world where the counterfactual is evaluated should be imported into counterfactual worlds, 

when evaluating nested conditionals (counterfactuals). 

 

An interesting question in this context is as follows. Consider a conditional with 

an embedded conditional, such as 𝐴 > (𝐵 > 𝐶). Is the information imported in 

evaluating the outer conditional the same as that imported in evaluating the inner 

conditional? […] Nothing said in this essay settles this matter. 

 Priest (2018, §3.1, f.14) 

 

The thought is that the information imported in evaluating the inner conditional is 

contextually the same, i.e. restricted by what information is imported in evaluating the outer 

conditional. The information is not the same, since the inner conditional need not have the 

same antecedent as the outer conditional, and its truth may not be evaluated at the same world 

as the outer conditional – both highly relevant factors that contribute to determining what 

information should be imported. The model theory given in §4.4.3 goes in detail how such 

contextual determination (of what information is imported) is established. 

 

To define the set of well-formed formulae of interest, it will be easier to first define a larger 

set, and subsequently apply the required restrictions. 

 

Definition 4.4.2: Let 𝑓𝑜𝑟𝒞 be the smallest set closed under the following well-formed 

formula formation rules: 

B:      All propositional variables are wffs, i.e. 𝑃𝑉 ⊆ 𝑓𝑜𝑟𝒞. 

R1:  If 𝐴 ∈ 𝑓𝑜𝑟𝒞 then {~𝐴, □𝐴,.◊𝐴} ⊆ 𝑓𝑜𝑟𝒞. 

R2:  If {𝐴, 𝐵} ⊆ 𝑓𝑜𝑟𝒞 then {𝐴 ∧ 𝐵, 𝐴 ∨ 𝐵, 𝐴 ⊃ 𝐵} ⊆ 𝑓𝑜𝑟𝒞. 

R3:  If {𝐴, 𝐵} ⊆ 𝑓𝑜𝑟𝒞 and 𝑐 ∈ 𝒞, then  𝐴 >𝑐 𝐵 ∈ 𝑓𝑜𝑟𝒞  

 

Definition 4.4.3: Let 𝐹𝑜𝑟>
𝒞̅̅ ̅̅ ̅̅ ̅ be the subset of 𝑓𝑜𝑟𝒞, closed only under B, R1, and R2.  

In other words, 𝐹𝑜𝑟>
𝒞̅̅ ̅̅ ̅̅ ̅ denotes the set of wffs of the basic modal language, i.e. it doesn’t 

contain any instances of  >𝑐 for any 𝑐 ∈ 𝒞. 

 

Note that 𝐹𝑜𝑟>
𝒞̅̅ ̅̅ ̅̅ ̅ = 𝐹𝑜𝑟>

𝒞′̅̅ ̅̅ ̅̅ ̅ for any two context sets 𝒞 and 𝒞′. 
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Definition 4.4.4: The set of subformulae of 𝐴 ∈ 𝑓𝑜𝑟𝒞 is the smallest set 𝑆𝑢𝑏(𝐴) satisfying the 

following conditions:  

1. 𝐴 ∈ 𝑆𝑢𝑏(𝐴) 

2. For each ∗ ∈ {~, □,.◊. } if ∗ 𝐵 ∈ 𝑆𝑢𝑏(𝐴), then 𝐵 ∈ 𝑆𝑢𝑏(𝐴). 

3. For each ∘ ∈ {∧,∨, ⊃} if 𝐵 ∘ 𝐶 ∈ 𝑆𝑢𝑏(𝐴), then 𝐵 ∈ 𝑆𝑢𝑏(𝐴) and 𝐶 ∈ 𝑆𝑢𝑏(𝐴). 

4. For each ∘ ∈ {>𝑐 : 𝑐 ∈ 𝒞} if 𝐵 ∘ 𝐶 ∈ 𝑆𝑢𝑏(𝐴), then 𝐵 ∈ 𝑆𝑢𝑏(𝐴) and 𝐶 ∈ 𝑆𝑢𝑏(𝐴). 

 

Definition 4.4.5: Let 𝐼𝑛𝑑(Σ) be the set of context-indices appearing in Σ ⊆ 𝑓𝑜𝑟𝒞.  

𝐼𝑛𝑑(Σ) = {𝑐 ∈ 𝒞: ∃𝐴 ∈ Σ ∧ [∃𝐵, 𝐶 ∈ 𝑓𝑜𝑟𝒞((𝐵 >𝑐 𝐶) ∈ 𝑆𝑢𝑏(𝐴))]} 

 

Example: 𝐼𝑛𝑑({𝑝 >𝑎 (𝑞 >𝑑 𝑟), (𝑝 >𝑏 𝑟) ∨ (𝑝 >𝑐 𝑞)}) = {𝑎, 𝑏, 𝑐, 𝑑}.  

 

Indexed conditionals embedded (nested) within other indexed conditionals inherit the indices 

of the outermost indexed conditional. It just doesn’t make sense in this picture to speak of 

embedded conditionals whose indices vary. Below is the restriction on 𝑓𝑜𝑟𝒞 that reflects this.  

 

Definition 4.4.6: Let 𝐹𝑜𝑟𝒞 ≔ {𝐴 ∈ 𝑓𝑜𝑟𝒞: ∀𝑐 ∈ 𝒞 ((𝐶 >𝑐 𝐷 ∈ 𝑆𝑢𝑏(𝐴)) ⟶ 𝐼𝑛𝑑({𝐶, 𝐷}) ⊆ {𝑐})}. 

 

Example: Formulae such as 𝑝 >𝑎 (𝑞 >𝑏 𝑟) or (𝑞 >𝑏 𝑟) >𝑎 𝑝, where 𝑎 ≠ 𝑏, are not elements of 

𝐹𝑜𝑟𝒞. However, the following are:  𝑝 >𝑎 (𝑞 >𝑎 𝑟), (𝑞 >𝑏 𝑟) >𝑏 𝑝, (𝑝 >𝑎 𝑞) ∨ (𝑟 >𝑏 𝑠). 

 

Definition 4.4.7: Let 𝐹𝑜𝑟>0
𝒞 ∶= {𝐴 ∈ 𝐹𝑜𝑟𝒞: 𝐵 >𝑐 𝐶 ∈ 𝑆𝑢𝑏(𝐴) ⟶  𝐵, 𝐶 ∈ 𝐹𝑜𝑟>

𝒞̅̅ ̅̅ ̅̅ ̅ }.  

 

Example: ~(𝑝 >𝑎 (𝑞 ⊃ 𝑟)) ∧ (((𝑝 ∧ ~𝑞) >𝑏 𝑟) ∨ (𝑞 >𝑐 𝑟)) ∈ 𝐹𝑜𝑟>0
𝒞   but  𝑝 >𝑐 (𝑝 >𝑐 𝑝) ∉

𝐹𝑜𝑟>0
𝒞  for any 𝑎, 𝑏, 𝑐 ∈ 𝒞. 

 

Definition 4.4.8: Define 𝐹𝑜𝑟𝒞(>) ≔ {𝐴 >𝑐 𝐵: 𝐴, 𝐵 ∈ 𝐹𝑜𝑟𝒞 , 𝑐 ∈ 𝒞 }. That is, 𝐹𝑜𝑟𝒞(>) is just the 

set of 𝐹𝑜𝑟𝒞 formulae whose main connective is >𝑐, for some 𝑐 ∈ 𝒞. 

  

The following definition will play a key role in the definition of truth conditions for indexed 

counterfactuals, i.e. for truth conditions formulae like 𝐴 >𝑐 𝐵.  

 



120 
 

 

Definition 4.4.9: Let __: 𝐹𝑜𝑟𝒞 ⟶ 𝐹𝑜𝑟 be the function that transforms all formulae with 

indexed connectives >𝑐 for any 𝑐 ∈ 𝒞 into unindexed ones >, in all subformulae of a formula. 

That is, it “strips” any 𝐹𝑜𝑟𝒞 formula of its indices leaving its index-less 𝐹𝑜𝑟 counterpart. 

 

B:      𝑝 = 𝑝  for all  𝑐 ∈ 𝑃𝑉. 

R1:  ∗ 𝐴 = ∗ 𝐴  for each ∗ ∈ {~, □,.◊. } and 𝐴 ∈ 𝐹𝑜𝑟𝒞. 

R2:  𝐴 ∘ 𝐵 =  𝐴 ∘ 𝐵  for each ∘ ∈ {∧,∨, ⊃} and 𝐴, 𝐵 ∈ 𝐹𝑜𝑟𝒞. 

R3:  𝐴 >𝑐 𝐵 = 𝐴 > 𝐵  for each 𝑐 ∈ 𝒞 and 𝐴, 𝐵 ∈ 𝐹𝑜𝑟𝒞. 

 

Example: ~𝑝 >𝑐 (𝑞 ∨ 𝑟) = ~𝑝 > (𝑞 ∨ 𝑟). 

 

It will be useful to extend the above definition to sets of formulae. No ambiguity should arise 

whether the argument is a formula or a set of formulae. 

 

Definition 4.4.10: For any Σ ⊆ 𝐹𝑜𝑟𝒞, let Σ ≔ {𝐴 ∈ 𝐹𝑜𝑟: 𝐴 ∈ Σ}. 

 

4.4.3 Modified model theory 

The formula 𝐴 >𝑐 𝐵 is intended to be read as explicitly contextualized version of 𝐴 > 𝐵. That 

is, the model theory in this section provides an analysis of 𝐴 >𝑐 𝐵, which is to be read as: 

 

‘In context c: If it were the case that 𝐴, then it would be the case that 𝐵.’ 

 

For the purposes of the modified model theory, we will need sets containing CS frames with 

some particular domain 𝑊 (our models make use of CS models with the same domain). 

 

Definition 4.4.11 : Let ℱ𝑊 ∶= {(𝑈, ≲) ∈ 𝐂𝐒: 𝑈 = 𝑊}. 

 

Definition 4.4.12: A CS+ frame of the modified language is the triple: 

(𝑊, 𝒞, 𝑟) 

where 𝑊 ≠ ∅ and 𝒞 are sets, 𝑟: 𝒞 ⟶ ℱ𝑊 is a function, and ℱ𝑊 is as defined in 4.4.11. 

Informally, 𝒞 is regarded as a set of contexts and 𝑟𝑐 ∈ 𝑟[𝒞] ⊆ ℱ𝑊 is regarded as representing 

context c. Reflecting the earlier quote from Lewis 𝑟𝑐 is the “ordering frame determined 

somehow by practice and context c”. 

 

Additional restrictions, such as surjectivity and/or injectivity may be placed on r, to suit the 

preferred intended properties that a context representation function should have.  
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Definition 4.4.13.1: A CS+ model of the modified language is the quadruple: 

(𝑊, 𝒞, 𝑟, 𝜌) 

Where (𝑊, 𝒞, 𝑟) is a CS+ frame and 𝜌 is as in Definition 4.2.5. 

 

Definition 4.4.13.2: Truth in CS+ models is defined in terms the satisfiability relation ⊩𝒞  ⊆

𝑊 × 𝐹𝑜𝑟𝒞. We read 𝑖 ⊩𝒞 𝐴 as ‘𝐴 is true at 𝑖’.  

When we want to explicitly refer to truth at a world in a particular CS+ model 𝔄, we shall 

employ the following notation: 𝔄, 𝑖 ⊩𝒞 𝐴 and  𝔄, 𝑖 ⊩𝒞 Σ, as we have done for ⊩. 

Given a CS+ model (𝑊, 𝒞, 𝑟, 𝜌) any 𝑖 ∈ 𝑊, and any 𝑐 ∈ 𝒞 define ⊩𝒞 as follows:  

   (1) 𝑖 ⊩𝒞 𝑝    iff    𝑝𝜌𝑖1 

   (2) 𝑖 ⊩𝒞 ~𝐴 iff    not  𝑖 ⊩𝒞 𝐴 

   (3) 𝑖 ⊩𝒞 𝐴 ∧ 𝐵  iff    𝑖 ⊩𝒞 𝐴  and  𝑖 ⊩𝒞 𝐵 

   (4) 𝑖 ⊩𝒞 𝐴 ∨ 𝐵  iff    𝑖 ⊩𝒞 𝐴  or  𝑖 ⊩𝒞 𝐵 

   (5) 𝑖 ⊩𝒞 𝐴 ⊃ 𝐵  iff    𝑖 ⊩𝒞 ~𝐴  or  𝑖 ⊩𝒞 𝐵 

   (6) 𝑖 ⊩𝒞 □𝐴  iff    ∀𝑗 ∈ 𝑊: 𝑗 ⊩𝒞 𝐴. 

   (7) 𝑖 ⊩𝒞  ◊𝐴  iff    ∃𝑗 ∈ 𝑊: 𝑗 ⊩𝒞 𝐴. 

   (8) 𝑖 ⊩𝒞 𝐴 >𝑐 𝐵    iff    (𝑟𝑐 , 𝜌), 𝑖 ⊩ 𝐴 >𝑐 𝐵 

 

What’s going on in (8)? The truth conditions for a formula (𝐴 >𝑐 𝐵), i.e. with an indexed 

connective as the main connective, in a CS+ model are defined in terms of truth conditions 

for the corresponding non-indexed formula (𝐴 > 𝐵) in a CS model – a model based on the 

ordering frame that is the image of c under 𝑟 i.e. the ordering frame that is said to represent 

the context corresponding to the index of the indexed formula. This is how we formally 

capture the idea of indexed formulae being evaluated in contexts (represented by ordering 

frames) corresponding to the context index. Note that reference to a CS model is not required 

in any of the other clauses (1)-(8), since there are no formulae with an indexed connective as 

the main connective contained in the definienda of clauses (1)-(7).161 

                                                
161 An alternative, and semantically equivalent formulation of the truth conditions for the contextualized language 
would be to have 𝑟 assigning comparative similarity assignments to worlds directly, relative to some context, i.e. 
to have 𝑟: 𝑊 × 𝒞 ⟶ ℘(𝑊) × ℘(𝑊 × 𝑊) be the function such that 𝑟(𝑤, 𝑐) is a comparative similarity 
assignment to world 𝑤, in context 𝑐. If we recall, this approach is closely aligned with Nolan’s suggestion, 
highlighted at the end of chapter 1. But I chose not to go this way, since we can accommodate the contextual 
variability in CS+ models by recycling the formalism already present in CS ordering frames. Recall from the 
definition of CS ordering frames, that we already have defined a function ≲: 𝑊 ⟶ ℘(𝑊) × ℘(𝑊 × 𝑊), which 
uniquely characterizes each ordering frame and whose image, for each world, consists of comparative similarity 
assignments being defined on ℘(𝑊) × ℘(𝑊 × 𝑊).  
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• As in the case of CS models, let’s introduce the following notation for convenience: 

𝑖 ⊩𝒞 Σ    iff     𝑖 ⊩𝒞 𝐴  for all 𝐴 ∈ Σ 
 

 

• Also denote with 𝔄 ⊩𝒞 𝐴 when 𝔄, 𝑖 ⊩𝒞 𝐴 for all 𝑖 ∈ 𝑊𝔄. 

Note that it follows from the above definition that formulae whose index set ranges over 

more than one index may be evaluated on more than one CS model, e.g. 

 (𝑊, 𝒞, 𝑟, 𝜌), 𝑖 ⊩𝒞 (𝐴 >𝑎 𝐵) ∨ (𝐶 >𝑏 𝐷)  

iff (𝑊, 𝒞, 𝑟, 𝜌), 𝑖 ⊩𝒞 (𝐴 >𝑎 𝐵)     or    (𝑊, 𝒞, 𝑟, 𝜌), 𝑖 ⊩𝒞 (𝐵 >𝑏 𝐶) 

iff (𝑟𝑎, 𝜌), 𝑖 ⊩ 𝐴 >𝑎 𝐵       or    (𝑟𝑏 , 𝜌), 𝑖 ⊩ 𝐶 >𝑏 𝐷 

 

That is, (𝑟𝑎, 𝜌) and (𝑟𝑎, 𝜌) are CS models, by definition, and they need not be the same.  

 

Just as we have relativized formula validity to a model 𝔄 ⊩𝒞 𝐴 it will be of use to define valid 

inference relativized to a model. 

 

Definition 4.4.13.3: Let ⊨𝔄
𝒞  ⊆ ℘(𝐹𝑜𝑟𝒞) × 𝐹𝑜𝑟𝒞, and given a CS+ model 𝔄 = (𝑊, 𝒞, 𝑟, 𝜌) write 

• ⊨𝔄
𝒞 𝐴  iff   𝔄 ⊩𝒞 𝐴  

• Σ ⊨𝔄
𝒞 𝐴  iff  for all 𝑖 ∈ 𝑊: if 𝔄, 𝑖 ⊩𝒞 Σ, then 𝔄, 𝑖 ⊩𝒞 𝐴. 

 

Since each context set 𝒞 gives rise to a distinct language ℒ𝒞, and consequently a distinct set 

of wffs 𝐹𝑜𝑟𝒞, we need a semantic consequence relation for each language. The definition 

below is of semantic consequence for each ℒ𝒞. In most cases however, I’ll omit the 

superscript 𝒞 unless the discussion will hinge on some specific property of the context set. 

 

Definition 4.4.14: Given a set 𝒞 let ⊨𝐂𝐒+
𝒞  ⊆ ℘(𝐹𝑜𝑟𝒞) × 𝐹𝑜𝑟𝒞, and define: 

Σ ⊨𝐂𝐒+
𝒞 𝐴  iff  for all CS+ models 𝔄 and 𝑖 ∈ 𝑊: if 𝔄, 𝑖 ⊩𝒞 𝐵 for all 𝐵 ∈ Σ, then 𝔄, 𝑖 ⊩𝒞 𝐴. 

 

We say an inference from Σ to 𝐴 is CS+ valid iff Σ ⊨𝐂𝐒+
𝒞 𝐴. That is, valid inference is defined 

as truth preservation at all worlds in all CS+ models. A formula 𝐴 ∈ 𝐹𝑜𝑟𝒞 is said to be CS+ 

valid iff ∅ ⊨𝐂𝐒+
𝒞 𝐴. Call this logic (schema) CS+. 

 

I use the term ‘logic schema’ since if 𝒞 ≠ 𝒞′, in particular if |𝒞| ≠ |𝒞′|, then ⊨𝐂𝐒+
𝒞  ≠ ⊨𝐂𝐒+

𝒞′
 by 

definition. For example, see Corollaries 4.9.1 and 4.9.2. 

 

Note that it is immediate from the above definitions that ⊨𝐂𝐒+
𝒞  ⊆ ⊨𝔄

𝒞  , for any CS+ model 𝔄. 

 

With the aid of the notation from Definition 4.4.13.3 we can express CS+ semantic 

consequence definition more succinctly: Σ ⊨𝐂𝐒+
𝒞 𝐴  iff  for all CS+ models 𝔄: Σ ⊨𝔄

𝒞 𝐴.   
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Note that since the truth conditions for □ and ◊ formulae are defined in terms of unrestricted 

quantification over possible worlds, i.e. only >𝑐-formulae truth conditions depend on 𝒞 and r, 

the above validity conditions give the modal logic S5 for the basic modal language. This 

allows us to formulate a more precise statement about a special case, when 𝒞 is empty. 

 

Corollary 4.9.1: If 𝒞 = ∅, then Σ ⊨𝐂𝐒+
𝒞 𝐴 iff  Σ ⊨𝐒𝟓 𝐴. 

 Proof : This follows immediately from the fact that if 𝒞 = ∅, then by Definition 4.4.1 ℒ𝒞 

becomes {~, □,.◊, .∧, .∨, ⊃} ∪ {>𝑐 : 𝑐 ∈ ∅} = {~, □,.◊, .∧, .∨, ⊃}, i.e. the basic modal language.     □ 

 

There is another special case with interesting properties, when 𝒞 is a singleton, which is 

expressed in Corollary 4.9.2 at the beginning of the next section, shortly after Theorem 4.9. 

 

The part of the basic modal language is indistinguishable between the two classes of models 

in the following sense. 

 

Lemma 4.6: For any CS+ model 𝔐 = (𝑊, 𝒞, 𝑟, 𝜌) and any 𝐴 ∈ 𝐹𝑜𝑟>
𝒞̅̅ ̅̅ ̅̅ ̅, 𝐹 ∈ ℱ𝑊, 𝑖 ∈ 𝑊: 

 

𝔐, 𝑖 ⊩𝒞 𝐴   iff   (𝐹, 𝜌), 𝑖 ⊩ 𝐴 

 

Proof : It suffices to note that elements of 𝐹𝑜𝑟>
̅̅ ̅̅ ̅̅  depend only on 𝑊 and 𝜌, which are the same 

for 𝔐 and (𝐹, 𝜌), by definition.            □ 

 

Theorem 4.7: If  Σ ∪ {𝐴} ⊆ 𝐹𝑜𝑟>
𝒞̅̅ ̅̅ ̅̅ ̅: then Σ ⊨𝐂𝐒 𝐴  iff  Σ ⊨𝐂𝐒+ 𝐴. 

Proof : Immediate from Lemma 4.6.                        □ 

 

Definition 4.4.15: Call frame 𝐻 ∈ 𝐂𝐒 a mutual refinement of frames 𝐹 and 𝐺 iff (𝐹, 𝐻) ∈ ℛ 

and (𝐺, 𝐻) ∈ ℛ. Note that 𝐻 is a mutual refinement of 𝐹 and 𝐺 iff 𝐻 ∈ ℛ[𝐹] ∩ ℛ[𝐺].162  

 

It will be worthwhile (useful later) emphasizing a relatively obvious, yet important fact. 

 

Lemma 4.8: If (𝑊, ≲) = 𝐹 ∈ 𝐂𝐒, then ℛ[𝐹] ⊆ ℱ𝑊. 

Proof : Immediate from definition of ℱ𝑊 and the fact that refinements preserve domains.       □ 

 

 

                                                
162 For a reminder of the meaning of ℛ and ℛ[𝐹], see definitions 4.3.1 and 4.3.1.2, respectively. 
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4.4.4 Results 

Much of Lewis’ analysis is preserved on this account. This occurs when the premises and 

conclusion of an inference are confined to a single context. This makes sense intuitively, and 

the semantics manages to align with our intuition in this regard.  

 

Theorem 4.9: For all Σ ∪ {𝐴} ⊆ 𝐹𝑜𝑟𝒞:  

If (1) Σ ⊨𝐂𝐒 𝐴 and  

  (2) |𝐼𝑛𝑑(Σ ∪ {𝐴})| ≤ 1,  

then Σ ⊨𝐂𝐒+ 𝐴. 

 

In other words, (1) if the unindexed inference is CS valid, and (2) if the premises and 

conclusion range over at most one context-index, then the inference is CS+ valid. 

Before we proceed, note that if 𝐼𝑛𝑑(Σ ∪ {𝐴}) = ∅, then the result follows from Theorem 4.7. 

 

Proof : Let 𝔄 = (𝑊, 𝒞, 𝑟, 𝜌) ∈ CS+, such that 𝔄, 𝑖 ⊩𝒞 𝐵 for all 𝐵 ∈ Σ. We need to show that 

𝔄, 𝑖 ⊩𝒞 𝐴. Now, there is a 𝑐 ∈ 𝒞 such that for each 𝐵 ∈ Σ, either 𝐼𝑛𝑑({𝐵}) = {𝑐}, or 𝐼𝑛𝑑({𝐵}) =

∅, from (ii). If 𝐼𝑛𝑑({𝐵}) = {𝑐}, then (𝑟𝑐 , 𝜌), 𝑖 ⊩ 𝐵, by Definition 4.4.13.2. Otherwise, if 

𝐼𝑛𝑑({𝐵}) = ∅, then (𝐹, 𝜌), 𝑖 ⊩ 𝐵, for all 𝐹 ∈ ℱ𝑊, by Lemma 4.6, and we note that 𝑟𝑐 ∈ ℱ𝑊. 

Hence, (𝑟𝑐 , 𝜌), 𝑖 ⊩ 𝐵 for all 𝐵 ∈ Σ. Hence (𝑟𝑐 , 𝜌), 𝑖 ⊩ 𝐴, by (i). Hence, 𝔄, 𝑖 ⊩𝒞 𝐴, by Definition 

4.4.13.2, as required.                 □ 

 

Recalling how 𝐹𝑜𝑟𝒞 has been defined, i.e. that all nested counterfactuals inherit the index of 

the outermost counterfactual, Theorem 4.9 sanctions a number of important inference 

patterns.  

 

Example: For all 𝒞 ≠ ∅, 𝐴, 𝐵, 𝐶 ∈ 𝐹𝑜𝑟𝒞, and all 𝑐 ∈ 𝒞: 

   ⊨𝐂𝐒+ 𝐴 >𝑐 𝐴 

   𝐴, 𝐴 >𝑐 𝐵 ⊨𝐂𝐒+ 𝐵 

   ~𝐵, 𝐴 >𝑐 𝐵, ⊨𝐂𝐒+ ~𝐴 

   𝐴, 𝐵 ⊭𝐂𝐒+ 𝐴 >𝑐 𝐵 

   ⊨𝐂𝐒+ (𝐴 ∧ ~𝐴) >𝑐 𝐵 

   □(𝐴 ⊃ 𝐵) ⊨𝐂𝐒+ 𝐴 >𝑐 𝐵 

    

The results follow directly from Theorem 4.9 and the definition of 𝐹𝑜𝑟𝒞. Clearly, CS+ 

inherits the vacuous treatment of counterpossibles from CS (as will all the systems based on 

CS models). 
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We have looked earlier at the special case of CS+, when 𝒞 = ∅, and shown in Corollary 4.9.1 

that CS+ reduces to S5, i.e. ⊨𝐂𝐒+
∅ = ⊨𝐒𝟓. There is another important special case, when 𝒞 is a 

singleton, and a corresponding result, of CS+ reducing to CS, i.e. essentially ⊨𝐂𝐒+
{∅}

= ⊨𝐂𝐒.  

 

Corollary 4.9.2: If |𝒞| = 1, then: Σ ⊨𝐂𝐒 𝐴  iff  Σ ⊨𝐂𝐒+
𝒞 𝐴   

Proof : (⟶) Is just Theorem 4.9 because if 𝒞 is a singleton then condition (2) is always 

satisfied. (⟵) It suffices to observe that since r is a function, the image of 𝒞 under r for each 

CS+ frame is also a singleton, i.e. 𝑟[𝒞] = {𝐹} for each CS+ frame (𝑊, 𝒞, 𝑟), where 𝐹 is a CS 

frame by definition of r. Suppose for contradiction that Σ ⊨𝐂𝐒+
𝒞 𝐴  and  Σ ⊭𝐂𝐒 𝐴. From Σ ⊭𝐂𝐒 𝐴 

we infer that there’s a CS model 𝔄 = (𝐹, 𝜌𝔄) and 𝑖 ∈ 𝑊𝔄 such that (𝐹, 𝜌𝔄), 𝑖 ⊩ Σ  and 

(𝐹, 𝜌𝔄), 𝑖 ⊮ 𝐴. But consider the CS+ model 𝔅 = (𝔉, 𝜌𝔅) such that 𝑊𝔄 = 𝑊𝔅, 𝜌𝔄 = 𝜌𝔅, and 

𝑟𝔅[𝒞] = {𝐹}, i.e. in 𝔅 all indexed formulae are evaluated on (𝐹, 𝜌𝔄) = 𝔄. But (𝐹, 𝜌𝔄), 𝑖 ⊩ Σ 

implies (𝔉, 𝜌𝔅) ⊩𝒞 Σ, by definition of ⊩𝒞. But then (𝔉, 𝜌) ⊩𝒞 𝐴 by hypothesis Σ ⊨𝐂𝐒+
𝒞 𝐴, which 

implies (𝐹, 𝜌𝔄), 𝑖 ⊩ 𝐴 by definition of ⊩𝒞, which contradicts (𝐹, 𝜌𝔄), 𝑖 ⊮ 𝐴.               □ 

 

Naturally, the advantages of CS+ appear when |𝒞| > 1. 

 

The main application of our key result, about frame refinements, i.e. Proposition 4.5, is in 

condition (2) of the following theorem. The theorem is the second major step in developing a 

notion of contextualized inference in the form of systems CS1+ and CS2+, defined in the 

next section. In particular it establishes  an important relationship between the contextual 

information carried by the premises and the conclusion.  

Note that the restriction of 𝐹𝑜𝑟> to 𝐹𝑜𝑟>0
𝒞 ∩ 𝐹𝑜𝑟𝒞(>) stems from the fact that ordering frame 

refinements are only truth preserving, and that’s the part of 𝐹𝑜𝑟> to which Proposition 4.5 

applies. Just to be clear, if 𝐹𝑜𝑟>0
𝒞 ∩ 𝐹𝑜𝑟𝒞(>) ≠ ∅, it contains only formulae 𝐴 >𝑐 𝐵 such that 

𝐴, 𝐵 ∈ 𝐹𝑜𝑟>
𝒞̅̅ ̅̅ ̅̅ ̅. That is 𝐴 ∈ 𝐹𝑜𝑟>0

𝒞 ∩ 𝐹𝑜𝑟𝒞(>) iff |𝐼𝑛𝑑({𝐴})| = 1. In other words, this result apples 

to a language restricted to the basic propositional modal language with indexed conditionals 

appearing only as the main connectives to formulae (i.e. that are not a proper subformula of 

any formula) that don’t contain any other indexed conditionals as proper subformulae.  

 

Theorem 4.10: For all Σ ∪ {𝐴} ⊆ (𝐹𝑜𝑟>0
𝒞 ∩ 𝐹𝑜𝑟𝒞(>)) ∪ 𝐹𝑜𝑟>

𝒞̅̅ ̅̅ ̅̅ ̅: 

If (1)      Σ ⊨𝐂𝐒 𝐴 and  

         (2) for each CS+ model: 

   (i)  if 𝐼𝑛𝑑({𝐴}) = ∅, then ⋂{ℛ[𝑟𝑏]: 𝑏 ∈ 𝐼𝑛𝑑(Σ)} ≠ ∅, and 



126 
 

 

   (ii) if |𝐼𝑛𝑑({𝐴})| = 1, then 𝑟𝑎 ∈ ⋂{ℛ[𝑟𝑏]: 𝑏 ∈ 𝐼𝑛𝑑(Σ)} for {𝑎} = 𝐼𝑛𝑑({𝐴}), 

then Σ ⊨𝐂𝐒+ 𝐴. 

 

In other words, (1) if the unindexed inference is CS valid, and (2) if the frame representation 

of the conclusion context-index is a mutual refinement of frame representations of context 

indices over which the premises range, then the inference is CS+ valid. We interpret 

condition (2) as saying that the context on which the conclusion is evaluated is not 

independent of the contexts on which the premises are evaluated, i.e. the conclusion is 

evaluated on an ordering frame that preserves the contextual information carried by ordering 

frames on which the premises are evaluated. Before we proceed with the proof, note that if 

𝐼𝑛𝑑(Σ ∪ {𝐴}) = ∅, then the result follows from Theorem 4.7.  

 

Proof : Let 𝔄 = (𝑊, 𝒞, 𝑟, 𝜌) ∈ CS+, such that 𝔄, 𝑖 ⊩𝒞 𝐵 for all 𝐵 ∈ Σ. We need to show that 

𝔄, 𝑖 ⊩𝒞 𝐴. Now, for each 𝐵 ∈ Σ, and any 𝑏 ∈ 𝒞, if 𝐼𝑛𝑑({𝐵}) = {𝑏}, then (𝑟𝑏 , 𝜌), 𝑖 ⊩ 𝐵, by 

Definition 4.4.13.2. Else if 𝐼𝑛𝑑({𝐵}) = ∅, then (𝐹, 𝜌), 𝑖 ⊩ 𝐵 for all 𝐹 ∈ ℱ𝑊, by Lemma 4.6, and 

we note that ⋃{ℛ[𝑟𝑏]: 𝑏 ∈ 𝐼𝑛𝑑(Σ)} ⊆ ℱ𝑊. Suppose |𝐼𝑛𝑑({𝐴})| ≤ 1. First, suppose |𝐼𝑛𝑑({𝐴})| =

0, and infer from (2.i) that there is a CS frame 𝐺 ∈ ℱ𝑊 such that 𝐺 ∈ ⋂{ℛ[𝑟𝑏]: 𝑏 ∈ 𝐼𝑛𝑑(Σ)}. 

Next, we have (𝑟𝑏 , 𝜌), 𝑖 ⊩ 𝐵  ⟹ (𝐺, 𝜌), 𝑖 ⊩ 𝐵 for each 𝐵 ∈ 𝐹𝑜𝑟>0
𝒞 ∩ 𝐹𝑜𝑟𝒞(>), 𝑏 ∈ 𝐼𝑛𝑑({𝐵}), 

from Proposition 4.5. Hence, (𝐺, 𝜌), 𝑖 ⊩ 𝐵 for all 𝐵 ∈ Σ such that 𝐼𝑛𝑑({𝐵}) ≠ ∅. From Lemma 

4.6 and 𝐺 ∈ ℱ𝑊 we infer (𝐺, 𝜌), 𝑖 ⊩ 𝐵 for each 𝐵 ∈ Σ such that 𝐼𝑛𝑑({𝐵}) = ∅. Hence, (𝐺, 𝜌), 𝑖 ⊩

𝐵 for all 𝐵 ∈ Σ. Hence (𝐺, 𝜌), 𝑖 ⊩ 𝐴, by (1). Hence 𝔄, 𝑖 ⊩𝒞 𝐴, by Lemma 4.6. Next, suppose 

|𝐼𝑛𝑑({𝐴})| = 1. From (2.ii) we have 𝑟𝑎 ∈ ⋂{ℛ[𝑟𝑏]: 𝑏 ∈ 𝐼𝑛𝑑(Σ)} for any 𝑎 ∈ 𝒞 such that 

𝐼𝑛𝑑({𝐴}) = {𝑎}. By letting 𝑟𝑎 = 𝐺, the reminder of the proof continues by the same reasoning 

as in the previous case, to the point where we conclude that (𝑟𝑎, 𝜌), 𝑖 ⊩ 𝐴. From there, we 

conclude 𝔄, 𝑖 ⊩𝒞 𝐴, by Definition 4.4.13.2, as required.         □ 

 

In particular, the CS-validity of Adjunction of Consequents is preserved. This inference form 

will serve as a guiding example in the next section, motivating the reformulation of the 

current definition of CS+ valid inference. 

 

Corollary 4.10.1: For all 𝐴, 𝐵, 𝐶 ∈ 𝐹𝑜𝑟>
𝒞̅̅ ̅̅ ̅̅ ̅, and all 𝑎, 𝑏, 𝑐 ∈ 𝒞:  

If 𝑟𝑐 ∈ ℛ[𝑟𝑎] ∩ ℛ[𝑟𝑏] for all CS+ models, then 𝐴 >𝑎 𝐵, 𝐴 >𝑏 𝐶 ⊨𝐂𝐒+ 𝐴 >𝑐 (𝐵 ∧ 𝐶). 

 

Proof : The result follows directly from Theorem 4.10.          □ 
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Corollary 4.10.2: For all 𝐴, 𝐵, 𝐶 ∈ 𝐹𝑜𝑟>
𝒞̅̅ ̅̅ ̅̅ ̅, and all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝒞:  

If 𝑟𝑑 ∈ ℛ[𝑟𝑎] ∩ ℛ[𝑟𝑏] ∩ ℛ[𝑟𝑐] for all CS+ models, then 𝐴 >𝑎 𝐵, 𝐵 >𝑏 𝐴, 𝐴 >𝑐 𝐶 ⊨𝐂𝐒+ 𝐵 >𝑑 𝐶. 

 

Proof : The result follows directly from Theorem 4.10.          □ 

 

4.4.5 Contextualized validity: discussion 

CS+ is very weak since on the current definition 4.4.14 of CS+ valid inference there are no 

additional conditions placed on the relationship between context-indices appearing in the 

premises and the conclusion. But this is inadequate if we wish to fashion a logic that is 

sensitive to explicit contextual content. That is, we have developed an analysis of the 

contextualized language but have only included truth preserving conditions for validity in 

that definition – naturally, we also want a notion of contextual information preserving 

conditions on the new, contextualized notion of valid inference.  

 

That is, currently, by Definition 4.4.14 we have the following condition for CS+ valid 

inference:  

Σ ⊨𝐂𝐒+
𝒞 𝐴   iff Σ ⊨𝔄

𝒞 𝐴  for all CS+ models 𝔄. 

Where Σ ⊨𝔄
𝒞 𝐴  is: Σ ⊨𝔄

𝒞 𝐴 iff  for all 𝑖 ∈ 𝑊: if 𝔄, 𝑖 ⊩𝒞 Σ, then 𝔄, 𝑖 ⊩𝒞 𝐴, as in Def. 4.4.13.3. 

 

Clearly, these validity conditions are no different from those for CS. Such conditions make 

CS+ much weaker than CS, because for every CS valid inference there will be a 

counterexample by choice of indices for the premises and conclusion such that the premises 

are true, and the conclusion is false.  

 

4.4.5.1  Contextualized validity: system CS1+ 

Theorem 4.10 captures some of the contextual information preserving features that hint at 

how contextual constraints could be fashioned.  The theorem tells us that if we restrict the 

language in a way that Proposition 4.5 can be implemented, then CS validity and valid 

inference is preserved if additional conditions on the relationship between the premises index 

set and conclusion index are satisfied, i.e. conditions that correspond to what we mean by 

contextual information preservation. This opens a possibility of defining a notion of valid 

inference that those conditions underlie. That is, as our initial attempt, we could fashion a 

notion of contextualized inference by adding condition (2) of Theorem 4.10 to the current 
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definition CS+ validity and valid inference. The key definition that requires change is of 

Σ ⊨𝔄
𝒞 𝐴, since Σ ⊨𝐂𝐒+

𝒞 𝐴 is defined in terms of it.  

 

Definitions 4.5.2 and 4.5.3 establish a proper logic of contextualized counterfactuals. That is, 

a logic where valid inference is not defined merely in terms of truth preservation but also in 

terms of contextual information preservation. Let us introduce some useful shorthand 

notation first. 

 

Definition 4.5.1: Denote 𝐹𝑜𝑟>0
𝒞 ∩ 𝐹𝑜𝑟𝒞(>) with 𝐹𝑜𝑟>0

𝒞 (>). 

 

Definition 4.5.2: Given a set 𝒞 let ⊨𝔄
𝒞  ⊆ ℘ (𝐹𝑜𝑟>0

𝒞 (>) ∪ 𝐹𝑜𝑟>
𝒞̅̅ ̅̅ ̅̅ ̅) × (𝐹𝑜𝑟>0

𝒞 (>) ∪ 𝐹𝑜𝑟>
𝒞̅̅ ̅̅ ̅̅ ̅) and 

define for a CS+ model 𝔄, Σ ⊨𝔄
𝒞 𝐴 iff for all Σ ∪ {𝐴} ⊆ 𝐹𝑜𝑟>0

𝒞 (>) ∪ 𝐹𝑜𝑟>
𝒞̅̅ ̅̅ ̅̅ ̅:  

 

     If for all 𝑖 ∈ 𝑊:  (i)    𝔄, 𝑖 ⊩𝒞 Σ, and  

       (ii)   if 𝐼𝑛𝑑({𝐴}) = ∅, then ⋂{ℛ[𝑟𝑏]: 𝑏 ∈ 𝐼𝑛𝑑(Σ)} ≠ ∅, and 

   if |𝐼𝑛𝑑({𝐴})| = 1, then 𝑟𝑎 ∈ ⋂{ℛ[𝑟𝑏]: 𝑏 ∈ 𝐼𝑛𝑑(Σ)} for {𝑎} = 𝐼𝑛𝑑({𝐴}), 

     then 𝔄, 𝑖 ⊩𝒞 𝐴. 

 

For formula validity, write ⊨𝔄
𝒞 𝐴  iff  𝔄, 𝑖 ⊩𝒞 𝐴 for all 𝑖 ∈ 𝑊𝔄, as given in Definition 4.4.13.2. 

 

Now (model) validity is additionally conditioned on (ii) which intends to capture the idea that 

we evaluate the conclusion on a context that preserves contextual information of the contexts 

over which the premises range. Cases where (ii) is not satisfied will go through vacuously, 

thus disabling many counterexamples that would have been possible on Definition 4.4.13.3 of 

⊨𝔄
𝒞 , which underlies CS+ validity. That is, it is no longer possible on the above definition to 

pick arbitrary indices for the premises and conclusion to generate counterexamples. Call the 

logic that satisfies this additional contextual information preservation constraint CS1+. It 

certainly is a step in the right direction, but one a little too far – the logic is too strong. As I’ll 

shortly argue, it requires further finetuning, else it would give an incorrect analysis of a 

family of paradigmatic inference forms, i.e. by formally validating inference forms that are 

intuitively invalid.163 

 

                                                
163 By paradigmatic here I mean inference forms that can be said to emphasize the character of contextualized 
inference. That is, I have in mind the simplest inference forms whose validity turns on contextual considerations. 
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Definition 4.5.3: For all Σ ∪ {𝐴} ⊆ 𝐹𝑜𝑟>0
𝒞 (>) ∪ 𝐹𝑜𝑟>

𝒞̅̅ ̅̅ ̅̅ ̅: write Σ ⊨𝐂𝐒𝟏+
𝒞 𝐴 iff Σ ⊨𝔄

𝒞 𝐴 for all CS+ 

models 𝔄, where Σ ⊨𝔄
𝒞 𝐴  is as defined in 4.5.2. Also write ⊨𝐂𝐒𝟏+

𝒞 𝐴 iff ⊨𝔄
𝒞 𝐴 for all CS+ 

models 𝔄. Call this logic (schema) CS1+. 

 

4.4.5.2  Properties of CS1+ 

It should not be a surprise that CS+ validity and valid inference based on the above definition 

of Σ ⊨𝔄
𝒞 𝐴, in conjunction with Theorem 4.10 yields the following. 

 

Corollary 4.11: For all Σ ∪ {𝐴} ⊆ 𝐹𝑜𝑟>0
𝒞 (>) ∪ 𝐹𝑜𝑟>

𝒞̅̅ ̅̅ ̅̅ ̅:  

 

If Σ ⊨𝐂𝐒 𝐴, then Σ ⊨𝐂𝐒𝟏+
𝒞 𝐴. 

 

Proof :  The proof proceeds much like the proof of Theorem 4.10. We assume the antecedent 

(which is just condition (1) in Theorem 4.10), and for arbitrary CS+ model 𝔄 and 𝑖 ∈ 𝑊𝔄 we 

assume (i) 𝔄, 𝑖 ⊩𝒞 Σ and (ii) from Definition 4.5.2 (where (ii) is just a special case of 

condition (2) in Theorem 4.10, relativized to 𝔄, and (i) is the starting hypothesis in the proof 

of Theorem 4.10) and then we proceed to show that 𝔄, 𝑖 ⊩𝒞 𝐴, which is exactly what is to be 

shown in the proof of Theorem 4.10.            □ 

 

4.4.5.3  CS1+ is too strong 

As mentioned earlier CS1+ is too strong for the contextualized language, because it validates  

contextualized Adjunction of Consequents, despite some obvious counterexamples. In other 

words, by Corollary 4.11, we have 𝐴 >𝑎 𝐵, 𝐴 >𝑏 𝐶 ⊨𝐂𝐒𝟏+
𝒞 𝐴 >𝑐 (𝐵 ∧ 𝐶) for all 𝐴, 𝐵, 𝐶 ∈ 𝐹𝑜𝑟>

𝒞̅̅ ̅̅ ̅̅ ̅, 

and 𝑎, 𝑏, 𝑐 ∈ 𝒞, but as I’ll argue we want it to fail. That is, we want to transform a family of 

instances of Adjunction of Consequents that go through vacuously on CS1+ (because of (ii) 

not being satisfied) into counterexamples. Since Adjunction of Consequents is CS valid, it is 

also CS1+ valid (by Corollary 4.11) but is seems clearly invalid for contextualized 

counterfactuals. I will now discuss instances of contextualized Adjunction of Consequents 

that I believe should be analysed as counterexamples but currently go through on CS1+ 

because of the absence of a mutual refinement of ordering frames corresponding to the 

premise context indices, and so a fortiori the ordering frame corresponding to the conclusion 

context index can’t be such a mutual refinement. Consequently (ii) is rendered false and the 

questionable instance goes through vacuously. To outline the culminating point of the 

following discussion, let me just say at this point that the corresponding fix will be to 



130 
 

 

strengthen the validity conditions by adding a second condition that demands the existence of 

a mutual refinement of ordering frames corresponding to premise context indices, which 

itself corresponds to the conclusion context index. 

 

Consider the following counterexample to Adjunction of Consequents, which is a limit case 

of the extent to which context can diverge, i.e. when the contextual information carried by 

ordering frames corresponding to the premise context-indices is incompatible. 

 

Example 4.5.1: Counterexample to Adjunction of Consequents 

 

(1)  If Mt. Everest was in New Zealand, Everest would be in the Southern Hemisphere.  

 

(2)  If Mt. Everest was in New Zealand, New Zealand would be in the Northern 

Hemisphere. 

 

(3) Therefore, if Mt. Everest was in New Zealand, then Mt. Everest would be in the 

Southern Hemisphere and New Zealand would be in the Northern Hemisphere. 

 

The premises seem fine if taken separately – each in its own context (which the 

contextualized account allows), much like Quine’s example with Caesar – but the conclusion 

is not only false, but absurd.164 It should be regarded as a counterexample schema, since there 

are infinitely many examples like it, all of which speak against the validity of this inference 

form. Unfortunately, examples like 4.5.1 go through vacuously on of CS1+, because although 

CS+ models allow for the mutual truth of both premises, there is no mutual refinement of 

ordering frames corresponding to the context-indices of both premises (claim 4.5.3). There’s 

no such refinement, since that would imply the existence of a CS model where both premises 

are true, which is impossible (claim 4.5.2). Both claims 4.5.2 and 4.5.3 are proven once the 

counterexample is sufficiently formalized, and the imported information highlighted. 

Let us make the example formally precise and reveal all the imported information and 

relevant enthymemes. 𝐴 translates to 𝐸 in 𝑍 (Everest is in NZ), 𝐵 translates to 𝐸 in 𝑆 (Everest 

is in the Southern Hemisphere), and 𝐶 translates to 𝑍 in 𝑁 (NZ is in the Northern Hemisphere. 

The enthymemes are: 𝑁 ∩ 𝑆 = ∅ and ‘none of 𝐸, 𝑁, 𝑆, 𝑍 is empty’, i.e. the Northern and 

Southern hemispheres are disjoint, and all objects referred to explicitly have a nonzero spatial 

extension. Here we need to import in both cases, it seems, the information that 𝑁 ∩ 𝑆 = ∅, i.e. 

                                                
164 Or as Priest (2017) would say ‘both can be heard as true, but different information is imported in each case’. 
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it’s part of the ceteris paribus clause (worlds where the hemispheres are disjoint are more 

similar to the actual world than worlds where they’re not disjoint). 

 

Counterexample with explicated details. 

 

P.1 (𝐸 in 𝑍) > (𝐸 in 𝑆)   (imported factual information: 𝑍 ⊆ 𝑆) 

 [true] 

P.2 (𝐸 in 𝑍) > (𝑍 in 𝑁)   (imported factual information: 𝐸 ⊆ 𝑁) 

 [true] 

E.1 𝑁 ∩ 𝑆 = ∅   (relevant enthymeme)    

 [true] 

E.2 None of 𝐸, 𝑁, 𝑆, 𝑍 is empty. (intended enthymeme)   

 [true] 

_______________________ 

 

∴ 𝐸 in 𝑍 > (𝐸 in 𝑆 ∧ 𝑍 in 𝑁)       

 [false] 

 

It should be noted that the notion of information importation, as described by Priest 

(2018,§2.1), and presented as Definition 1.15 in chapter 1, is robust enough to be 

incorporated to our semantics – it is just the information that we import into the most similar 

antecedent worlds. It offers another way of talking about the worlds relevant to evaluating the 

corresponding material conditional when evaluating 𝐴 >𝑐 𝐵.165 The counterexample goes 

through, as mentioned earlier, because both premises can never be true, once we account for 

the relevant factual information imported into the antecedent worlds.166 

 

4.4.5.4  Adjunction of Consequents – a comparative analysis 

The differences in analyses are the following: On C, C+, and CS example 4.5.1 goes through 

vacuously, because both premises can’t be true.167 That is, such examples go through because 

once the relevant information is imported into the antecedent worlds the combined truth of 

both counterfactual premises, at some world implies inconsistent situations (at the relevant 

                                                
165 See Definition 4.2.5, and non-vacuous CS truth conditions for 𝐴 > 𝐵 , i.e. (8), (ii). 
166 It turns out that this example is a lot like Bennett’s “East Gate, West Gate” formulation of an example given 
by Gibbard (1981). Priest (2017) gives an interesting analysis of this scenario. The scenario resembles example 
4.5.1 in the sense that both premises are true in distinct contexts, but once the information required to make 
each premise true is jointly imported we get inconsistency, or implicit inconsistency. 
167 For definitions of C and C+ see §2.1.3 on ceteris paribus conditionals. 
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antecedent worlds). So, if the analysis is restricted to possible worlds, the premises can’t be 

jointly true (since inconsistent situations can’t be accommodated on possible worlds 

semantics), thus allowing the conclusion to follow vacuously. But it seems they can be jointly 

true, when taken in their appropriate (albeit distinct) contexts, which CS+ models permit. 

Note that if there is no CS model where both premises can be jointly true means that there is 

no CS+ model such that there would exist a mutual refinement of the ordering frames 

corresponding to premise context indices, since that would imply the existence of a CS model 

where the premises can be true, which is impossible (I’ll return to this matter shortly). 

  

NOTATION: for the purpose of the next few proofs, let us introduce some useful notation. 
 

Definition 4.5.4: Let (𝑆, ≲) be a preordered set and 𝑥 ∈ 𝑆 Define ↓.𝑥(𝑆,≲) ∶= {𝑦 ∈ 𝑆: 𝑦 ≲ 𝑥}. 

When there is no ambiguity regarding the preordered set in question, I’ll omit the subscript. 

 

The above definition lets us reformulate more succinctly the non-vacuous case of CS truth 

conditions for formulae expressing counterfactuals, i.e. we can rewrite (8).(ii) of Definition 

4.2.5: 

 

   (8*) 𝑖 ⊩ 𝐴 > 𝐵  iff    (i)  ~∃𝑘 ∈ 𝑆𝑖: 𝑘 ⊩ 𝐴, or 

       (ii)    ∃𝑘 ∈ 𝑊: 𝑘 ⊩ 𝐴  and  ↓.𝑘𝑖 ∩ [𝐴] ⊆ [𝐵]. 

Where ↓.𝑘𝑖 is just shorthand for ↓.𝑘(𝑊,≲𝑖). In contexts where the subscript is constant, I’ll omit 

it altogether and just write ↓.𝑘 for brevity. 

 

Presently I show that the inference 𝐴 > 𝐵, 𝐴 > 𝐶 ⊨ 𝐴 > (𝐵 ∧ 𝐶), viz. Adjunction of 

Consequents is valid on  conditional logic C, and therefore on its extensions (notably C+), 

and CS and its extensions.  

 

Proposition 4.12: 𝐴 > 𝐵, 𝐴 > 𝐶 ⊨𝐂𝐒 𝐴 > (𝐵 ∧ 𝐶)  

Proof : Let 𝔄 = (𝑊, ≲, 𝜌) be a CS model, and let 𝑖 ⊩ {𝐴 > 𝐵, 𝐴 > 𝐶} for an arbitrary world 𝑖 ∈

𝑊. Then ∃𝑘 ∈ 𝑊: 𝑘 ⊩ 𝐴 such that ↓.𝑘 ∩ [𝐴] ⊆ [𝐵], and ∃𝑘′ ∈ 𝑊: 𝑘′ ⊩ 𝐴 such that ↓.𝑘′ ∩ [𝐴] ⊆

[𝐶]. Now, either 𝑘 ≲𝑖 𝑘′ or 𝑘′ ≲𝑖 𝑘, by totality of ≲𝑖. If 𝑘 ≲𝑖 𝑘′, then clearly ↓.𝑘 ⊆ ↓.𝑘′, which in 

conjunction with the hypothesis implies that ↓.𝑘 ∩ [𝐴] ⊆ [𝐶]. Hence, we have both ↓.𝑘 ∩ [𝐴] ⊆

[𝐵] and ↓.𝑘 ∩ [𝐴] ⊆ [𝐶], which jointly imply ↓.𝑘 ∩ [𝐴] ⊆ [𝐵] ∩ [𝐶]. Hence 𝑖 ⊩ 𝐴 > (𝐵 ∧ 𝐶), as 

required. A very similar argument holds for the case when 𝑘′ ≲𝑖 𝑘.        □ 
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It’s easy to show that Adjunction of Consequents is also valid on conditional logic C.168 

 

Claim 4.5.2: Given Example 4.5.1, there’s no CS model where both premises can be true. 

Proof : We have the key enthymeme [𝐴 in 𝑆] ∩ [𝐴 in 𝑁] = ∅ for any extended area 𝐴 on the 

surface of the Earth. Let’s start with the first counterfactual. For 𝑖 ⊩ (𝐸 in 𝑍) > (𝐸 in 𝑆) we 

require that ∃𝑘 ∈ [𝐸 in 𝑍] and ↓.𝑘 ∩ [𝐸 in 𝑍] ⊆ [𝐸 in 𝑆], and accounting for imported 

information yields ↓.𝑘 ∩ [𝐸 in 𝑍] ⊆ [𝐸 in 𝑆] ∩ [𝑍 in 𝑆], which implies (*) ↓.𝑘 ∩ [𝐸 in 𝑍] ⊈

[𝑍 in 𝑁]. Next, for the second premise 𝑖 ⊩ (𝐸 in 𝑍) > (𝑍 in 𝑁) we require ∃𝑘′ ∈ [𝐸 in 𝑍] and 

↓.𝑘′ ∩ [𝐸 in 𝑍] ⊆ [𝑍 in 𝑁], which implies (**) ↓.𝑘′ ∩ [𝐸 in 𝑍] ⊈ [𝑍 in 𝑆]. Given totality, either 

𝑘 ≲𝑖 𝑘′ or 𝑘′ ≲𝑖 𝑘. Hence, either ↓.𝑘 ⊆ ↓.𝑘′ or ↓.𝑘′ ⊆ ↓.𝑘. First suppose ↓.𝑘 ⊆ ↓.𝑘′. Then, given that 

↓.𝑘′ ∩ [𝐸 in 𝑍] ⊆ [𝑍 in 𝑁] it follows that ↓.𝑘 ∩ [𝐸 in 𝑍] ⊆ [𝑍 in 𝑁], which contradicts (*). Next, 

suppose ↓.𝑘′ ⊆ ↓.𝑘. Then given that we have ↓.𝑘 ∩ [𝐸 in 𝑍] ⊆ [𝑍 in 𝑆] it follows that ↓.𝑘′ ∩

[𝐸 in 𝑍] ⊆ [𝑍 in 𝑆], which contradicts (**). So, if the first premise is true, the second premise 

can’t be true. A very similar argument shows that if we assume the truth of the second 

premise, the first premise can’t be true.                    □ 

 

It is easy to show that an analogous claim holds for logic C (and its extensions).169 

 

A more intuitive way of seeing this, is to note that for 𝑖 ⊩ (𝐸 in 𝑍) > (𝐸 in 𝑆) we require that 

all antecedent worlds where both Mt. Everest and NZ are in the Southern Hemisphere are 

more similar than worlds where both those objects are in the Northern Hemisphere, but for 

𝑖 ⊩ (𝐸 in 𝑍) > (𝑍 in 𝑁) we require (the opposite) that all antecedent worlds where both Mt. 

Everest and NZ are in the Northern Hemisphere are more similar than worlds where both 

those objects are in the Southern Hemisphere. Both orderings are clearly incompatible. That 

is, for the first premise to be true there will be an antecedent world 𝑘0 where both objects are 

in the Southern Hemisphere and all worlds 𝑗𝑁𝐻 where both objects are in the Northern 

Hemisphere satisfy (i): ∀𝑗(𝑘0 <𝑖 𝑗𝑁𝐻), whereas for the second premise to be true there will be 

                                                
168 𝐴 > 𝐵, 𝐴 > 𝐶 ⊨C 𝐴 > (𝐵 ∧ 𝐶). Proof : Let 𝔄 = (𝑊, 𝑅, 𝑉) be a C model and let 𝑖 ⊩ {𝐴 > 𝐵, 𝐴 > 𝐶} for 
arbitrary world 𝑖 ∈ 𝑊. Then we have both 𝑓𝐴(𝑖) ⊆ [𝐵] and 𝑓𝐴(𝑖) ⊆ [𝐶], which implies that 𝑓𝐴(𝑖) ⊆ [𝐵] ∩ [𝐶] =
[𝐵 ∧ 𝐶]. Therefore, 𝑖 ⊩ 𝐴 > (𝐵 ∧ 𝐶), as required. 
169 Given Example 4.5.1, there is no C model where both premises can be true. Proof : First it needs to be 
granted that 𝑓𝐸 in 𝑍(@) ≠ ∅. Moreover, we have the key enthymematic fact [𝐴 in 𝑆] ∩ [𝐴 in 𝑁] = ∅ for any 
area 𝐴 on the surface of the Earth. Let’s start with P.1. It’s true at the actual world iff 𝑓𝐸 in 𝑍(@) ⊆ [𝐸 in 𝑆], 
which implies that 𝑓𝐸 in 𝑍(@) ⊆ [𝐸 in 𝑆] ∩ [𝑍 in 𝑆], once we account for the imported information into 
𝑓𝐸 in 𝑍(@), which implies 𝑓𝐸 in 𝑍(@) ⊆ [𝑍 in 𝑆], which implies 𝑓𝐸 in 𝑍(@) ⊈ [𝑍 in 𝑁]. But 𝑓𝐸 in 𝑍(@) ⊆ [𝑍 in 𝑁] 
is necessary for the truth of P.2. So, if the first premise is true, the second premise can’t be true. A very similar 
argument shows that if we assume the truth of the second premise, the first premise can’t be true. 
 



134 
 

 

an antecedent world 𝑗0 where both objects are in the Northern Hemisphere and all worlds 𝑘𝑆𝐻 

where both objects are in the Southern Hemisphere satisfy (ii): ∀𝑘(𝑗0 <𝑖 𝑘𝑆𝐻). Now, 

∀𝑗(𝑘0 <𝑖 𝑗𝑁𝐻) implies 𝑘0 <𝑖 𝑗0, and ∀𝑘(𝑗0 <𝑖 𝑘𝑆𝐻) implies 𝑗0 <𝑖 𝑘0, jointly yielding 𝑘0 <𝑖 𝑗0 

and 𝑗0 <𝑖 𝑘0, which is impossible. 

 

Claim 4.5.3: Given Example 4.5.1, it follows that for any CS+ model where both premises 

are true there is no mutual refinement of the ordering frames corresponding to the premise 

context indices.  

Informal proof : This is clear when we consider this as a corollary of Claim 4.5.2. That is, 

since (𝐸 in 𝑍) > (𝐸 in 𝑆 ) and (𝐸 in 𝑍) > (𝑍 in 𝑁) can’t be both true on any CS model, as we 

have established in Claim 4.5.2,  then, in particular, for any CS+ model where the premises 

are both true, there is no mutual refinement of the ordering frames corresponding to the 

premise indices, since that would imply that both premises are true on some CS model (recall 

that refinements are truth preserving), which we have established in Claim 4.5.2 as 

impossible. Below is a formal proof. 

 

Proof : For any CS+ model 𝔄 = (𝑊, 𝒞, 𝑟, 𝜌), 𝑖 ∈ 𝑊, and 𝑎, 𝑏 ∈ 𝒞, if 𝔄, 𝑖 ⊩𝒞 (𝐸 in 𝑍) >𝑎 (𝐸 in 𝑆) 

and 𝔄, 𝑖 ⊩𝒞 (𝐸 in 𝑍) >𝑏 (𝑍 in 𝑁), then by definition there are CS models (𝑟𝑎 , 𝜌) and (𝑟𝑏 , 𝜌), 

such that (𝑟𝑎 , 𝜌), 𝑖 ⊩ (𝐸 in 𝑍) > (𝐸 in 𝑆)and (𝑟𝑏 , 𝜌), 𝑖 ⊩ (𝐸 in 𝑍) > (𝑍 in 𝑁). But there is no 

mutual refinement of 𝑟𝑎 and 𝑟𝑏, i.e. there is no 𝑐 ∈ 𝒞 such that 𝑟𝑐 ∈ ℛ[𝑟𝑎] ∩ ℛ[𝑟𝑏], for the 

simple reason that refinements are >-truth preserving, by Proposition 4.5. If there was such a 

mutual refinement 𝑟𝑐, then (𝑟𝑐 , 𝜌), 𝑖 ⊩ {(𝐸 in 𝑍) >𝑎 (𝐸 in 𝑆), (𝐸 in 𝑍) >𝑏 (𝑍 in 𝑁)}, which we 

have established in Claim 4.5.2 to be impossible, since (𝑟𝑐 , 𝜌) is a CS model, by definition.   □ 

 

Explanation: contextual information incompatibility (contextual orthogonality) 

Although on the contextualized analysis there are now contexts a and b such that both 

premises 𝐴 >𝑎 𝐵 and 𝐴 >𝑏 𝐶 can be true at some possible world i, according to 𝑟𝑎 and 𝑟𝑏 

respectively (in contrast with the case of C and its extensions and with the case of CS and its 

extensions), but there is no context c such that 𝑟𝑐 is a mutual refinement of 𝑟𝑎 and 𝑟𝑏. In other 

words, it is not possible to integrate the contextual information of contexts a and b, carried by 

ordering assignments of ordering frames 𝑟𝑎 and 𝑟𝑏 to any world 𝑖 in a manner that corresponds 
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to some possible context c whose information would be carried by the ordering assignment of 

ordering frame 𝑟𝑐 to world 𝑖.170 

 

For the same reasons the following instance of Adjunction of Consequents goes through, 

where the implicit inconsistency is a little more obvious than in the ‘Everest in NZ’ example. 

Here the consequents of the premises form an inconsistent set, whereas in the other example 

the addition of the antecedent (and obvious enthymemes) to the consequent pair resulted in 

inconsistency. 

 

Example 4.5.4: 𝐴 >𝑎 𝐵, 𝐴 >𝑏 ~𝐵 ⊨𝐂𝐒𝟏+
𝒞 𝐴 >𝑐 (𝐵 ∧ ~𝐵)  

 

4.4.5.5  Fine-tuning CS1+ and the system CS2+ 

This motivates the following reformulation of valid inference conditions, which do away with 

(i.e. block) cases when the ordering frames corresponding to contexts that make all the 

premises true fail to have a mutual refinement. 

 

Definition 4.5.5: Let 𝔄 be a CS+ model. For all Σ ∪ {𝐴} ⊆ 𝐹𝑜𝑟>0
𝒞 (>) ∪ 𝐹𝑜𝑟>

𝒞̅̅ ̅̅ ̅̅ ̅:  

Σ ⊨𝔄
𝒞 𝐴    iff  

    (1)  ∃𝔉 ∈ 𝐂𝐒, and 

    (2)   If for all 𝑖 ∈ 𝑊:    

(i) 𝔄, 𝑖 ⊩𝒞 Σ, and  

(ii)  if 𝐼𝑛𝑑({𝐴}) = ∅, then 𝔉 ∈ ⋂{ℛ[𝑟𝑏]: 𝑏 ∈ 𝐼𝑛𝑑(Σ)}, and 

if |𝐼𝑛𝑑({𝐴})| = 1 , then 𝔉 = 𝑟𝑎 ∈ ⋂{ℛ[𝑟𝑏]: 𝑏 ∈ 𝐼𝑛𝑑(Σ)} for {𝑎} = 𝐼𝑛𝑑({𝐴}), 

then 𝔄, 𝑖 ⊩𝒞 𝐴. 

 

Note that adding condition (1), which requires the existence of a mutual refinement of 

ordering frames that represent the context-indices over which the premises range will make 

Σ ⊨𝔄
𝒞 𝐴 false, for each CS+ model 𝔄, if no such refinement exists. Precisely what is required 

to invalidate Adjunction of Consequents, by paralleling our intuitions in the treatment of the 

                                                
170 Contrast example 4.5.1 with the following one, based on an example from Quine, where the contexts 
required to make the premises true need not be incompatible as is the case with ones that make the premises 
of 4.5.1 true. 

(1)  If Caesar had been in command, he would have used the atom bomb. 
(2)  If Caesar had been in command, he would have used catapults. 
(3) Therefore, if Caesar had been in command, he would have used catapults and the atom 

bomb. 
Both premises can be true on a single, albeit rather eccentric, context and the conclusion is also naturally true in 
that context. This doesn’t change the fact that the inference form is invalid. 
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running counterexample.  

(Observation: condition (1) resembles in its form the syntactic, propositional variable 

sharing condition for valid relevant conditionals, i.e. Definition 1.7.) 

 

Definition 4.5.6: For all Σ ∪ {𝐴} ⊆ 𝐹𝑜𝑟>0
𝒞 (>) ∪ 𝐹𝑜𝑟>

𝒞̅̅ ̅̅ ̅̅ ̅: write Σ ⊨𝐂𝐒𝟐+
𝒞 𝐴 iff Σ ⊨𝔄

𝒞 𝐴 for all CS+ 

models 𝔄, where Σ ⊨𝔄
𝒞 𝐴  is as defined in 4.5.5. Also write ⊨𝐂𝐒𝟐+

𝒞 𝐴 iff ⊨𝔄
𝒞 𝐴 for all CS+ 

models 𝔄. Call this logic (schema) CS2+. 

 

What is paradigmatic about such inference forms is that they highlight what is really at play 

in contextualized validity when we explore limit cases, i.e. premises being true in radically 

different contexts. That is, we can have possibility expressing premises true for any contexts, 

but the inference is valid if the conclusion can always be true in a contextually meaningful 

way – one that is not independent of the contextual information by virtue of which the 

premises are true. If there is no mutual refinement of ordering frames representing context-

indices over which the premises range, that means there is no single context on which all the 

premises are true, and consequently no contextually meaningful way of speaking of the 

conclusion following from those premises. Therefore, the inference is contextually invalid. It 

should be noted that the inference fails in limit cases as exemplified in 4.5.1 but may very 

well go through on some CS+ models (if not all) if the divergence of contexts over which the 

premises range isn’t extreme. 

 

It could be argued that such contextual incompatibility of premises – all true but on contexts 

that do not have a mutual refinement – should be treated in the manner that inconsistent sets 

of premises are treated, i.e. the conclusion should follow vacuously. Perhaps this needs some 

more thought, but examples such as 4.5.1 – which appear to be legitimate counterexamples to 

Adjunction of Consequents – seem to speak against such an approach. The inference is 

invalid, and it is only the contextualized account that gives the corresponding correct 

analysis, allowing for the premises to be jointly (and meaningfully) true.  
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Chapter 5 

 

A non-vacuist account of counterpossibles 

 

 

Everyone knows that dragons don't exist. But 
while this simplistic formulation may satisfy the 
layman, it does not suffice for the scientific mind. 
[...] Indeed, the banality of existence has been so 
amply demonstrated, there is no need for us to 
discuss it any further here. The brilliant Cerebron, 
attacking the problem analytically, discovered 
three distinct kinds of dragon: the mythical, the 
chimerical, and the purely hypothetical. They 
were all, one might say, non-existent, but each 
non-existed in an entirely different way. 
 

Stanisław Lem, The Cyberiad, 1965.  

 

 

 

 

 

 

5.0 Introduction 

In this chapter I develop a non-vacuist account of counterpossibles, by building on the 

ordering semantics given for the system CS in chapter 4. That is, I modify CS in a manner 

that results in an analysis of counterpossibles that meets our intuitions, i.e. as sometimes 

being non-vacuously true and sometimes non-vacuously false. As we saw in chapter 2, one of 

the major drawbacks of Lewis’ account of the counterfactual is that it evaluates all 

counterfactuals with impossible antecedents (viz. counterpossibles) as true, including 

intuitively false ones like: 

 

  (i)   If Alice had squared the circle and Bob had doubled the cube, then Alice would be Bob. 

  (ii)  If paraconsistent logic were correct, ex contradictione quodlibet would still be valid. 

 

This stems from the fact that Lewis’ (1973, 1981) analysis of counterfactuals is restricted to 

possible worlds, which results in all counterpossibles satisfying the truth conditions 
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vacuously.171 The inadequacy of vacuism, as such analyses have come to be known in the 

context of discussions of counterpossibles, has already been identified and challenged by a 

number of authors.172 I join this critical front, and drawing on existing proposals for non-

vacuism, show that there is a sense in which we can preserve all of Lewis’ analysis of mere 

counterfactuals, whilst avoiding the vacuous truth of counterpossibles, by admitting 

impossible worlds as worlds where the impossible is true.173  

 

In §5.1 I present a family of logics and their ordering semantics, based on partial preorderings 

of worlds, i.e. systems based on ordering frames, much like the CS ordering frames of 

chapter 4, but where we allow our universal quantifier in the truth conditions for > to range 

over impossible worlds, and where a new set of conditions on the ordering (comparative 

similarity) of worlds is introduced in order to accommodate for this domain extension. In 

section §5.2 I demonstrate that all the systems characterized in §5.1 meet the non-vacuity 

criterion, i.e. they are systems in which some counterpossibles are false. §5.3 is devoted to a 

critical discussion of the counterpart to Nolan’s (1997) Strangeness of Similarity Condition 

(SIC), where I argue in SIC’s favour based on the evaluation of the benefits and costs of its 

implementation. In §5.4 I discuss the matter of comparability of worlds on the extended 

account. Most of that discussion has the character of a reply to Weiss’ (2017) objection to the 

general idea underlying similarity semantics, i.e. comparability of worlds, which he thinks to 

be a sufficiently fundamental hindrance to question the tenability of a similarity approach to 

analyzing counterpossibles. He sets his objection in terms of an alleged counterexample to an 

inference form that is valid on all similarity systems that satisfy comparability of worlds. My 

reply shows that the challenged inference is invalid on some weaker systems, proposed in 

§5.1 – namely, those satisfying a weaker ordering condition, whereby comparability is only 

lifted from impossible worlds. I also argue that an apparent lack of clarity – in the 

formulation of Weiss’ counterexample – regarding the permissible extent of contextual shift 

between the reading (as true) of the different pertinent premises, could be used to invalidate 

more than he has intended. I close §5.4 by showing that the weaker systems invalidate 

Adjunction of Consequents even for mere counterfactuals.  

 

                                                
171 See definition 2.19 (4) and definition 4.2.5. (8). 
172 Nolan (1997), Mares (1997), Lander Laan (2004), Brogaard and Salerno (2008), Priest (2008), Bjerring (2014), 

Weiss (2017), Berto & Jago (2019, §12). 
173 The earliest use of the term ‘non-vacuism’ in this context appears in Brogaard and Salerno (2014).  
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5.1 Ordering semantics for counterpossibles 

The formal language of the analysis is propositional modal logic with an additional dyadic 

modal connective >. That is, the definition of the formal language ℒ and the set 𝐹𝑜𝑟 of well-

formed formulae is as defined in §4.1. 

 

To simplify the  discussion in this chapter we will work with a restricted class of ordering 

frames, where all worlds are accessible, i.e. recalling CS ordering frames of the previous 

chapter, in this chapter we let 𝑆𝑖 = 𝑊 for each 𝑖 ∈ 𝑊 for each ordering, so all talk of 

accessibility is set aside, while we focus on pertinent features of ordering frames that are 

most relevant to counterpossibles.174 I will be considering a weaker foundational ordering 

condition than (CS1) of CS ordering frames as the basis for modelling comparative similarity 

over the extended domain (impossible worlds), with optional conditions that allow 

strengthening it for possible worlds. That is, the additional conditions allow some worlds to 

be incomparable in terms of their similarity to the actual world (or any world of evaluation) – 

a property of comparative similarity ruled out by Lewis (1971, 1973, 1981) and Stalnaker 

(1968, 1970). 

 

Definition 5.1: An ordering frame is a triple (𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}), where 𝑊 is a nonempty set, 

∅ ≠ 𝑁 ⊆ 𝑊 and ≲𝑖 ⊆ 𝑊 × 𝑊 satisfies the following conditions, for each 𝑖 ∈ 𝑊: 

 

(CS1.1)  ≲𝑖 is a preorder on 𝑊 

 

On the intended interpretation, elements of 𝑁 are possible (or normal) worlds, 𝑊 ∖ 𝑁 are 

impossible (or non-normal) worlds, and ≲𝑖 is regarded as the ordering of worlds in respect of 

their comparative similarity to 𝑖, with the following intended meaning: 

 

𝑗 ≲𝑖 𝑘 :  𝑗 is at least as similar to 𝑖 as 𝑘 is. 

𝑗 <𝑖 𝑘 :  𝑗 is more similar to 𝑖 than 𝑘 is. 

𝑗 ∼𝑖 𝑘 :  𝑗 and 𝑘 are equally similar to 𝑖. 

 

Only possible worlds are given a comparative similarity assignment (comparative similarity 

neighbourhood), since on this picture truth at impossible worlds will be independent of any 

similarity considerations.  

                                                
174 In this section and the next I simplify the formulation by borrowing some layout and presentation features of 
the model theory from Sillari (2008, §2.3), which draws on Hintikka and Rantala’s work, Priest (2008, §9.4.7), 
Weiss (2017) and Berto & Jago (2019). 
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Definition 5.1.1: Denote the class of ordering frames from Definition 5.1 with CS*. 

 

I’d like to highlight a property of sets that play a key role in our semantics, one which allows 

me to introduce a short-hand notation that will aid most formal arguments in this chapter.175 

 

Definition 5.2: Given a preordered set (𝑆, ≲). Call 𝐼 ⊆ 𝑆 an ideal in (𝑆, ≲) iff 

(i) 𝐼 ≠ ∅ 

(ii) 𝐼 is a lower set: (∀𝑥 ∈ 𝐼)(∀𝑦 ∈ 𝑆)(𝑦 ≲ 𝑥 ⟶ 𝑦 ∈ 𝐼 ). 

(iii) 𝐼 is a directed set: (∀𝑥, 𝑦 ∈ 𝐼)(∃𝑧 ∈ 𝐼)(𝑥 ≲ 𝑧 ∧ 𝑦 ≲ 𝑧). 

 

Definition 5.2.1: Let (𝑆, ≲) be a preordered set and 𝑥 ∈ 𝑆. Define ↓.𝑥(𝑆,≲) ∶= {𝑦 ∈ 𝑆: 𝑦 ≲ 𝑥}. 

When there is no ambiguity regarding the preordered set in question, I’ll omit the subscript. 

 

Proposition 5.1: Let (𝑆, ≲) be a preordered set such that 𝑥 ∈ 𝑆. ↓.𝑥 is an ideal in (𝑆, ≲). 

Proof : Condition (i) is immediate, since 𝑥 ∈ ↓.𝑥 , as is (ii) from the definition of ↓.𝑥, and (iii) 

follows from the fact that 𝑥 ∈ ↓.𝑥  and 𝑦 ≲ 𝑥 for all 𝑦 ∈ ↓.𝑥.                      □ 

 

The formulation of the model theory is relatively common, and can be traced back as far as 

Kripke’s semantics for C.I. Lewis’ systems that are weaker than S4, which we looked at in 

§1.3, with the additional feature borrowed from Rantala’s models, which we looked at in 

§1.3.4, of assigning arbitrary values to formulae at non-normal worlds – a method that has 

been widely applied in impossible world semantics for doxastic and epistemic logics that 

model non-ideal agents, i.e. that avoid logical omnidoxasticity and omniscience.176 

 

Definition 5.3: A model based on ordering frames is the quadruple 𝔄 = (𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}, 𝜌) 

where (𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}) is an ordering frame and 𝜌 = {𝜌𝑖: 𝑖 ∈ 𝑊} is defined as follows: 

(1)   For 𝑖 ∈ 𝑁: 𝜌𝑖 ⊆ 𝑃𝑉 × {0,1} is a relation satisfying the following constraints: 

(i) For no 𝑝 ∈ 𝑃𝑉 and 𝑖 ∈ 𝑊, both 𝑝𝜌𝑖0 and 𝑝𝜌𝑖1 (exclusion) 

(ii) For all 𝑝 ∈ 𝑃𝑉 and 𝑖 ∈ 𝑊, either 𝑝𝜌𝑖0 or 𝑝𝜌𝑖1  (exhaustion) 

 

(2)   For 𝑖 ∈ 𝑊 ∖ 𝑁:  𝜌𝑖 ⊆ 𝐹𝑜𝑟 × {0,1}.  

                                                
175 Ideals also appear in the truth conditions for 𝐴 > 𝐵 in CS models, defined in chapter 4. 
176 E.g. see Sillari (2008, §2.3) who draws on the earlier work of Hintikka and Rantala. 
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That is, (2) tells us that truth values are related (assigned) directly to any formula at each non-

normal world. Also note that the manner in which 𝜌𝑖’s are restricted in (1) effectively renders 

them as functions 𝜌𝑖: 𝑃𝑉 ⟶ {0,1} for each 𝑖 ∈ 𝑁. 

 

Definition 5.3.1: Truth in a model is defined in terms of the relation ⊩  ⊆ 𝑁 × 𝐹𝑜𝑟, defined as 

follows: given a model (𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}, 𝜌) and any 𝑖 ∈ 𝑊 ∖ 𝑁, and 𝐴 ∈ 𝐹𝑜𝑟: 

 

   (1) 𝑖 ⊩ 𝐴     iff      𝐴𝜌𝑖1 

 

And for any 𝑖 ∈ 𝑁, 𝑝 ∈ 𝑃𝑉, and 𝐴, 𝐵 ∈ 𝐹𝑜𝑟: 

 

   (2) 𝑖 ⊩ 𝑝     iff      𝑝𝜌𝑖1 

   (3) 𝑖 ⊩ ~𝐴  iff      not  𝑖 ⊩ 𝐴 

   (4) 𝑖 ⊩ 𝐴 ∧ 𝐵  iff      𝑖 ⊩ 𝐴  and  𝑖 ⊩ 𝐵 

   (5) 𝑖 ⊩ 𝐴 ∨ 𝐵  iff      𝑖 ⊩ 𝐴  or  𝑖 ⊩ 𝐵 

   (6) 𝑖 ⊩ 𝐴 ⊃ 𝐵  iff      𝑖 ⊩ ~𝐴  or  𝑖 ⊩ 𝐵 

   (7) 𝑖 ⊩ □𝐴   iff      ∀𝑗 ∈ 𝑁: 𝑗 ⊩ 𝐴. 

   (8) 𝑖 ⊩ ◊𝐴   iff      ∃𝑗 ∈ 𝑁: 𝑗 ⊩ 𝐴. 

   (9) 𝑖 ⊩ 𝐴 > 𝐵  iff      ∃𝑘 ∈ 𝑊: 𝑘 ⊩ 𝐴   and   ∀𝑗 ∈ 𝑊(𝑗 ≲𝑖 𝑘 ⟶ (𝑗 ⊩ 𝐴 ⟶ 𝑗 ⊩ 𝐵)) 

 

The intended meaning of 𝑖 ⊩ 𝐴 is ‘𝐴 is true at 𝑖’. For each 𝑖 ∈ 𝑊 ∖ 𝑁, 𝜌𝑖 ⊆ 𝐹𝑜𝑟 × {0,1} is a 

relation, as specified in (1), between any formula and {0,1}. That is, truth conditions for 

complex formulae are not defined recursively, but related by 𝜌𝑖 to complex formulae directly. 

This allows for the inclusion of closed worlds, where the laws of logic are different (e.g. the 

worlds may be closed under paraconsistent or paracomplete consequence), and open worlds, 

where even extensional formulas fail to conform to any rules of compositionality. 

 

Definition 5.4: It will also be convenient to define [𝐴]𝔄 ∶= {𝑖 ∈ 𝑊: 𝔄, 𝑖 ⊩ 𝐴} for any model 𝔄 

with domain 𝑊. The superscript will be omitted when its absence will not lead to ambiguity. 

 

Notation: with the help of definition 5.4 let us formulate the second conjunct of (9) of 

definition 5.3.1 more succinctly – the main reason for defining the notation ↓.𝑘, in the first 

place. 

 

   (9’) 𝑖 ⊩ 𝐴 > 𝐵  iff      ∃𝑘 ∈ 𝑊: 𝑘 ⊩ 𝐴  and  ↓.𝑘𝑖 ∩ [𝐴] ⊆ [𝐵]. 

 

Where ↓.𝑘𝑖 is just shorthand for ↓.𝑘(𝑊,≲𝑖). In contexts where the subscript is constant, I’ll omit 

it altogether and just write ↓.𝑘 for brevity. 
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Logical truth is defined as truth at all possible worlds in each model, and valid inference is 

truth preservation at all possible worlds in each model. This follows an approach that can be 

traced at least back to Kripke’s semantics for non-normal modal logics (see §1.2) and is a 

common approach to defining validity and valid inference in semantics that include non-

normal or impossible worlds. The motivation for this definition of logical truth and validity is 

justified if we characterize impossible worlds to be those where the laws of logic are different 

or where the laws of logic fail. Then when we define validity and valid inference, i.e. the 

laws and rules of logic, we should not consider worlds where the laws of logic are different or 

where they fail.177 

 

Definition 5.5: Let ⊨𝐂𝐒∗ ⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟. Write Σ ⊨𝐂𝐒∗ 𝐴 if and only if for all models 

(𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}, 𝜌), and all 𝑖 ∈ 𝑁, if 𝑖 ⊩ 𝐵 for all 𝐵 ∈ Σ, then 𝑖 ⊩ 𝐴. We say an inference 

from Σ to 𝐴 is valid iff Σ ⊨𝐂𝐒∗ 𝐴. That is, valid inference is defined as truth preservation at all 

possible worlds in all 𝐂𝐒∗ models. A formula 𝐴 ∈ 𝐹𝑜𝑟 is said to be valid iff ∅ ⊨𝐂𝐒∗ 𝐴. Call this 

logic 𝐂𝐒∗. 

 

Note that since the truth conditions for □ and ◊ formulae are defined in terms of unrestricted 

quantification over possible worlds, the above validity conditions give the modal logic S5 for 

the basic modal language. 

 

There are a number of additional, well-motivated conditions that one could impose on 

ordering frames, thereby generating a whole family of logics.  

 

Definition 5.6: Given a CS* ordering frame 𝔉 = (𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}) define the following 

conditions on 𝔉, for all 𝑖 ∈ 𝑊:  

 

(WC)       𝑖 is ≲𝑖-minimal: ∀𝑗 ∈ 𝑊(𝑖 ≲𝑖 𝑗 ). 

(SC)  𝑖 is <𝑖-minimal: ∀𝑗 ∈ 𝑊(𝑗 ≠ 𝑖 ⟶ 𝑖 <𝑖 𝑗 ). 

(T1)  ≲𝑖 is total over 𝑁: ∀𝑗, 𝑘 ∈ 𝑁(𝑗 ≲𝑖 𝑘 ∨ 𝑘 ≲𝑖 𝑗). 

(T2)  ≲𝑖 is total: ∀𝑗, 𝑘 ∈ 𝑊(𝑗 ≲𝑖 𝑘 ∨ 𝑘 ≲𝑖 𝑗). 

(SI1)       Possible worlds are ≲𝑖-minimal: ∀𝑗, 𝑘 ∈ 𝑊(𝑘 ∉ 𝑁 ⟶ 𝑗 ≲𝑖 𝑘). 

(SI2)     Possible worlds are <𝑖-minimal: ∀𝑗, 𝑘 ∈ 𝑊((𝑗 ∈ 𝑁 ∧ 𝑘 ∉ 𝑁) ⟶ 𝑗 <𝑖 𝑘). 

 

                                                
177 Berto & Jago (2019, §4.2) 
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If a CS* frame 𝔉 satisfies some condition (C), we will say ‘𝔉 satisfies (C)’.  

 

Definition 5.7: Let (C) be a condition predicable of an ordering frame (e.g. like the 

conditions in definition 5.6). Denote the restricted class of frames {𝔉 ∈ 𝐂𝐒∗: 𝔉 satisfies (C)} 

with 𝐂𝐒(C)
∗ . 

 

Definition 5.5.1: Let ⊨𝐂𝐒∗+(C) be defined as follows: let (𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}) ∈ 𝐂𝐒(C)
∗ , and write 

Σ ⊨𝐂𝐒∗+(C) 𝐴 iff for all models (𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}, 𝜌) and all 𝑖 ∈ 𝑁, if 𝑖 ⊩ 𝐵 for all 𝐵 ∈ Σ, then 

𝑖 ⊩ 𝐴. We say an inference from Σ to 𝐴 is valid iff Σ ⊨𝐂𝐒∗+(C) 𝐴. That is, valid inference is 

defined as truth preservation at all possible worlds in all 𝐂𝐒∗ + (C) models. A formula 𝐴 ∈

𝐹𝑜𝑟 is said to be valid iff ∅ ⊨𝐂𝐒∗+(C) 𝐴. Call this logic 𝐂𝐒∗ + (C). 

 

Note that the basic (CS1) condition of total preorderhood over the entire domain, used in the 

previous chapter is equivalent to the conjunction of the weaker condition of mere 

preorderhood and unrestricted totality, i.e. (CS1.1)+(T2). Conditions (SI2) and (SI1) 

correspond to Nolan’s (1997, p.566) conditions, i.e. Strangeness of Impossibility condition 

(SIC) and Lesser Strangeness of Impossibility condition (LSIC), respectively. (SI1) is the 

weaker of the two, as it only demands that no impossible world is more similar to the world 

of evaluation than some possible world, whereas (SI2) stipulates that all possible worlds are 

more similar to the world of evaluation than any impossible world. Aside from its intuitive 

appeal (SI2) has also important formal advantages, and it is not entirely free of criticism, all 

of which I’ll address in §5.3. 

 

As I will argue in §5.4 there may be good reasons to think that the notion of comparative 

similarity modelled by total preorders may be too strong when it comes to impossible worlds, 

so we could weaken the orderings from being total preorders of the entire domain 

(CS1.1)+(T1), which are jointly equivalent to (CS1), to only being totally preordered over 

possible worlds (CS1.1)+(T2) thereby allowing incomparabilities between impossible worlds. 

The intuition here is that impossible worlds are so strange that it would seem a little strong to 

demand that even in relevant respects their conceptual impossibility (logical, mathematical, 

metaphysical, etc.) should always be comparable by ≲𝑖. That is, for any two impossible 
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worlds, it need not always be correct to say that one is more/less/equally similar than the 

other to the actual world (or any world of valuation), even in relevant respects. 

 

The primary aim of the discussion in this chapter is to focus on weighing up the pros and 

cons of the following extensions (with convenient denotations indicated) of 𝐂𝐒∗.  

 

𝐂𝐒1
∗: 𝐂𝐒∗ + (WC) 

𝐂𝐒2
∗ : 𝐂𝐒∗ + (T1) + (WC) 

𝐂𝐒3
∗ : 𝐂𝐒∗ + (T1) + (WC) + (SI2)  

𝐂𝐒4
∗ : 𝐂𝐒∗ + (T2) + (WC) + (SI2) 

 

Note that ⊨𝐂𝐒1
∗  ⊆ ⊨𝐂𝐒2

∗  ⊆ ⊨𝐂𝐒3
∗  ⊆ ⊨𝐂𝐒4

∗  by definition. The system 𝐂𝐒2
∗ is a lot like 𝐂𝐒, introduced 

in the previous chapter, with the only difference that 𝐂𝐒2
∗ models admit impossible worlds 

with a weaker condition modelling comparative similarity between them. Its extension 𝐂𝐒3
∗ 

adds the Strangeness of Impossibility Condition (SI1) – which offers a number of advantages 

(discussed in §5.3) – and as I argue in §5.4, may be a better option than 𝐂𝐒4
∗. In other words, I 

will argue that 𝐂𝐒3
∗ is the optimal system, relative to the ones considered here. 

 

5.2 Adequacy for non-vacuism of the weakest 𝐂𝐒∗ systems 

It’s easy to check that 𝐂𝐒∗ validates the law of identity: 

(5.1) ⊨ 𝐴 > 𝐴 

And the addition of (WC) to 𝐂𝐒∗ validates modus ponens and modus tollens: 

(5.2) 𝐴, 𝐴 > 𝐵 ⊨ 𝐵 

(5.3)    ~𝐵, 𝐴 > 𝐵 ⊨ ~𝐴  

 

CS* and its extensions are non-vacuist, which is the first indication of their adequacy. That is, 

both of the following no longer hold in 𝐂𝐒1
∗ and its extensions: 

(5.4) ~◊𝐴 ⊨ 𝐴 > 𝐵   e.g.   ~◊(~𝑝 ∧ 𝑝) ⊭𝐂𝐒∗ (~𝑝 ∧ 𝑝) > 𝑞 

Which as a consequence results in the invalidation of: 

(5.5) □(𝐴 ⊃ 𝐵) ⊨ 𝐴 > 𝐵  e.g.   ((~𝑝 ∧ 𝑝) ⊃ 𝑞) ⊭𝐂𝐒∗ (~𝑝 ∧ 𝑝) > 𝑞 

 

Proposition 5.2: ⊭𝐂𝐒∗ (~𝑝 ∧ 𝑝) > 𝑞 

Proof : Let 𝔄 = (𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}, 𝜌), be a CS* model such that 𝑊 = {𝑖, 𝑗}, 𝑁 = {𝑖}, 𝑖 ≲𝑖 𝑗, and 

(~𝑝 ∧ 𝑝, 1) ∈ 𝜌𝑗 and (𝑞, 1) ∉ 𝜌𝑗. So, 𝑖 ⊮ (~𝑝 ∧ 𝑝) > 𝑞, since 𝑗 ⊩ ~𝑝 ∧ 𝑝 and 𝑗 ≲𝑖 𝑗, but 𝑗 ⊮ 𝑞.  □ 
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Corollary 5.2.1: □((~𝑝 ∧ 𝑝) ⊃ 𝑞) ⊭𝐂𝐒∗ (~𝑝 ∧ 𝑝) > 𝑞 

Proof : Follows immediately from proposition 5.2, since ⊨𝐂𝐒∗ (~𝑝 ∧ 𝑝) ⊃ 𝑞.      □ 

 

5.3 Strangeness of Impossibility Condition 

When evaluating at a possible world the truth of a counterfactual whose antecedent doesn’t 

express an impossibility, impossible worlds are irrelevant, much like worlds where kangaroos 

walk upright using crutches are irrelevant in evaluating the counterfactual ‘If kangaroos had 

no tails, they would topple over’. So, the condition (SI2) is very much Lewisean in spirit.178 

There’s an obvious parallel between the centering conditions (SC) and (WC) and strangeness 

of impossibility conditions (SI1) and (SI2). Just as (SC) stipulates that the actual world (or 

any world of evaluation) is more similar to itself than all other worlds, (SI2) stipulates that all 

possible worlds are more similar to the actual world (or any world of evaluation) than any 

impossible world is. Both (WC) and (SI1) weaken those conditions by allowing ties in 

comparative similarity between the world of evaluation and other possible worlds and by 

allowing ties in comparative similarity between possible worlds and impossible worlds, 

respectively.179 Perhaps unsurprisingly, to that analogue in comparative similarity restrictions 

there corresponds a pair of characteristic inference forms that hinge on them.180  

 

(5.6) 𝐴, 𝐵 ⊨ 𝐴 > 𝐵 

(5.7) □𝐴, □𝐵 ⊨ 𝐴 > 𝐵 

 

That is, (5.6) is invalidated on all 𝐂𝐒∗systems that do not satisfy (SC), so on the current 

proposal that means all systems 𝐂𝐒1
∗ through 𝐂𝐒4

∗. Also, systems that satisfy (SI2), validate 

(5.7), which I prove shortly in Proposition 5.3, so on the current proposal only systems 𝐂𝐒3
∗ 

and 𝐂𝐒4
∗ validate it. In §5.3.2.2 I will address what looks like a counterexample to (5.7) given 

by Weiss (2017), and which arms his objection to (SI2). 

 

5.3.1 Benefits 

The main appeal of (SI2) is that it allows us to effectively preserve all of Lewis’ analysis of 

mere counterfactuals, whilst correcting the analysis of counterpossibles. Adding the stronger 

strangeness of impossibility condition (SI2) validates (5.7) and: 

 

(5.8) ◊𝐴, 𝐴 > 𝐵 ⊨ ◊𝐵 

                                                
178 Mares (1997) and Jago (2014) also endorse (SIC). 
179 We could think of (SI1) as “weak centering on 𝑁” and (SI2) as “strict centering on 𝑁”. 
180 Weiss (2017, §2.2) also makes an analogous observation. 
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Proposition 5.3: □𝐴, □𝐵 ⊨ 𝐴 > 𝐵 

Proof : Let 𝔄 = (𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}, 𝜌) be a CS* model that satisfies (SI2), and let 𝑖 ⊩ {□𝐴, □𝐵} 

for arbitrary 𝑖 ∈ 𝑁. Then it follows that there is a 𝑗 ∈ 𝑁 ⊆ [𝐴] and ↓.𝑗 ∩ [𝐴] ⊆ [𝐵] since ↓.𝑗 ∩

[𝐴] ⊆ 𝑁 by hypothesis and (SI2), and 𝑁 ⊆ [𝐵] by hypothesis. So, 𝑖 ⊩ 𝐴 > 𝐵, as required.     □ 

 

Proposition 5.4: ◊𝐴, 𝐴 > 𝐵 ⊨ ◊𝐵   

Proof : Let 𝔄 = (𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}, 𝜌) be a CS* model that satisfies (SI2), and assume 𝑖 ⊩ ◊𝐴 

and 𝑖 ⊩ 𝐴 > 𝐵 for arbitrary 𝑖 ∈ 𝑁. Now, since 𝑁 ∩ [𝐴] ≠ ∅, then 𝑖 ⊩ 𝐴 > 𝐵 and (SI2) imply 

that there exists a world 𝑗 ∈ 𝑁 ∩ [𝐴] such that ↓.𝑗 ∩ [𝐴] ⊆ 𝑁 and ↓.𝑗 ∩ [𝐴] ⊆ [𝐵]. Hence, 𝑗 ⊩ 𝐵, 

which implies that 𝑖 ⊩ ◊𝐵, as required.           □ 

 

As a matter of fact (SI2) does a lot more. It allows us to salvage most of the CS valid 

inferences, as long as the antecedents of the modal conditional > are restricted to expressing 

possible propositions. This can be done by adding suppressed premises in the form ◊𝐴 to the 

premise set, for every 𝐴 > 𝐵 appearing anywhere in the inference, which would ensure that 

when evaluating a conditional > we would never “look beyond” possible worlds. That is, 

given a CS valid inference Σ ⊨𝐂𝐒 𝐴, we can preserve its validity on CS* systems if we add ◊𝐵 

to the premise set for each 𝐵 > 𝐶 ∈ 𝑆𝑢𝑏(𝐴) ∪ {𝐷 ∈ 𝑆𝑢𝑏(𝐸): 𝐸 ∈ Σ}.181 In order words, with 

(SI2) in place we preserve all of Lewis’ analysis of mere counterfactuals (i.e. possible-

antecedent part of CS), whilst correcting the analysis of counterpossibles. That is, by 

introducing impossible worlds we lose nothing of the original analysis, and we gain by 

amending its drawbacks.  

To be sure (SI2) is not entirely unobjectionable. Nolan (1997) having introduced (SI2)  not so 

much as a logical principle, but a tentative heuristic, explores a few insightful examples that 

could be said to violate it. Berto and Jago (2019) reply to those examples by defending (SI2). 

I will not reiterate that exchange here but instead focus on a couple of other objections, in the 

next section. 

 

5.3.2 Criticisms 

5.3.2.1   The problem of the trivial world 

A number of authors have observed an internal tension between two provisional principles 

that have gathered wide acceptance by those working with similarity semantics for 

                                                
181 In agreement with (Berto & Jago, 2019). 



147 
 

 

counterpossibles based on classical logic.182  

 

Definition 5.8: Given any CS* model call a world 𝑤 ∈ 𝑊 closed under L-consequence if and 

only if Σ ⊨L 𝐴 and 𝑤 ⊩ Σ implies 𝑤 ⊩ 𝐴, where L is some logic.  

We could then say that a world w is governed by logic L iff w is L-closed. 

 

The first of the aforementioned principles is (SI2) and the second is the suggestion that the 

world 𝜆, where everything is true, i.e. a world 𝜆 ∈ 𝑊\𝑁 such that (∀𝐴 ∈ 𝐹𝑜𝑟)[𝜆 ⊩ 𝐴], also 

referred to in the literature as the trivial world (aka explosion world, absurd world) should be 

relegated to be among the most dissimilar impossible worlds (or at least no less dissimilar 

than any other impossible world), which I’ll denote with (ST) for strangeness of the trivial 

world.183 The aforementioned tension stems from the fact that some of the reasons that speak 

in support of (SI2) simultaneously – it could be argued – speak against (ST). Namely, closure 

under classical consequence is part of the justification for (SI2), but the trivial world is also 

closed under classical consequence – in particular, unlike other LNC-violating worlds, it 

satisfies ECQ.184  So, if we were to attribute principal weight (although we don’t) to logical 

closure in determining the similarity of worlds – which is part of the justification for (SI2) – 

then that would not only speak against (ST), but strongly in favour of the trivial world being 

the most similar impossible world. But this would result in trivializing the analysis once 

more, since the consequent of any counterpossible would be true at the closest antecedent-

admitting world, namely 𝜆.185 So, closure under classical consequence can’t be the only 

criterion for determining the comparative similarity of impossible worlds. On the current 

proposal the formalism to avoid such trivialization is in place, since the trivial world need not 

be present in every model, and even when it is present, ties between impossible worlds are 

allowed. The obvious justification for a variation of such orderings is that we don’t always 

attribute priority to logical closure in determining the similarity of impossible worlds. That is, 

                                                
182 (Sendłak, 2016, 2017), (Weiss, 2017). 
183 See (Stalnaker 1968, p.103), (Nolan 1997,p.544), (Berto 2013), and (Brogaard & Salerno, 2014, p.652). 
Stalnaker (1968) denotes the absurd world with 𝜆. Note that on the relational semantics approach presently 
chosen for CS* models, there is a whole class {𝑤 ∈ 𝑊 ∖ 𝑁: (∀𝐴 ∈ 𝐹𝑜𝑟)[𝑤 ⊩ 𝐴]} of impossible worlds that are 
closed under classical consequence, since if 𝐴 is a truth value glut at some world 𝑖, i.e. 𝐴𝜌𝑖1 and 𝐴𝜌𝑖0, then ⊩
𝐴, by definition. 
184 LNC stands for the law of non-contradiction, i.e. ⊨ ~(𝐴 ∧ ~𝐴) for any 𝐴 ∈ 𝐹𝑜𝑟 (a proposition and its 
negation can’t both be true), and ECQ stands for ex contradictione quodlibet, i.e. 𝐴, ~𝐴 ⊨ 𝐵 for any 𝐴, 𝐵 ∈ 𝐹𝑜𝑟 
(anything follows from a contradiction). 
185 It would be equivalent to the vacuous analysis given by Lewis, but resemble in its formalism Stalnaker’s 
approach, who stipulated the absurd world 𝜆 to account for counterpossibles. 
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it is not the case that in each context in which we entertain an impossible scenario, we always 

import logical closure as the information relevant to the evaluation of the counterpossible. In 

the next couple of paragraphs, I argue that closure under classical consequence is insufficient 

to justify deeming 𝜆 the closest impossible world.  

 

There are many reasons that speak against treating 𝜆 as the closest impossible world. First, 

although it is closed under classical consequence, it also is “maximally inconsistent”, in the 

sense that 𝜆 ⊩ {𝐴, ~𝐴} for all 𝐴 ∈ 𝐹𝑜𝑟. Surely the degree to which a world is LNC-violating 

should factor in to its similarity. Another way of looking at this is to consider what doesn’t 

hold at a world – surely this is not entirely irrelevant and should also feature as a similarity 

parameter. When we take into account what fails to be true at any given world, then 𝜆 departs 

in the greatest possible way from any possible world 𝑤, because 𝜆 ⊩ 𝐴 for any 𝑤 ⊮ 𝐴.186 

 

Next, 𝜆 isn’t only closed under classical consequence – it is closed under any truth preserving 

consequence. So, it’s unclear why 𝜆 should be strictly closer to (classically) possible worlds 

than other LNC-violating worlds that are closed under any other truth preserving 

consequence. Deeming such worlds to be at least as similar to any possible world as 𝜆 is, 

seems like a perfectly natural comparative similarity ordering.  

 

Therefore, it’s not entirely clear that logical closure justification for (SI2) speaks in favour of 

𝜆 being the closest impossible world. (SI2) is a statement regarding the difference in 

similarity between possible and impossible worlds. The fact that 𝜆 happens to be closed under 

classical consequence (given that it’s closed under all truth preserving consequences) at best 

speaks in favour of it having a similarity advantage over open worlds, i.e. worlds a lot like 𝜆, 

where things hold for no reason, and which have been designed to violate all closures. That 

is, the claim that in all contexts 𝜆 should be the deemed as the most similar impossible world 

appears to be false. 

  

5.3.2.2   Other objections 

Weiss (2017) gives an example that questions the validity of (5.7), which is effectively an 

objection to (SI2), which is sufficient to validate (5.7). The counterexample goes as follows: 

                                                
186 This does become highly relevant on some informational interpretations of states of affairs (on some ersatz 
views of worlds), where the distinction – absent in classical possible worlds – between negative information and 
absence of information is key, e.g. see Mares (1997, §3). 
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let the first premise be ‘there either is a counterexample to LEM187 or there is no 

counterexample to LEM’ and let the second premise be ‘there is no counterexample to LEM’. 

Both are necessarily true, but the conclusion ‘if it were the case that there either is a 

counterexample to LEM or there isn’t a counterexample to LEM, then there would be no 

counterexample to LEM’ doesn’t seem to follow.  

I’ve hinted earlier at parallels between (SI2) and (SC), which become salient in the 

similarities between (5.6) and (5.7). Apparently both inferences also raise analogous concerns 

– just as in the case of (5.6) we agree that the truth of the counterfactual doesn’t depend on 

the mere (coincidental) truth of the antecedent and consequent (and indeed many 

counterexamples support that judgement), so in the case of (5.7) it appears that the truth of 

the counterfactual doesn’t depend on the mere (necessary) truth of the antecedent and 

consequent, and the above example appears to support that judgement. In fact, the example 

given by Weiss can be viewed as a variation of Hájek’s example aimed at challenging (5.6), 

which we have looked at in §2.2.7.188 

Likewise, whereas abandoning (SC) in favor for (WC) can be motivated by an interpretation 

of similarity as similarity in relevant respects (where other worlds may be equally similar in 

relevant respects to  the world of evaluation as it is to itself), it seems that an analogous 

motivation could speak in favor of (SI1) – which would suffice to invalidate (5.7) and which 

the offered formalism allows – but at the risk losing much of the mere counterfactual analysis 

(i.e. the possible-antecedent part of CS).  

 

Note that (5.7) doesn’t contain any counterpossibles, so it’s not exactly a problem of the 

current proposal, but of the original analysis due to Lewis which validates it. The current 

proposal intends to heal the vacuous analysis of counterpossibles of Lewis’ original account 

and employing (SI2) has proven sufficient for meeting that challenge, whilst offering a way 

to preserve most of the original analysis of mere counterfactuals. The matter of dealing with 

general relevance-failure issues, which (5.7) is a symptom of – although a matter certainly 

worth addressing – is sufficiently independent from the intended task of this chapter to be set 

aside for another time. 

                                                
187 LEM stands for law of excluded middle, i.e. ⊨ 𝐴 ∨ ~𝐴 for any 𝐴 ∈ 𝐹𝑜𝑟. 
188 See (§2.2.7, p.73). In the coin scenario we have a suppressed premise, which is an instance of LEM regarding 
all physical possible outcomes of the coin toss, and the second premise pertains to a fact, i.e. the coin having 
landed heads. In the example given by Weiss, the first premise is an instance of LEM regarding the existence of 
counterexamples of LEM, and the second premise is a statement of “logical fact” (we’re assuming classical 
logic). Both conclusions seem wrong due to the ampliative character of the consequent. 
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5.4 The question of comparability of impossible worlds 

Although its explicit form varies, depending on the particular semantic apparatus – be it 

sphere systems, selection functions, or ordering frames – comparability is the fundamental 

feature of similarity accounts of counterfactuals. Stalnaker (1968) and Lewis (1973, 1981), 

both agree that the orderings of worlds fitting the analysis of counterfactuals admit no 

incomparabilities – a condition that has been shown not to be necessary in general, but its 

appeal on a comparative similarity interpretation of orderings has some intuitive force.189 I 

will not join that debate here, which is restricted to possible world semantics, but focus on 

reasons for lifting comparability from impossible worlds.  

Such a move is partly motivated by a rebuttal to a general objection to comparative similarity 

semantics for counterfactuals, and other reasons that align with more general features of non-

vacuism. I begin the section with a critical analysis and a reply to an objection by Weiss 

(2017) to the similarity account that takes aim at comparability, which lies at the heart of 

Lewis-Stalnaker comparative similarity semantics for counterfactuals.190 I conclude the 

section by highlighting an additional aspect of CS* systems that proves beneficial to the 

analysis of mere counterfactuals, and which is gained from weakening the comparability 

conditions. That is, such systems are weak enough to correctly invalidate inference forms, 

which are nevertheless formally valid on a number of popular accounts of conditional logics, 

despite the existence of intuitive counterexamples.  

 

5.4.1 Weiss’ objection 

First, I’ll outline Weiss (2017) objection and show that (5.10) is valid on the strongest system 

𝐂𝐒4
∗, characterized by ordering frames that satisfy the stronger totality condition (T2) whereby 

all worlds are totally preordered. Then I’ll give a detailed account and critical analysis of 

Weiss’ alleged counterexample to (5.10), and finally I’ll show that (5.10) is invalidated on 

systems where (T2) is replaced by (T1). 

 

Weiss (2017) objects to the inference rule (5.10), which holds for all CS logics characterized 

by ordering frames based on preorderings that are total.  

 

                                                
189 Notably Pollock (1976) and Kratzer (1981) effectively argue in favour of what would correspond to partial 
orderings on ordering semantics. For a good discussion of the various approaches see Lewis (1981, §3-5). 
190 Comparability is the basic assumption about comparative similarity of worlds that states: any two worlds x 
and y are comparable to each other in terms of their similarity relative to the world of evaluation z. Totality of 
preorders captures comparability for ordering frames, and nesting captures this for systems of spheres.  
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(5.10) 𝐴 > 𝐵, 𝐵 > 𝐴 ⊨ (𝐴 > 𝐶) ≡ (𝐵 > 𝐶).191  

 

To be exact, the objection is actually addressed to systems of spheres candidate semantics for 

a non-vacuist account of counterpossibles, and Weiss correctly identifies the nesting 

condition (see §2.2.3), fundamental for those systems, as responsible for the rule’s validity.192 

Indeed (5.10) is characteristic of systems of spheres that are nested, and therefore all systems 

of spheres as defined by Lewis (1973). I’ll mirror the discussion in terms of CS* models, 

noting that (5.10) is characteristic of ordering frames based on preorderings that are total, and 

therefore all CS models.193  That is, comparability takes the form of nesting on systems of 

spheres and the form of totality on ordering frames based on preorders. 

 

The objection is set up via what Weiss takes to be a counterexample to (5.10), formulated in 

terms of counterpossibles, and – the argument goes – because all systems of spheres satisfy 

nesting, a successful counterexample to (5.10) amounts a counterexample to sphere semantics 

in general. This objection extends to all other formulations that encode the intuitions about 

comparative similarity in terms of conditions corresponding to comparability – the basic 

intuition regarding comparative similarity of worlds. Therefore, in particular it is also an 

objection to ordering semantics based on total preorderings. However, Weiss’ conclusion is 

too strong. Surely the alleged counterexample alone, even if correct, doesn’t justify 

abandoning comparability altogether, but rather at most justifies lifting the nesting condition 

for spheres containing impossible worlds, or correspondingly in ordering semantics, lifting 

the totality condition from impossible worlds. And such a much weaker conclusion is not as 

damaging to similarity semantics.194 

 

Proposition 5.2: 𝐴 > 𝐵, 𝐵 > 𝐴 ⊨𝐂𝐒4
∗ (𝐴 > 𝐶) ≡ (𝐵 > 𝐶) 

                                                
191 The axiomatic counterpart of (5.10) is CSO: [(𝐴 > 𝐵) ∧ (𝐵 > 𝐴)] ⊃ [(𝐴 > 𝐶) ≡ (𝐵 > 𝐶)], see Nute (1980, 
§3.1). 
192 Weiss’ (2017) sphere models for non-vacuism are based on sphere models equivalent to S models (see 
chapter 2), whose domains are extended to include non-normal worlds and the truth conditions at non-normal 
worlds are extended much in the same manner as I have modified CS models to yield CS* models (definition 5.4 
and 5.4). 
193 Nesting and totality are each other’s counterparts on S frames and CS frames, respectively. For a formal 
proof of that correspondence see lemmas A.1.0.1 and A.1.0.2 in the Appendix. 
194 An axiom, characteristic of all Lewis-Stalnaker logics of counterfactuals and closely related to (5.10), has 
been objected to before by Gabbay (1972) more generally, i.e. even in cases where the antecedent of the 

counterfactual doesn’t express an impossibility. Gabbay objects to ((𝐴 > 𝐵) ∧ (𝐵 > 𝐴) ∧ (𝐴 > 𝐶)) ⊃ (𝐵 > 𝐶), 

by providing an insightful counterexample to what he believes as illustrating some relevance violating features 
of that inference. Note that its failure implies the failure of (5.10). 
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Proof : First, I’ll prove that if 𝑖 ⊩ {𝐴 > 𝐵, 𝐵 > 𝐴} for any 𝐂𝐒4
∗ model (𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}, 𝜌), 𝑖 ∈

𝑊, and 𝐴, 𝐵 ∈ 𝐹𝑜𝑟, then ∃𝑘 ∈ [𝐴] ∩ [𝐵] such that ↓.𝑘 ∩ [𝐴] = ↓.𝑘 ∩ [𝐵]. Assuming 𝑖 ⊩ 𝐴 > 𝐵 

implies ∃𝑘 ∈ [𝐴] such that ↓.𝑘 ∩ [𝐴] ⊆ [𝐵], and 𝑖 ⊩ 𝐵 > 𝐴 implies ∃𝑘′ ∈ [𝐵] such that ↓.𝑘′ ∩

[𝐵] ⊆ [𝐴]. Note that in both cases 𝑘, 𝑘′ ∈ [𝐴] ∩ [𝐵]. Either 𝑘 ≲𝑖 𝑘′ or 𝑘′ ≲𝑖 𝑘, by (T2). Suppose 

𝑘 ≲𝑖 𝑘′. Hence ↓.𝑘 ⊆ ↓.𝑘′. Now, ↓.𝑘 ∩ [𝐴] ⊆ [𝐵] implies ↓.𝑘 ∩ [𝐵] ⊆ ↓.𝑘′ ∩ [𝐵] ⊆ [𝐴]. Hence, ↓.𝑘 ∩

[𝐵] ⊆ [𝐴]. Hence finally, 𝑘 ∈ [𝐴] ∩ [𝐵] and ↓.𝑘 ∩ [𝐴] = ↓.𝑘 ∩ [𝐵]. A similar argument shows 

that ↓.𝑘′ ∩ [𝐴] = ↓.𝑘′ ∩ [𝐵] when 𝑘′ ≲𝑖 𝑘. Let us denote such a world, which is guaranteed by 

𝑖 ⊩ {𝐴 > 𝐵, 𝐵 > 𝐴} with 𝑘*. Now we will show that 𝑖 ⊩ 𝐴 > 𝐶 implies 𝑖 ⊩ 𝐵 > 𝐶, for any 𝐶 ∈

𝐹𝑜𝑟. Assuming 𝑖 ⊩ 𝐴 > 𝐶 implies ∃𝑘 ∈ [𝐴] such that ↓.𝑘 ∩ [𝐴] ⊆ [𝐶]. Next, by totality, 

either 𝑘* ≲𝑖 𝑘 or 𝑘 ≲𝑖 𝑘*. Now, suppose 𝑘* ≲𝑖 𝑘. Hence ↓.𝑘* ⊆ ↓.𝑘, and we note that ↓.𝑘*∩

[𝐵] = ↓.𝑘*∩ [𝐴] ⊆ ↓.𝑘 ∩ [𝐴] ⊆ [𝐶]. Hence, 𝑖 ⊩ 𝐵 > 𝐶. Next, suppose 𝑘 ≲𝑖 𝑘*. Therefore ↓.𝑘 ⊆

 ↓.𝑘*, which implies ↓.𝑘 ∩ ↓.𝑘*∩ [𝐴] = ↓.𝑘 ∩ ↓.𝑘*∩ [𝐵]. In conjunction with the hypothesis this 

implies ↓.𝑘 ∩ [𝐵] = ↓.𝑘 ∩ [𝐴] ⊆ [𝐶]. Hence, 𝑖 ⊩ 𝐵 > 𝐶. The proof in the other direction is 

similar. So, 𝑖 ⊩ 𝐴 > 𝐶  iff  𝑖 ⊩ 𝐵 > 𝐶, as required.           □ 

 

Now I’ll focus on the alleged counterexample itself given by Weiss (2017), which arms the 

aforementioned general objection to most similarity accounts of counterfactuals and 

counterpossibles. Weiss (2017) formulates it as a variation on Williamson’s (Hempel 

Lectures 2006, and Williamson 2007) objection to a non-vacuist account of counterpossibles, 

presented and discussed earlier in Brogaard and Salerno (2013, pp.649-50). I’ll argue that the 

context-shift resulting from allowing (as true) certain premises opens the door to formulating 

other counterexamples that undermine inferences that are valid on all systems Weiss (2017) 

endorses as alternatives to similarity accounts to counterpossible analysis. But those premises 

are required for the counterexample to work.  

 

The argument against (5.10) goes as follows: 

 

Fred asks George what 5+7 is, and George mistakenly responds 13. Fred snidely 

remarks, “if 5 + 7 were 13, you would have answered correctly.” This is true. 

What else might be the case if 5 + 7 = 13? Plausibly, 5 + 6 = 12. Conversely, if 5 

+ 6 = 12, it would seem reasonable to expect that 5+7 = 13. From [5.10] and the 

truth of Fred's initial remark, we can infer “if 5+6=12, George would have 

answered correctly,” which is not obviously true. (Weiss 2017, p.390) 
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Let us denote the relevant counterpossibles. 

 

  (1)  If 5+7 were 13, then George would have answered correctly. 

    (2) If 5+7 = 13, then 5+6 = 12. 

    (3)  If 5+6 = 12, then 5+6 = 13. 

   (4) If 5+6 were 12, then George would have answered correctly. 

 

Both (2) and (3) seem true enough, although not as obviously as (1) does. Weiss discounts all 

potential objections attacking the soundness of the argument as question begging on the basis 

of the intuitive truth of (2) and (3). This riposte has some merit but seems a little too quick, 

and as such introduces problems of its own. One way of arguing against their truth is to say 

that contexts where we want (1) to be true, need not always be ones where we’d be also 

willing to admit (2) and (3) as true. Indeed, there seem to be many ways of arguing against 

the truth of (2) and (3) in contexts where (1) is true, however I agree that it doesn’t seem 

obvious that there should be no context at all where we would allow all three to be true, 

thereby admitting the counterexample as legitimate. 

 

However, caution should be exercised when accepting a general strategy for generating 

counterexamples that admits the truth of premises whose relevance to the pertinent context 

can be questioned, because this may pave the way to invalidating more than one has 

bargained for. Finally, Weiss discounts all potential counter-objections that would defend the 

truth of (4), by asserting that it is intuitively false. But to me it doesn’t seem all that much 

less acceptable than what is already taken on-board when admitting both (2) and (3) as true. 

As a matter of fact, by admitting those additional premises, (4) doesn’t seem as odd as it 

would be in their absence.195  

 

The first thing to note is that (1) bares very close resemblance to a statement of 

counterpossible identity, and as such is intuitively true. That is, it appears to mean no more 

and no less than:  

 

(1.a)  If 5+7 were 13, then George answering ‘13’ to the question what ‘5+7’ is, 

would have answered correctly.  

                                                
195 Weiss uses a Sorites kind of reasoning, which employs numerous applications of (5.10), to amplify the 
salience of the falsehood of (4) further (or rather, diminish any intuitive claim to truth that (4) may have) and 
derive an arguably much less plausible version (4’). But a similar objection can be set against it, i.e. that the 
amplified conclusion (4’) is no less obvious than the assumed stability of reasoning involved in deriving it and the 
truth of all the intermediate steps required to arrive at (4’). 
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Or even more explicitly:  

 

(1.b) ‘If 5+7 were 13, then George saying ‘5+7 is 13’ would be telling the truth’ 

 

We’re dealing with a counterpossible whose consequent’s impossible content is not 

ampliative relative to the antecedent, i.e. no greater than the content of (1)’s antecedent. The 

consequent can be said to very naturally follow from the antecedent. Or, yet to put it another 

way, which (1.b) intends to highlight, (1) is closely related to a relatively safe counter-

factual/possible:  

 

    (1.c) If A were true, then saying ‘A’ would be to speak truly.  

 

Therefore, worlds where the consequent is true would certainly seem like scenarios no 

stranger than those corresponding to whatever (impossibility) is expressed in the antecedent 

alone. However, this doesn’t seem to be the case for the admission of the truth of (2), which, 

on top of the impossibility expressed in the antecedent requires us to accept additional 

assumptions about arithmetic in such impossible situations, which feels stranger than the 

scenario envisaged in (1). That would speak in support of an argument that the context has 

indeed shifted – but we’re allowing for that, so let’s continue. In other words, granting the 

truth of (2), and then (3) would seem to be stretching the strangeness of a world w that 

suffices to make (1) true. So, the antecedent world or worlds required to make (2) and (3) 

true, should at least be distinct from the antecedent world w that makes (1) true and certainly 

no more similar to the actual world than w. Those would seem to be the correct and weakest 

comparative similarity requirements fitting this scenario. With these assumptions about 

comparative similarity in place, the task is to salvage the truth of (1), (2), and (3) without 

committing to the truth of (4). This is impossible on a notion of comparative similarity of 

worlds with unrestricted comparability of worlds, i.e. characterized by total preorders. But 

perhaps it could be argued that the antecedent world (or worlds) required for the non-vacuous 

truth of (2) and (3) is not so much stranger than the antecedent world(s) required for the non-

vacuous truth of (1) but strange in a different way. This interpretation of comparative 

similarity/dissimilarity of worlds could potentially serve as intuitive motivation for 

abandoning comparability over impossible worlds. 

 

5.4.2 Weaker totality condition (T1) 

Totality of ≲𝑖 need not be abandoned altogether to avoid commitment to (5.10). It suffices to 

lift totality from impossible worlds only, i.e. by replacing the stronger comparability 
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condition (T2) with a weaker one (T1). Note that systems that invalidate (5.10), by virtue of 

satisfying the weaker comparability condition (T1) aren’t somehow particularly contrived. At 

least, they are not any more contrived than some aspects of the model theory that are already 

in place. That is, we’ve already distinguished the elements of 𝑁 and 𝑊\𝑁 at the level of 

models, by stipulating distinct conditions for 𝜌 (and consequently ⊩). So, it doesn’t seem all 

that more contrived to distinguish the elements of 𝑁 and 𝑊\𝑁 at level of ordering frames, by 

allowing distinct conditions for ≲.  

 

Proposition 5.2.1: 𝑝 > 𝑞, 𝑞 > 𝑝 ⊭𝐂𝐒3
∗ (𝑝 > 𝑟) ≡ (𝑞 > 𝑟) 

Proof : Let 𝔄 = (𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}, 𝜌), be a 𝐂𝐒3
∗ model such that 𝑊 = {𝑖, 𝑥, 𝑦, 𝑧}, 𝑁 = {𝑖}, the 

following ordering assignment ≲𝑖 = {(𝑖, 𝑥), (𝑖, 𝑦), (𝑖, 𝑧), (𝑥, 𝑦), (𝑦, 𝑥), (𝑖, 𝑖), (𝑥, 𝑥), (𝑦, 𝑦), (𝑧, 𝑧)}, 

and ⊩ = {(𝑖, ~𝑝), (𝑖, ~𝑞), (𝑖, ~𝑟), (𝑥, 𝑝), (𝑥, 𝑞), (𝑥, 𝑟), (𝑦, 𝑞), (𝑧, 𝑝), (𝑧, 𝑞)}. See diagram below 

(indication of reflexivity has been omitted for better readability).     

Now, 𝑧 ∈ [𝑝] ∩ [𝑞] = {𝑥, 𝑧}, and ↓.𝑧 ∩ [𝑝] = {𝑧} ⊆ [𝑞] = {𝑥, 𝑦, 𝑧}, and ↓.𝑧 ∩ [𝑞] = {𝑧} ⊆ [𝑝] =

{𝑥, 𝑧}. Hence 𝑖 ⊩ {𝑝 > 𝑞, 𝑞 > 𝑝}. Also 𝑥 ∈ [𝑝] = {𝑥, 𝑧} and ↓.𝑥 ∩ [𝑝] = {𝑥} ⊆ [𝑟] = {𝑥}, therefore 

𝑖 ⊩ 𝑝 > 𝑟. But, ↓.𝑤 ∩ [𝑞] ⊈ [𝑟], for all 𝑤 ∈ [𝑞], i.e. ↓.𝑥 ∩ [𝑞] = ↓.𝑦 ∩ [𝑞] = {𝑥, 𝑦} ⊈ [𝑟] = {𝑥}, and 

↓.𝑧 ∩ [𝑞] = {𝑧} ⊈ [𝑟] = {𝑥}. Hence 𝑖 ⊮ 𝑞 > 𝑟, as required.                     □ 

 

5.4.3 (T1) and Adjunction of Consequents 

Now we turn to another motivation for (T1). Lifting unrestricted comparability over 

impossible worlds is a way of invalidating inferences that have at least one pair of 

counterpossible premises with the same antecedent, and whose validity hinges on all 

counterpossibles with the same antecedents being evaluated on the same relevant set of 

worlds. So, for example, inferences like (5.11) – namely, Adjunction of Consequents, 

discussed extensively in §4 – will be valid in all conditional logics where the antecedent is 

the only parameter that determines the range of the accessibility relation.  
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(5.11) 𝐴 > 𝐵, 𝐴 > 𝐶 ⊨ 𝐴 > (𝐵 ∧ 𝐶) 

 

This is formally valid on any labelled transition system model (𝑊, 𝑁, {𝑅𝐴: 𝐴 ∈ 𝐹𝑜𝑟}, 𝜌) where 

𝜌 and ⊩ are defined exactly the same as in definition 5.3, where (𝑊, {𝑅𝐴: 𝐴 ∈ 𝐹𝑜𝑟}), 𝑅𝐴, and 

𝑓𝐴(𝑤) are as in §2.1.3, and the truth conditions for > are: 𝑤 ⊩ 𝐴 > 𝐵  iff  𝑓𝐴(𝑤) ⊆ [𝐵].196  

 

But consider the following instance (which appears to be a clear counterexample) containing 

Goodman-inspired counteridenticals:197 

 

   (1)  If the number 2 was Sherlock Holmes, then 2 would be a detective. 

   (2)  If Sherlock Holmes was the number 2, then Sherlock Holmes wouldn’t be a detective. 

   (3) Therefore, if 2 was S. Holmes, then 2 would be a detective and S. Holmes wouldn’t 

be a detective. 

 

Both premises are non-vacuously true counterpossibles, however the conclusion (3) is clearly 

not true.198 CS* systems with (T1) instead of (T2) give a correct analysis of this 

counterexample and ones like it, i.e. there are countermodels to (5.11) in each system weaker 

than 𝐂𝐒4
∗, and I explicitly give one in Proposition 5.3, below. One may object to admitting 

both premises, on account of apparent radical context-shift required for that, but then one 

would have to decide how much of a context shift between premises is allowed. At least it’s 

not obviously clear that the freedom of context-shift employed in the counterexample to 

(5.10), discussed earlier, would not justify the context shifts in the invalidation of (5.11). And 

(5.11) is formally valid in all the alternative non-vacuist systems that Weiss (2017) 

endorses.199  

 

The inference is still valid for systems with the stronger comparability condition (T2). 
 

Proposition 5.3: 𝐴 > 𝐵, 𝐴 > 𝐶 ⊨𝐂𝐒4
∗ 𝐴 > (𝐵 ∧ 𝐶) 

Proof : Let 𝔄 = (𝑊, 𝑁, {≲𝑖}𝑖∈𝑁, 𝜌), be a 𝐂𝐒4
∗ model and let 𝑖 ⊩ {𝐴 > 𝐵, 𝐴 > 𝐶} for arbitrary 𝑖 ∈

𝑊. Then ∃𝑘 ∈ [𝐴] such that ↓.𝑘 ∩ [𝐴] ⊆ [𝐵], and ∃𝑘′ ∈ [𝐴] such that ↓.𝑘′ ∩ [𝐴] ⊆ [𝐶]. Now, 

                                                
196 This follows from Proposition 4.12, (and footnote 168) which shows that (5.11) is valid for CS and C. 
197 Goodman (1983, p.6). Note that (1) and (2) are equivalent – the order has been inverted only for emphasis. 
198 I’m assuming that being a detective is an essential property of Sherlock Holmes (i.e. Holmes has it in all 
possible worlds), and the number 2 is not a detective in any possible world, hence the identity is a 
counterpossible identity. 
199 Although Weiss builds the alternative non-vacuist proposal on conditional logics like C and C+ (i.e. labelled 
transition systems that take only the antecedent as a parameter in the accessibility relation), he does entertain 
similar systems, which also include the consequent as a parameter in characterizing the accessibility relation, 
drawing on Gabbay’s (1972) proposal – an approach that would allow for the invalidation of (5.11). 
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either 𝑘 ≲𝑖 𝑘′ or 𝑘′ ≲𝑖 𝑘 by (T2). If 𝑘 ≲𝑖 𝑘′, then clearly ↓.𝑘 ⊆ ↓.𝑘′, which in conjunction with 

the hypothesis implies ↓.𝑘 ∩ [𝐴] ⊆ [𝐶]. So, we have both ↓.𝑘 ∩ [𝐴] ⊆ [𝐵] and ↓.𝑘 ∩ [𝐴] ⊆ [𝐶], 

which jointly imply ↓.𝑘 ∩ [𝐴] ⊆ [𝐵] ∩ [𝐶]. Hence 𝑖 ⊩ 𝐴 > (𝐵 ∧ 𝐶), as required. A very similar 

argument holds for the case when 𝑘′ ≲𝑖 𝑘.           □ 

 

However, it fails once we weaken the comparability condition to (T1). 
 

Proposition 5.3.1: 𝑝 > 𝑞, 𝑝 > 𝑟 ⊭𝐂𝐒3
∗ 𝑝 > (𝑞 ∧ 𝑟) 

Proof : Let 𝔄 = (𝑊, 𝑁, {≲𝑖: 𝑖 ∈ 𝑁}, 𝜌), be a 𝐂𝐒3
∗ model such that 𝑊 = {𝑖, 𝑗, 𝑘}, 𝑁 = {𝑖}, letting 

≲𝑖 = {(𝑖, 𝑗), (𝑖, 𝑘), (𝑖, 𝑖), (𝑗, 𝑗), (𝑘, 𝑘), }, and ⊩ = {(𝑖, ~𝑝), (𝑖, ~𝑞), (𝑖, ~𝑟), (𝑗, 𝑝), (𝑗, 𝑞), (𝑘, 𝑝), (𝑘, 𝑟)}.  

See diagram below (indication of reflexivity has been omitted for better readability).     

Now, 𝑗 ∈ [𝑝] and ↓.𝑗 ∩ [𝑝] = {𝑗} ⊆ [𝑞] = {𝑗}, and also 𝑘 ∈ [𝑝] and ↓.𝑘 ∩ [𝑝] = {𝑘} ⊆ [𝑟] = {𝑘}. 

Hence, 𝑖 ⊩ {𝑝 > 𝑞, 𝑝 > 𝑟}. But ↓.𝑤 ∩ [𝑝] ⊈ [𝑞 ∧ 𝑟] = ∅, for all 𝑤 ∈ [𝑝]. So, 𝑖 ⊮ 𝑝 > (𝑞 ∧ 𝑟), as 

required.               □ 

 

5.4.4 (T1) and mere counterfactuals 

The benefits of (T1) are not confined to counterpossibles. That is, all CS* systems weaker 

than 𝐂𝐒4
∗ invalidate (5.11) even when it is confined to counterfactuals. As exemplified in §4.5 

there exist intuitive counterexamples to (5.11) confined to mere counterfactuals, which 

nevertheless go through in C and CS because the premises can never be jointly true at any 

possible world (see claim 4.5.2 and f.21 in §4.5). That is, and this is a crucial point (reiterated 

from §4.5), the counterexamples go through vacuously because the combined truth of both 

counterfactual premises at some world – particularly in cases of said counterexamples – 

implies inconsistent situations, once the imported information is accounted for, and so if the 

analysis is restricted to possible worlds, the premises can’t be jointly true (since inconsistent 

situations can’t be accommodated). But on CS* systems with the weaker comparability 

condition (T1), there is a way of preserving all the intuitive scope of (5.11)’s applicability (it 
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only fails in cases when the truth of the premises depends on radical context shifts), and at the 

same time allow it to fail by giving an accurate analysis of the counterexamples. This is 

achieved by:  

 

(i) Accommodating the implied inconsistent situations – necessitated by the truth of 

both premises – by allowing them to hold at impossible worlds. 

 

(ii) Lifting comparability from impossible worlds to block the truth of the conclusion. 

 

That is, the inference is analysed as invalid for counterfactuals, as it should be, for the same 

general reasons that motivate non-vacuism. Therefore, returning to the counterexample 

discussed at length in §4.5, there is a CS* model where (1) and (2) are true at the actual 

world, and (3) is false, as required – just take Proposition 5.3.1 as the corresponding 

countermodel. 

 

(1)  If Everest was in New Zealand, Everest would be in the Southern Hemisphere.  

 

(2)  If Everest was in New Zealand, New Zealand would be in the Northern Hemisphere. 

 

(3) Therefore, if Everest was in New Zealand, then Everest would be in the Southern 

Hemisphere and New Zealand would be in the Northern Hemisphere. 

 

Lifting totality does seem like a substantial change, even if restricted to impossible worlds, 

and some more reflection is required. Nevertheless (5.12), which is a (SI2) salvaged version 

of (5.10) is valid in 𝐂𝐒3
∗. A similar solution will not work for (5.11), since the antecedent in 

cases where the inference fails need not express an impossibility, e.g. Mount Everest being in 

New Zealand is a perfectly possible scenario. 

 

(5.12) ◊𝐴,.◊𝐵, 𝐴 > 𝐵, 𝐵 > 𝐴 ⊨ (𝐴 > 𝐶) ≡ (𝐵 > 𝐶) 

 

Proposition 5.4: ◊𝐴,.◊𝐵, 𝐴 > 𝐵, 𝐵 > 𝐴 ⊨𝐂𝐒3
∗ (𝐴 > 𝐶) ≡ (𝐵 > 𝐶) 

Proof : It suffices to observe that the premises, if true, in conjunction with (SI2) will not 

require the evaluation of > formulae to access any impossible worlds. Only possible worlds 

will be accessed – and those are totally preordered by (T1). So, the inference goes through, 

since we need failure of comparability for a counterexample, by proposition 5.2.1, but with 

(T1) in place only impossible worlds can be incomparable.         □ 
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Conclusion 

 

 

 

 

 

In the culminating chapters (4 and 5) of this thesis I have shown that there are accessible 

modifications of Lewis’ (1981) ordering semantics for analyses of counterfactuals that resolve 

some persistent issues regarding contextual ambiguity, and avoid the inadequacy of treating all 

counterpossibles as vacuously true or false. Moreover, in each case it has been indicated to 

what extent each modification preserves the logic that serves as its basis. 

 

The account of context-indexed counterfactuals, proposed in chapter 4, not only addresses the 

context related concerns identified by Goodman (1954) and Quine (1966), but also offers a 

meaningful notion of semantic consequence based on the idea of contextual information 

preservation. Although the approach chosen may not be optimal, given that it also modifies the 

object language, nevertheless there is some evidence that it appears to be a natural move. But 

even if the offered account is vulnerable to the charge of not providing a direct solution to the 

pertinent contextual issues – as it departs from the analysis of a single conditional – at least it 

offers a framework of thinking about those issues, which can be viewed as going some way 

toward providing such a solution.  

 

The account of counterfactuals, proposed in chapter 5, avoids a vacuist account of 

counterpossibles, whilst preserving much of Lewis’ analysis of mere counterfactuals. The 

application of an impossible world semantics in this case has been partly motivated and 

justified by the redeeming roles that such semantics have played in other areas of philosophical 

analysis and logic. However, although I have replied to Lewis’ defense of vacuism and his 

objection to impossible worlds, I admit that I have not given a comprehensive defense to all 

the existing objections. I have defended the feasibility of the comparative similarity of worlds 

interpretation of impossible world ordering semantics for counterfactuals against some recent 

objections, by showing that counterexamples arming such objections can be invalidated on 

systems where impossible worlds satisfy a weaker comparability condition, i.e. partial 

preorderhood. However, there do remain other questions regarding some key ordering 

conditions, underlying the extended domain that could be addressed in the future. 
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A natural step would be to combine the results from chapters 4 and 5, and fashion a system that 

gives both an adequate analysis of counterpossibles, whilst accounting for contextual 

distinctions. That is, we can employ the benefits of the system CS2+ and modify its definition 

so it is based on CS* models instead of (vacuism-burdened) CS models, noting that 𝐂𝐒3
∗ has 

been argued to be the optimal CS* system. This way we would have a system that inherits the 

advantages of both CS2+ and 𝐂𝐒3
∗. This and a more comprehensive participation in the defense 

of impossible world semantics in general would constitute a well-motivated inclusion to future 

research. 
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Appendix 

  

The following appendix contains the proof of the equivalence of the class of CS models and 

the class of S models. That is, these classes validate the same sets of formulae and inferences. 

This proof is based on a proof sketch given by Lewis (1973, p.49). First, let us recall the 

relevant definitions, so the formulation of the theorem is clear. 

 

Definition 2.15: Let ⊨𝐒 ⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟, and define Σ ⊨𝐒 𝐴 iff for all models (𝑊, $, [. ]), and 

all 𝑤 ∈ 𝑊, if 𝑤 ⊩ 𝐵 for all 𝐵 ∈ Σ, then 𝑤 ⊩ 𝐴. That is, valid inference is defined as truth 

preservation at all worlds in all systems of spheres models. A formula 𝐴 ∈ 𝐹𝑜𝑟 is said to be 

valid iff ∅ ⊨𝐒 𝐴. Call this logic S.200  

 

Definition 4.2.7: Let ⊨𝐂𝐒 ⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟, and define Σ ⊨𝐂𝐒 𝐴 iff for all models (𝑊, ≲, 𝜌), and 

all 𝑖 ∈ 𝑊, if 𝑖 ⊩ 𝐵 for all 𝐵 ∈ Σ, then 𝑖 ⊩ 𝐴. We say an inference from Σ to 𝐴 is valid iff 

Σ ⊨𝐂𝐒 𝐴. That is, valid inference is defined as truth preservation at all worlds in all CS-

models. A formula 𝐴 ∈ 𝐹𝑜𝑟 is said to be valid iff ∅ ⊨𝐂𝐒 𝐴. Call this logic CS. 

 

Theorem A.1.1:    Σ ⊨𝐒 𝐴   iff    Σ ⊨𝐂𝐒 𝐴 
 

Proof : First construct injective maps 𝑓: 𝐂𝐒 ⟶ 𝐒  and 𝑔: 𝐒 ⟶ 𝐂𝐒 between the class of CS 

frames and S frames (definitions A.4.1, A.4.2), such that (i) for each CS frame 𝔉, 𝑓(𝔉) is an S 

frame (lemma A.1.0.1) and (ii) for any S frame 𝔉, 𝑔(𝔉) is a CS frame (lemma A.1.0.2).201 

 

Then, show both 𝑓 and 𝑔 to be truth preserving in the following sense (lemmas A.1.0.4, 

A.1.0.4):  

For any CS frame 𝔉 = (𝑊, ≲), 𝑖 ∈ 𝑊, 𝜌, and 𝐴, 𝐵 ∈ 𝐹𝑜𝑟: 

 

       (𝔉, 𝜌), 𝑖 ⊩ 𝐴 > 𝐵 iff       (𝑓(𝔉), 𝜌), 𝑖 ⊩ 𝐴 > 𝐵 

 

For any S frame 𝔉 = (𝑊, $), 𝑖 ∈ 𝑊, 𝜌, and 𝐴, 𝐵 ∈ 𝐹𝑜𝑟: 

 

      (𝔉, 𝜌), 𝑖 ⊩ 𝐴 > 𝐵 iff       (𝑔(𝔉), 𝜌), 𝑖 ⊩ 𝐴 > 𝐵 

 

Since the above also hold for the basic modal language, the result follows. 

                                                
200 For clarity of presentation I should redefine S models in terms of S frames and 𝜌 rather than [. ]. Keeping 
track of that irrelevant, yet nontrivial difference would be an unnecessary distraction. 
201 I follow Lewis’ (1973, p.49) proof idea here – in particular, the definitions of the injections f and g. 
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For the purposes of the following, let’s recall the (relevant) precise definition of the general 

notion of arbitrary unions and arbitrary intersections. Given a collection of sets 𝓢: 

𝑥 ∈ ⋃ 𝓢    ⟺   ∃𝐴 ∈ 𝓢, 𝑥 ∈ 𝐴.              𝑥 ∈ ⋂ 𝓢    ⟺   ∀𝐴 ∈ 𝓢, 𝑥 ∈ 𝐴. 

 

Definition A.1.1: Define the following map: 𝑓: 𝐂𝐒 ⟶ 𝐒 as follows: 

𝑓(𝑊) = 𝑊. 

𝑓((𝑆𝑖, ≲𝑖)) ∶= $𝑖
≲ = {𝑆 ∈ ℘(𝑆𝑖): (∀𝑗, 𝑘 ∈ 𝑊)((𝑗 ∈ 𝑆 ∧ 𝑘 ∉ 𝑆) ⟶ 𝑗 <𝑖 𝑘)} 

 

It may be helpful to think of elements of $𝑖
≲ as downward ≲𝑖-closed sets. That is, 𝑆 ∈ $𝑖

≲ iff 

(𝑗 ∈ 𝑆 ∧ 𝑘 ≲𝑖 𝑗) ⟶ 𝑘 ∈ 𝑆 for any ∀𝑗, 𝑘 ∈ 𝑊.   

 

Definition A.1.2: Define the following map: 𝑔: 𝐒 ⟶ 𝐂𝐒 as follows: 

𝑔(𝑊) = 𝑊. 

𝑔($𝑖) ∶= (≲𝑖
$, 𝑆𝑖

$)  

   -   ≲𝑖
$ = {(𝑗, 𝑘) ∈ 𝑊 × 𝑊: (∀𝑆 ∈ $𝑖)(𝑘 ∈ 𝑆 ⟶ 𝑗 ∈ 𝑆)} 

   -   𝑆𝑖
$ = ⋃ $𝑖 

 

Lemma A.1.0.1: For each CS frame 𝔉 = (𝑊, ≲), 𝑓(𝔉) = (𝑊, $≲) is an S frame. 

Proof : Let (𝑊, ≲) be CS frame (as per definition 4.22). We want to show that each  (𝑊, $≲) 

is an S frame, i.e. that $𝑖
≲ satisfies nesting and weak centering, for each 𝑖 ∈ 𝑊. 

 

Nesting: for all 𝑆, 𝑇 ∈ $𝑖
≲  either 𝑆 ⊆ 𝑇 or 𝑆 ⊆ 𝑇. This follows from totality of ≲. For the trivial 

case, suppose 𝑆, 𝑇 ∈ $𝑖
≲, and let 𝑆 = ∅. Hence, 𝑆 ⊆ 𝑇. Now, suppose for contradiction that 

there are nonempty sets 𝑆, 𝑇 ∈ $𝑖
≲ such that neither 𝑆 ⊆ 𝑇 nor 𝑇 ⊆ 𝑆. First, suppose that it’s not 

the case that 𝑆 ⊆ 𝑇. So, there is some 𝑥 ∈ 𝑆𝑖 such that 𝑥 ∈ 𝑆 but 𝑥 ∉ 𝑇. Next, also assume that 

it’s not the case that 𝑇 ⊆ 𝑆. So, there is some 𝑧 ∈ 𝑆𝑖 such that 𝑧 ∈ 𝑇 but 𝑧 ∉ 𝑆. Hence, from 𝑥 ∈

𝑆, 𝑧 ∉ 𝑆, and the definition of $𝑖
≲ we infer 𝑥 <𝑖 𝑧, and from 𝑧 ∈ 𝑇, 𝑥 ∉ 𝑇, and the definition of 

$𝑖
≲ and we also infer 𝑧 <𝑖 𝑥. But this is impossible, since 𝑥 <𝑖 𝑧 and 𝑧 <𝑖 𝑥 means (𝑧, 𝑥) ∉ ≲ 

and (𝑥, 𝑧) ∉ ≲, by definition of <𝑖, which contradicts totality of ≲. 

 

Weak Centering: ∃𝑆 ∈ $𝑖
≲(𝑆 ≠ ∅) and 𝑖 ∈ ⋂($𝑖

≲ ∖ ∅). First to show ∃𝑆 ∈ $𝑖
≲(𝑆 ≠ ∅). It suffices 

to observe that, by definition, ≲𝑖 satisfies CS5: ∀𝑗, 𝑘 ∈ 𝑊((𝑗 ∈ 𝑆𝑖 ∧ 𝑘 ∉ 𝑆𝑖) ⟶ 𝑗 <𝑖 𝑘). So, 𝑆𝑖 ∈

$𝑖
≲. Also 𝑆𝑖 ≠ ∅, since 𝑖 ∈ 𝑆𝑖, by CS2. Next, suppose for contradiction that there is some 
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nonempty sphere 𝑆 ∈ $𝑖
≲ such that 𝑖 ∉ 𝑆. Now 𝑆 ≠ ∅ implies that there is some 𝑗 ∈ 𝑊 such that 

𝑗 ∈ 𝑆. Hence, in particular (𝑗 ∈ 𝑆 ∧ 𝑖 ∉ 𝑆) ⟶ 𝑗 <𝑖 𝑖 is true, by $𝑖
≲ membership. But since the 

antecedent is true by hypothesis, it follows that 𝑗 <𝑖 𝑖 for some 𝑗 ∈ 𝑊. But this is impossible, 

since it contradicts CS3, i.e. the ≲𝑖-minimality of 𝑖. This completes the proof.               □ 

 

Lemma A.1.0.2: For each S frame 𝔉 = (𝑊, $), 𝑔(𝔉) = (𝑊, ≲$) is a CS frame. 

Proof : Let (𝑊, $) be an S frame (as per definition 2.17). We want to show that (𝑊, ≲$) is a 

CS frame. First, to show that each (𝑆𝑖
$, ≲𝑖

$) is a total preorder for each 𝑖 ∈ 𝑊, i.e. it satisfies 

CS1. 

 

Transitivity: ∀𝑥, 𝑦, 𝑧 ∈ 𝑊 ((𝑥 ≲𝑖
$ 𝑦 ∧ 𝑦 ≲𝑖

$ 𝑧) ⟶ 𝑥 ≲𝑖
$ 𝑧). Suppose (𝑥, 𝑦) ∈ ≲𝑖

$ and (𝑦, 𝑧) ∈ ≲𝑖
$ 

for any 𝑥, 𝑦, 𝑧 ∈ 𝑆𝑖
$. From the definition of  ≲𝑖

$, this implies 𝑦 ∈ 𝑆 ⟶ 𝑥 ∈ 𝑆 and 𝑧 ∈ 𝑆 ⟶ 𝑦 ∈ 𝑆 

for all 𝑆 ∈ $𝑖. Hence, 𝑧 ∈ 𝑆 ⟶ 𝑥 ∈ 𝑆 for all 𝑆 ∈ $𝑖, by hypothetical syllogism, and (𝑥, 𝑧) ∈ ≲𝑖
$ 

by definition of ≲𝑖
$. 

 

Totality: ∀𝑥, 𝑦 ∈ 𝑊 (𝑥 ≲𝑖
$ 𝑦 ∨ 𝑦 ≲𝑖

$ 𝑥). Suppose for contradiction that there are 𝑥, 𝑦 ∈ 𝑆𝑖
$ such 

that (𝑥, 𝑦) ∉ ≲𝑖
$ and (𝑥, 𝑦) ∉ ≲𝑖

$. From the definition of ≲𝑖
$, this implies that there exist spheres 

𝑆, 𝑇 ∈ $𝑖 such that 𝑦 ∈ 𝑆 ∧ 𝑥 ∉ 𝑆 and 𝑥 ∈ 𝑇 ∧ 𝑦 ∉ 𝑇. Now, 𝑆 ⊆ 𝑇 is impossible, because 𝑦 ∈ 𝑆 

but 𝑦 ∉ 𝑇. By nesting, the only other possibility is 𝑇 ⊊ 𝑆. Suppose 𝑇 ⊊ 𝑆, but that’s also 

impossible because 𝑥 ∈ 𝑇 but 𝑥 ∉ 𝑆.  

 

Next, to show that each ≲𝑖
$ satisfies the remaining conditions CS2-CS5. 

(CS2)  The world 𝑖 is self-accessible: 𝑖 ∈ 𝑆𝑖. To show 𝑖 ∈ 𝑆𝑖
$. Since $𝑖 is weakly centered, 

there is a sphere ∅ ≠ 𝑆 ∈ $𝑖, such that 𝑆 = ⋂$𝑖 and 𝑖 ∈ ⋂$𝑖 ⊆ ⋃ $𝑖 = 𝑆𝑖
$, as required. 

(CS3)  The element 𝑖 is ≲𝑖-minimal: ∀𝑗 ∈ 𝑊(𝑖 ≲𝑖 𝑗 ). Suppose for contradiction that there 

exists 𝑖 ≠ 𝑗 ∈ 𝑆𝑖
$ such that (𝑖, 𝑗) ∉ ≲𝑖

$. So, by definition of ≲𝑖
$ there’s a 𝑇 ∈ $𝑖 such that 𝑗 ∈ 𝑇 ∧

𝑖 ∉ 𝑇. This contradicts weak centering, which requires that 𝑖 is included in every nonempty 

sphere in $𝑖. 

  

(CS4)  Inaccessible worlds are ≲𝑖
$-maximal: ∀𝑗, 𝑘 ∈ 𝑊(𝑘 ∉ 𝑆𝑖

$ ⟶ 𝑗 ≲𝑖
$ 𝑘). It suffices to 

observe that each inaccessible world 𝑘 ∉ ⋃ $𝑖 = 𝑆𝑖
$ satisfies the above condition, by definition 

of ≲𝑖
$. That is, (𝑗, 𝑘) ∈ ≲𝑖

$ for each 𝑘 ∉ 𝑆𝑖
$ and any 𝑗 ∈ 𝑊, since (∀𝑆 ∈ $𝑖)(𝑘 ∈ 𝑆 ⟶ 𝑗 ∈ 𝑆) is 

satisfied vacuously for all inaccessible worlds (worlds outside of ⋃ $𝑖), i.e. the antecedent is 

always false. 
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(CS5)  Accessible worlds are more similar to 𝑖 than inaccessible worlds: 

∀𝑗, 𝑘 ∈ 𝑊 ((𝑗 ∈ 𝑆𝑖
$ ∧ 𝑘 ∉ 𝑆𝑖

$) ⟶ 𝑗 <𝑖
$ 𝑘) 

Suppose for contradiction that 𝑘 ∉ 𝑆𝑖
$ but (𝑘, 𝑗) ∈ ≲𝑖

$ for some 𝑗 ∈ 𝑆𝑖
$. This means that 𝑘 ∉ 𝑆 

for all 𝑆 ∈ $𝑖 and that there is some 𝑇 ∈ $𝑖 such that 𝑗 ∈ 𝑇. Now, (𝑘, 𝑗) ∈ ≲𝑖
$ implies 𝑗 ∈ 𝑆 ⟶

𝑘 ∈ 𝑆 for all 𝑆 ∈ $𝑖, by definition of ≲𝑖
$. In particular 𝑗 ∈ 𝑇 ⟶ 𝑘 ∈ 𝑇, implying 𝑘 ∈ 𝑇, which is 

impossible. 

This completes the proof.              □ 

 

Lemma A.1.0.3: Functions 𝑓 and 𝑔, as given in definitions A.1.1 and A.1.2, are injections. 

Proof : It is immediate from definitions.            □ 

 

There’s a pattern to all the proof directions in lemmas A.1.0.4 and A.1.0.5. 

Regarding the non-trivial cases, we’re dealing with two kinds of conditions (ii) and (II), that 

vary slightly, but have the same general form. Hence the proofs follow a similar pattern. 

Below I give formulations that aims to emphasize the similarity of the forms of the non-

vacuous conditions. 

 

Ordering frames (**):  (∃𝑥) (𝑃(𝑥) ∧ (∀𝑦)(𝑅(𝑦, 𝑥) ⟶ 𝑄(𝑦))) 

Similarity spheres (##): (∃𝑋) (𝑃′(𝑋) ∧ (∀𝑦)(𝑅′(𝑦, 𝑋) ⟶ 𝑄(𝑦))) 

 

All the proofs (with some variation) follow a general pattern: 

(**) ⟶ (##):  

(1) First, I show that (∃𝑥)𝑃(𝑥) gives (∃𝑋)𝑃′(𝑋).  

(2) Next, I show that (∀𝑦)(𝑅′(𝑦, 𝑋) ⟶ 𝑅(𝑦, 𝑥)).  

Steps (1) and (2) generally require the most work, and I use various methods. 

(3) I use (2) in conjunction with the second conjunct of the hypothesis (∀𝑦)(𝑅(𝑦, 𝑥) ⟶ 𝑄(𝑦)) 

to show that (∀𝑦)𝑄(𝑦), by hypothetical syllogism, thus proving (∀𝑦)(𝑅′(𝑦, 𝑋) ⟶ 𝑄(𝑦)), by 

conditional proof.  

For the (##) ⟶ (**) direction, I use the same proof pattern as for (**) ⟶ (##). 

 

Lemma A.1.0.4: For any CS frame 𝔉 = (𝑊, ≲), 𝑖 ∈ 𝑊, 𝜌, and 𝐴, 𝐵 ∈ 𝐹𝑜𝑟: 

 

(𝔉, 𝜌), 𝑖 ⊩ 𝐴 > 𝐵     iff     (𝑓(𝔉), 𝜌), 𝑖 ⊩ 𝐴 > 𝐵 
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Proof : Suppose ((𝑊, ≲), 𝜌), 𝑖 ⊩ 𝐴 > 𝐵 for arbitrary (𝑊, ≲) ∈ 𝐂𝐒, 𝑖 ∈ 𝑊, 𝜌, and 𝐴, 𝐵 ∈ 𝐹𝑜𝑟 

Then by definition, either  

(i) 𝑆𝑖 ∩ [𝐴] = ∅, or 

(ii) (∃𝑘)(𝑘 ∈ 𝑆𝑖 ∩ [𝐴]  ∧  (∀𝑗 ∈ 𝑊)(𝑗 ≲𝑖 𝑘 ⟶ 𝑗 ∈ [𝐴 ⊃ 𝐵])) 

We need to show that either 

(I) ⋃ $𝑖
≲ ∩ [𝐴] = ∅, or  

(II) (∃𝑆 ∈ $𝑖
≲)(𝑆 ∩ [𝐴] ≠ ∅ ∧ (∀𝑗 ∈ 𝑊)(𝑗 ∈ 𝑆 ⟶ 𝑗 ∈ [𝐴 ⊃ 𝐵])) 

That is, we need to show that (i or ii) iff (I or II). The entire argument applies for any 𝑖 ∈ 𝑊. 

 

(i ⟷ I) The vacuous case: ⋃ $𝑖
≲ ∩ [𝐴] = ∅  iff  𝑆𝑖 ∩ [𝐴] = ∅, since ⋃ $𝑖

≲ ⊆ 𝑆𝑖, by definition of 

$𝑖
≲, and 𝑆𝑖 ∈ $𝑖

≲, by definition of ≲𝑖 and $𝑖
≲, i.e. CS5 implies 𝑆𝑖 ∈ $𝑖

≲. 

 

(ii ⟶ II) Assume there is a 𝑘 ∈ 𝑆𝑖 ∩ [𝐴]. I’ll now define a subset of 𝐾 ⊆ 𝑊, such that 𝑘 ∈ 𝐾, 

and show that 𝐾 ∈ $𝑖
≲. In other words, I’ll define a set 𝐾 ⊆ 𝑊 whose existence is implied by 

the existence of 𝑘. Let 𝐾 ∶= {𝑗 ∈ 𝑊: 𝑗 ≲𝑖 𝑘}. Observe that 𝐾 ⊆ 𝑆𝑖, since 𝑘 ∈ 𝑆𝑖 and 𝑗 ≲𝑖 𝑘 

jointly imply 𝑗 ∈ 𝑆𝑖 for all 𝑗 ∈ 𝑊 (𝑆𝑖 is downward ≲𝑖-closed). Denying this would contradict 

CS5, i.e. suppose there’s some 𝑗 ∈ 𝑊 such that 𝑗 ≲𝑖 𝑘 yet 𝑗 ∉ 𝑆𝑖. But 𝑘 ∈ 𝑆𝑖 and 𝑗 ∉ 𝑆𝑖 implies 

𝑘 <𝑖 𝑗, by CS5, contradicting 𝑗 ≲𝑖 𝑘. Now I’ll show that 𝐾 ∈ $𝑖
≲. It suffices to note that 𝐾 ∈ $𝑖

≲ 

follows from 𝐾 being downward ≲𝑖-closed, i.e. for any 𝑥, 𝑦 ∈ 𝑊, if 𝑥 ∈ 𝐾 and 𝑦 ≲𝑖 𝑥, then 𝑦 ∈

𝐾, which can be easily checked as being equivalent to (𝑥 ∈ 𝐾 ∧ 𝑦 ∉ 𝐾) ⟶ 𝑥 <𝑖 𝑦 for any 

𝑥, 𝑦 ∈ 𝑊. Hence, 𝐾 ∈ $𝑖
≲, by definition of $𝑖

≲. Now I’ll show that 𝑗 ∈ 𝐾 ⟶ 𝑗 ∈ [𝐴 ⊃ 𝐵] for all 

𝑗 ∈ 𝑊. Suppose 𝑗 ∈ 𝐾 for arbitrary 𝑗 ∈ 𝑊. Hence, 𝑗 ≲𝑖 𝑘, by construction of 𝐾. Next, from 

hypothesis 𝑗 ≲𝑖 𝑘 ⟶ 𝑗 ∈ [𝐴 ⊃ 𝐵] for all 𝑗 ∈ 𝑊, we conclude 𝑗 ∈ [𝐴 ⊃ 𝐵]. Hence, 𝑗 ∈ 𝐾 ⟶ 𝑗 ∈

[𝐴 ⊃ 𝐵] for all 𝑗 ∈ 𝑊, by conditional proof, as required. 

 

(II ⟶ ii) Assume that there is a sphere 𝑆 ∈ $𝑖
≲ such that 𝑆 ∩ [𝐴] ≠ ∅, i.e. there’s some 𝑘 ∈ 𝑆 ∩

[𝐴]. So, there is a 𝑘 ∈ 𝑆𝑖 ∩ [𝐴], since ⋃ $𝑖
≲ ⊆ 𝑆𝑖, by definition of $𝑖

≲. Now I’ll show that 

𝑗 ≲𝑖 𝑘 ⟶ 𝑗 ∈ 𝑆 for all 𝑗 ∈ 𝑊. To that end it suffices to note that 𝑥 ≲𝑖 𝑦 ⟶ (𝑦 ∈ 𝑇 ⟶ 𝑥 ∈ 𝑇) for 

any 𝑥, 𝑦 ∈ 𝑊 and 𝑇 ∈ $𝑖
≲ is the contraposed condition for $𝑖

≲ membership. Now, assume 𝑗 ≲𝑖 𝑘 

for arbitrary 𝑗 ∈ 𝑊. Hence, 𝑘 ∈ 𝑇 ⟶ 𝑗 ∈ 𝑇 for any 𝑇 ∈ $𝑖
≲ and 𝑗 ∈ 𝑊. In particular 𝑘 ∈ 𝑆 ⟶ 𝑗 ∈

𝑆 for any 𝑗 ∈ 𝑊, by hypothesis 𝑆 ∈ $𝑖
≲. Therefore 𝑗 ∈ 𝑆 for all 𝑗 ∈ 𝑊 that satisfy 𝑗 ≲𝑖 𝑘, by 

hypothesis 𝑘 ∈ 𝑆. Hence, 𝑗 ≲𝑖 𝑘 ⟶ 𝑗 ∈ 𝑆 for all 𝑗 ∈ 𝑊, by conditional proof. This, in 

conjunction with the main hypothesis (∀𝑗 ∈ 𝑊)(𝑗 ∈ 𝑆 ⟶ 𝑗 ∈ [𝐴 ⊃ 𝐵]) in (II) gives 𝑗 ∈ [𝐴 ⊃ 𝐵] 
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for all 𝑗 ∈ 𝑊, by hypothetical syllogism. Hence, finally 𝑗 ≲𝑖 𝑘 ⟶ 𝑗 ∈ [𝐴 ⊃ 𝐵] for all 𝑗 ∈ 𝑊, by 

conditional proof, as required.                     □ 

 

Lemma A.1.0.5: For any S frame 𝔊 = (𝑊, $), 𝑖 ∈ 𝑊, 𝜌, and 𝐴, 𝐵 ∈ 𝐹𝑜𝑟: 

 

(𝔉, 𝜌), 𝑖 ⊩ 𝐴 > 𝐵     iff     (𝑔(𝔉), 𝜌), 𝑖 ⊩ 𝐴 > 𝐵 

 

Proof : Suppose ((𝑊, $), 𝜌), 𝑖 ⊩ 𝐴 > 𝐵 for arbitrary (𝑊, $) ∈ 𝐒, 𝑖 ∈ 𝑊, 𝜌, and 𝐴, 𝐵 ∈ 𝐹𝑜𝑟 

Then by definition, either  

(i) ⋃ $𝑖 ∩ [𝐴] = ∅, or 

(ii) (∃𝑆 ∈ $𝑖)(𝑆 ∩ [𝐴] ≠ ∅ ∧  (∀𝑗 ∈ 𝑊)(𝑗 ∈ 𝑆 ⟶ 𝑗 ∈ [𝐴 ⊃ 𝐵])) 

We need to show that either 

(I) 𝑆𝑖
$ ∩ [𝐴] = ∅, or 

(II) (∃𝑘) (𝑘 ∈ 𝑆𝑖
$ ∩ [𝐴]  ∧  (∀𝑗 ∈ 𝑊)(𝑗 ≲𝑖

$ 𝑘 ⟶ 𝑗 ∈ [𝐴 ⊃ 𝐵])) 

That is, we need to show that (i or ii) iff (I or II). The entire argument applies for any 𝑖 ∈ 𝑊. 

 

(i ⟷ II) The vacuous case is immediate, since 𝑆𝑖
$ = ⋃ $𝑖 by definition of 𝑔. 

 

(ii ⟶ II) Assume that there is a 𝑆 ∈ $𝑖 such that 𝑆 ∩ [𝐴] ≠ ∅, i.e. there is a 𝑘 ∈ 𝑆 ∩ [𝐴]. So, 

there’s a 𝑘 ∈ 𝑆𝑖
$ ∩ [𝐴], since 𝑆 ⊆ 𝑆𝑖

$ = ⋃ $𝑖 by definition of 𝑔. Now I’ll show that 𝑗 ≲𝑖
$ 𝑘 ⟶ 𝑗 ∈

𝑆 for any 𝑗 ∈ 𝑊. Suppose 𝑗 ≲𝑖
$ 𝑘 for arbitrary 𝑗 ∈ 𝑊. Hence, 𝑘 ∈ 𝑇 ⟶ 𝑗 ∈ 𝑇 for any and 𝑇 ∈ $𝑖 

and 𝑗 ∈ 𝑊, by definition of ≲𝑖
$, so in particular 𝑘 ∈ 𝑆 ⟶ 𝑗 ∈ 𝑆 for any 𝑗 ∈ 𝑊, by hypothesis 

𝑆 ∈ $𝑖. So, 𝑗 ∈ 𝑆 for all 𝑗 ∈ 𝑊 that satisfy 𝑗 ≲𝑖
$ 𝑘, by hypothesis 𝑘 ∈ 𝑆. Hence, 𝑗 ≲𝑖

$ 𝑘 ⟶ 𝑗 ∈

𝑆 for all 𝑗 ∈ 𝑊, by conditional proof. This, in conjunction with main hypothesis 

(∀𝑗 ∈ 𝑊)(𝑗 ∈ 𝑆 ⟶ 𝑗 ∈ [𝐴 ⊃ 𝐵]) in (ii) gives 𝑗 ∈ [𝐴 ⊃ 𝐵] for all 𝑗 ∈ 𝑊, by hypothetical 

syllogism. Hence 𝑗 ≲𝑖
$ 𝑘 ⟶ 𝑗 ∈ [𝐴 ⊃ 𝐵] for all 𝑗 ∈ 𝑊, by conditional proof, as required. 

 

(ii ⟵ II) Assume there is a 𝑘 ∈ 𝑆𝑖
$ ∩ [𝐴], so ⋃ $𝑖 ∩ [𝐴] ≠ ∅, by definition of 𝑔, and there is a 

sphere 𝑆 ∈ $𝑖, such that 𝑘 ∈ 𝑆 ∩ [𝐴], by definition of set union. Now we need to show that if 

𝑗 ∈ 𝑆, then 𝑗 ≲𝑖
$ 𝑘 for any 𝑗 ∈ 𝑊. By definition of 𝑗 ≲𝑖

$ 𝑘, 𝑘 ∈ 𝑇 ⟶ 𝑗 ∈ 𝑇 for all 𝑇 ∈ $𝑖, so in 

particular 𝑘 ∈ 𝑆 ⟶ 𝑗 ∈ 𝑆. Hence 𝑗 ∈ 𝑆. Hence 𝑗 ∈ 𝑆 ⟶ 𝑗 ≲𝑖
$ 𝑘, for any 𝑗 ∈ 𝑊, by conditional 

proof. Finally, in conjunction with (∀𝑗 ∈ 𝑊)(𝑗 ≲𝑖
$ 𝑘 ⟶ 𝑗 ∈ [𝐴 ⊃ 𝐵]) from main hypothesis 

(II), we conclude that 𝑗 ∈ [𝐴 ⊃ 𝐵] for any 𝑗 ∈ 𝑊. Hence (∀𝑗 ∈ 𝑊)(𝑗 ∈ 𝑆 ⟶ 𝑗 ∈ [𝐴 ⊃ 𝐵]), by 

conditional proof.                    □  
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