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ABSTRACT 

The extreme diversity and heterogeneity of cancer cells creates a need for 

equally varying analysis methods to diagnose and treat the disease. Many methods 

have been developed for targeting and combatting a specific cancer. The oestrogen 

receptor, HER2, is overexpressed in certain varieties of breast cancer and subsequently 

used as a target for chemotherapy antibody treatments. 1 Unfortunately, not all cancers 

overexpress an easily identifiable protein and are therefore limited to systemic, non-

targeted therapies such as resection, radiation, and chemotherapy. 2 Here, three novel 

techniques are investigated for analysing cancer therapeutic and diagnostic techniques. 

Porous silicon microparticle (PSM) delivery methods take advantage of 

tumour vessel tortuosity and fenestrations to selectively deliver cancer therapeutics to 

tumours. In chapter 2, the previously uncharacterized rolling mechanics of PSM on 

endothelial cells are examined at physiologically relevant shear rates. Custom analysis 

software allows for the identification, tracking, and characterization of particles in 

flow. 

Tertiary lymphoid structures (TLS) in and around tumours have been 

prominently associated with positive patient prognoses but are difficult and time 

consuming to identify. In chapter 3, optical tissue clearing and 3D imaging are utilized 

to investigate the ability of dendritic cell (DC) vaccines and checkpoint blockade 

therapies to affect tumour growth in association with TLS presence in the tumour. 

When treated with the DC vaccine or a combination with anti-PD1 treatments, tumour 

growth is severely inhibited. The 3D imaging and analysis was used to correlate the 

tumour growth inhibition with an increase in the concentration of intratumoural T cells 

and of TLS present in the tumour. 

Optical spectroscopic imaging of biological systems has important 

applications in medical diagnosis and biochemistry. However, the extrinsic 

fluorescence of staining molecules often masks the intrinsic vibrational signals of 

biomolecules. In chapter 4, simultaneous spectroscopic bioimaging and photostability 

analysis of rhodamine 6G stained red blood cells using both fluorescence and 

resonance Raman imaging in a single laser excitation experiment were performed. A 

corresponding data processing algorithm was developed to separate the two previously 

indistinguishable spectroscopic signals.  
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1. INTRODUCTION 

Cancer is a very broad, catch-all term for a disease that takes on many different 

forms in varying areas of the body. Due to the vast diversity and heterogeneity of 

cancer cells, many methods have been, and more still need to be, developed for 

targeting and combatting all the different forms of cancer. One of the first steps to 

targeting a disease is diagnosis and analysis. Here, we primarily focus on TUBO, a 

HER2 positive breast cancer. In TUBO, the oestrogen receptor, HER2, is 

overexpressed and can be used as a target for chemotherapy antibody treatment. 1 Not 

all cancers have a protein that is overexpressed and easily targetable and therefore, 

treatments must rely on systemic, non-targeted therapies such as resection, radiation, 

and chemotherapy. 2 In this thesis, three novel visual analysis methods are developed 

to investigate the mechanisms of up and coming therapeutic and diagnostic techniques.  

1.1. Drug Delivery 

Delivering drugs to cancerous cells is a difficult task due to their similarity to 

their healthy progenitor cells. It is further complicated by the diversity of cancer cell 

phenotypes person to person and nodule to nodule. 3 Systemic chemotherapy has 

advanced to include nano-sized drugs that have an enhanced retention around cancer 

cells to increase the selectivity of the therapy. 4 While some cancers are still only 

treatable by systemic chemotherapy or radiation, others can be targeted with therapies 

that selectively weaken and/or kill cancer cells based on their extracellular protein 

makeup. 5 Also, multistage vectors have been developed to prevent drugs from 

interacting with healthy tissues while in route to their target destination. Once trapped 

in the tumour vasculature or engulfed by cells, the vector begins to degrade and release 

the drug directly at the disease site at a high potency. 6 

1.1.1. Systemic Delivery 

Traditional chemotherapy drugs attack cells at different points along the cell 

cycle to interrupt the replication process and prevent tumour growth. 7 These are 

typically macromolecular substances that, once intravenously injected, circulate 

around the entire body and attack every available cell that is currently dividing, 

including healthy cells. 7 This can cause side effects to other tissues with rapidly 
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dividing cells besides the cancer, such as cells in the bone marrow, stomach lining, and 

skin. This has led to a push to increase the selectivity of cancer therapeutic agents to 

reduce side effects and improve effectiveness. 

Formulations of some chemotherapeutics have been reduced in size down to a 

nano scale (<100 nm). 8 By reducing their size, drugs can penetrate through the large 

fenestrations in the tumour vasculature to directly interact with the cancerous cells. 

These fenestrations create an enhanced permeability and retention (EPR) effect inside 

the tumour space whereas the rest of the body has tight junctions between their 

vascular endothelial cells. 9,10 This creates a tendency for nano-formulations to 

preferentially accumulate in the tumour space, allowing for higher intratumoural drug 

concentrations and lower concentrations in healthy tissue.  

Although spherical micelles are the dominate shape for nanocarriers due to the 

ease of production, shape and size characteristics can be fine-tuned to improve the 

cellular uptake and biodistribution of the drug. 11 Long and short cylindrical shapes 

have been shown to increase circulation time and accumulation in the tumour tissue. 

12,13 These shapes are able to pass between vascular endothelial cells to reach the 

tumour space while also avoiding uptake by the circulating immune cells in the 

bloodstream, leading to a larger concentration of drug in contact with the cancer. 

1.1.2. Targeted Delivery 

In approximately 15-20% of breast cancers, the protein human epidermal 

growth factor 2 (HER2) is overexpressed. When HER2 interacts with the human 

epidermal growth factor (HER) protein, cancer cells are stimulated to grow and divide. 

Targeted antibodies, such as pertuzumab and trastuzumab, for breast cancer use 

monoclonal antibodies to attach to and block the functionality of HER2, preventing 

the interaction between HER and HER2. 5,18 This treatment is used in combination 

with chemotherapy to retard the growth rate of new cancer cells. Another way of 

blocking the HER/HER2 interaction is with tyrosine kinase inhibitors of HER2, such 

as lipatinib and neratinib. 14,15 These inhibit the function of HER2 and, when used in 

combination with chemotherapy drugs, create the same desired outcome of targeted 

antibodies, inhibiting the growth rate of the cancerous cells. The chemotherapy drug 

can also be conjugated directly to an antibody, such as Ado-Trastuzumab Emtansine 
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and Fam-Trastuzumab Deruxtecan. 16,17 These serve as a mechanism for delivering 

and connecting drugs selectively to HER2 positive cancerous cells.  

1.1.3. Multistage Vector Delivery 

Chemotherapy drugs can be loaded into a nano- or micro-sized particles and 

then transported to a cancerous region of the body while minimizing the amount of 

interaction with healthy cells that encounter a drug that is freely circulating around the 

body. One example of a nanocarrier is a liposome. Liposomes are spherical vesicles 

composed of a lipid bilayer membrane and can transport hydrophilic and hydrophobic 

agents within its aqueous core or in between its lamellae, respectively. 19 By 

encapsulating a drug inside the liposome, it can achieve higher drug concentrations in 

the tumour space as compared to healthy tissue. 20 The liposomes are then taken up by 

cellular phagocytosis and the high pH of the endosomes releases the drug into the cell.  

Porous silicon microparticles (PSM) are disk shaped particles on the micron 

scale and are used to deliver drugs or antigens to cells in the body. PSM protect 

nanoparticles from degradation in the bloodstream and uptake by circulating immune 

cells, ensuring that the main effect of the drugs is focused on the cancerous region. 

Microparticles are usually too large to be phagocytosed by cells or to fit through the 

fenestrations in tumour vasculature. However, due to their size and shape, they stick 

to vessel walls in areas of low shear stress, such as tortuous tumour vasculature, where 

they begin to degrade and release their cargo. 21,160 The cargo then enters the 

extracellular space through the large vasculature fenestrations around the tumour and 

are phagocytosed by the surrounding cells. PSM can be filled with a variety of drugs 

to fight diseases or antigens to stimulate the immune system against diseases. 6 

1.2. Cancer 

Cancer is broadly defined as the uncontrolled replication of cells at an 

unnaturally fast rate. If undetected by the immune system, these abnormal cells can 

grow into a primary tumour mass and eventually inhibit the essential processes of the 

organ it inhabits. 18 In some types of cancer, cancerous cells can break apart from the 

primary mass and infiltrate the blood and lymph vessels. 22 This allows the cancer to 

spread to, and continue growing in, many other organs throughout the body. These 
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metastases are commonly associated with poor prognoses and patient death. 23 This 

thesis primarily focuses on breast cancer and its metastatic lesions. 

1.2.1. Prevalence 

Breast cancer is the most prevalent type of cancer in the United Kingdom (UK), 

accounting for 31% of all new female cancer cases and 7% of all cancer deaths in 2016.  

The prognosis for breast cancer is relatively positive, with 65% of women diagnosed 

surviving for twenty years or more. 1 in 7 women in the UK will develop breast cancer 

at some point in their lives. 18 

1.2.2. Causes 

Cancer can be naturally caused by DNA mutations inside a cell but there are 

certain risk factors that have been shown to increase a person’s chances of developing 

cancer. In breast cancer, some causation has been demonstrated with post-menopausal 

hormones, obesity, alcohol, and not breastfeeding, making up approximately 23% of 

cases in the UK. 18 On the individual cellular level, accidental DNA mutations are a 

common occurrence inside every cell and happen during the transcription and 

translation phases of cell division. While most mutations either have no effect on the 

cell or are detrimental to its survival, a mutation to the small portion of genes that 

control cell division rates, cell cycle arrest, and programmed cell death could lead to 

an uncontrolled cell growth. 25 Any of the previously mentioned risk factors, as well 

as exposure to radiation and carcinogens, can increase the chance of DNA mutations. 

26  

1.2.3. Metastasis 

As tumours continue their unrestricted growth, they can become malignant and 

begin to invade the surrounding tissue. This includes the bloodstream and the 

lymphatic system, giving the cancerous cells access to the entire body. 26 Breast 

cancers are most likely to metastasize in the lungs, liver, bone, and brain. 27 The current 

hypothesis around these specific metastasis locations is a combination of the “seed and 

soil hypothesis” and the “anatomical/mechanical hypothesis”. The seed and soil 

hypothesis, which was suggested by Stephen Paget in 1889, states that the tumour 
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cells, or seeds, could only grow in the microenvironment of specific organs, or soils. 

28 The anatomical/mechanical hypothesis states that metastases are most likely to form 

in the first organ that cancerous cells come across once they have entered the 

bloodstream or the lymphatic system. 27 Metastases can be difficult to treat due to their 

small size and their ability to be almost anywhere in the body makes them difficult to 

detect. In Chapter 2 of this Thesis, a treatment method is investigated for breast cancer 

metastases in bone. 

1.2.4. Cancer strengths 

Cancerous cells originate from host cells and are therefore very difficult for the 

immune system to identify as a threat because they present all the necessary 

identification proteins. In addition to that, the structure of tumour blood vessels 

prevents immune cells from having easy access to tumours, 32 nutrient deficient 

microenvironments caused by the large energy consumption of rapidly dividing cancer 

cells discourage immune cell survival once they reach the tumour, 33 and tumours have 

the ability to recruit immunosuppressive cells to inhibit immune cell hostilities once 

they have arrived. 34  

1.2.5. Treatment 

In breast cancer, if the size of the tumour is small and it is at an early stage, 

many patients begin their treatment with surgery to remove the cancerous tissue or the 

entire breast. This is usually followed by radiation therapy to eradicate any cancerous 

cells that were left behind after the surgery. If the tumour has spread into the 

surrounding tissue or metastasized, a more systemic approach is required. 

Chemotherapy drugs are intended to destroy quickly dividing cells or prevent cell 

division. These drugs are not specifically targeted to cancer cells and therefore affect 

quickly dividing noncancerous cells in the body as well, such as skin, intestinal linings, 

and hair. 18 

Immunotherapy takes advantage of the body’s own immune system to attack 

the cancerous cells. Cancerous cells present “self” identifying proteins, such as PDL1 

and CTLA4, to immune cells to prevent being attacked. Checkpoint blockage therapy 

uses targeted antibodies to block these proteins from interacting and causing 
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immunosuppression. 29-31 This allows the immune system to identify and destroy 

cancerous cells. 

Although cancerous cells are cleverly disguised from the immune system, there 

are still exploitable characteristics that are being explored to target and eliminate them. 

As cancerous cells divide and spread quickly, they release copious amounts of VEGF 

to stimulate blood vessel growth to deliver nutrients to the tumour mass. This 

expansion has a difficult time keeping up with the tumour growth rate. 35 Due to this, 

the construction of these vessels is uncharacteristically sloppy for the body. There are 

vessel regions with fenestrations, 36 wildly tortuous sections, 37 and some vessels lead 

to a dead end with no connection back to the venous system. 32 Another characteristic 

of a rapidly growing tumour is inflammation. While inflammation has been shown to 

support tumour growth, 38 it also stimulates the expression of E-selectin on endothelial 

cells. 39 All of these vessel attributes create an environment that is unique to the rest of 

the body and are therefore targetable. 40-41 

1.3. Tools for Visualization 

The term cancer encompasses a family of diseases that originate from a broad 

array of cells that attack a variety of organs. 18 While some varieties of cancer have a 

well-known disease progression profile and treatment strategy, others require more 

research to fully understand and treat them. Due to the size of the cancerous cells and 

their treatments, the ability to visualize, identify, and characterize micro and nano-

scale objects is vital for gathering an understanding of therapy mechanics and cellular 

processes. Many different techniques have been developed to capture this information, 

each with its own advantages and disadvantages. The following techniques were all 

used in this work. 

1.3.1. Microscopy 

Brightfield microscopy is one of the most basic functions performed on a 

microscope. A sample is placed on the stage of a microscope and illuminated by a 

white light. The sample will then attenuate the amount of light passing through via 

scattering or absorption, which allows the user to distinguish topographical features. 
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42 The addition of fluorescence, either through autofluorescence or artificial staining, 

substantially increases the amount of observable information. 

In fluorescence microscopy, a fluorophore absorbs photons from a laser light 

source at a specific wavelength which forces it into an excited electronic state (Figure 

1D). 43 This excited state is not energetically favourable for the fluorophore and so the 

absorbed energy is released by radiative and non-radiative means. It is possible for 

energy to be non-radiatively dissipated as heat. The radiative energy is released as a 

photon of lower energy (or longer wavelength) than the incident laser wavelength due 

to the non-radiative energy dissipation as heat. The difference between the excitation 

and emission wavelength is called the Stokes shift. The emitted photons are then 

captured by a detector to identify the location and concentration of the fluorophore. 44 

Fluorophores attached to antibodies can be used to identify cells expressing a protein 

of interest. Using different fluorophores, excitation wavelengths, and optical filters, 

multiple proteins can be identified on the same sample at the same time. 45 

 
Figure 1. Jablonski diagram. 

Excitation (blue) and emission/relaxation (red) for Stokes Raman scattering (A), anti-Stokes Raman 

scattering (B), resonance Raman scattering (C), fluorescence (D), and two-photon excitation 

fluorescence (E). The numbers represent the vibrational levels within the electronic states. 

Single-photon excitation fluorescent microscopy is depth limited to less than 

100 µm in biological tissues due to light scattering at the many interfaces between cells 

and the extracellular matrix (ECM). 46 Each component in biological tissue has a 
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unique index of refraction. As light penetrates the tissue, it passes through many 

different indices of refraction along its travel path. At each interface, a portion of the 

light will be transmitted into the new medium while the rest will be reflected (or 

scattered) and continue along a new orientation in the original medium, therefore 

decreasing the intensity of the transmitted light. Biological tissues can also non-

radiatively absorb photons. In the visible spectrum, shorter wavelengths are heavily 

absorbed by the skin and the blood while longer wavelengths are absorbed by the water 

content in the body. 47 The amount of absorption grows exponentially with an increase 

in the path length of the light through the tissue. The combination of these limitations 

prevents to use of linear microscopy on whole tissue and live imaging techniques more 

than surface deep.  

Limiting the depth resolution of a microscope is important for identifying 

details throughout the depth of a cell. Traditional, widefield optical microscopy 

techniques end up exciting more molecules than those on the focal plane alone (Figure 

2A). The entire excited volume then has the potential to emit detectable light that will 

be collected by the camera. The computer then takes the signal acquired from a volume 

and projects it onto a 2D image. The excited particles above and below the focal point 

will distort the features in the focal plane on the acquired image because they sum 

together to brighten a signal or to create a false signal. 48 This is especially important 

when trying to determine if a signal is coming from the interior or the exterior of the 

cell. 49 Another limiting factor affecting the depth resolution is the scattering of emitted 

light. After the target molecules have been excited and emitted photons, those photons 

still must travel through the same scattering material that created a problematic 

pathway for the excitation light. This scattered light is then recorded by the camera 

alongside the non-scattered light, contributing to the added distortion of the acquired 

image. 48 
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Figure 2. Comparison of optical microscopy depth of field. 

A general representation of the excitable volume (represented in orange) captured during widefield 

microscopy (A), confocal microscopy (B), and two-photon excitation microscopy (C).  

𝒓𝒂𝒙𝒊𝒂𝒍 =
𝟐𝝀

𝑵𝑨𝟐            Equation 1 

𝒓𝒂𝒙𝒊𝒂𝒍 =
𝟏.𝟒𝝀𝜼

𝑵𝑨𝟐        Equation 2 

Confocal microscopy places a micro-sized pinhole at the conjugate focal plane 

of the excitation source to ensure the focused light is diffraction limited and another 

pinhole at the conjugate focal plane of the detector to prevent out-of-focus and 

scattered light from being recorded (Figure 3). While this only contributes a 30% 

reduction on the excitation depth of field (Figure 2B; Equation 1 and 2, where r is the 

radius of the Airy disk, λ is the wavelength, η is the index of refraction, and NA is the 

numerical aperture), 50-51 any scattered light or emitted light from outside of the focal 

plane will not focus through the pinhole and will be blocked from reaching the 

detector. The size of the pinhole can be adjusted to decrease the amount of light 

allowed through to the detector and increase the depth resolution and contrast. This 

greatly reduces the amount of incoming light and so a photomultiplier tube (PMT) is 

employed to collect the signal rather than a standard camera detector. PMTs use a 

photocathode to absorb photons, thereby ejecting electrons that will multiply as they 

rebound off dynodes until they are absorbed by an anode. 52 This creates a large gain 

up to 106 X that is directly proportional to the influx of photons. In order to capture a 

larger FOV, the excitation laser is scanned over the sample in a raster pattern using 

two mirror galvanometers, one to control each lateral axis. 
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Figure 3. Confocal microscopy pinhole diagram. 

Emitted light coming from the focal plane of the sample (green) passes through the pinhole whereas 

out-of-focus light (dashed lines) is blocked by the pinhole. 

Two-photon microscopy increases the imaging depth approximately ten-fold 

to a maximum of 1 mm by exciting with near infrared light. 46 This technique takes 

advantage of nonlinear excitation by adopting two photons of lower energy (near-

infrared) to simultaneously (within 0.5 fs) stimulate the fluorophore (Figure 1E). The 

energy of the two, low energy photons together is enough to excite the molecule to 

fluoresce. Even with a femto-second excitation laser source, the chances of exciting a 

molecule is slim and only happen in the vicinity of the focal spot. This provides z-

resolution without the need of a pinhole to block out nonspecific excitations, allowing 

more emitted photons to be collected by the PMT. Near-infrared light is not readily 

absorbed nor scattered by biological tissue like much of the visible spectrum is, so it 

can penetrate deeper into tissues while also causing fewer stray excitations and less 

photodamage along the way.  

1.3.2. Raman spectroscopy 

During Raman scattering, an excitation source pumps light into a sample where 

photons inelastically scatter off molecules, causing a temporary polarization of the 

chemical bonds. 53 During this collision between the molecule and the photon, it is 
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possible for energy to transfer from one to the other through a change in the vibrational 

level of the molecule. When a molecule starts in the 0 vibrational level, an incident 

photon has the potential to force a molecule into a virtual state between the electronic 

ground state and the excited electronic state. As the molecule relaxes back down to its 

ground state, it may land in an excited vibrational state, maintaining a portion of energy 

from the photon (Figure 1A). 54 This is referred to as Stokes scattering. The molecule 

also has the potential to start in an excited vibrational state and then relax completely 

back to the ground state, leaving the scattered photon with more energy than it arrived 

with (Figure 1B). 54 This is referred to as anti-Stokes scattering. As the scattered 

photon continues along its new trajectory, it has either gained or lost energy to the 

molecular vibrations and is now traveling at a shorter or longer wavelength, 

respectively. The difference between the incident and scattered wavelengths is again 

called the Raman shift. It is therefore possible to identify the chemical composition of 

a sample by comparing the scattered Raman spectra with known shift values of simple 

chemical compounds. 53 

Raman spectroscopy is useful in many biological applications due to its non-

destructive ability to identify chemical structures.  As it pertains to this work, Raman 

is employed to diagnose and estimate the prognosis of cancer in human patients. 55,56 

Specifically, Raman has been shown to identify neoplasia in many different tissues, 

including brain, 57-60 breast, 61 bladder, 62 colorectal, 63,64 larynx, 65 lung, 66 lymph 

nodes, 67,68 oesophageal, 69-71 prostate, 72-75 uterine, and cervical. 76-79 Raman is also 

useful in aqueous environments and can therefore be utilized for 2D and 3D 

characterization of cellular models in vitro. 80-83  

1.3.3. Ultraviolet/visible absorption spectroscopy 

Ultraviolet (UV) / visible spectroscopy scans a range of wavelengths from 

ultraviolet through the visible spectrum and measures the amount of light that is 

transmitted through a sample. 84 Molecules that absorb light in that range will create 

dips in the transmittance measurement which are directly proportional to the 

concentration of that molecule. This is particularly useful for DNA quantification, 

which has an absorption maximum at 260 nm. UV/visible absorption spectra can be 

used to identify and quantify DNA and other molecules in a sample. 
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1.3.4. Light scattering 

Dynamic light scattering (DLS) measures fluctuating scattered light 

interference (called a speckle pattern) to determine the size of a particle. Particles 

evenly distributed in a fluid are in constant Brownian motion due to collisions with the 

liquid molecules they are suspended in. Due to conservation of momentum, the speed 

of these particles depends on the size of the particle, as defined by the Stokes-Einstein 

equation. This speed can be measured by observing the rate of fluctuation of the 

intensities in the speckle pattern. Since the particles are constantly moving, the speckle 

pattern is also continuously changing as the light scattering paths fluctuate. The size 

of the particles is determined by comparing the rate of the intensity fluctuation in the 

speckle pattern to the Stokes-Einstein equation. 85 

The zeta potential of a particle is the net charge just outside the region in which 

ions are strongly affixed to the particle surface. To measure this potential, an electric 

field is applied across a particle suspension. Particles will begin to move toward the 

electrode of opposite charge to their zeta potential and eventually an equilibrium 

traveling speed will be reached. This speed depends on the strength of the electric field, 

the dielectric constant of the medium, the viscosity of the medium, and the zeta 

potential of the particles. This speed can be measured using laser doppler velocimetry. 

Yet again, the rate of intensity fluctuation of the scattered light is proportional to the 

speed of the particles and can be used to extract the exact speed value.  Since the 

strength of the electric field, the dielectric constant of the medium, and the viscosity 

of the medium are known, the Henry equation can be used to determine the zeta 

potential of the particles. 86 

1.3.5. Flow chamber 

Flow chambers can be used to study cell-cell interactions and therapy-cell 

interactions under physiological flow conditions. 87 Using brightfield or fluorescence 

microscopy, objects can be monitored and tracked at shear stresses and flow speeds 

relevant to different sections of the cardiovascular system. It has been shown that 

endothelial cells will adapt their shape and alignment to the state of their media. 88 If 

the media is static, cells will grow in various shapes in varying directions but when the 

media flows laminarly over the cells, they stretch and align in the direction of the flow. 
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These chambers are useful in studying the rolling and adhesion kinetics of leukocytes 

and therapies injected intravenously. 87 Flow chambers have also been employed to 

study cancer cell rolling and adhesion in the vasculature, highlighting the abilities of 

cancer to metastasize and spread.89,149 By providing physiologically relevant 

conditions inside the flow chamber, the behaviour of cells and particles in flow are 

able to be observed and then calibrated to desired interaction characteristics. This is 

apparent in studies intended to determine the ideal size and shape of a drug delivery 

particle into torturous vasculature regions such as those in the tumour space. 90, 91 

1.3.6. Immunohistochemistry 

Histochemistry is a common method for staining cells in a tissue sample to 

observe biological structures. Tissue samples are collected from patients, fixed, and 

either preserved in paraffin or cryogenically frozen. The samples are sliced into <20 

µm thick sections and stained with non-specific or antibody specific fluorophores. The 

thickness of the samples helps create an approximate monolayer of cells that allows 

every cell to be stained and imaged without worrying about fluorophore penetration 

depth or light scattering. These thin slices are imaged on a fluorescence microscope to 

identify cells and their biological layout. 92 

1.3.7. Inductively coupled plasma mass spectroscopy 

Inductively coupled plasma mass spectroscopy (ICP) is a quick and accurate 

method for measuring ion concentration in a biological sample. This is an important 

quantification method for biodistribution and conjugation efficiency studies. Samples 

are first blended or dissolved down to a slurry or a solution, respectively, and then run 

through an analytical nebulizer to convert the liquids into a fine mist. This mist is then 

passed through the inductively coupled argon plasma torch to ionize the passing 

molecules. Mass spectroscopy is then used to separate and quantify the different ions. 

These values are compared to known concentration controls to determine the 

concentration of an ion in a sample. 93 
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Table 1. Summary of Visualization Tools Utilized. 

A comparison of the visualization tools utilized in this work, the underlying physical principle for 

collecting data, the end goal of the technique, and the usefulness of the tool in cancer medicine. 

Visualization Tool 
Underlying 

Physical Principle 

Measurement 

Objective 
Use for Cancer References 

Confocal Microscopy Light 
excitation/emission 

High-resolution 
imaging 

3D analysis of tumour 
tissues  

37,203,204 

Raman Spectroscopy Inelastic light 
scattering 

Molecular 
composition 

Cancer identification 94,95,96,97 

UV Spectroscopy Light absorption Molecular 
composition 

Cancer identification 98,99 

DLS Light scattering 
angles 

Particle size and 
zeta-potential 

Characterizing drug 
delivery vehicles 

100,101,102 

Flow Chamber Shear stress Adhesion 
dynamics 

Customizing drug 
delivery vehicles 

103,149,150 

Immunohistochemistry Antibody affinity Cell expression 
differentiation  

Cancer identification 105,106,107,
108 

 

1.4. Tools for Analysis 

Analysing large data sets can be time consuming and sometimes impossible to 

do by hand alone. Some programs provide basic functionality, but each experiment 

should be designed to test a specific hypothesis, not to fit a predefined analysis 

procedure. This Thesis focuses on experiments without widely available analysis 

methodologies. While ImageJ could have been utilized to provide the base analysis 

framework for this thesis, MATLAB was used to program the analyses for this work 

due to the author’s familiarity with the language. The analysis methods listed here are 

the main commercial options for similar experiments. 

1.4.1. 3D Visualization Software 

Current commercial softwares have done remarkable work in the field of 3D 

visualization of biological fluorescent samples. Cell profiler (The Carpenter Lab, The 

Broad Institute, Cambridge, MA, USA) is a cell image analysis software that recently 

added the ability to visualize and identify objects in 3D but is still relatively new to the 

area of 3D analysis. Amira (ThermoFisher Scientific, Waltham, MA, USA) is a 3D 

analysis software for biological applications. This software has been shown to be 

effective at vessel segmentation and single cell identification, including measurements 

for each. 37 Imaris software (Bitplane, Zurich, Switzerland) has the most functionality 

out of all 3D analysis softwares currently available. Not only does it identify vessels 

and cells, but it can also quantify cell colocalization, track cell movements, and work 
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in conjunction with outside programming languages. This gives the user the flexibility 

to customize their analysis to their specific experimental goals.  

Some scientists have created algorithms as plugins for ImageJ to investigate 

very specific 3D organizations and structures. TANGO is a software developed to 

visualize and characterize the nucleus of a cell in 3D. 109 This software enables life 

scientist to extract quantitative data from fluorescent imaging to classify the 

functionality of different nuclear compartments. A separate lab created an ImageJ 

plugin, BoneJ, which allows a user to reduce large vessels, bones, and other long 

objects into pixel sized strings that are more readily visualized and interpreted. 110 

Also, a software called DiAna has the functionality to segment 3D images and provide 

colocalization and distance measurements. 111 Each of these softwares utilized the 

ImageJ framework and expanded it to create their own specific analysis methods.  

1.4.2. Cell tracking Software 

Most cell tracking softwares are developed with the intension of tracking cells 

migrating on a petri dish over long periods of time. Ibidi (Ibidi, Gräfelfing, Germany) 

provides multiple video analysis softwares that track cells during migration and wound 

healing which has the possibility of translating to flow chambers if the frame rate is 

high enough. Nikon provides its own tracking software with NIS Elements (Nikon, 

Tokyo, Japan) for videos taken on a Nikon microscope which can be used to identify 

objects in consecutive frames and determine object speed through the field of view. 

The open source software ImageJ (National Institutes of Health, Bethesda, MD) has 

methods that can track objects in up to 5 dimensions. ImageJ also allows functionality 

with exterior programming languages such as MATLAB and Python for improved 

customization. 

Scientists have taken advantage of the ability to write plugins for ImageJ for 

their own scientific purposes. Most recently, Trackmate is a plugin that was developed 

for ImageJ that allows the user to identify and track individual particles or small spots 

that also provides a user interface, visualization software, and the ability to write 

extendable code to enhance and customize the experience. 112 This and other programs 

like it have been developed for the field of life sciences with the goal of providing a 

framework for life scientists to utilize or build from. 113-121 
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1.4.3. Raman Peak Location Software 

The main segment of Raman peak identification softwares require that the 

signal be acquired either without fluorescence or sufficiently far away from a 

fluorescence signal to have relatively low background. Origin (OriginLab, 

Northamton, MA, USA) is a general data analysis and graphing software that has peak 

analysis functionality that can be used to identify individual Raman peaks. It is also 

compatible with external programming languages to allow the implementation of more 

custom protocols. Other softwares, such as Knowitall ID Expert (Malvern Instruments, 

Malvern, UK) and WIRE (Renishaw, Wotton-under-Edge, UK) are specific to their 

Raman spectrometers from Malvern and Renishaw, respectively. These softwares have 

large databases from which to pull Raman peak information and match it to an 

acquired, unknown spectrum. 

1.5. Outline of Thesis 

This thesis investigates using multiple imaging modalities and analysis 

methodologies to assess the mechanisms controlling cancer diagnosis and treatment. 

A study into the rolling speed and adhesion kinetics of a discoidal porous silicon 

microparticle (PSM) drug delivery vehicle is discussed in Chapter 2. By employing a 

parallel plate flow chamber to mimic the conditions of tumour vasculature and custom 

analysis software, PSM adhesion to vascular endothelial cells are discovered to be 

negatively affected by the addition of targeting surface aptamers. It is hypothesized 

that this effect is due to a change in particle size and surface charge. Chapter 3 

examines the use of optical tissue clearing and deep tissue staining to explore the 3D 

tumour microenvironment. Specifically, looking at the development of tertiary 

lymphoid structures (TLS) in association with a cancer vaccine treatment shows an 

increase in the amount of TLS in the tumour space. This increase in TLS also correlates 

with a decrease in the tumour size development over time. Chapter 4 is devoted to 

developing a methodology for extracting both Raman and fluorescent signals from 

overlapping spectrums. These electromagnetic signals can then be employed in 

discovering and identifying cancer in human patients. Each of these methodologies is 

brought together in Chapter 5 to discuss and summarize their conclusions and future 

uses in the field of cancer diagnosis and treatment.   
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2. DISCOIDAL POROUS SILICON MICROPARTICLE ADHESION AND 

ROLLING KINETICS 

2.1. Introduction 

Late stage breast cancer has the potential to develop solid tumour metastases 

in the bone, with over 60% of oestrogen receptor-positive breast cancer and about 10% 

of triple negative breast cancer patients eventually developing bone metastases. 104-122 

Although bone metastases are not usually the cause of death in these patients, the 

symptoms normally associated with bone metastasis, including pathological fractures, 

chronic bone pain, spinal cord compression, and life-threatening hypercalcemia, can 

have harsh consequences on the quality of life of the patient. 123-125 While several 

treatment strategies have demonstrated the ability to manage the tumour progression 

using bisphosphonates 126 or neutralizing RANKL through antibody targeting 127-128, 

only a small population of patients experienced improved survival. 129-130 

To treat metastatic cancers, therapeutics must be efficiently delivered to the 

tumour lesion in potent quantities. This is especially difficult in bone tumour 

metastases due to the bone metastasis microvessel density in half of breast cancer 

patients being significantly reduced as seen in histological analyses. 131 This leads to a 

significant disadvantage when delivering intravenous therapeutics to metastatic 

tumours compared to primary tumours. This disadvantage is further multiplied by the 

perivascular region of bone marrow providing metastatic niches for cancer cells to 

grown in, as well as shielding them from circulating therapeutic agents. 132 Circulating 

tumour cells are attracted to the bone marrow by chemo-attractants and pro-growth 

factors, such as E-selectin, 133 produced by the perivascular stromal cells and the 

endothelium. 

E-selectin is a leukocyte adhesion molecule that is expressed by bone marrow 

endothelial cells 134 and endothelial cells in areas of high inflammation. 39 When 

expressed on the vessel walls, E-selectin interacts with the ligands on leukocytes to 

slow their rolling speed and subsequently attach them to the vessel wall, allowing them 

the opportunity to exit the blood stream and penetrate the extravascular space. 133 E-

selectin also plays a large role in the ability of chemotherapy agents and radiation to 

affect cells in these vascular niches. Hematopoietic stem cells (HSC) reside inside the 
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vascular niches in the bone marrow surrounded by endothelial cells expressing E-

selectin. When the E-selectin is blocked, the rate of HSC proliferation is retarded, 

creating less opportunities for chemotherapy and radiation to affect the cell during 

division. When E-selectin knockout mice were treated with chemotherapy and 

radiation, the survival rate of HSCs increased by 3- to 6-fold. 134 Although blocking 

E-selectin can prevent unwanted side effects, bone marrow has a natural tendency to 

produce E-selectin and inflammation caused by the uncontrolled growth of a tumour 

lesion increases the amount of E-selectin in the tumour microenvironment, therefore 

E-selectin has also been demonstrated to be a promising target for the delivery of 

cancer therapeutics. 135-136 

Mann et. al. has previously developed a discoidal porous silicon microparticle 

(PSM) delivery method that takes advantage of tumour vessel tortuosity and fluid 

dynamic properties of a disk to selectively deliver cancer therapeutics to tumour 

masses. 40 These PSM are chemically conjugated with 3-aminopropyltriethoxysilane 

(APTES) to obtain a positive surface charge to provide a favourable environment for 

loading negatively charged therapeutics. 40 The Poiseuille flow inside the blood vessels 

continuously pushes the PSM toward the vessel walls and into the red blood cell-free 

plasma layer (RBCFL) where the particles become trapped. 138 Their discoidal shape 

allows for a more economical attachment to the vessel walls when compared to 

microspheres because they have a larger surface area to bind to the vessel wall and 

additionally, a small surface area exposed to the forces caused by the continuing flow. 

139 Once attached, these PSM slowly degrade into bioinert orthosilicic acid, safely 

releasing their therapeutics around the tumour mass. 140 This delivery method has been 

successful at delivering siRNA oligos to primary breast cancer 140 and metastatic 

ovarian cancer. 141-142 Mann et. al. has also developed a thioaptamer (ESTA) that 

specifically binds to E-selectin. 143 By chemically conjugating the ESTA to the PSM 

(E-PSM), an effect similar to leukocyte rolling is hypothesized to be achieved in the 

vasculature. Using E-PSM, the accumulation of PSM in the bone marrow increased 

dramatically 40 and when loaded with STAT3 siRNA, they demonstrated an effective 

inhibition of metastatic MDA-MB-231 tumour growth. 144 Although the use of E-PSM 

has been demonstrated to be therapeutically effective, understanding and improving 

the adhesion kinetics behind the increased E-PSM accumulation is an important 
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component in the process of improving the efficacy of this treatment. In this study, 

two separate techniques are used to identify the accumulation mechanism, diffusing 

colloidal probes and flow chamber assays. 

When PSM are mixed into a liquid via sonication, they form a metastable 

colloid suspension. If left alone, gravity will eventually cause the PSM to fall out of 

suspension. This effect can be taken advantage of by allowing the PSM to slowly 

collect on the surface of a substrate and then observing their lateral movements, or 

Brownian motion, produced by collisions with vibrating molecules. By measuring the 

distance travelled by the PSM, it is possible to characterize potential interactions 

between the PSM and the substrate. Conservative forces (such as van der Waals, 

electrostatic, and steric interactions) and nonconservative forces (such as dissipative 

hydrodynamic interactions) are ever present between the PSM and the substrate 

beneath it and can have a substantial influence on the lateral motion of the PSM. 145 

From this, it can be inferred that PSM that have stopped moving are impeded by an 

external force and weak interactions would slow down the Brownian motion, 

decreasing the distance travelled. It is also possible that particles moving 

unencumbered for large distances have steric interference between them and the 

surface to prevent other attractive forces from hindering their movement. 145 This 

technique has been used to study the strand length of DNA by attaching one end of 

DNA to a surface, the other end to a nanobead, and tracking the Brownian motion of 

the nanobead. 146 Here, diffusing colloid probes are used to corroborate the adhesion 

characteristics identified using the flow chamber. 

Flow chambers are a common instrument for studying leukocyte rolling, 

slowing, and adhesion on endothelial cells. 147-148 They have also been applied to 

successfully study similar adhesion of spherical microparticles 149 and even PSM. 150 

By providing a consistent, laminar, Poiseuille flow profile, flow chambers imitate 

microvessels by providing physiological flow speeds 149 and/or shear stresses. 138,151 

In this study, it was decided to emulate the shear stresses on the vessel walls to replicate 

the forces that the particles must withstand to attach and remain attached. Shear stress 

is a measure of force on the chamber wall caused by the friction of the flow moving 

past it and is dependent on the viscosity of the fluid. Shear rate is a flow characteristic 

that is dependent on the flow rate and the geometry of the flow chamber yet is 
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independent of viscosity. 152 Therefore, shear rate is matched as it governs PSM-cell 

collisions and PSM-cell contact time. 

The average shear rates in healthy human microvascular have been reported 

153-154 to be 632 ± 73 s-1 whereas the average shear rates in human tumour 

microvascular is around 77 ± 6 s-1. 155 These numbers differ from mice where the 

average shear rates in healthy mouse microvascular has been reported 156 to be 275 ± 

20 s-1 whereas the average shear rates in mouse tumour microvascular is around 188 ± 

50 s-1. 155 The attachment ability of the discoidal PSM have previously been studied 

using flow chambers at shear rates well below physiological levels (<50 s-1) and only 

on extracellular matrix (ECM) substrates. 150 The conclusions from these experiments 

have showcased the previously mentioned benefits of the discoidal shape in a laminar 

flow. When flow chamber studies have been performed over cells, again at lower than 

physiological shear rates (<10 s-1), spherical microparticles adhered to the exposed 

collagen coated plate at a higher rate than they adhered to the endothelial cells. 149 At 

the time of writing this dissertation, there have been no know studies on discoidal 

microparticles flowing over endothelial cells. Previous in vivo studies with the E-PSM 

were performed in mice and therefore, in the current in vitro study, the rolling 

mechanics of PSM on HUVECs are investigated at the physiological levels of shear 

rate in the mouse tumour microvasculature. 

2.2. Materials and Methods 

2.2.1. Cell lines 

Human umbilical vein endothelial cells (HUVECs) were purchased from 

ATCC (Manassas, VA, USA). Cells were maintained at 37°C with 5% CO2 in medium 

200 (M200, ThermoFisher Scientific, Waltham, MA, USA) supplemented with 2% 

low serum growth supplement (LSGS, ThermoFisher Scientific, Waltham, MA, USA) 

and 2% antibiotic-antimycotic (AA, ThermoFisher Scientific, Waltham, MA, USA). 

Cells were plated on plastic cell culture plates coated with gelatine attachment factor 

protein (AF; ThermoFisher Scientific, Waltham, MA, USA). Cells were split at 80% 

confluency. All experiments were performed on 100% confluent cells of passage 5-8.  
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Figure 4. Fabrication of discoidal porous silicon microparticles. 

A) A layer of porous silicon film is laid down. B) The porous silicon was then capped with a low 

temperature silicon oxide via low pressure chemical deposition and photoresistant caps were patterned 

in the discoidal shape via photolithography. C) Ion etching was used to remove excess material. D) 

Hydrofluoric acid is used to strip the silicon oxide and photoresistant caps. E) SEM image of 1000 nm 
× 400 nm discoidal porous silicon particle array retained on a wafer. F) Released monodispersed 1000 

nm × 400 nm discoidal porous silicon particle. Scale bars are 1 μm. Figure reproduced with 

permission from the rights holder, Wiley Library. 159 

2.2.2. PSM Preparation 

Discoidal PSM were fabricated by electrochemical etching of silicon wafers 

by Dr. Xuewu Liu’s lab at Houston Methodist Research Institute following previously 

described methods (Figure 4). 159 These PSM were 2.6 µm in diameter and 0.7 µm tall. 

The surface of the PSM was oxidized using H2O2 and functionalized by chemically 

conjugation to APTES (Figure 5). 142 The E-selectin thioaptamers (ESTA) or 

scrambled thioaptamers (SCR), developed by Mann et al 143 and produced by 

Integrated DNA Technologies (Coralville, IA, USA), were chemically conjugated to 

the APTES using succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate 

(SMCC) as a polylinker. 40 Briefly, 10 billion APTES-modified PSM (A-PSM) were 



22 

 

dispersed in 0.1 mL of dimethylformamide (DMF), gently vortexed, and briefly 

sonicated. 0.5 mL of 10 mM SMCC in DMF and 20 µl of diisopropylethylamine 

(DIPEA) were then added and the reaction system was shook, end-to-end, for 4 hours. 

The PSM were then centrifuged for 9 minutes at 11,000 RPM and washed in DMF, 3 

times. The resulting maleimide-PSM were dried in vacuum at room temperature 

overnight. 5 nmol of each aptamer (SCR and ESTA) were separately activated using 

100 µl of 10 mM immobilized TCEP disulphide reducing resin in phosphate buffered 

saline (PBS) to ensure any oxidized sulphur-sulphur bonds returned to sulphur-

hydrogen bonds. Activated aptamers were then subjected to purification by PD-10 

columns. The 10 billion maleimide-PSM were well dispersed in 100 µl of PBS buffer 

(pH 7.2, 0.1 M phosphate salts, 0.15 M NaCl, 5mM EDTA). The maleimide-PSM and 

the activated aptamer solutions were mixed together and kept on a shaker for 4 hours 

at room temperature and then overnight at 4°C. The solution was washed with PBS 

buffer and centrifuged until there was no aptamer detectable in the supernatant by 

Ultraviolet (UV) spectroscopy. Aptamer conjugated PSM were dried in vacuum at 

room temperature for 12 hours and then stored in -20°C for the following experiments. 

 

Figure 5. Chemical Modification of PSM. 

A PSM (left) is oxidised using H2O2 to open an OH- binding site (left-centre), conjugated to APTES to 

create an amine group (right-centre) which conjugates to the NHS ester on the SMCC linker, opening 

a maleimide group to conjugate to the thiol group on the aptamer (right). 

Size and zeta potential of the A-PSM, E-PSM, and scramble (SCR) aptamer-

modified PSM (S-PSM) were detected with a Zetasizer (Table 2; Malvern Panalytical, 

Malvern, UK). The size value is in between the diameter of the flat surface and the 

height of the particles because the Zetasizer calculates size assuming particles are 

spherical. Therefore, the reported diameter sizes are smaller than the actual values. 

Fourier transform infrared (FT-IR) spectroscopy was performed on the PSM using a 

Nicolet 6700 FT-IR spectrometer (ThermoFisher Scientific, Waltham, MA, USA) 
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with smart diamond crystal attenuated total reflection to ensure the thioaptamers had 

successfully grafted onto the PSM (Figure 6). To determine grafting density of ESTA 

on PSM, 3.75 billion E-PSM were dissolved in 3 mL 1 M NaOH solution overnight. 

Phosphorus concentration was detected using a Varian 720-ES inductively coupled 

plasma optical emission spectrometer (ICP, Varian, USA). Yttrium was used as 

internal control (Table 2). 

Table 2. PSM Characteristics Post-Modification. 

The average diameter, average zeta potential, and the average number of aptamers per particle for 

each PSM functionalization group were measured and calculated using DLS and ICP. 

 

 

Figure 6. FTIR Absorbance Spectrum of the PSM. 

FTIR was performed on dried PSM and the resulting spectra were compared to know chemical bond 

peak values. Gold lines indicate peaks corresponding to the thioaptamer phosphate backbone (1650, 

1400 cm-1) and the pink line indicates a shared peak between the phosphate backbone (1060 cm-1) and 

the oxidized silicon (1050 cm-1). 160  

2.2.3. Flow Cytometry 

To measure E-selectin overexpression in HUVECs, cells were treated with the 

positive control TNF-α (20 ng/mL) in M200 for 6 hours at 37°C with 5% CO2. Cells 
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were incubated in 20mM Ethylenediaminetetraacetic acid (EDTA) for 3 min at 37°C 

with 5% CO2 to detach the cells from the bottom of the plate. They were then stained 

with 1:20 diluted PE conjugated mouse anti-human E-selectin antibody (CD62E) and 

1:200 diluted FITC conjugated mouse anti-human endoglin antibody (CD105, BD 

Biosciences, San Jose, CA) in 2% FBS, and analysed with a BD Accuri C6 Plus flow 

cytometer (Figure 7; BD Biosciences, San Jose, CA, USA). 

 

Figure 7. TNF-α Activates HUVECs to Overexpress E-Selectin. 

HUVECs were incubated with TNF-α for 6 hours to activate E-selectin. Endoglin was used to ensure 

cells were still proliferating. 

2.2.4. Static Chamber Setup 

Aptamer modified PSM were conjugated to Alexa Flour 555 NHS ester 

(AF555; ThermoFisher Scientific, Waltham, MA, USA) via the remaining amine 

domains. Once HUVECs reached 80-90% confluency in 33 mm petri dishes they were 

stained with 15 µl of long-chain dialkylcarbocyanine (DiO; ThermoFisher Scientific, 

Waltham, MA, USA), a live cell membrane stain, in 1 mL of M200 for 40 min at 37°C. 

The cells were then washed 3 times with M200 to remove excess DiO. The HUVECs 

were treated with 20 ng/mL of TNF-α for 6 hours at 37°C to activate the 

overexpression of E-selectin. HUVECs were washed once with PBS and then 8 million 

PSM mixed with fresh M200 were added to the cells. The particles were allowed to 

settle for 4 minutes before imaging commenced to lessen the effects of particle motion 

caused by pipetting the media onto the plate. An initial fluorescent image was taken of 
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the DiO stained cells to establish cell membrane locations (Figure 8). 1-minute-long 

fluorescent videos were taken using a Nikon Ti-E inverted microscope (Nikon, Tokyo, 

Japan) every other minute for 10-20 minutes. The exposure time for each frame was 

300 ms using a 20X objective. The same experiment was also performed on 

unmodified dishes with PBS and with AF modified dishes with PBS or M200. 

 

Figure 8. Fluorescent layer of HUVECs for the static chamber studies. 

HUVECs were stained with DiO for 40 minutes to stain the cell membranes and then incubated with 

TNF-α for 6 hours to activate E-selectin.  

2.2.5. Flow Chamber Setup 

A parallel plate flow chamber (Glycotech, Rockville, MD, USA) with a 0.005-

inch-thick silicone gasket was utilized to imitate a physiologically relevant 

microvasculature environment (Figure 9A). The average shear rates in healthy mouse 

microvascular has been reported 156 to be 275 ± 20 s-1 whereas the average shear rates 

in mouse tumour microvascular is around 188 ± 50 s-1. 155 The velocity needed in the 

flow chamber to replicate the shear rate felt by a PSM in the mouse tumour 

microvasculature was determined using the shear rate equation for parallel plates, 161 

𝛾 =
6∗𝑄

𝑤∗ℎ2 ,                                                                    Equation 3 
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where 𝛾 is the shear rate, Q is the flow rate, w is the width of the chamber (w 

= 2.5 mm), and h is the height between the two parallel plates (h = 127 µm). 

 

Figure 9. Flow Chamber Experimental Setup. 

A) The flow chamber design allowed for inlet and outlet ports, as well as a vacuum port used to firmly 

hold the flow chamber to the plate. B) The imaging system consisted of the flow chamber, a syringe 

pump, three syringes, and a microscope. C) Plates were attached to the flow chamber upside down to 

ensure the area outside of the flow area remained dry to ensure a secure and stable seal. After the 

vacuum was in place, the system was inverted back to the cells being oriented below the flow 

chamber. 

The flow rate used here was 70 µl/min which gives a shear rate of 

approximately 174 s-1, within one standard deviation of the average shear rate in the 

mouse tumour microvasculature. This flow rate was supplied by a PHD ULTRA™ 

Syringe Pump (Harvard Apparatus, Holliston, MA, USA) using two syringes, one 

infusing and one withdrawing on opposite sides of the flow chamber, to ensure a 

continuous and steady fluid flow (Figure 9B). The mean velocity was calculated from 

the flowrate using the equation, 

𝑸 = 𝒗 ∗ 𝑨 ,                                                        Equation 4 
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where v is the average velocity and A is the cross-sectional area of the flow 

chamber (A = 0.32 mm2). The Reynolds number of the flow chamber was calculated 

using the equation, 162 

𝑹𝒆 =
𝑸∗𝝆

µ∗𝒘
 ,                                                        Equation 5 

where Re is the Reynolds number, ρ is the fluid density (ρ ~ 1000 kg/m3), and 

µ is the dynamic viscosity (µ ~ 1.002 mPa. s). Reynolds number here was 0.47 which 

is well below the laminar-turbulent transition and the flow is therefore laminar after 

an entry length of 2.4 µm as determined by, 162 

𝑳 = 𝟎. 𝟎𝟒 ∗ 𝒉 ∗ 𝑹𝒆 .                                             Equation 6 

The forces against a PSM attached to the wall in the same position and 

orientation as shown in Figure 10 are a combination of form drag and skin friction. 

These were calculated using the drag equations (Figure 10),  

𝑭𝑭𝑫 = 𝑪𝑫 ∗ 𝝆 ∗ 𝑨 ∗
𝒗𝒂𝒗𝒈

𝟐

𝟐
 ,                                        Equation 7 

𝑭𝑺𝑭 = ∫ 𝑪𝑭 ∗
𝝆∗𝒗(𝒚)𝟐

𝟐𝒔𝒖𝒓𝒇𝒂𝒄𝒆
𝒅𝑨 ,                                   Equation 8 

where, 

𝒗(𝒚) =
𝟑

𝟐
∗ 𝒗 ∗ (𝟏 − (

𝒚

𝒉
)

𝟐

) ,                                     Equation 9 

𝑪𝑭 =
𝟎.𝟔𝟔𝟒

√𝑹𝒆
 ,                                                     Equation 10 

where FFD is the form drag force, FSF is the skin friction drag force where the 

surface of interest is a single base of the PSM, CD is the drag coefficient for a thin disk 

(CD = 1.1), v(y) is the velocity of the fluid as a function of height (Figure 10), and CF 

is the skin friction coefficient as defined by the Blasius solution. 163 Due to its 

streamline shape, the force due to skin friction (0.31 fN or 3.1 X 10-16 N) is two orders 

of magnitude larger than that of form drag (1.77 aN or 1.77 X 10-18 N). The total 

amount of force on a PSM attached to the wall in the flow chamber is ~ 0.312 fN (3.12 

X 10-16 N). This is the force the adhered PSM must resist if it is to stay attached to the 

vessel wall. 
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Although it was not investigated here, the adhesion force calculation could be 

used in future work to determine the attachment strength of each PSM. This would 

require an experiment in which PSM could adhere to a surface prior to experiencing 

the fluid shear forces. The flow rate would then be discretely increased and the number 

of particles that detach at each flow rate would be observed. From the flow rate and 

the above equations, the attachment force of each PSM could be ascertained.  

Table 3. Flow Chamber Specifications. 

Values either set or calculated for the setup described above. All force values are calculated for a PSM 

with a diameter of 2.6 µm and a height of 700 nm. 

Specification Value 

Flow Rate (Q) 70 µl/min 

Shear Rate (𝛾) 174 s-1 

Gasket Thickness / Chamber Height (h) 127 µm 

Chamber Width (w) 2.5 mm 

Chamber Length (l) 2 cm 

Average Fluid Velocity (v) 3.65 mm/s 

Fluid Density (ρ) 1000 kg/m3 

Dynamic Viscosity (µ) 1.002 mPa. s 

Reynolds Number (Re) 0.47 

Entry Length (L) 2.4 µm 

Drag Coefficient (CD) 1.1 

Drag Force (FFD) 1.77 aN (1.77 X 10-18 N) 

Skin Friction Coefficient (CF) 0.97 

Skin Friction Force (FSF) 0.31 fN (0.31 X 10-15 N) 

 

 

Figure 10. Forces on an Attached PSM. 

The well-developed, parabolic velocity profile, v(y), and the resulting drag forces on a stationary PSM 

(left). FSF is the force of skin friction which acts on the top surface of the PSM. FFD is the force of 

form drag which acts on the vertical surface of the PSM facing into the flow (right). 
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2.2.6. Flow Chamber Sample Preparation 

Nine vials of each type of PSM modification (APTES, SCR, and ESTA) were 

prepared at a concentration of 55 million PSM in 3.5 mL M200 and were sonicated 

before each experiment. The PSM were tested on 3 different surfaces each: Attachment 

factor only, unstimulated HUVECs, and stimulated HUVECs. 18 plates of HUVECs 

were grown to 100% confluency. The 9 stimulation group plates of cells were 

incubated with 20 ng/mL of TNF-α for 6 hours at 37°C with 5% CO2 to activate the 

cells to overexpress E-selectin. The incubation start time for each plate was staggered 

so that each plate finished incubating immediately prior to it being imaged. The tubing 

between the syringe and the flow chamber, or dead space, was filled with 1mL of PSM-

free M200 to give the cells time to acclimate to the flow and clear away any debris 

before PSM were introduced and imaging began. Plates were attached to the flow 

chamber dry and upside down (Figure 9C). A single drop of M200 was placed on the 

flow chamber to keep the cells within the flow chamber wet and to prevent bubbles 

from forming. A vacuum seal was then applied to the edges of the chamber using a 

syringe. The chamber and cells were then inverted back upright, with the cells below 

the flow chamber. 

2.2.7. Flow Chamber Imaging 

Imaging was performed at the centre of the chamber, sufficiently far enough 

from the inlets and the chamber edges to avoid entry length or drag effects, providing 

a fully developed Poiseuille flow profile. All images and videos were acquired from a 

Nikon Ti-E inverted microscope (Nikon, Tokyo, Japan) surrounded by an incubation 

chamber (OKOLAB USA Inc., San Bruno, CA, USA) with a 10X objective. The stage 

was kept at 37°C with 5% CO2 for the entirety of the imaging process. The microscope 

was focused on the top surface of the cells and a brightfield image was taken of the 

cells prior to the initiation of flow to help the software identify gaps in confluency. 

Also, by focusing on the top surface of the cells, only PSM rolling on the cell surfaces 

would be in focus. The PSM mixture was loaded into the syringe and flown over the 

HUVECs at 70µl/min for a total of 30 minutes for each plate, imaging in brightfield 

mode the entire time with 50 ms of exposure time for each frame. The imaging window 

was approximately 690 x 520 µm, or 0.36 mm2. 
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Figure 11. Static chamber analysis process diagram. 

An overview of the data processing algorithm used to filter, identify, and analyse the Brownian 

motion of the PSM (page numbers refer to the respective piece of code in APPENDIX A). 
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2.2.8. Static Chamber Analysis 

A MATLAB (2018a) algorithm was used to identify, track, and analyse PSM 

movement in the static chamber (Figure 11). These algorithms are included in the 

Appendices as MATLAB scripts (Appendix A). Fluorescent videos were loaded into 

MATLAB using the Bio-Formats software tool (The Open Microscopy Environment, 

The University of Dundee, Dundee, Scotland) and the timestamp from each frame was 

extracted from the metadata. A box filter was run over each frame to eliminate 

background white noise and the image was binarized to identify possible PSM. These 

PSM were then put through an area filter to ensure that no large aggregates or small 

noise was considered a PSM. The centroid of each PSM was recorded for each frame. 

To identify when a PSM was on or off a cell, the fluorescent image of the cell layer 

was loaded into MATLAB to create a binary mask. A very low threshold is used to 

ensure the entire cell is identified and then an area filter is used to remove any small 

background white noise (Figure 12).  

 

Figure 12. Static chamber HUVEC layer boundary detection. 

Cell boundaries are detected using a binary threshold in MATLAB (2018a). The cell is stained with 

DiO and the boundary of each cell is marked with a white outline. 

PSM were tracked through consecutive frames using recursion. Starting with 

the last frame, the centre of the top-left most PSM was identified. A circle was 
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visualized on the previous frame, centring on the previously identified centre point of 

the PSM, with a radius of 4 µm. The closest PSM identified in that circle was 

characterized as the same PSM and the distance between the two centre points was 

recorded (Figure 13). This process was then repeated for each previous frame, using 

the centre location of the PSM in its closest neighbouring frame until there were no 

more PSM identified within the circle. The program then jumped back to the last frame 

of the video and looked at the next PSM identified in that frame and repeated the 

process. Each time a PSM was identified, its location was deleted from the computer 

memory to ensure it could not be used again. Once all the PSM identified in the last 

frame of the video had been analysed, the program systematically stepped back a frame 

and tracked any PSM that had not been previously associated with another PSM. After 

all the PSM had been tracked, the distance between the first and the last location of 

each PSM was calculated to differentiate between adhered PSM that are tethered to a 

point but can still move small distances and random diffusive motion. Only particles 

that were tracked for at least half of the video length were considered and the total 

distance from origin was divided by the total number of frames tracked to normalize 

for particles that were not tracked throughout the entire video. 

 

Figure 13. Static chamber PSM identification and tracking. 

PSM identified by the software are characterized as on (green) or off (red) a cell. A radius of 4 µm 

(~2X the PSM diameter) around the centroid of the PSM from frame x (A) is considered in frame x-1 

(B). If a centroid in frame x-1 lies within the circle, the PSM is matched (three examples shown in 

magenta, gold, and blue). 

2.2.9. Flow Chamber Analysis 

Videos were separated into 1-minute long segments to decrease memory usage 

and increase processing speed using the Nikon NIS Elements software (Nikon, Tokyo, 
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Japan). An algorithm was written in MATLAB (2018a) to identify cells and PSM, 

track PSM through consecutive frames, evaluate the velocity of the PSM, and identify 

attached PSM (Figure 14). These algorithms are included in the Appendices as 

MATLAB scripts (Appendix B). Brightfield images of the base layer of cells were 

manually checked prior to starting the flow to ensure the cells were 100% confluent 

(Figure 15). Brightfield videos were loaded into MATLAB via the Bio-Formats 

software and the timestamp from each frame was extracted from the metadata.  

 

 

Figure 14. Flow chamber analysis process diagram. 

An overview of the data processing algorithm used to filter, identify, and analyse the flow mechanics 

of the PSM (page numbers refer to the respective piece of code in APPENDIX B). 
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Figure 15. Identifying confluency of the HUVECs in the flow chamber. 

Representative image of a flow chamber with a confluent layer of HUVECs.  

Each frame of the video was processed individually to identify possible PSM. 

Due to the PSM blocking the brightfield light from reaching the camera, they create a 

dark spot on the image (Figure 16A). Therefore, the complementary image was put 

through a binary threshold with the threshold set 3.5 standard deviations above the 

mean intensity value of the complementary image. Since the cells are relatively 

transparent, this is an effective way to identify the opaque PSM. The binary images 

were filtered according to area, eccentricity, and solidity criteria because the 

approximate size and shape of a PSM is known (2.6 µm diameter, 0.7 µm tall). The 
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filtered spots are considered PSM and the centroid position of each is recorded (Figure 

16B and C). While the exposure time is the minimum amount of time between frames, 

the microscope requires variable amounts of time to process one frame before starting 

to acquire the next. Therefore, a vector of time steps between each frame is calculated 

using the timestamps from the metadata.  

 

Figure 16. Flow chamber identification of PSM on HUVECs. 

A) A single frame of flowing PSM. B) Binary representation identifying PSM. C) Overlay of the 

identified PSM on the original image. The red circles show an example of an object that was too large 

to be positively identified as a PSM. This is used to eliminate large conglomerates of PSM or cell 

debris. The green circles show an example of an object that was not dark enough to be considered a 

PSM. This is used to exclude cell organelles from being misidentified as PSM. 

To identify PSM that had attached to the surface, the filtered binary 

representation of each frame in the minute-long video were summed together pixel-

by-pixel and normalized by the total number of frames. PSM were considered attached 

if their normalized value was above 0.25, which is the same as 15 seconds of remaining 

attached. Therefore, when the binary threshold was applied, only PSM that were 

attached would be recognized and counted. The locations of the attached PSM in each 

minute-long video are checked against the locations of the attached PSM in the 

previous video to investigate the attachment and detachment rates. Centroids must be 

within a 4 µm radius to be counted as the same PSM. 
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It is nearly impossible to align the circular flow chamber exactly on the 

horizontal axis of the microscope and so the user is asked to define the orientation of 

the flow. Due to the 50 ms exposure time, PSM that are not rolling along the surface, 

and therefore moving much faster, are out of focus and have a long elliptical shape. A 

single image of the flowing PSM is displayed and the user picks two points along one 

of the elongated PSM. The line between these two points defines the orientation of the 

flow within the video. The inlet of the flow was always on the right side of the video 

and the outlet was on the left. 

PSM were tracked through consecutive frames using recursion. Starting with 

the last frame, the centre of the top left most PSM was identified. A line was visualized 

on the previous frame, starting at the previously identified centre point of the PSM and 

tracking back to the right at the angle of the orientation of flow. The closest PSM 

identified on that line, or within 4 µm of that line, was characterized as the same PSM 

and the distance between the two centre points was recorded (Figure 17). This process 

was then repeated for each previous frame, using the centre location of the PSM in its 

closest neighbouring frame until there were no more PSM identified on that path. The 

program then jumped back to the last frame of the video and looked at the next PSM 

identified in that frame and repeated the process. Each time a PSM was identified, it 

was deleted from the computer memory to ensure it was not counted twice. Once all 

the PSM identified in the originating frame had been analysed, the program 

systematically stepped back a frame and tracked any PSM that had not been previously 

associated with another PSM. 
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Figure 17. Flow chamber tracking PSM through consecutive frames. 

A) The software identifies a PSM (circled in red). B) The software then looks at the previous frame 

and looks for the closest PSM (circled in yellow) along the flow orientation (red line) radiating from 

the centroid of the PSM identified in A (red dot). 

These distances were then turned into velocities using the time steps calculated 

from the metadata. Using Equation 9 above, the maximum velocity of the fluid flow 

within 10 µm of the bottom surface of the flow chamber was calculated to be 417 µm/s. 

The PSM velocities were filtered to exclude anything above 417 µm/s and anything 

below 3.6 µm/s, as these were considered attached PSM. The average velocity of each 

particle and the average velocity of all PSM in the minute-long video were calculated, 

as well as their associated standard deviations. 

2.2.10. Statistical Analyses 

In the static chamber experiments, only one sample was run for each petri dish 

modification and for each PSM modification. Therefore, no statistical analyses were 

performed on these experiments. All values displayed are the mean value of all the 

PSM in that video. 

In the flow chamber experiments, of the 30-minute run time, the video with the 

shortest, continuous, uninterrupted footage was 22 minutes in length. Therefore, all 

videos were only considered through the 22nd minute. The data from all the PSM in a 

video were averaged per video and were considered one sample. The sample averages 

were then averaged together and compared for significance with a 2-tailed, unequal 

variance Student’s t-test out of at most 3 samples. Student’s t-tests were performed 

between the different PSM modifications for each plate surface and between each plate 
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surface for each PSM modification. Flow videos with less than 250 PSM flowing by 

in the entire 22-minute window (1/10 of the average count) were not considered in the 

statistical analysis. This removed one run from each of the following test cases: S-

PSM on unstimulated HUVECs, E-PSM on unstimulated HUVECs, A-PSM on 

attachment factor, E-PSM on attachment factor. Those test cases were left with two 

independent runs each. All graphs show the sample mean values with error bars 

representing their standard deviation. 

2.3. Results 

2.3.1. PSM modification has little effect on Brownian motion step sizes 

PSM were mixed with PBS or media and allowed to settle onto an unmodified, 

AF-modified, or stimulated HUVEC coated petri dish. 1-minute long videos were 

captured every other minute to observe the effects of Brownian motion on the PSM. 

Their movement paths were recorded and analysed to detect particle adhesion (Figure 

21). On Average, all three types of PSM modifications interacted almost identically 

with each substrate (Figure 18). Contrary to the hypothesis that the ESTA would 

become attached to E-selectin expressed on the surface of HUVECs and in turn 

become stationary as seen in the unmodified plate group (Figure 18A), there was only 

a minute separation between the step sizes of the E- and S-PSM (Figure 18D). This 

could be due to a long tether length between connected PSM and the cells. A long 

tether would allow the E-PSM to continue to engage in Brownian motion without 

moving too far in any single direction. 
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Figure 18. Brownian motion step size comparing PSM modifications on different substrates. 

Step size of E-, S-, and A-PSM at different time points on an unmodified substrate in PBS (A), on an 

AF modified substrate in PBS (B), on an AF modified substrate in M200 (C), and on HUVECs in 

M200 (D). Videos were captured for 1 minute, every other minute for 10 minutes and the average step 

size was reported for each video. 

When the mean square displacement (MSD) is considered for each PSM, the 

averages continue to appear similar between the different substrate conditions and 

PSM configurations. While a majority of the PSM are consistently increasing their 

MSD proportional to time lag, as shown by the consistent, linear average MSD under 

each condition (Figure 19), there are a few instances of individual PSM reaching an 

asymptotic limit of how far they can travel over a certain amount of time, such as with 

APTES PSM on both attachment factor modified substrates and with the SCR and 

ESTA PSM on the stimulated HUVEC cells (Figure 19). These could indicate that 

some PSM are becoming entangled or tethered to the surface, therefore limiting their 

MSD. 



40 

 

 

Figure 19. Mean square displacement (MSD) of PSM in static conditions. 

Mean square displacements (MSD) of individual A-, S-, and E-PSM in static fluid across the 
microscope viewing field for each of the different substrates on a petri dish. Each red line represents a 

different individual PSM. The black line represents the average for each condition. The MSD plots 

include all recorded PSM from all 1-minute videos under the same conditions in the 10-minute 

observation window. 

2.3.2. The addition of a protein interface increases PSM Brownian motility 

When the surface modifications were compared for each PSM modification, 

there was a stark difference between the unmodified surface and the other surfaces. 

Interestingly, when PSM were deposited on the unmodified surface, there was little to 

no PSM movement caused by Brownian motion (Figure 18A, Figure 20, and Figure 

21). This is most likely due to the lack of steric stability provided by the unmodified 

surface. Without a steric hinderance in place, PSM are likely to irreversibly adsorb 
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onto the surface due to short range electrostatic interactions. 145 However, once the 

plates were modified in any way, there was an immediate increase in the PSM motion. 

The jump in the step size increases by a very similar amount for each AF-modified 

substrate which may indicate that protein adsorption onto the PSM has little effect on 

their motility. When both the E- and S-PSM were added onto HUVECs, there was 

slight decrease in motility. This hints that there may be some interaction occurring 

between the aptamers and the cell surface. 
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Figure 20. Brownian motion step size comparing different substrates on each PSM modification. 

Step size of E- (A), S- (B), and A-PSM (C) at different time points on an unmodified substrate in PBS, 

on an AF modified substrate in PBS, on an AF modified substrate in M200, and on HUVECs in 

M200. Videos were captured for 1 minute, every other minute for 10 minutes and the average step 

size was reported for each video. 
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Figure 21. Individual PSM movement paths recorded across the substrates. 

Movement paths of individual A-, S-, and E-PSM in static fluid across the microscope viewing field 
for each of the different substrates on a petri dish. Each colour path represents a different individual 

PSM. The movement paths include all recorded PSM from all 1-minute videos under the same 

conditions in the 10-minute observation window. 

2.3.3. E-PSM have the overall least displacement 

Another way of identifying PSM attachment is through displacement and so 

the distance between the origin and the final centroid of the PSM in each one-minute 

video was calculated. These values are normalized by the total number of frames the 

PSM was tracked through and only PSM that were tracked through at least half of the 

video were considered. When the different substrates are compared to one another, it 

can be inferred that every modification adheres to the unmodified substrate (Figure 

22A). Once the petri dish is modified with a protein coating or a cell surface, the 

particles begin to move father away from their origin. This agrees with the motility 
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observations from Figure 20 and is possibly due to steric interactions between the 

proteins on the petri dish and the compounds conjugated to the PSM. There is also a 

trend in the data indicating that adding serum and other growth supplements to the 

medium in which the PSM are dispersed will decrease the traveling distance although 

it did not affect the step size. It is possible that free proteins in the M200 are adsorbing 

onto the particle surface via ionic or hydrophobic interactions and creating some weak 

interactions with the different substrates. This adsorption could also create larger 

particles that would be less effected by the collisions with the fast-moving molecules 

in the fluid. Yet another trend indicates that the addition of living cells decreases the 

PSM displacement even more. As there was a similar drop in both the E- and S-PSM, 

this may be due to the peaks and valleys associated with a 2D cellular surface and the 

effect of gravity on the PSM. As the PSM settle over the first 4 minutes prior to 

imaging, they would accumulate in the valleys due to their low potential energy. These 

valleys, in conjunction with gravity, would restrict the directions of motion available 

to the PSM, thus restricting its motion. 

When the modifications are compared to one another (Figure 22B), it is 

initially apparent that the E-PSM have the smallest displacement on every substrate. 

The trend in displacement seems to mimic itself between the E- and S- PSM, 

decreasing as the system becomes more complex while the A-PSM remain relatively 

constant. This may indicate that a similar interaction is occurring between the aptamer-

modified PSM. An electrostatic attraction between the negatively charged aptamer-

modified PSM and the positively charged AF gelatine surface could explain these 

proportional changes. Although, the decrease in the displacement of the E-PSM 

compared to the S-PSM on the HUVECs could imply E-PSM-cell interactions. Further 

studies on the binding kinetics of the ESTA and E-PSM on proteins other than E-

selectin would be helpful in clarifying this quandary. 
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Figure 22. PSM displacement from origin after 1 minute. 

A) Comparing the different substrates to one another for each PSM modification. B) Comparing the 

different PSM modifications to one another on each substrate. The average displacement PSM 

travelled from their origin at the beginning of the one-minute video is averaged across all 5 videos 
taken over the 10-minute imaging period. Standard deviation and significance are not reported 

because the values are only calculated from a single 10-minute imaging session on a single dish. 

2.3.4. ESTA and SCR PSM modification reduce rolling velocity on HUVECs 

While PSM rolled along the substrate surface, the Nikon microscope captured 

images at ~20 frames/second. After the software identified and tracked individual PSM 

through the frames, the average speed of each PSM was ascertained. As was expected 
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of the E-PSM, the rolling velocity slowed significantly when they were introduced to 

both the stimulated and unstimulated HUVEC substrate (Figure 23D). While this could 

indicate that the E-PSM are interacting with the E-selectin expressed on the HUVEC 

surface, the rolling speed of the S-PSM was slowed by similar amounts (Figure 23C). 

The SCR aptamer on the S-PSM should not selectively bind to E-selectin like the 

ESTA does. It is possible that this decrease in speed could simply be due to the uneven 

surface of the cell monolayer creating obstacles as the PSM roll along, which would 

also fit with the non-significant but similar decrease in rolling speed in the A-PSM on 

HUVECs (Figure 23B). 

 

Figure 23. Tracking the rolling velocity of PSM. 
A) A-PSM rolling on unstimulated HUVECs roll significantly faster than their aptamer-modified 

counterparts. B-D) Particle rolling velocities compared on the different substrates. Grey is the A-PSM, 

orange is the S-PSM, and blue is the E-PSM. * signifies a p value < 0.05. 

2.3.5. The addition of aptamers interferes with cellular interactions 

Although the E-PSM slow their rolling velocity on cells as expected, it does 

not lead to a higher rate of attachment. After 22 minutes, the number of attached A-

PSM significantly surpassed their aptamer bound counterparts when flown over the 

unstimulated HUVECs (Figure 24, Figure 25). This could be due to the aptamers 



47 

 

increasing the particle size or, more likely, the zeta potential of the PSM (Table 2). 

When the PSM were flown over attachment factor, the number of attached E-PSM was 

significantly greater than the A-PSM. This supports the idea that zeta potential is 

influencing the attachment of these particles. The aptamer coated PSM and the cell 

surface were both negatively charged170, whereas the attachment factor created a 

positively charged surface171 and would therefore cause some attraction between the 

aptamer coated PSM and the surface. The reverse would also be true for the positively 

charged A-PSM. There was no significant difference between the PSM modification 

groups on the stimulated HUVECs. It may be possible that by treating the cells with 

TNF-α, the overexpression of E-selectin and other membrane proteins such as ICAM-

1, IL-1, and tissue factor procoagulant 164 are generating a large quantity of steric 

interference, making it difficult for any particles to adhere or bind. 

 

Figure 24. Tracking the number of attached PSM after 22 minutes. 

After 22 minutes of flow, the total number of attached PSM/mm2 was counted. A-PSM had a 

significant advantage on unstimulated HUVECs over both the E- and S-PSM. Grey is the A-PSM, 

orange is the S-PSM, and blue is the E-PSM. * signifies a p value < 0.05. 
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Figure 25. Adhesion kinetics of modified PSM on multiple substrates. 

A) The attachment kinetics of the PSM onto attachment factor over 22 minutes. B) The attachment 

kinetics of the PSM onto unstimulated HUVECs over 22 minutes. C) The attachment kinetics of the 

PSM onto stimulated HUVECs over 22 minutes.  Grey is the A-PSM, orange is the S-PSM, and blue 

is the E-PSM. * signifies a p value < 0.05. 
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2.3.6. A-PSM have a high affinity for endothelial cells 

A-PSM are flown over the three different substrates at a flow rate of 70 µL/min, 

which creates a shear rate of 174 s-1 at the luminal surface. The number of discoidal 

PSM attached to the surface are counted at the end of each minute-long video. As the 

PSM continued to pass over the substrate, the number of newly attached particles 

began to level out. This agrees with the saturation curves reported previously. 150 The 

number of attached A-PSM increased significantly when HUVECs were the substrate 

(Figure 26). When averaged over the 22-minute imaging period, the rate of 

accumulation increased from nearly 1.3 PSM/min/mm2 on the attachment factor up to 

25.8 PSM/min/mm2 on the unstimulated HUVECs. This rate of increase is comprised 

of PSM that slow and arrest their movement as well as those that detach from the 

substrate and continue in the flow (Table 4). All substrates used the same flow rate and 

PSM rolling velocities remained unchanged (Figure 23B).  

 

Figure 26. A-PSM attached to different substrates. 

A) A-PSM adhere to HUVEC cells at a much higher rate than they attach to the gelatine ECM (AF). 

Grey is the AF ECM, orange is the unstimulated HUVEC, and blue is the HUVEC stimulated with 20 

ng/mL TNF-α to overexpress E-selectin. * signifies a p value < 0.05. 
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Table 4. Rate of PSM Attachment and Detachment per square millimetre. 

The attachment and detachment rates for each PSM functionalization group were calculated from the 

videos. 

 

2.4. Discussion 

Discoidal PSM have been utilized in vivo for therapeutic cancer treatment with 

great success, especially when compared to systemic injections of the same 

therapeutics. 140,144,165-166 The switch from spherical particles 167 to discoidal particles 

follows a line of flow chamber studies, modelling, and improvements to microparticle 

fabrication techniques. The development of the silicon electrochemical etching 

technique has allowed for the design and fabrication of bioinert microparticles in 

unique shapes and dimensions. 40 The shapes of these microparticles can be crafted to 

create favourable mechanical conditions for vascular adhesion. Modelling has 

predicted that the hydrodynamic forces on microparticles cause them to migrate 

towards and roll along the vessel walls, whereas nanoparticles (<100 nm) are too small 

for the forces to have the same effect. 168 This difference allows for microparticles to 

have a greater chance of breaking into the RBC free layer and targeting specific ligand 

indicators expressed on the vessel walls. Modelling has also projected that by injecting 

particles with oblong shapes (ellipsoids or, in this case, disks), a larger surface area is 

presented to the vessel wall for adhesion. 169 This oblong shape presents a larger 

percentage of the surface area to the cell surface, creating more binding opportunities. 

Flow chamber studies have demonstrated the advantage of discoidal microparticles 

over their spherical counterparts in their propensity to move toward the vessel walls in 

Poiseuille flow, adhere to ECM protein substrates, 150 and established the ability of 

unmodified spherical microparticles to adhere to the surface of endothelial cells. 139 

While these studies are important precursors to understanding the mechanics around 

vascular adhesion of discoidal microparticles, they have yet to investigate how the 

discoidal microparticle interacts with live endothelial cells. 
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As hypothesized, E-PSM did show a decrease in their rolling speed when 

compared to A-PSM. Although the initial thought was that this was only due to the 

ESTA adhering to E-selectin expressed on the HUVEC surface, a similar, yet lesser, 

decrease in rolling speed was observed in the S-PSM. Therefore, the decrease in rolling 

speed might also come from another characteristic shared between the two 

modifications, such as zeta potential or steric hinderance. Decuzzi et al. demonstrated 

that spherical microparticles attached more preferentially to the ECM as compared to 

endothelial cells in the same flow chamber at low shear rates. 149 Decuzzi’s endothelial 

cells were grown on a layer of gelatine ECM. It has been reported that cell membranes 

have a negative zeta potential due to their phospholipid bilayer, 170 gelatine has a 

positive zeta potential, 171 and collagen (used in the current study) has a neutral to 

slightly positive zeta potential. 172 The grafting density of aptamers onto the PSM in 

this study was 1.5X greater than that achieved by Mai et al.144 and consequently, could 

have increased the magnitude of the negative zeta potential on the PSM. The spherical 

particles used in the Decuzzi et al. study have a similar negative zeta potential to the 

aptamer-modified PSM used here. As an increase in E-PSM adhesion to the ECM is 

also seen in this study, it is possible that there were electrostatic interactions affecting 

both outcomes. Decuzzi also modelled spherical particle margination to the vessels 

walls and found that electrostatic forces come into play within tens of nanometres of 

the cell surface. 173 As particles must be in contact with the cell surface to adhere, this 

could be where electrostatic repulsion is interfering with the aptamer-modified PSM’s 

ability to adhere to HUVECs while allowing their adhesion to the AF substrate.  

In order to test the effects of zeta-potential, future work should include studies 

with varying amounts of aptamer attached to the surface of the PSM. By varying the 

concentration of aptamer on the surface of the PSM, the zeta-potential can be tuned to 

a value that optimizes the strength of the bond with the ability to reach the bonds. Static 

studies, similar to the ones shown in this work, could be used to determine the effects 

of zeta-potential on adhesion to substrates with known electric surface charges. The 

optimized surface modifications could then be taken into the flow chamber to recreate 

this experiment to improve the understanding of PSM adhesion kinetics.  

The concentration of E-selectin expression is another area where one could 

continue moving this work forward. Although functional, TNF-α does not provide a 



52 

 

consistent expression profile of E-selectin across the entire cell population, nor 

between experiments, and also stimulates the cells to also over-express other 

inflammatory proteins such as P-selectin and ICAM. By utilizing a cell line that 

selectively and consistently over-expresses E-selectin as the positive control, and a E-

selectin knockout cell line as a negative control, the results of the static and flow 

chamber studies would have far less variability and identifying the causal relationship 

between the aptamer and its binding ligand would be more concrete.  

Although the ESTA has been reported to preferentially adhere to HUVECs in 

static conditions 143 and in vivo experiments have shown the accumulation of PSM in 

bone marrow metastasis increases with the addition of an ESTA modification, the 

mechanism is not apparent in these flow chamber experiments. Unfortunately, parallel 

plate flow chambers lack the ability to mimic the continuous heterogeneity of the 

tumour microvasculature. 37 Due to an unbalanced overexpression of VEGF, tumour 

vessels grow at an abnormally fast rate. 35 This leads to malformations in the tumour 

vasculature such as high tortuosity and permeability. 32 Once PSM reached the 

RBCFL, conservation of momentum would dictate that PSM flowing around a bend 

would be more likely to encounter a vessel wall as their momentum tried to maintain 

its course. With the increase in tumour vessel tortuosity comes more opportunities for 

a PSM to contact and attach to the endothelium. New 3D printing methods are allowing 

the development of tortuous flow chambers with known dimensions that can be used 

in microscopy experiments. 174-175 It has also been demonstrated by D’Apolito et al 

that when red blood cells (RBC) are present in the haematocrit, microparticles are 

bumped into the RBCFL next to the vessel walls and are then trapped there. 176 This 

greatly increases the likelihood of PSM-endothelial cell interactions and, because they 

are on the edge of the Poiseuille flow, slows particles down, increasing the duration of 

PSM-cell interactions. 

One possible future study should include testing the strength of these 

adhesions. Even though the A-PSM had the largest accumulation on the endothelial 

cells overall, they also showed the largest number of detachments out of the three 

groups (Table 4). The rate of detachment for each group was equal at approximately 

50% of attached particles that attached to a substrate were subsequently knocked off 

or released. By running increasing flow rates over attached PSM and watching for 
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particles becoming detached, an adhesion strength can be calculated. If the ESTA does 

indeed have a higher adhesion strength to the endothelial cells as hypothesized, this 

could be a reason for the increased accumulation seen in the in vivo model.  

Although A-PSM have a propensity to roll and adhere onto endothelial cell 

surfaces in physiological conditions, PSM modified with endothelial cell protein 

ligands have more difficulty adhering.  The methodology used here, combined with 

the custom analysis software, has allowed for particle identification, tracking, and 

characterization under physiologically relevant flow conditions. This methodology 

could be easily adapted to track and analyse other types of flow chamber interaction 

in brightfield or fluorescent microscopy. 
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3. DENDRITIC CELL VACCINES IN COMBINATION WITH CHECKPOINT 

BLOCKADE THERAPY LEAD TO AN INCREASE IN INTRATUMOURAL 

TERTIARY LYMPHOID STRUCTURES 

3.1. Introduction 

Cancer immunotherapies aim to activate and stimulate the immune system 

against cancer. They have been applied to patients with great success, improving the 

survival rates and complete regression rates in patients with metastatic melanoma and 

renal cancer. 177 There are many factors that impede the ability of immune cells to 

effectively target and remove solid tumours, including blood vessel structure, 32 a 

nutrient deficient microenvironment, 33 and the recruitment of immunosuppressive 

cells. 34 One treatment that targets immune suppressive mechanisms is the class of 

immune checkpoint blockade inhibitors, such as anti-PD1 and anti-CTLA4, which 

interfere with anti-immune signalling presented by cancerous cells. 29-31 Another 

treatment method that circumvents immune suppression is the adoptive transfer of 

tumour-antigen loaded dendritic cells (DC) into a patient. 178 The infused DCs can 

present the loaded tumour-antigens to other DCs and T cells, allowing for the 

formation of cytotoxic T cells as well as memory immunity, which in turn attack 

tumour cells. Xia et. al. have developed and previously reported on the use of a 

microparticle vaccine platform used in adoptive dendritic cell therapies (Figure 27). 

179 Here, the combination of checkpoint blockade therapy is investigated with the 

particle loaded DC vaccine and its ability to stimulate anti-tumour immunity. 
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Figure 27. Representative diagram of the DC vaccination. 

Antigen-loaded PSM are introduced to DCs in vitro. Activated DCs are intravenously injected into 

tumour bearing mice where they present the antigens to circulating T cells and DCs from the host. 

Activated T cells locate and attack tumour cells. Figure used with permission from Elsevier under the 

terms of the Creative Commons Attribution License (CC BY), 

http://creativecommons.org/licenses/by/4.0/ (https://doi.org/10.1016/j.celrep.2015.04.009). 179 

Discoidal porous silicon microparticles (PSM) are a degradable and 

biocompatible delivery method for small molecule drugs and other cancer 

therapeutics. 180-183 By modifying the surface chemical makeup, the drug release rate 

of the PSM can be tailored to each patient or disease. 141,183-184 The discoidal shape (1 

µm diameter by 400 nm height) can be efficiently phagocytosed by DCs and 

sequestered in early endosomes where it can release its cargo for cross-presentation. 

179 It has previously been shown that using PSM to deliver cancer antigens to antigen 

presenting cells (APC) improves the ability of the APC to stimulate anti-tumour 

immune responses. 179 HER2-loaded PSM enhance the activation and presentation of 

DCs in vitro which, when injected, enhance the activation of the immune response 

inside the tumour microenvironment, thus increasing the influx of CD11c+ DCs and 

tumour-specific cytotoxic T cells into the tumour and improving the patient outcome. 

https://doi.org/10.1016/j.celrep.2015.04.009
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Tertiary lymphoid structures (TLS) are lymphoid structures that form outside 

of secondary lymphoid organs, such as the lymph nodes, in situations of chronic 

inflammation and are commonly considered a form of adaptive immunity. These 

lymphoid structures have been observed at primary tumour sites and represent one of 

the body’s efforts to amount anti-tumour immunity. 185-186 TLS in and around a tumour 

mass provide an environment in which naïve T cells can be presented tumour antigens 

by antigen presenting cells in close proximity to tumour cells. 187-188  When TLS are 

associated with tumours, the prognosis is well correlated to prolonged patient survival 

189-190 with few instances of a negative relationship, usually relating to a late stage of 

the disease. 191-192 In one study of breast cancer, TLS were associated with a lower risk 

of relapse and longer overall disease-free survival rates. 193-194 Acting as a local 

immune hub, TLS reduce the distance that dendritic cells (DC) and other APCs must 

travel to coordinate the adaptive immune response. 185 In cancer, these structures are 

commonly found in the peritumoural space, where they resemble lymph nodes, but 

have also been seen and studied intratumourally. 195 Currently, there is not a gold 

standard for how to identify a TLS, but some identification methods include looking 

for clusters of B cells, 193,196 follicular helper T cells, 197-198 high endothelial venules 

(HEV), 194-193 mature DCs, 198-201 or any combination of these cell clusters (Figure 28). 

It was decided to look at immune cell clusters consisting of B cells, T cells, and HEVs. 

 

Figure 28. Tumour associated TLS. 

Multispectral imaging of TLS in human melanoma metastases localized outside the tumour area (A), 

peritumourally at the peripheral edge of tumour (B–D), or intratumorally (E and F). Artefactual tissue 

creases due to sectioning can be seen in (B) and (C). Scale bars, 100 µm. Figure used with permission 

from The Journal of Immunology. 195 
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Cellular makeup, protein expression, and gene activation are all important 

indicators of cell process mechanisms, but a 3D analysis of the cellular environment 

is often discounted due to depth-of-imaging difficulties. One of the physical reasons 

that organic tissues are opaque and difficult to image is due to the variability between 

the refractive indices of the many structures that make up the tissue (e.g. extracellular 

fluid, lipids, cellular organelles, etc.). Clearing methods can be used to reduce the 

differences between refractive indices, causing the tissue to become optically 

transparent and allow for deep tissue imaging. 202 An optical tissue clearing method 

called iDISCO, along with improved staining and microscopy techniques, has been 

used to study the heterogeneity of intratumoural cellular diversity and vessel 

complexity. 37 The iDISCO and other tissue clearing protocols 203 rely on reducing the 

change in refractive indices throughout the tissue. Each method has its own 

standardized protocol, but the basis of each requires completely dehydrating the tissue, 

thereby removing the extracellular fluid and free-floating lipids from the tissue, and 

then rehydrating the sample with a fluid that has a similar index of refraction as the 

ECM and cellular structures.  Staining and imaging in 3D allows for complex analysis 

of entire organs of interest, up to 2 mm deep. 204 As in the case of lymphoid tissues, 

the structure of the cellular environment is important for cellular communication and 

information transfer. In this work, iDISCO optical clearing was used to study the 

intratumoural immune response to therapeutic treatments and subsequent TLS 

formations.  

3.2. Materials and Methods 

Dr. Qing Shi, a Postdoctoral Fellow in Haifa Shen’s lab at Houston Methodist 

Research Institute, Department of Nanomedicine, performed all the live animal work. 

His methods are reported below to give a complete report of this experiment. All 

sections that were performed by Dr. Qing Shi are marked as such. 

3.2.1. Mice 

The live mice were maintained by Dr. Qing Shi. Female 6–10-week-old Balb/c 

mice from Charles River were used in the tumour studies. All mice were maintained 

in a specific pathogen-free environment as part of the comparative medicine program 

at Houston Methodist Research Institute. All animal experiments were approved by 
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the Houston Methodist Research Institute IACUC and conducted in accordance with 

institutional guidelines. 

3.2.2. Cell lines 

The TUBO breast cancer cells were maintained by Dr. Qing Shi. TUBO cells 

were provided by Drs. Wei-Zen Wei (Wayne State University, Detroit, MI) and Guido 

Forni (University of Torin, Italy). Cells were maintained in 37°C 5% CO2 incubators 

in DMEM media supplemented with foetal bovine serum (FBS) and Penicillin-

Streptomycin (PS) antibiotics. TUBO is considered to be a nonmetastatic, cloned cell 

line established from a mammary carcinoma of the Her2-neu transgenic mice also on 

the Balb/c background. 205 

3.2.3. Preparation of Antigen-Encapsulated Liposomes and Loading into PSM 

The treatment was prepared by Dr. Qing Shi. Liposomes were created as 

previously described. 141,183 Briefly, three solutions were prepared: HER2 peptide 

antigen in H2O, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in t-butanol at 20 

mg/ml, and 0.1% Tween-20 in H2O. All three solutions were then vortexed together in 

t-butanol for 1 minute. Samples were then freeze dried using a lyophilizer (LD85, 

MillRock). To load the liposomes into the PSM (1 µm in diameter and 400 nm high), 

the liposome powder was suspended in 50 µl of H2O, followed by a brief sonication, 

and then the resulting suspension was added to dry PSM particles, followed by a brief 

sonication. 

3.2.4. Bone Marrow Derived Dendritic Cells (BMDC) 

The BMDCs were collected by Dr. Qing Shi. 6–10-week-old female Balb/c 

mice were used to isolate BMDCs. 206 Briefly, bone marrow cells were collected from 

mouse femurs and tibias by flushing the bones with 1% FBS-containing PBS. Red 

blood cells were lysed with ACK lysis buffer (Lonza Inc.) and then resuspended in 

RPMI 1640 medium with 10% FBS, antibiotics, and 55 μM β-mercaptoethanol. The 

marrow cells were then cultured over a 7-day period with 20 ng/mL recombinant 

murine granulocyte-macrophage colony-stimulating factor (GM-CSF, Peprotech) and 

20 ng/mL IL-4 (Peprotech). Cell culture medium was refreshed every other day. Non-
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adherent cells were harvested as immature BMDCs. For in vivo studies, immature 

BMDCs were stimulated with 100 ng/ml LPS overnight and then primed with the 

PSM/HER2 antigen for 3 hours before intravenous (i.v.) injection into mice. 

3.2.5. Live animal treatment protocol 

Dr. Qing Shi inoculated and treated the live mice. TUBO cells (1X106 

cells/mouse) suspended in 4°C Matrigel/PBS (1:3) were implanted into the mammary 

gland fat pad of 12 female Balb/c mice (6–10 weeks old). On day 7 after tumour 

inoculation, the mice were divided into groups (3 mice per group) and mice in the 

vaccine groups were given their first i.v. injections of the BMDC vaccine treatment 

(1X106 cells/mouse). On day 11 after tumour inoculation, an additional 3 naïve female 

Balb/c mice were inoculated with TUBO cells (1X106 cells/mouse) in the mammary 

gland fat pad to act as a small volume, early stage tumour control; these mice were not 

treated in any other way. On day 14 after tumour inoculation, mice in the vaccine 

groups were treated with another dose of the BMDC vaccine. 200 μg Rat IgG2a 

Isotype control (2A3, Bio X Cell) or anti-PD1 (RMP1-14, Bio X Cell) were 

administered through an intraperitoneal (i.p.) injection on day 11, day 14, and day 19 

after tumour inoculation to all treatment groups. Tumour volume was recorded as 

𝑤𝑖𝑑𝑡ℎ∗𝑙𝑒𝑛𝑔𝑡ℎ 2

2
.  All mice were sacrificed on day 22 after tumour inoculation. Excised 

tumour samples were then cut into two halves, one half was used for flow cytometry 

while the other was used for tissue clearing and imaging.  

3.2.6. Flow Cytometry 

The flow cytometry of the tumour immune cell microenvironment was 

performed by Dr. Qing Shi. The first half of the tumour was used to obtain a single 

cell suspension digestion with 275 U/ml of type IV collagenase (Worthington 

Biochemical Corporation) and 375 U/ml DNase I (Applichem) at 37℃ for 1 hr with 

200 RPM shaking. Cells were stained with 2 µg/mL of CD45 and CD3 (BioLegend, 

San Diego, CA, USA) at 4℃ for 30 mins. Flow cytometry was conducted on a LSRII 

(BD Falcon) and analysed by FlowJo software (TreeStar).  
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3.2.7. Sample Preparation 

The second half of each tumour sample was cut into two approximately 2x2x2 

mm cubes, one from the core and the other from the exterior 2 mm of the tumour 

sample (Figure 29). This size was chosen based on the largest working distance of the 

10X objective on the confocal microscope (1.2mm). These cubes were then pre-treated 

for immunolabelling and clearing protocols according to the iDISCO protocol 

developed by Renier et al. 204 Briefly, samples were fixed overnight in 4% 

paraformaldehyde, followed by two washes in 1X PBS. The tissue samples were then 

dehydrated with an increasing series of methanol/H2O solutions 

(20%/40%/60%/80%/100%/100% methanol) and left overnight in 33% methanol/66% 

dichloromethane (DCM). After two washes with 100% methanol, the samples were 

bleached overnight in 5% H2O2 to remove pigmentation from the tissue and reduce 

autofluorescence. Post-bleaching, samples were rehydrated using a decreasing series 

of methanol/H2O solutions (80%/60%/40%/20% methanol) and then fully rehydrated 

in PBS. Samples were washed twice in PBS/0.2% Triton-X prior to immunolabelling. 

 

Figure 29. Tumour preparation. 
After excision, tumour samples were cut in half. One half was used for flow cytometry, the other half 

was cut into two 2x2x2 mm cubes of tissue. One cube was taken from the interior, or core, of the 

sample and one from the exterior. These samples were processed and imaged in 3D on a confocal 

microscope. 
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3.2.8. Whole Tissue Immunolabelling 

Pre-treated tissues were incubated in a permeabilization solution of PBS, 0.2% 

Triton X-100, 20% DMSO, and 0.3M glycine at 37 °C for 2 days and then with a 

blocking solution of PBS, 0.2% Triton X-100, 10% DMSO, and 6% FBS at 37 °C for 

2 days. The samples were incubated with primary antibodies in PBS and 0.2% Tween-

20 containing 10 mg ml−1 heparin (PTwH), 5% DMSO, and 3% FBS at 37 °C for 4 

days. The primary antibodies used in this study were anti-CD3 (1/200, rabbit 

polyclonal, ab5690, Abcam, Cambridge, UK), anti-CD45R (B220, 1/100, rat 

monoclonal, AB64100, Abcam, Cambridge, UK), and anti-MECA-79 (PNAd, 1/20, 

rat monoclonal, SC19602, Santa Cruz Biotechnology, Inc., Dallas, TX, USA). The 

samples were then washed in PTwH for 1 day and then incubated with secondary 

antibodies in PTwH and 3% FBS for 4 days at 37 °C. The secondary antibodies used 

in this study were Alexa Fluor (AF) 647 conjugated goat anti-rabbit IgG (H+L) cross-

adsorbed (1/200, A-21244, ThermoFisher Scientific, Waltham, MA, USA), AF 555 

conjugated donkey anti-rat IgG (h+L) preadsorbed (1/200, ab150154, Abcam, 

Cambridge, UK), and AF 488 conjugated goat anti-rat IgM (heavy chain) cross-

adsorbed (1/100, A-21212, ThermoFisher Scientific, Waltham, MA, USA). All 

antibodies and their targets are shown in Table 5. Due to two of the primary antibodies 

having the same host species, this process was repeated for those 2 antibodies 

separately with 1 day of washing in PTwH in between. After incubation with the 

secondary antibodies, the samples were washed in PTwH for 1 day before beginning 

the tissue clearing process. 

Table 5. Antibodies used for staining tumour samples. 

A list of the antibodies used to stain the tumour samples for T-cells, B-cells, and HEV. 

Target Protein Primary Antibody 

(Host) 

Secondary Antibody 

(Host) 

Fluorescent Label on 

Secondary Antibody 

T-Cells Anti-CD3 (Rabbit) Anti-rabbit IgG (Goat) AF 647 

B-Cells Anti-CD45R (Rat) Anti-Rat IgG (Donkey) AF 555 

High Endothelial 

Venules 

Anti-MECA-79 (Rat) Anti-Rat IgM (Goat) AF 488 
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3.2.9. Tissue Clearing 

The tissue clearing method was adapted from the iDISCO clearing method 

developed by Renier et. al. 204 Briefly, the samples were dehydrated with an increasing 

series of methanol/H2O solutions (20%/40%/60%/80%/100%/100% methanol) and 

then incubated with 66% DCM / 33% methanol for 3 hours. This was followed by 2, 

15-minute washes with 100% DCM to remove any leftover methanol and completely 

dehydrate the sample. The samples were then incubated and stored in Dibenzyl Ether 

(DBE, n = 1.562), a fluid with a refractive index equivalent to the refractive index of 

the cell walls, until imaged. 

3.2.10. Confocal Microscopy 

For the cleared tissues to remain clear during imaging, they were kept in DBE 

throughout the imaging process. An imaging chamber was constructed out of two glass 

coverslips and a silicon gasket (FlexiPERM, Sarstedt, Nümbrecht, Germany) held 

together with a silicon glue (Kwik-Sil, World Precision Instruments, Sarasota, FL, 

USA). The wells were then filled with DBE and the tumour samples were placed inside 

before sealing the second coverslip on top (Figure 30). A Nikon A1R Confocal Laser 

Microscope System with a 10X objective (Nikon S Fluor, NA of 0.5, MRF00100, 

working distance of 1.2 mm) and a Nikon A1 Plus PMT were used to take Z stack 

images at 10 µm steps in the Z-direction. This creates an undersampled Z-dimension 

which was selected due to the large size of the tissues and time constraints with the 

institutionally shared confocal microscope. Although it is undersampled, the axial 

resolution (~5.5 µm, calculated using Equation 2 and the size of the cells of interest 

(~13 µm in diameter) should both be large enough to be encompassed cells within at 

least two Z-planes. XY plane images were tiled and stitched to create larger fields of 

view with a resolution of 1.05 µm/pixel (Figure 35A,C). Unfortunately, as the 

microscope images deeper into the sample, the amount of fluorescent signal returning 

to the sample is substantially lessened because of spherical aberrations. Spherical 

aberrations also decrease the clarity of the images due to the changes in the index of 

refraction. When light passes through an index of refraction change, the light refracts 

at a new angle that is dependent on its incident angle. This spreads out the focal point 

which accounts for a loss of fluorescent intensity and resolution. To account for this, 
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the objective used in this study was corrected to account for spherical aberration with 

the 0.17mm coverslip used in this study. Also, the tumour tissue is immersed in DCM, 

which has the same index of refraction as the cell walls and glass coverslip, therefore 

decreasing the changes in the index of refraction that the light must pass through on 

its way to the objective. 

 

Figure 30. Setup for 3D imaging on the confocal microscope. 

A FlexiPERM silicone chamber was sealed between two glass coverslips. The wells were filled with 

DBE and a single tissue sample was placed in each well. Z stacks were acquired from the bottom of 

the tumour sample to top. 

3.2.11. Imaging Analysis 

After the confocal images were acquired, an analysis software was built to 

determine the amount of TLS present inside of the tumour space and investigate the 

mechanisms of the vaccine’s success. The software was first used to filter the images 

and identify the stained immune cells. The locations of those cells were then compared 

to the volume surrounding them to identify areas that were densely populated with 

immune cells. If a 100x100x100 µm3 volume contained at least 10 B cells, 20 T cells, 

and 50 µm worth of HEV, then it was considered a part of a TLS. The software then 

searched for locations where these volumes overlapped and grouped them into a single 
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TLS. TLS inside of the tumour space indicate a strong immune response to the cancer 

that could be a mechanism driving the effectiveness of the cancer vaccine. 

In more detail, images were loaded into MATLAB R2018a via the Bio-Formats 

software tool (The Open Microscopy Environment, The University of Dundee, 

Dundee, Scotland) and one algorithm was developed to identify cells and vessels 

(Figure 35B and D), while a second algorithm was developed to find areas with diverse 

cell clustering (Figure 32). These algorithms are included in the Appendices as 

MATLAB scripts (Appendix C). The AF 488 and AF 555 channels (Table 5) were 

both seen to have extraneous autofluorescence from the extracellular matrix 

surrounding them. This autofluorescence showed the same structures in both channels 

so a compensation constant multiplier (C) was identified for each plane that minimized 

the absolute value of the difference between the two images. In order to identify the 

compensation constant multiplier, a range of constants was checked from 0 to 5 with 

a step size of 0.1. These constants were multiplied by the AF 488 image and subtracted 

from the AF 555 image and the absolute value was taken. These absolute values were 

compared to see which constant delivered the smallest result. The reciprocal of that 

value was used to multiply AF 555 image and subtract it from the AF 488 image. This 

was repeated for each new Z plane. The AF 488 and AF 555 channels (Table 5) were 

multiplied by their respective constant and subtracted from one another, pixel by pixel, 

to minimize the effects of autofluorescence (Figure 31). Any values that were less than 

zero after the subtraction were set to zero. This eliminated a large proportion of the 

extraneous and invalid information. The AF 647 channel (Table 5) did not have any 

obvious autofluorescence and so was not filtered in this way. A band pass filter was 

run over each channel to remove small, high frequency noise and broad, low frequency 

noise while maintaining cell-sized object prominence. A binary threshold was then 

applied to AF 488 image planes to create a mask of possible positive areas. If there 

were any positive areas in the binary mask that were smaller than a single cell or areas 

that exceeded the area of ten connected cells, these areas were set to zero to eliminate 

noise and large artefacts. Once all the planes had a representative binary mask, they 

were stacked into a 3D matrix and skeletonized to create a representation of the 

vasculature as a line with single-pixel width. This was accomplished by removing 
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positive pixels that were on the edge of a binary region, one layer at a time, until only 

a single line of pixels remained.  

 

Figure 31. Subtract out autofluorescence. 

Autofluorescence is subtracted out of the AF 488 (left) and AF 555 (right) channels (Table 5) by 

minimizing the absolute value of their differences. C is calculated independently for each channel by 

minimizing the absolute value of the equation, channel 1 – (C * channel 2). 
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Figure 32. Overview of the data processing algorithm. 

An overview of the data processing algorithm used to filter, identify, and analyse the 3D immune 

environment inside of tissue samples (page numbers refer to the respective piece of code in 

APPENDIX C). 

When looking for B cells and T cells, local maximum pixel intensities were 

located within a single cell sized area. These locations were put through two tests to 

weed out noise from cells. The first test identified pixels around the local maximum 

with intensity values above a certain threshold and compared the resulting area with a 

minimum cell size. The second test compared the contrast of the interior pixel 

intensities of the cell with the pixel intensities of the area directly outside of the defined 
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cell area. If the mean value of the pixels outside of the cell area were similar to the 

mean pixel intensity values of those inside the cell, the local maximum lacked the 

contrast necessary to consider it a cell. The centroids of the remaining local maximums 

were recorded in each plane. To locate individual cell locations, the algorithm used 

recursion to identify where a local maximum appeared in the same x-y location in two 

consecutive z- planes. If the local maximum did not appear in two consecutive planes, 

it was considered noise because the diameter of a cell is larger than a single step in the 

z-direction. The centre points had to be within 1/4th of the cell diameter to be 

considered the same cell (Figure 33).  

 

Figure 33. Cell identification in the tissue samples. 

Cells were required to appear in two consecutive planes (10 µm step size) in the same location to be 

considered as a cell by the software. Representative consecutive planes of T cells (A and B) and B 

cells (C and D) are shown here with identified cells circled in white.  

To determine the sample volume, all channels were summed pixel-by-pixel and 

a low binary threshold was applied to capture autofluorescence and scattered 

background noise. This allowed the program to calculate the area of the sample in that 

plane. This was done for each plane and these area values were summed and then 
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multiplied by the step size in the z-direction (10 µm) to calculate the imaged volume 

(Figure 34). 

 

Figure 34. Using background autofluorescence to capture sample volume. 
The pixel values from the three fluorescent channels (A-C) were summed together and a low threshold 

was used to create a binary mask of the current plane (D). The areas calculated from these planes were 

summed together and multiplied by the z-step size (10 µm) to calculate the imaged sample volume.  

The second algorithm was focused on identifying small volumes with a highly 

concentrated and diverse cell profile using the cellular locations and skeletonized 

vessels. A 100x100x100 µm3 box was stepwise scanned across the entirety of the 3D 

image at 10 µm steps in every direction, counting the number of each type of cell inside 

the box at each scan point. Boxes were considered “hot spots” if the total number of 

each cell type (B cells, T cells, and HEVs) in the box were above its specific threshold 

(10, 20, and 5 cells, respectively; Figure 33). Since the software had skeletonized 
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HEVs down to only a single pixel thickness, 50 µm (or 50 pixels) worth of HEVs was 

considered 5 cells. These were then grouped together with any overlapping “hot spots” 

and as a collective, were considered a single TLS. If the volume of the newly defined 

TLS was less than double the size of the original scanning box (<0.002 mm3), the TLS 

was considered ill-defined and was excluded from the resulting statistics. The number 

of TLS in each sample was normalized by the sample volume to generate a TLS 

concentration. 

 

Figure 35. Cell and vessel segmentation. 
(A,C) Filtered Nikon image files. (B,D) Digital representation of the image files with detected cell and 

vessel locations marked. Both the original and the digitized versions show CD3+ (magenta), B220+ 

(red), and HEV (green). 

3.2.12. Error Analyses 

A random number generator was used to generate a 3D image with dimensions 

equal to the imaged tissue samples (~2x2x1mm) with 100 “cells” plotted in every two 

planes. Four different intensity levels of gaussian white noise were added on top of the 

cell signals with signal to noise ratios of 4, 2, 1.33, and 1. These test samples were run 

through the data analysis software to establish if the software can distinguish between 

background noise and whole cells within the collected data.  
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3.2.12.1. Changing analysis parameters affect the outcome 

There are a few, very important parameters that, when changed, have a major 

effect on the results of the data analysis. These include the threshold for the minimum 

local maximum to consider for a cell and the size of the scanning box when searching 

for TLS. Some of the samples have weak signals, especially at large depths of imaging, 

due to either insufficient tissue clearing, poor antibody penetration, or a large 

autofluorescent background. To the human eye, it is still possible to differentiate these 

cells from the background noise, but this is difficult to translate into software. It was 

chosen to implement a low initial threshold and trust that the secondary checkpoints 

would protect the result. This leads to an initially high approximation of the number 

of cells in a single plane which is slowly eroded with each subsequent filter. Without 

a low threshold, the interior cells that have less fluorescent intensity would be 

indistinguishable. 
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Figure 36. Low intensity threshold allows more cells to be identified. 

The tissue sample (A) was stained for B cells. Using a high threshold (B) very few possible cell 

locations were identified from the background. Using a low threshold (C) increases the number of cell 

locations to be considered by the software. 

The size of the scanning box has a significant effect on the size and number of 

final TLS. increasing the size of the scanning box should, in theory, increase the 

number of cells inside that box. Therefore, the cellular number thresholds must 

increase accordingly to account for the increase in scanned volume. When the scanning 

box is too large (e.g. 400x400x400 µm), even if it encloses an entire TLS, the 

concentration of cells is diluted and so there may not be enough cells to pass the TLS 

defining threshold. Even if the scanning box has a similar volume as that of a TLS 

(e.g. 200x200x200 µm), most TLS will not be a perfect sphere that fits inside the 

scanning box and could again fall short of the TLS defining threshold. A scanning box 

that is too small (e.g. 50x50x50 µm) could have TLS defining threshold values that are 
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too small to categorize as TLS. In these samples, no TLS were identified with scanning 

box sizes of 200x200x200 µm or above. A smaller scanning box could also define a 

single TLS as multiple TLS as the cell concentrations vary throughout the TLS (Figure 

37). It was concluded that using a scanning box that was approximately half the size 

of the smallest TLS would give sufficient resolution as well as TLS specificity (Figure 

45D and E).  

 

Figure 37. Examples of different sized scanning boxes. 

A small scanning box (50x50x50 µm) requires small corresponding cell concentrations and therefore 

identifies a lot of regions overall (A) and between interior and exterior (B) when compared to the box 

used for the results presented here (100x100x100 µm; Figure 45D and E). A box of equal volume to a 

TLS or larger requires higher corresponding cell concentrations and therefore identifies no TLS 

regions in these samples.  

3.2.12.2. Analysis software limits the effect of white noise 

When testing the effects of background white gaussian noise on the analysis, 

four different intensity levels were considered. These levels were dependent on the 

maximum intensity of an artificial cell. There are 5000 possible cells of each type to 

detect in this pseudo-sample. Although, due to the random placement of the cells, some 

are lost when the edges of the sample are truncated. Therefore, when the unaltered 

sample is put through the software, ~90% of the cells are detected (Figure 38A). When 

0.25X and 0.5X noise was added (Figure 38B and C, respectively), the number of cells 

fluctuated by less than 5%. At 0.75X, the noise started to affect the initial stages of 

cell identification, including filtering and local contrast analysis (Figure 38D). This 

was corrected by the second half of the cell identification process, looking for the same 
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cell in two consecutive planes, and the cell count fluctuations only increased to within 

10% of the unaltered cell count. Only once the maximum intensity of the noise 

matched the maximum intensity of the cell’s fluorescence was there a significant 

change in cell detection, doubling the count of T cells (Figure 38E). Noise at this level 

was still unable to imitate a TLS to the system. Therefore, an assumption should be 

made that there will be at least one fluorescent cell of each type in each plane that is 

bright enough to prevent background noise from deceiving the software and increasing 

the cell concentrations.  
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Figure 38. Background noise filtering and cell segmentation. 

Different levels of noise were added to an unmodified test image (A) replicating an image of 100 

cells. The different intensity levels include 0.25X (B), 0.5X (C), 0.75X (D), and 1X (E). Blue circles 

represent possible locations of cells. 
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3.2.13. Statistical Analyses 

For the animal studies, each experiment group contained 3 animals. No 

randomization and/or blinding were used for the animal studies. No statistical method 

was used to predetermine sample group sizes. For the tumour sample clearing tests, all 

groups except the PBS control and combination treatment groups had three interior 

and three exterior samples, one of each coming from the same tumour in a single 

animal. Due to sample loss during processing, the PBS control group had two interior 

and two exterior samples, and the combination treatment group had two interior and 

three exterior samples. The values presented are the mean with standard deviation. A 

Student’s t test (two tailed distribution, unequal variance) was used to determine all 

statistical significances, needing a p value < 0.05 to be considered significant. All 

statistical analyses were performed using Microsoft Excel (Microsoft Corporation, 

Redmond, Washington, USA) or GraphPad Prism 8 (GraphPad Software, San Diego, 

CA, USA). 

3.3. Preliminary Results 

These results were obtained by Dr. Qing Shi and inspired the following study 

into TLS inside the tumour space. 

3.3.1. Combination treatment has a positive effect on tumour growth 

Our lab has previously shown that the PSM/HER2-Primed DC vaccine 179 

significantly slows tumour growth. Here, Dr. Qing Shi reports similar tumour growth 

retardation using the vaccine/anti-PD1 combination treatment (Figure 39). The 

addition of anti-PD1 alongside the PSM/HER2 DC vaccine had a relatively small but 

positive effect on tumour growth when compared to that of the vaccine alone.  

To ensure that the immune cell concentrations and configurations were not 

dependent on tumour volume, an early stage tumour control was included. This control 

group was inoculated 11 days after the inoculation of the other groups. The final 

volume of each treatment model is shown in Figure 39B. The early stage tumour 

control had a similar final volume to both the vaccinated and the combination 

treatment tumours.  
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Figure 39. Treatment efficacy against TUBO solid tumours. 

A) The tumour growth curve over 22 days. B) Final tumour volumes on day 20 including the early 
stage growth tumour. * indicates a p value <0.05, ** indicates a p value < 0.005, and *** indicates a p 

value < 0.0005. 

3.3.2. All treatments show an ability to influence T cell recruitment 

Dr. Qing Shi studied the cellular composition of solid tumours using flow 

cytometry. Treating mice with any of the therapeutic agents trended toward increasing 

the percentage of infiltrating CD3+ T cells in the tumour compared to other immune 

cells (Figure 40). In combination with the strong efficacy of the treatments, an interest 

was developed into the mechanism behind the response which inspired this study into 

TLS. 

 

Figure 40. Flow cytometry shows a rise in T cells with treatment. 

Treatment of the mice tends to increase the percentage of T cells in the total cell count after tumour 

sample digestions. 
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3.4. Results 

3.4.1. Deep tissue staining and imaging 

To study the 3D immune structure, tumour samples were optically cleared 

according to the iDISCO clearing protocol to increase the maximum imaging depth. 

Staining and imaging deep tissue structures (>100 nm) are constrained by the ability 

of antibodies to penetrate tissue samples and the optical laser scattering occurring at 

each cell wall interface due to changes in the index of refraction. This is commonly 

overcome by physically slicing the tissues into thin sections (~5-20 µm) thereby 

reducing the distance the antibodies must diffuse and limiting the number of scattering 

points that light will meet before being captured by the camera. In this study, the 

constraints are overcome chemically, using non-ionic detergents and organic solvents 

to permeabilize the tissue and clear away the steric interference caused by membrane 

lipids, and then decreasing the effects of light scattering by dehydrating the tissue and 

rehydrating it in DBE, an organic solvent with an index of refraction close to that of 

cell walls (Figure 41A). This allows the tissues to remain in larger sections and provide 

a 3D view of cellular structures without the risk of damaging or undersampling the 

tissue.  
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Figure 41. iDisco setup and depth visualization. 

(A) 2 mm cubic tumour samples directly after dissection (left), after the sample was bleached 

overnight in H2O2 (middle), and after the sample was fully dehydrated and then rehydrated in DCM to 

create an optically clear tumour sample (3 tumour samples in the same image, right). The first two 

images were taken on 1 mm grid paper, the cleared image was photographed on a ruler with 1/16-inch 

apart ticks. (B) Tumour tissue at an imaging depth of 250 µm (top left), 500 µm (top right), 750 µm 
(bottom left), and 900 µm (bottom right) showing CD3+ (magenta), B220+ (red), and HEV (green). 

Scale bars represent 250 µm. 
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Many antibodies have already been proven to work with the iDISCO protocol, 

37,204 but this is the first time iDISCO has been used to investigate immune response 

specifically using the antibodies for CD3, B220, and MECA79 to look at T cells, B 

cells, and HEVs, respectively. The antibodies were tested on lymph nodes to ensure 

that these antibodies were functional and accurate when combined with the iDISCO 

protocol. The classical lymph node structure of a B cell germinal centre surrounded by 

T cells was easily identifiable (Figure 42). All three cell types were able to be seen at 

the maximum imaging depth inside the tumour tissues (900µm, Figure 41B).  
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Figure 42. Lymph node stain confirmation. 

(A) B cell germinal centres (red) and T cells (purple) stained in a lymph node. (B) HEV stained in a 

lymph node. 
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3.4.2. Vaccine and combination treatments initiate an increase in the concentration 

of tumour infiltrating CD3+ T Cells 

The cellular composition of solid tumours was studied using flow cytometry. 

Treating mice with any of the therapeutic agents trended toward increasing the 

percentage of infiltrating CD3+ T cells (Figure 43A). Sections of the tumour samples 

were excised from the core and the exterior of the tumours and then optically cleared 

and stained for T cells, B cells, and HEVs to visualize the 3D immune structures inside 

the tumour. Image analysis software, written in MATLAB, identified a similar trend 

in the T cell infiltration as seen in the flow cytometry (Figure 43B). The software also 

revealed a significant difference between the combination treatment group and the 

untreated samples. The immune cell profiles of interior and exterior sections were 

compared against each other to better understand the depth of the T cell penetration. 

The main driving force of the increase in overall T cell infiltration was identified as 

the interior portion of the tumour sample (Figure 43C), as seen significantly in the 

combination treatment group and trending in the vaccination alone group. This is likely 

due to the increased activation of the T cells from the adoptive transfer of BMDCs. 

When concentration information was compiled for B cells, there was no significant 

difference between the treatment groups (Figure 44A). HEVs showed a difference 

between the PBS group and the early stage tumours, which could indicate that it takes 

time to develop these vessels, and between the PBS group and the anti-PD1 group 

(Figure 44). This significant decrease in HEVs in the anti-PD1 group, along with a 

similar decrease in the combination group, could be indicative of PD1 playing an 

important role in the development of HEV outside of lymphoid tissue. Zhu et al. 

reported that HEV are associated with tumour infiltrating lymphocytes with 

downregulated immune checkpoint proteins. 208 It is possible that administering the 

anti-PD1 treatment provided the body with a surplus of these lymphocytes, alleviating 

the necessity for HEVs. 
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Figure 43. Comparison of the T cell penetration. 

Cell concentrations from flow cytometry (A) and 3D analysis (B) show that the vaccine and 

combination treatments encourage an influx of T cells into the tumour. This is emphasised by the 

increase in T cells in the interior portion of the tumour compared to the exterior (C). * is for a p value 

< 0.05, ** is for a p value < 0.005, blue bars show significance between the interior samples from 
each treatment group, black bars show the significance between the interior and exterior samples of a 

single treatment group. 
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Figure 44. B cell and HEV concentrations inside the tissue samples. 

A) Treatment has no significant effect on the concentration of B cells in the tumour space. B) Anti-

PD1 shows a tendency to reduce the concentration of HEVs in the sample. * is for a p value < 0.05. 

3.4.3. Combination treatment increases the concentration of TLS in the tumour 

Optically cleared tumour sections were scanned for small volumes 

(100x100x100 µm cube) that contained all three cell types (Figure 45A, B, C). 

Previous studies have used T cells, B cells, and HEVs, together and individually, to 

identify TLS in tissue samples. 193-194,196-198,201 Based on a meta-analysis of previously 

published data and images, TLS must consist of at least 10 B cells, 20 T cells, and 5 
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HEV within the defined scanning volume (Figure 46). Using these criteria, the 

MATLAB program identified TLS in each sample. Even with the concentrations of 

HEV and B cells remaining relatively constant (Figure 44), tumour sections treated 

with the vaccine therapy alone showed a significant increase in the concentration of 

TLS present within the overall tissue. Tumours treated with the combination therapy 

also saw an increase in TLS concentration but with a large variation (Figure 45D). The 

increase in T cell concentration correlates well with the increase in TLS concentration. 

When the interior and exterior sections were examined separately, the reason for the 

TLS concentration variation in the combination treatment group is made apparent. The 

concentration of TLS in the interior sections of the combination treated tumours 

showed a substantial increase over all other non-vaccinated groups whereas the 

exterior of the combination treatment tumours had the lowest TLS concentration of all 

groups (Figure 45E). The variance of the TLS concentrations in the exterior samples 

of all treatment groups were too large to illuminate any significant changes. This may 

be due to the differing tumour growth patterns (Figure 39A) and the heterogeneity that 

comes with each tumour and each patient. 3In theory, having TLS in the interior 

regions of the tumour mass decreases the lag time between immune cell 

communication. These local immune cell hubs provide quick and unfettered access to 

crosstalk for immune cells fighting cancer which could be major contributor to the 

slowed tumour growth. 
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Figure 45. TLS identification and concentration inside tumour samples. 

Area detected by the software to be TLS (A), shown in a 2D slice (B) and in a digital representation 

(C) showing CD3+ (magenta), B220+ (red), and HEV (green). The overall average number of 

TLS/mm3 (D) and the comparison of the interior and the exterior of the tumour (E). Scale bar 
represents 100 µm. * is for a p value < 0.05, blue bars show significance between the interior samples 

from each treatment group, black bars show the significance between the interior and exterior of a 

single treatment group. 
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Figure 46. TLS meta-analysis. 

A meta-analysis was conducted on a previously reported intratumoural TLS to determine minimum 

cell counts inside the given area. Cells were counted inside of white reference squares (100 µm in 

length). The top left box contains approximately 19 CD20 B cells, 12 CD8 T cells, and 5 HEVs. The 

top right box contains approximately 17 CD20 B cells, 22 CD8 T cells, and 3 HEVs. The bottom left 

box contains approximately 14 CD20 B cells, 24 CD8 T cells, and 6 HEVs. The bottom right box 

contains approximately 16 CD20 B cells, 20 CD8 T cells, and 4 HEVs. The threshold was set at 10 B 

cells, 20 T cells, and 5 HEVs. Scale bar represents 100 µm. Reproduced with permission from The 

Journal of Immunology. 195 

3.5. Discussion 

The presence of TLS in tumour masses have a positive association with 

improved patient outcomes. 199 In this study, it was seen that TLS are associated with 

slowed tumour growth progression. Moreover, it was characterized how three 

immunotherapies modify the immune environment inside tumour masses. When 

treated with both anti-PD1 and the PSM/peptide BMDC vaccine, there was an increase 

in the concentration of TLS which associated with decreased tumour growth. This 

work parallels work done by Zhu et al. where they reported that the formation of TLS 

in the tumour space is associated with a decrease in PD1+ CD8+ T cells and together, 

they suppress tumour growth. 208 The increase in TLS concentration caused by the 

combination treatment may lead to a continuous, long-term activation of the immune 

system, and possibly, to an established cancer immunity, as was seen in the study by 

Xia et. al. 179 
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Xia et. al. have previously reported that the PSM/peptide BMDC vaccine can 

alter the tumour microenvironment, making it more receptive to immune recognition 

and creating a pro-inflammatory environment. 179 The results presented here support 

this claim, finding an increased influx of T cells into the tumour and an increased 

concentration of TLS following application of the vaccine. Subcutaneous (s.c.) 

injections of DC vaccines have been reported to incite the formation of TLS at the 

vaccination site in mice with B16 melanoma. 209 While the s.c. injection would, in 

theory, keep a large portion of the DCs well confined in one area, increasing the 

potency of cellular signals to attract other immune cells to the area, the use of i.v. 

injection allows primed BMDCs to quickly spread throughout the entire body. As these 

primed BMDCs pass into lymph nodes, they present the loaded tumour antigens to 

other immune cells and allow tumour-specific T cells to activate and expand, 

eventually leading to TLS development in and around the tumour. Future 

biodistribution studies following the injected BMDCs are necessary to elucidate the 

development of these TLS in connection with where the BMDCs go and what types of 

cells they are communicating with. Another study should focus on confirming these 

results using immunohistochemistry, the gold standard of tissue staining. While 

iDISCO is a validated technique for immunostaining and imaging large tissue sections, 

the addition of histology slides would go a long way to support these claims. These 

studies are currently being run on a separate in vivo study to replicate these results and 

provide additional insight into the development of TLS.  

TLS have generally been identified by observing a clustering of certain types 

of cells and/or gene expression in a small area. 199 At the time of this publishing, there 

are no defined cell concentrations in place for an immune structure to be considered a 

TLS. After analysing immunofluorescence images from published works on TLS, 195 

it was concluded that a TLS could be identified when, inside a 100x100 µm area, there 

are at least 10 B cells, 20 T cells, and 5 HEV. This pattern also had to continue for at 

least a continuous 200x200 µm area to be of a size with the smaller TLS seen in 

literature. 195  In the same Engelhard review, they mention regions that may be 

precursors to a TLS (Figure 28F). Another metanalysis was done on these regions and 

it was observed that 2 B cells, 10 T cells, and 5 HEVs would fit inside the 100x100 

µm search area (Figure 47A). The same software was used to analyse the samples used 
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in this study for these precursor TLS (Figure 47B). Yet again, the combination 

treatment group showed an advantage over the other treatment methods, except for the 

PBS group which had one significant outlier which brought the mean up and increased 

the variation. A well-defined trend develops in both the interior and exterior samples, 

which correlates well with the tumour growth curves. 
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Figure 47. TLS precursors. 

A) In the TLS precursor metanalysis, cells were counted inside of white reference squares (100 µm in 

length). The left box contains approximately 3 CD20 B cells, 13 CD8 T cells, and 6 HEVs. The right 

box contains approximately 4 CD20 B cells, 16 CD8 T cells, and 7 HEVs. The threshold was set at 2 

B cells, 10 T cells, and 5 HEVs. Scale bar represents 100 µm. Reproduced with permission from The 
Journal of Immunology. 195 B) TLS precursor concentration averages in both interior and exterior 

samples combined. C) TLS precursor concentration averages in interior and exterior samples 

separately. 
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Another way of identifying TLS is by identifying the organizational structure 

of immune cells such as a B cell follicle surrounded by T cells, which resembles lymph 

node architecture. However, this structural definition might be too strict and miss 

detection of TLS in the interior of tumour masses. As seen by Engelhard et. al., 195 

intratumoural TLS are not nearly as well structured as when the TLS forms 

peritumourally or elsewhere in the body. This could be due to the increased density of 

cells within the tumour which would affect the ability of the immune cells to 

manoeuvre and position themselves. Thus, the search is not restricted to immune cell 

clusters that match the classical TLS organisational definition. While a 2D analysis by 

immunohistochemistry is common for finding the cellular composition of tissue 

samples, 3D imaging techniques collect uninterrupted continuous data without the 

risks of undersampling the tissues. 2D imaging has the chance of being out of 

alignment with the structure of interest, leaving only a small portion of the structure 

visible in any frame. If enough 2D slices are collected, a digital reconstruction could 

be formed to build a similar 3D volume, but each additional step increases the 

probability of a mistake. While the 3D sample preparation takes longer than a 

conventional tissue slide, tissue clearing is well-suited for searching for small 

structures inside a large volume. 

When selecting the tumour sections for analysis, tumour samples were 

meticulously split into two groups, interior and exterior samples. Interior samples are 

used to investigate the immune response in the necrotic core of the tumour sample. 

Due to the rapid growth of the tumour, the core tends to become hypoxic and nutrient 

deficient and would therefore consist of more dead or dying tumour cells. 210 The 

exterior group of tumour sections are from the portion of the tumour that borders 

healthy tissue. These cells and the space around them should have an ample supply of 

nutrients and oxygen with which to continue multiplying and expanding. Due to the 

differences in the end tumour volumes between the treatment groups, it is difficult to 

compare the interior and the exterior sections without questioning if the results are 

volume driven. One mitigation for this quandary was to inoculate a second group of 

control mice eleven days after the other mice treatment groups were inoculated. This 

second control treatment group ended the study with similar tumour sizes to the 
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vaccinated and combination treatment groups and were therefore considered 

comparable for analysis with the other treatment methods.  

An interesting trend appeared with the switch between interior and exterior T 

cell concentrations. The untreated and anti-PD1 samples showed a higher 

concentration of T cells in the exterior of the tumour mass than the interior. Yet both 

the groups treated with the BMDC vaccine had a higher concentration of T cells in the 

interior of the tumour mass. Although without further staining, it is unknown whether 

these are cancer promoting T cells (regulatory T cells) or cancer supressing T cells 

(Cytotoxic, helper, natural killer, or memory). Building evidence supports the positive 

prognostic value of tumour-infiltrating leukocytes and has claimed that they are 

necessary for a sustained and effective immune response in breast cancer. 212-213 The 

increase in intratumoural T cell concentration correlating with the shrinking tumour 

volume in the combination treatment group corroborates this claim. The increase in 

the T cell concentration in the core of the tumour could be related to the concentration 

of tumour cells in that area. Once the T cells have been activated by the HER2 antigen, 

they seek out areas of disease or inflammation. The tumour microenvironment is rife 

with inflammation which helps the tumour grow and spread. 214 For the purpose of this 

vaccine, the inflammation is an advantage that allows the newly activated T cells to 

penetrate the deepest areas of the tumour mass. By merging the BMDC/HER2 antigen 

vaccine with anti-PD1 checkpoint inhibition, it allows the T cells to attack cancer cells 

that are presenting PD-L1. Once these cells have undergone apoptosis, a positive 

feedback loop would be created to attract and activate more immune cells in the area, 

leading to a more efficient recruitment and development of TLS in the tumour space.  

In conclusion, treatment with the BMDC vaccine combined with an anti-PD1 

checkpoint blockade therapy can produce a strong, anti-tumour effect. This effect 

coincides with an increase in the presence of intratumoural TLS which are associated 

with positive patient prognoses. A new method for detecting TLS in large tissue 

samples was devised and these techniques were used to shed a new light on the 

connection between vaccines and TLS, as well as to accentuate the importance and 

value of 3D imaging. 
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4. ANALYSIS OF FLUORESCENCE IMAGING OF STAINED RED BLOOD 

CELLS WITH SIMULTANEOUS RESONANCE RAMAN 

PHOTOSTABILITY ANALYSIS

4.1. Introduction 

Biomedical optical imaging has been revolutionized by recent developments 

in light sources and spectroscopic techniques. 215-217  For example, fluorescence and 

Raman spectroscopies have been widely used in imaging a variety of biological 

systems including single biomolecules, cells, tissues, and whole organisms. 218-220 

Different spectroscopic techniques have advantages and disadvantages which are often 

complementary and can be used selectively or combined to address specific problems. 

Fluorescence signals are typically orders of magnitude stronger than Raman signals. 

However, biological systems often lack chemically-specific fluorescence signals in the 

visible spectral range and require fluorescent dye staining to improve the imaging 

contrast. Staining complicates the experimental preparation process and may influence 

biological functions. 221 On the other hand, Raman spectroscopy is label-free, allowing 

study of the sample in its native state. Weak Raman signals may be enhanced using 

methods such as surface enhancement, coherence, or, as used here, electronic 

resonance effects. In resonance Raman scattering, the incident laser wavelength is 

aligned with the electronic transition of the molecule of interest. The transfer of energy 

between the photon and the molecule allows the molecule to bypass the virtual state 

up to the excited electronic state (Figure 48C). Resonance Raman scattering can 

increase the polarizability of the molecule and subsequently, the Raman intensity can 

also increase by up to a factor of 106. Both fluorescence and resonance Raman imaging 

benefit from high intensity lasers, which can lead to laser-induced sample damage and 

disruption of biological functions. Photobleaching is caused by photon-induced 

chemical damage or covalent modifications. 222 To perform bioimaging using these 

techniques, the effects of the laser intensity on the photostability of biomolecules and 

live cells must be precisely determined. The challenges of rapid non-destructive 

spectroscopic imaging in biological media require developing new approaches for 

simultaneous bioimaging and estimation of the cell stability due to possible 

photodamage.  
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Figure 48. Jablonski diagram. 

This figure is a reproduction of Figure 1 from the Introduction. Excitation (blue) and 
emission/relaxation (red) for Stokes Raman scattering (A), Anti-Stokes Raman scattering (B), 

resonance Raman scattering (C), fluorescence (D), and two-photon excitation fluorescence (E). The 

numbers represent the vibrational levels within the electronic states. 

Here, optical imaging of simple stained cells, i.e. rhodamine 6G stained red 

blood cells (R6G-stained RBCs), is performed using a combination of fluorescence 

and resonance Raman scattering. R6G is a typical fluorescent dye used as the lasing 

gain media and for the staining of biological systems. 223-224 It is also a common Raman 

reporter molecule used for improving the Raman imaging contrast and as a Raman 

marker in biosensing. 225-228 R6G was specifically chosen because its fluorescence and 

resonance Raman signals are both relatively strong and may be obtained using 532 nm 

laser excitation. A simple biological cell, RBC, whose main constituent protein 

component, haemoglobin (Hb), was selected to provide a strong resonance Raman 

signal upon 532 nm laser excitation which coincides with the fluorescence and 

resonance Raman signals of R6G. By staining the RBC with R6G, a stained biological 

model system was designed which can be used for multi-component bioimaging within 

a single experimental setup using a single excitation source. This approach allows 

simultaneous exploration of several effects including fluorescence and resonance 

Raman bleaching of the stain, and photostability of the biological system.  

RBCs are critical for the transport of oxygen to the cells in the body. They 

provide an ideal platform to study oxygenation capability using resonance Raman 
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spectroscopy. 229-232 Laser-induced photodamage in RBCs has also been probed using 

Raman spectroscopy. 233 Bleaching of the fluorescence of R6G can be precisely 

controlled and monitored by tuning the laser intensity. Using this control parameter, 

Hb Raman signals are detected in the presence of the strong R6G fluorescence, and 

R6G Raman signals in the presence of a strong Hb Raman contribution. Since R6G 

forms a thin monolayer on the surface of RBCs, its Raman signal is weak compared to 

Hb which fills the interior of the cells. However, since R6G has a larger absorption 

coefficient and higher bleaching decay rates than Hb, the bleaching of both 

fluorescence and resonance Raman signals of R6G are achieved before any noticeable 

changes in the Raman spectra of Hb occur. 234 The competition between these resonant 

signals allows the detection of R6G and Hb in the RBCs under various conditions 

while probing the photostability of stained RBCs. These results provide a step towards 

improving real-time multicomponent cellular imaging with high resolution and 

simultaneous photostability control. 

4.2. Materials and methods  

This work was a collaboration between students at Swansea University (SU) 

and Texas A&M University (TAMU). The experiment was performed by members of 

the Meissner lab and the Sokolov lab at TAMU and the data processing was completed 

by me at SU. Their experimental methods are reported below to give a complete report 

of this experiment and to provide a basis for the data analysis. 

4.2.1. Cell Staining 

As performed by students at TAMU. Whole bovine blood was provided by the 

Veterinary Medical Park, TAMU. 5 ml of blood was centrifuged at 9000 RPM for 5 

minutes to separate the plasma, buffy coat, and RBCs. The buffy coat consists of 

leukocytes and platelets (Figure 49). The supernatant plasma and the buffy coat were 

pipetted off and discarded. RBCs were resuspended in 10 mL of phosphate buffered 

saline (PBS) and to ensure only RBCs remained, centrifuged at 9000 RPM for 3 

minutes and the supernatant was again discarded. RBCs were stained with 1 mM R6G 

in PBS for 5 minutes at room temperature. R6G adsorbs onto the membrane of RBCs 

due to its lipophillic nature 223 and forms a stained cell (Figure 50A). At this point, 

RBCs were split into two groups. Half of the RBCs were air dried on a glass slide and 
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then imaged immediately (referred to as “fresh” cells). The other half were stored at 

4°C for 1-week and then air dried on a glass slide and imaged (referred to as “1-week 

old” cells). The RBCs underwent a week long storage at 4°C to ensure the cellular 

system stabilized after the effects of short term (a few hours) cell degredation in 

ambient conditions.  

 

Figure 49. RBC collection and staining. 
Bovine RBCs were centrifuged to separate the different cell types. The plasma, white blood cells, and 

platelets were removed with a pipette. Purified RBCs were resuspended in PBS and stained with R6G. 

Green stars represent the R6G. 

4.2.2. Raman Spectroscopy 

As performed by students at TAMU. A Raman confocal microscope (LabRAM 

HR Evolution, Horiba, Kyoto, Japan) was used to image the cells with a 532 nm 

excitation laser focused to a spot size of ~1 µm. Optical brightfield microscopy images 

were taken of unstained and R6G-stained RBCs to identify morphological changes 

from staining. An unaltered RBC typically presents a donut shape (Figure 50B) 

whereas a stained RBC will lose this shape and become more spherical due to 

echinocytosis (Figure 50D), which is common in stained bovine blood smears. 234 A 

representative spectrum for both an unaltered RBC and a R6G-stained RBC were 

created from the same cells imaged in the brightfield (Figure 50C and E, respectively). 

These spectra were obtained by integrating over the whole area of the cell with 1 

second of exposure time. 
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Figure 50. Overview of RBC staining and imaging.  

(A) Schematic of the R6G-stained RBC preparation. Optical microscope images of RBC, 8×8 μm (B) 

and R6G-stained RBC, 10×10 μm (D) and the corresponding resonance Raman (C) and fluorescence 

(E) spectra. The spectrum of RBC is dominated by the resonance Raman signal of Hb, whereas the 

spectrum of R6G-stained RBC is dominated by the fluorescence of R6G (at low laser power). Scale 

bars represent 2 μm. Reproduced with the permission of The Royal Society of Chemistry. Analyst, 

2019, DOI: 10.1039/C9AN00757A – Reproduced by permission of The Royal Society of Chemistry. 
235 

4.2.3. Data processing algorithm 

To separate the overlapping fluorescence and resonance Raman signals of R6G 

and the RBC, a data processing algorithm was developed (using MATLAB (2015b)), 

which is included as a MATLAB script in the Appendices (Appendix D). An overview 

of the data processing algorithm is shown in Figure 51. To reveal the Raman peaks, 

the raw spectrum data at each pixel was truncated to a region (approximately 20 cm-1 

on either side of a peak) that encompasses the entirety of a single peak of interest (POI) 

for fitting. In addition to the 20 cm-1 on each side of the peak, an extra 10 cm-1 was 

included on each side to interpolate an accurate representation of any background 

around the POI such as that caused by neighbouring peaks or broad background 

signals. Background removal was done after filtering. In fluorescence fitting, it was 

assumed that there is only a single fluorescence peak in the spectrum. Therefore, the 
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raw spectrum data did not need to be truncated. If there were multiple fluorescence 

signals, the truncation function in the software could be used to isolate a single 

fluorescence peak. 

  

Figure 51. Data analysis process diagram. 

Overview of the data processing algorithm for separating and analysing the fluorescence and 

resonance Raman spectra (page numbers refer to the respective piece of code in APPENDIX D). 

Reproduced with the permission of The Royal Society of Chemistry. Analyst, 2019, DOI: 

10.1039/C9AN00757A – Reproduced by permission of The Royal Society of Chemistry. 235 

The truncated spectral data was then filtered with a Savitzky-Golay filter to 

remove noise while maintaining spectral integrity. Savitzky-Golay filters use a linear 

least squares polynomial fit of a chosen sized window and shift that window across the 

data set with the midpoint of each fit used as a new, filtered data point. Although a 
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boxcar filter’s averaging technique would help to remove the high frequency noise, it 

has a greater chance of levelling narrow peaks. Due to the polynomial nature of the 

Savitzky-Golay filter, the chance of levelling a peak is reduced 237 and, hence, 

Savitzky-Golay filters are used by most spectroscopic software packages. 238 Many 

combinations of filter orders and window sizes were considered before choosing a 4th 

order filter with a 21-point window as the best compromise between the noise 

reduction, spectral integrity, and spectral feature width.  

 

Figure 52. Graphical user interface (GUI) for the analysis software. 

This GUI was used to analyse and save all RBC images. 

A 3x3 pixel, next-nearest-neighbour spatial filter was then run over the entire 

image to reduce white noise. This filter weighs each point on the cell with its 8 closest 

neighbouring points to further reduce noise. Again, multiple variations of the nearest-

neighbour (weighted only with the 4 closest neighbours) and next-nearest-neighbour 

spatial filters were considered. A next-nearest-neighbour filter was chosen as the best 

method of reducing noise while still maintaining high frequency peaks in the spectrum 

with the centre weighted at 80% and the surrounding 8 pixels equally weighted at 

2.5%.  
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To remove background from Raman peaks caused by neighbouring Raman 

peaks and broader fluorescent signals, a linear function was used to fit the background 

between the combined 20 cm-1 of extra points (10 cm-1 from both the beginning and 

end of the data set). This fit was then subtracted from the truncated data set to eliminate 

any background created by fluorescence or neighbouring Raman peaks. A fitting 

function was used to extract information about the POI from the spectrum. The data 

was fit with either a Gaussian or a Lorentzian function and 4 parameters were 

measured and plotted in the spatial domain: normalized magnitude, centre, width, and 

R2 (Figure 53). The “normalized magnitude” plot in Figure 53B shows where the 

vibrational signals corresponding to a chemical bond associated with the POI are 

concentrated. The “centre” plot in Figure 53C shows the location of the peak on the 

spectrum at each pixel. The “width” plot in Figure 53D was used to check for the 

uniformity of the Raman peaks throughout the cell. The “R2” plot in Figure 53E shows 

how well the Gaussian or Lorentzian functions fit the data. According to the R2 values 

in this experiment, the Gaussian function was a cleaner fit to the Raman POI. The 

Raman peak fit at 1589 cm-1 is shown in Figure 53.  
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Figure 53. Raman signal extraction and fitting functions. 

A) Simultaneous Raman scattering and fluorescence signal (blue) from an R6G-stained RBC (exposed 

to 532 nm laser at 0.2 mW for 0.1 seconds) with overlaid fitting curves of fluorescence at 555 nm 

(dashed red) and Raman scattering signal at 1589 cm-1 (dash-dotted green). B – E) the corresponding 

examples of the data processing software outputs identifying a Gaussian fit to a Raman peak around 

1589 cm-1. Reproduced with the permission of The Royal Society of Chemistry. Analyst, 2019, DOI: 

10.1039/C9AN00757A – Reproduced by permission of The Royal Society of Chemistry. 235 

To eliminate fits that did not correspond to Raman peaks, the width and R2 

values were checked at each pixel to ensure a narrow, well-fit Raman peak. If either 

the value of R2 was less than 0.2 or the width value was outside of the truncated 

boundaries, all four parameters at that pixel were set to zero (Figure 54A – C). When 

looking for a fluorescence peak, the fluorescence signal is much wider than any 

individual Raman peak and therefore, the impact of the Raman signal on the 

fluorescence fit is negligible. Also, since the entirety of the fluorescence signal is not 
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always collected in the range of this spectrum, subtracting the background has a chance 

of skewing the results. Therefore, no background was subtracted before fitting the data 

to a lognormal function, 

𝝐(𝒗̃) =
𝝐𝟎𝒃

𝒗̃−𝒂
𝐞𝐱𝐩(−𝒄𝟐) 𝐞𝐱𝐩 {−

𝟏

𝟐𝒄𝟐
[𝐥𝐧 (

𝒗̃−𝒂

𝒃
)]

𝟐

};                      Equation 11 

𝒗̃ > 𝒂, 

where a, b, and c are the parameters related to the position of the mode, 𝒗̃0 (cm-1), the 

half-width, H (cm-1), and the empirical measure of the skewness, ρ, by the equations, 

𝒄 =
𝐥𝐧 𝝆

√𝟐 𝐥𝐧 𝟐
,    Equation 12 

𝒃 = 𝑯
𝝆

𝝆𝟐−𝟏
𝐞𝐱𝐩 (𝒄𝟐),    Equation 13 

𝒂 = 𝒗̃𝟎 − 𝑯
𝝆

𝝆𝟐−𝟏
.    Equation 14 

Siano et al., among others, observed that a lognormal function is a better fit for 

the fluorescence spectrum than a Gaussian function due to its ability to mimic the 

Gaussian while also allowing for asymmetric shapes. 239 They were also able to use 

the function in Equation 11 to separate multiple fluorescent signals from one another 

when found in the same spectrum. Similar to the Raman image plots, the fluorescence 

image plots are composed of four subplots: normalized fluorescence intensity, 

asymmetry, width, and R2. If there is no fluorescence signal in the spectrum, an offset 

in magnitude of the filtered data would be likely where there is a significant 

contribution of the Raman signal. This is likely to occur because the background is not 

removed from the fluorescence data causing the “normalized fluorescence” plot to 

show a clear image of the cell even though the R2 values are near zero. Therefore, if 

the R2 value was less than 0.2, all the parameters associated with that pixel were set to 

zero (Figure 54D – F). This reduces the chances of a false positive identification of 

fluorescence in a spectrum. The “asymmetry” and “width” plots were both used to 

check uniformity across the cell. The R2 plot was used to identify how well the 

lognormal curve was fit to the data. A typical fluorescence peak fit is shown in Figure 
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53A. The variables a, b, c, and 𝜖0 were all free coefficients that MATLAB could adjust 

to fit the fluorescence peak. 

 

Figure 54. Comparison of R2 values for Raman and fluorescence signals. 

Any Raman fits with an R2 value below 0.2 (A) will have all parameters at that pixel set to zero. Peaks 

with R2 values of 0.30 (B) or 0.80 (C) can still be distinguished by eye and are therefore included in 

the study. Any fluorescence fits with an R2 value below 0.2 (D) will have all parameters at that pixel 
set to zero. Peaks with R2 values of 0.29 (E) and 0.81 (F) can still be distinguished by eye and are 

therefore included in the study. Rd lines indicate the best fit line for the sections shown. A-C use a 

Lorentzian fit function, D-F use a lognormal fit function. 

The filtered data from the fluorescence processing was also used to identify the 

pixels that encompassed the surface of the RBC, from which a spatially averaged 

spectrum for each cell was generated (Figure 58M – R). The Raman and fluorescence 

images were used to identify where the cell boundaries lie in terms of the pixels. Then, 

a rectangular area of the pixels that reside entirely within the cell were summed and 

averaged to create a spectrum plot that is representative of the cell. 

4.3. Results 

4.3.1. Filter optimization 

Choosing the correct filter can have a large influence on the sensitivity of the 

system. For Raman peaks, it is important to improve the signal-to-noise ratio (SNR) 

without losing the resolution on the peaks. By utilizing a Savitzky-Golay filter instead 

of a low-pass box car filter, the sharpness of the peaks was maintained (Figure 55). 
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Each coloured curve represents the collected spectrum at a single pixel associated with 

a location on the surface of the RBC. Only 9 pixels from the cells surface are 

represented in Figure 55 for clarity. The Raman shift of different compounds have the 

potential to be very close together and so if a filter widens a peak too much, 

information could be lost as the surrounding peaks coalesce. To compare the two, a 4th 

order Savitzky-Golay filter with a window size of 21 cm-1 was compared to a boxcar 

filter with a window size of 9 cm-1. Both filters reduced the background noise to a 

similar degree but the Savitzky-Golay filter is seen to maintain the sharpness of its 

peaks. This can be observed in the FWHM of the main 1589 cm-1 peak and the 

dampening of the smaller peaks surrounding it after filtering. The boxcar filter (Figure 

55B) produces an average FWHM of 5.9 cm-1 as compared to 5.0 cm-1 for the Savitzky-

Golay filter (Figure 55C). 

 

Figure 55. Comparison of spectral filters. 

Raman signals are not apparent in the unfiltered signal (A). A Savitzky-Golay filter (C) was chosen 

over a box car filter (B) because of its ability to maintain high frequency peaks while improving the 

SNR. Coloured lines represent the spectrums for each separate pixel. Only 9 pixels are represented 

here for clarity. 

A similar phenomenon occurs when the Savitzky-Golay filter parameters shift 

(Figure 56). When the window size is small, a large proportion of high frequency noise 

continues to pass through the filter. As the window size increases, the filter lets through 

less and less high frequency noise until eventually it begins to act like a box filter, 

removing all the high frequency components from the signal and widens the peaks. A 

low order Savitzky-Golay filter will have more low pass filter properties than a high 

order filter. In Figure 56, when a 2nd order filter with a window size of 41 cm-1 is run 
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over the spectrum, the FWHM of the fit function around the 1589 cm-1 peak increases 

from 8.0 to 11.1 cm-1, demonstrating that a low order filter with a large window size 

will eliminate all high frequency noise at the expense of spectral resolution. When an 

8th order filter with a window size of 11 cm-1 is run over the spectrum, the FWHM of 

the fit function around the 1589 cm-1 peak remains constant but the R2 value decreases 

from 0.86 to 0.68, demonstrating that a high order filter with a small window size will 

lessen the credibility of the software. In some scenarios, the overall effect of the filter 

can be very similar, such as when a 4th order, 11 cm-1 filter is compared with an 8th 

order, 21 cm-1 filter. The rationale behind this is that by doubling the size of the 

filtering window while also doubling the size of the order of the filter allows the same 

ratio of local maximum and local minimums per cm-1. These filters will act similarly 

in situations with lower frequency signals but change as the frequency of the signal 

increases. By compromising between the removal of high frequency noise and the 

dampening of sharp peaks, a 4th order filter with a window size of 21 cm-1 was selected 

for this study. 
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Figure 56. Comparison of Savitzky-Golay filter parameters. 

As the order of the Savitzky-Golay filter increases, it allows more high frequency signals to pass. As 

the window size increases, the peaks begin to flatten. Coloured lines represent the spectrums for each 

separate pixel. Flat lines are spectra from pixels that were not on the RBC. 

Spatial filters are also employed to help eliminate extraneous background noise 

and increase the SNR (Figure 57). Nearest neighbour and next nearest neighbour 

spatial filters did not show a distinguishable difference in this study, only observing a 

change from 0.86 to 0.89 in the R2 values from fitting the 1589 cm-1 peak, respectively. 

The variation between the two systems was mainly seen between different weighting 

strategies. When the spatial filter gave uniform weight to all neighbours, a large 

portion of the random noise was removed while still maintaining the prominent peak 
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shapes, improving the R2 value of the fit around the 1589 cm-1 peak from 0.77 to 0.86 

with the nearest neighbour filter and from 0.78 to 0.89 with the inclusion of the next 

nearest neighbours. This filtering approach is adept at removing high frequency noise 

in systems where there is a constant concentration of the compound of interest across 

the entire cell. If relied upon too heavily, variations across the cell could be dampened 

and go undiscovered. For this reason, a next nearest neighbour filter, weighted 80% to 

the pixel of interest and 2.5% to the neighbouring 8 pixels, was adopted. This 

marginally boosted the SNR while also allowing variation to be discovered around the 

cell.  
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Figure 57. Comparison of spatial filters. 

Uniform spatial filters can reduce unique peaks that may be present in one part of the cell but not 

another, therefore reducing the resolution of the system. By expanding from nearest neighbour to next 

nearest neighbour, the chances of an individual having a large effect on its neighbours is reduced 

while some extraneous noise is removed. Coloured lines represent the spectrums for each separate 

pixel. Flat lines are spectra from pixels that were not on the RBC. 

4.3.2. Photobleaching unveils Raman signal 

To investigate the effects of the laser power on imaging and photodamage, 1-

week old cells were selected to suppress the effects of early aging during the imaging 

process. Due to the relative weakness of the Raman signals, the complete acquisition 

of all the spectroscopic images for one cell using all the different laser powers takes 

several hours. Therefore, it is desirable to select a cell which has already been aged for 

several days to eliminate the effects of early cell aging and degradation. To evaluate 
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the photostability of the stained cells, spectroscopic measurements were performed on 

1-week old, R6G-stained RBCs using 532 nm laser excitation. The combined 

fluorescence and resonance Raman spectra of each cell were obtained with 1 second 

accumulation time at 0.2 µW, 2 µW, 20 µW, 75 µW, 0.2 mW, and 0.3 mW laser 

powers consecutively on the same cell (Figure 58). Due to the consecutive nature of 

these experiments on the same cell, the total, cumulative energy that the cells were 

subjected to was larger than the dose from the current laser power ( 

Table 6). The spectra were integrated over the whole cell and show a large 

contribution of the R6G fluorescence at low laser powers. As the laser power 

increased, the fluorescence was gradually photobleached and the Hb and R6G Raman 

signals started to become more prevalent (Figure 58M – R). The corresponding 

fluorescence (555 nm) and Raman (1589 cm-1 band) images (Figure 58 A – F and 

Figure 58 G – L, respectively) show the normalized magnitude of their respective peak 

at each pixel across the cell. These images reveal the anti-correlated dependence of the 

two signals on laser power. Both the fluorescence and the Raman cell images are 

clearly recognizable in the 75 µW laser power with 1 second accumulation time 

(Figure 58D and J), providing the optimal compromise of SNR for the two signals. 

Therefore, a fresh, unstained RBC at 75 µW laser power (Figure 59) was chosen as the 

control for the data analysis throughout this paper. All reported ratios are in 

comparison to this control. 
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Figure 58. Photostability of the R6G fluorescence. 

Resonance Raman (A – F) and fluorescence (G – L) images and their corresponding spectra (M – R) 

of the 1-week old, R6G-stained RBC. The images were obtained by fitting a gaussian curve to the 

1589 cm-1 Raman band of Hb in (A – F) and fitting a lognormal curve to the 555 nm fluorescence 

band of R6G in (G – L) at each pixel and displaying the normalized peak magnitude of each fit as a 

colour map. The spectra and images show the gradual transition between the fluorescence and Raman 

signals as a function of the laser power that was varied from 0.2 µW to 0.3 mW on the sample. 
Reproduced with the permission of The Royal Society of Chemistry. Analyst, 2019, DOI: 

10.1039/C9AN00757A – Reproduced by permission of The Royal Society of Chemistry. 235 
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Table 6. Cumulative dose at each power level. 

Each cell was consecutively exposed to lasers of increasing power creating a larger energy dose per 

cell. 

Laser Power (µW) Cumulative Dose (J/cm2) 

0.2 20 

2 220 

20 2,220 

75 9,720 

200 29,720 

300 59,720 

 

The spectrum and images at the 75 µW laser power show clear signatures of 

the broad R6G fluorescence band at 555 nm and narrow Raman peaks of Hb (Figure 

58D, J, and P). For higher laser powers, the florescence signal of R6G is photobleached 

(Figure 58Q and R) and the Raman signals dominate. The spectral analysis and band 

assignment were performed based on the previous work performed on RBCs 240-243 and 

R6G. 244 Raman bands corresponding to 17 unique vibrational transitions were 

identified.  

Table 7 shows the measured Raman shifts and band assignments for the Raman 

spectra of the unstained RBC control at 75 µW laser power, the fresh, R6G-stained 

RBC at 75 µW and 0.3 mW, and the 1-week old, R6G-stained RBC at 75 µW, 0.3 

mW, and 0.9 mW. These Raman shifts were obtained by the fitting procedure 

described above in the data analysis section.  

Table 7 also shows that the Raman shifts fluctuate within several cm-1of their 

true centre value. These small aberrations are likely due to overlap between 

neighbouring signals and the fluorescence background. However, the relative 

separation between the vibrational transitions is on the order of tens of cm-1 which 

allows them to be clearly distinguishable. 
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Table 7. Raman shifts and band assignments. 

Raman shifts (in cm-1) and band assignments of the unstained RBC control at 75 µW laser power 

(control), the fresh, R6G-stained RBC at 75 µW and 0.3 mW, and the 1-week old, R6G-stained RBC 

at 75 µW, 0.3 mW, and 0.9 mW. (Abbreviations: ν, ip: in plane mode, ϒ, op: out of plane mode, str: 

stretching). Reproduced with the permission of The Royal Society of Chemistry. Analyst, 2019, DOI: 

10.1039/C9AN00757A – Reproduced by permission of The Royal Society of Chemistry. 235
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 Unstained 

RBC at 

75 μW 

(control) 

Fresh, 

R6G-

stained 

RBC at 

75 μW 

Fresh, 

R6G-

stained 

RBC at 

0.3 mW 

1-week 

old, 

R6G-

stained 

RBC at 

75 μW 

1-week 

old, 

R6G-

stained 

RBC at 

0.3 mW 

1-week 

old, 

R6G-

stained 

RBC at 

0.9 mW 

RBC band 

assignment  
 

R6G band 

assignment  
 

1 748 749 749 747 747 747 ν15, ϒ1 -- 

2 760 764 762 760 760 759 ν15, ϒ1 -- 

3 768 768 774 771 773 771 -- C-H op 

bend 

4 1129 1131 1132 1129 1128 1129 ν5 C-H ip bend 

5 1144 1148 1146 1145 1146 1146 ν14 -- 

6 1156 1165 1156 1154 1157 1165 ν44 -- 

7 1173 1173 1172 1170 1171 1172 ν30 -- 

8 1307 1312 1311 1308 1307 1308 ν21 Aromatic C-

C str 

9 1339 1346 1344 1343 1340 1341 ν41 -- 

10 1360 1368 1364 1360 1360 1360 ν4
d Aromatic C-

C str 

11 1374 1380 1376 1373 1374 1372 ν4 -- 

12 1395 1401 1399 1397 1395 1396 ν20 -- 

13 1544 1547 1549 1546 1544 1545 ν11 -- 

14 1559 1565 1564 1563 1561 1560 ν2 -- 

15 1587 1590 1589 1587 1586 1586 ν37 -- 

16 1625 1625 1625 1625 1625 1625 ν10, ν 

(C= =C) 

-- 

17 1641 1641 1643 1640 1640 1640 -- Aromatic C-

C str 

 

4.3.3. R6G is successfully attached to RBCs  

Figure 59 shows a comparison of the Raman spectra of the unstained RBC 

control with the fresh R6G-stained RBC at 75 µW laser power. All spectral band 

intensities were normalized to the maximum of the 1589 cm-1 band, which was the 

highest intensity band observed in all the spectra in this work. The signals of the R6G-

stained RBC show strong bands at 770 cm-1 (peak 3) and 1645 cm-1 (peak 17) relative 
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to their neighbouring peaks. These peaks are attributed to the C-H out-of-plane mode 

bending and the aromatic C-C stretching of the R6G, respectively. The ratios of the 

other bands attributed to an RBC in the 1500 – 1650 cm-1 spectral range do not 

noticeably change, instead remaining at a ratio very close to 1:1, indicating the R6G 

staining does not adversely affect the Raman spectra of the RBC. 240 

 

Figure 59. RBCs with and without R6G. 

Raman spectra of the unstained RBC control (A – D) and fresh R6G-stained RBC (E – H) normalized 

to the intensity of the 1589 cm-1 band at 75 µW laser power show the absence of the significant 

staining effects on RBC. The observed strong intensities of bands 3 and 17 are attributed to the 

resonance Raman signals of R6G. The blue dots represent the filtered intensity data, the red line 

represents the best-fit of the data, and the black gaussians represent the components that sum together 
to create the red, best-fit line. Peak height ratios of the normalized peak intensities of the fresh R6G-

stained RBC to the normalized peak intensities of the unstained RBC control at 75 µW were 

computed (I – L). Reproduced with the permission of The Royal Society of Chemistry. Analyst, 2019, 

DOI: 10.1039/C9AN00757A – Reproduced by permission of The Royal Society of Chemistry. 235 

4.3.4. Aging may reduce the intensity of the Raman signal 

Figure 60 presents the Raman spectral analysis of aging effects on the R6G-

stained RBC samples at 0.3 mW excitation. The 0.3 mW laser power was used to 

lessen the influence of the fluorescence peak via photobleaching and only characterize 
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the ageing effects on the Raman signals. All spectral band intensities were normalized 

to the maximum intensity of the 1589 cm-1 band. No significant changes were observed 

in the Raman spectra of the 1-week old, R6G-stained RBC compared to the fresh R6G-

stained RBC in the 1500 – 1650 cm-1 spectral range, except for a small reduction of 

the intensity of the R6G band 17. However, changes in the relative ratios of the bands 

in the other three spectral ranges, namely, the 730 – 780 cm-1 (Figure 60A and E), 1120 

– 1180 cm-1 (Figure 60B and F), and 1300 – 1400 cm-1 (Figure 60C and G) ranges 

were observed to mainly increase relative to the unstained RBC control at 75 µW  

(Figure 60I – K). Since there is no fluorescence to bleach in the unstained RBC, it 

works well as a control for this experiment. The only two peaks that showed a decrease 

in their ratio were peak 3 and 17 which were earlier identified as R6G specific peaks. 

It is possible that resuspending the RBCs and storing them for an extra week created 

an extra-long washing step that the fresh cells weren’t subjected to, leading to a 

decrease in the amount of R6G on these RBCs. This could also lead to a decrease in 

the overall fluorescence of the system, allowing the Raman peaks of the RBC to 

become more pronounced in the regions that heavily overlap with the fluorescence 

signal. This would also explain why there is very little change in the 1500-1650 cm-1 

region, as the effect of the fluorescence is already limited in that region. 
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Figure 60. Fresh and 1-week old, R6G stained RBCs compared to unstained control. 

Raman spectra of the fresh (A – D) and 1-week old (E – H), R6G-stained RBCs at 0.3 mW laser 

power normalized to the intensity of the 1589 cm-1 band show the absence of relative differences to 

their neighbouring peaks due to aging of the stained RBCs. 0.3 mW laser power was used to lessen the 

influence of the fluorescence peak and only characterize the ageing effects on the Raman signals. The 

blue dots represent the filtered intensity data, the red line represents the fit of the data, and the black 

gaussians represent the components that sum together to create the red, best-fit line. Peak height ratios 

of the normalized peak intensities of the fresh and 1-week old, R6G-stained RBCs at 0.3 mW laser 
power to the corresponding normalized peak intensities of the unstained RBC control at 75 µW 

(Figure 59A – D) show a trend for RBC Raman peaks to become more defined at lower Raman shift 

levels after aging (I – L). Reproduced with the permission of The Royal Society of Chemistry. 

Analyst, 2019, DOI: 10.1039/C9AN00757A – Reproduced by permission of The Royal Society of 

Chemistry. 235 

4.3.5. R6G Raman signal shows signs of photodamage at high laser intensities 

Figure 61 shows the Raman spectra of the 1-week old, R6G-stained RBC 

obtained at 75 µW (Figure 61A – D) and 0.9 mW (Figure 61E – H) laser powers, and 

the ratios of all tested laser powers to the unstained RBC control at 75 µW (Figure 61I 

– L). All spectral band intensities were normalized to the maximum intensity of the 

1589 cm-1 band. The spectra show a steady decrease in the relative Raman band 

intensities of the R6G bands 3 (at 770 cm-1) and 17 (1645 cm-1) relative to the unstained 
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RBC control (Figure 61I and L, respectively) as the laser power increases. As 

hypothesized previously, this may be attributed to the photobleaching of the R6G 

fluorescence and resonance Raman signals. The relative ratios of the other RBC bands 

do not change drastically with laser power, which reveals the photostability of the RBC 

Raman signals even after R6G-staining and consequent bleaching of the R6G signals. 

 

Figure 61. 1-week old, R6G-stained RBCs at varying power levels. 

Raman spectra of the 1-week old, R6G-stained RBC at 75 µW (A – D) and at 0.9 mW (E – H) laser 

powers normalized to the intensity of the 1589 cm-1 band show the absence of the significant laser 

power effects on the Hb signals of RBC and the significant spectral differences of the bands 3 and 17 
due to the photobleaching of R6G fluorescence and resonance Raman. The blue dots represent the 

filtered intensity data, the red line represents the fit of the data, and the black gaussians represent the 

components that sum together to create the red, best-fit line. Peak height ratios of the normalized peak 

intensities of the 1-week old, R6G-stained RBC at different laser powers to the normalized peak 

intensities of the unstained RBC control at 75 µW (Figure 59) show the gradual photobleaching of 

peaks 3 and 17 (I – L). Reproduced with the permission of The Royal Society of Chemistry. Analyst, 

2019, DOI: 10.1039/C9AN00757A – Reproduced by permission of The Royal Society of Chemistry. 
235 

4.4. Discussion 

When comparing the Raman signals between the stained and unstained cells 

(Figure 59), fresh and aged cells (Figure 60), and among the different laser powers 

(Figure 61), care must be taken for the quantitative analysis of the peak height ratios. 
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For example, the overall shapes of the Raman spectra of the stained and the unstained 

RBCs in Figure 59 are similar apart from peaks 3 and 17, which are attributed almost 

exclusively to R6G. The four strong Raman peaks (13 – 16 in the 1500 cm-1 – 1650 

cm-1 spectral range) do not show any significant changes with a peak ratio of ~ 1. 

However, the peak height ratios of the other peaks in the 1120 cm-1 – 1180 cm-1 and 

1300 cm-1 – 1400 cm-1 ranges are approximately two times smaller, and the peak height 

ratios are even smaller in the 730 cm-1 – 780 cm-1 range. These peak height ratio 

variations are attributed to the decrease of the SNR of the Raman signals extracted 

from the large background fluorescence. Indeed, the overlap between the Raman and 

fluorescence signals is strongest for the 730 cm-1 – 780 cm-1 range and weakest for the 

1500 cm-1 – 1650 cm-1 spectral range, as can be seen in Figure 53A. Therefore, it is 

concluded that the peak height ratios provide the most useful information when they 

are compared with neighbouring peaks in the same spectral range. The quantitative 

comparison of the peaks located in different spectral ranges should be limited and 

performed with care when a large contribution of background fluorescence is present. 

Similar effects are observed by comparing Raman spectra of the fresh and 1-

week old, R6G-stained RBCs in Figure 60. The overall spectral shape in all the spectral 

ranges remain consistent even though the peak heights vary. All peaks in the 1500 cm-

1 – 1650 cm-1 range maintain their peak ratio, except peak 17 which decreases slightly, 

probably due to a slow desorption of R6G during aging. Contrary to the results in 

Figure 59, most of the peaks in the 1120 cm-1 – 1180 cm-1 and 1300 cm-1 – 1400 cm-1 

ranges in Figure 60 become approximately two times stronger but do not change their 

relative peak ratios. This agrees with the interpretation of the partial masking of the 

Raman signals by the fluorescence background from R6G. During the cell aging, R6G 

partially desorbs, reducing the amount of fluorescence and, therefore, leads to the 

increase in the measured Raman signals of RBC.   

In summary, simultaneous spectroscopic bioimaging and photostability 

analysis of R6G stained RBCs was performed using fluorescence and resonance 

Raman scattering of 532 nm laser excitation. A data processing algorithm was 

developed for separating these signals and as a result, observed no significant 

photodamage of RBC under the complete photobleaching of R6G. Excitation laser 

power dependence was explored and spectral ranges were identified which provide 
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reliable spectroscopic signatures of RBC photodamage and R6G bleaching. This 

general approach may be used to investigate the photostability of different staining 

molecules by matching the corresponding excitation laser frequency or even applied 

to more complex systems such as leukocytes, cancer, and other types of cells to 

investigate the effects of cellular staining. Additionally, this approach can be extended 

to coherent Raman spectroscopy, such as coherent anti-Stokes Raman scattering 

(CARS), which will allow for the fast imaging of cells in a few seconds time which 

would decrease the effects of photobleaching. Finally, this approach may also be used 

to investigate photostability effects in cells and biomolecules using surface-enhanced 

Raman scattering (SERS) and surface-enhanced fluorescence (SEF) spectroscopies as 

well as their interplay, as these techniques are based on strong electric fields generated 

by the plasmonic nanoparticles. 
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5. SUMMARY OF CONCLUSIONS 

5.1. PSM Adhesion Kinetics 

In this work, the rolling speed and the adhesion kinetics of discoidal porous 

silicon microparticles (PSM) was investigated on endothelial cells by replicating the 

average shear rates seen in tumour microvasculature. As an initial study, static studies 

observed the effects of Brownian motion on the PSM. Without steric interactions 

created by either the gelatine basement membrane or the cells, particle motion was 

wholly subdued. Once steric interactions were introduced, PSM modified with the E-

selectin binding specific ESTA aptamer (E-PSM) consistently moved a smaller 

distance from their starting position than the SCR or the APTES modified PSM, 

indicating that attractive forces were at play causing a reduction in their overall 

displacement. When PSM were introduced to cells at a physiologically representative 

shear rate in a flow chamber, the E-PSM showed a propensity to roll slower on the 

surface of the cells than the other two PSM modification groups. Although when the 

total adhesion of PSM was considered, the APTES modified PSM were the most likely 

to stop and adhere to the cell surface. It is possible that this contradiction is the result 

of an electrical repulsion between the aptamer modified particles and the cell surface 

preventing the PSM from fully attaching to the E-selectin on the cell surface. Since the 

aptamer is conjugated to the APTES, another possibility could be that the linker arm 

between the PSM and the cell is long enough to allow flow to get between them and 

pry the PSM off.  

The development of this particle tracking software adds another tool to the 

biologist toolkit when studying drug delivery and attachment kinetics in flow. As 

previously discussed in the introduction, research is becoming more and more 

specialized as new methodologies are imagined and introduced into literature and 

common practice. By making this well commented software free and publicly 

available via GitHub, future scientists with a small amount of computer science 

understanding will be able to utilize it as is or adjust pieces as needed to fit their desired 

research analysis outcomes.  

Continuing efforts for this study have many avenues to still be pursued, 

especially because the experiments collected here do not seem to coincide with the 
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previous in vivo successes attributed to E-PSM. While the shear rates used in this 

experiment mimicked the average shear rates seen in tumours, the average value could 

still be too high for PSM to overcome. Studying the shear rate levels around the 

average would examine if PSM only adhere in the tumour vessels with the lowest shear 

rates. Another helpful area to expand upon would be the actual adhesion strength of 

the PSM to the cells. This could be studied by allowing the PSM to settle onto 

endothelial cells before gradually ramping up the flow speed. By tracking PSM that 

become detached from the surface, the adhesion strength can be calculated. Also, by 

varying the shape of the flow chamber, it would be possible to study the effect of vessel 

tortuosity on the PSM adhesion characteristics. The possibility of turbulence and sharp 

turns in the tumour vasculature could give PSM more chances to interact with the 

vessel walls. To properly replicate the environment inside the vessels, introducing a 

physiologically relevant concentration of RBCs or a particle of similar size and density 

would recreate the RBC free layer that microparticles are known to get trapped in. This 

layer keeps microparticles sequestered to a small gap between the RBC dense central 

region of the vessels and the vessel walls, increasing the likelihood of PSM-endothelial 

cell interactions. Finally, to investigate the possibility of electrical interactions 

interfering with E-PSM adhesion, the concentration of ESTA adhered to the surface of 

the PSM should be varied. ESTA and SCR are negatively charged aptamers, so by 

controlling its concentration on the surface of the PSM, the zeta potential can be tuned 

to different values. 

5.2. Tumour Vaccine TLS Development 

In this study, the use of optical tissue clearing and whole tissue imaging was 

explored to search for and define tertiary lymphoid structures (TLS) inside the tumour 

space. After performing a meta-analysis of previously studied tertiary lymphoid 

structures, a rough concentration of B cells, T cells, and HEVs were used to define the 

minimum requirements for a TLS. Before the writing of this Thesis, there have been 

no explicit cellular requirements defined to identify TLS. Using this definition, TLS 

were able to be identified and quantified inside the tumour space using the iDISCO 

whole tissue imaging technique. This process was applied to a study investigating the 

effectiveness of a DC cancer vaccine therapy developed by Dr. Haifa Shen’s lab at 

Houston Methodist Research Institute. When the DC cancer vaccine was combined 
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with an anti-PD1 checkpoint therapy, the number of TLS present inside the tumour 

space increased significantly. This also correlated with an improvement in the tumour 

growth curve and a decreased tumour size. The thought behind the increased TLS 

presence with the combination treatment is an avalanche theory. The cancer antigen 

primed DCs activate the immune system but the PD-L1 on the cancerous cells still 

prevents some of them from being attacked. Once the anti-PD1 is introduced, the 

immune system can freely target and destroy cancerous cells. Once the tumour mass 

has been identified, immune cells can signal a larger response from the host, eventually 

leading to the development of a TLS in the area of attack. 

Being able to identify TLS and other 3D cellularly defined structures with 

software, instead of with human eyes, could dramatically increase the amount of 

information available to doctors in a timely manner. Currently, all histopathology is 

individually analysed by a qualified pathologist on 2D slides. These slides rely on 

structures of interest being visible in all dimensions so that a pathologist could identify 

it from a 2D projection. By using the software designed here or others like it, the 

pathologist role could become one of supervision and affirmation. ImageJ has already 

been utilized by many scientists to speed up 2D histopathological analysis. 245-249 On 

top of all the time saved from digitizing 2D analyses, an analysis of a 3D sample allows 

for the software to identify structures, protein expression, and cellular density that 

could be missed by 2D analyses by eye. 3D tissue imaging does require longer 

processing times, but the amount of information gained from these methods would be 

substantial. 

Immunofluorescence histology would go a long way to further examine this 

phenomenon and move this work forward. Histology samples are the current standard 

for identifying TLS and so would help to validate these results and the analysis method 

itself. It would also be productive to identify where primed DCs go after they are 

injected into the bloodstream. It is assumed that some will make it to the lymph nodes 

where they can continue to activate the immune system against the cancer, but it could 

also be possible that some end up in the tumour and are the beginnings of these TLS. 

Another future project would be to optimize the staining protocol to increase the signal 

to noise ratio. Although information can be extracted from low SNR images, having 
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clear images pre-processing would allow for higher confidence in the analysis 

methodology. 

5.3. Simultaneous Collection of Overlapping Raman and Fluorescent Signals 

In this publication, a method was developed for identifying Raman and 

fluorescence peaks in simultaneous overlapping spectra. Using MATLAB, the 

fluorescence signal was able to be identified and subtracted from the spectra. Once 

that was accomplished, the resonance Raman peaks were visible and identifiable. The 

MATLAB software was utilized to explore the effects of photodamage on Raman, 

resonance Raman, and fluorescence signals inside an RBC. The resonance Raman and 

the fluorescence signals both showed photo damage from high laser power excitation 

sources. 

Until now, fluorescence signals have overwhelmed Raman signals and 

discouraged scientists from utilizing both imaging modalities in unison. By developing 

a methodology for uncovering the Raman signals from beneath the fluorescent signal, 

a new tool is now available to the scientific community. Fluorescence can be employed 

to identify cells of interest that are expressing a certain protein while the Raman 

uncovers compositional differences between the chemical structures inside the cell. 

One could even take a cell like that has been genetically modified to express a 

fluorescent protein and track the molecular changes in or around the cell as the 

fluorescent protein expression increases and decreases. 

Raman spectroscopy has been used to diagnose breast cancer in patients with 

94% sensitivity and 96% specificity. 250 By implementing the software developed here 

with that diagnostic method, fluorescent markers could be included that would allow 

for a more detailed diagnosis into what type of breast cancer might be present. This 

could also be combined with the optical clearing method from Chapter 3 to elucidate 

the host’s immune response inside the tumour mass. These techniques would give 

doctors pertinent information that will help them personalize the cancer therapy to each 

individual patient.  
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APPENDIX A 

Appendix A shows the data analysis software for the static chamber studies written 

in MATLAB (2018a). Full code downloadable from 

https://github.com/afishtex/APPLICATION-OF-OPTICAL-ANALYSES-TO-

CANCER-THERAPEUTICS-AND-DIAGNOSTICS. 

% Author: Andrew P. Fisher 

% Centre of NanoHealth, College of Science,  

% Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom 

  

  

%% load images 

date = 20171017; 

psm = 'APTES'; 
media = 'PBS\'; 

row = 1; 

col = 75; 

passage = 7; 

fileext = '.nd2'; 

obj = 20; 

umpxl = 0.18; %um/pixel at 20x 

psmSplit = strsplit(psm); 

if length(psmSplit) > 1 

    psmSplit{2} = [' ' psmSplit{2}]; 

else 
    psmSplit{2} = ''; 

end 

filepath = ['S:\Andrew_Fisher\Static Chamber\' num2str(date) '\Brownian Motion\'... 

    media psm '\']; %starting folder 

savepath = [filepath 'Analysis\']; 

xlsavepath = 'S:\Andrew_Fisher\Static Chamber\Particle Motion Analysis.xlsx'; 

numOfVids = 1; 

i = 1; 

while i <= numOfVids 

    %% load particle locations 

    %filenamestd = ['Stimulated P' num2str(passage) ' HUVEC w ' psmSplit{1}... 

        %' PSM ' num2str(obj) 'x ' num2str(i-1)]; 
    filenamestd = [psmSplit{1} ' PSM ' num2str(obj) 'x ' num2str(i-1)]; 

  

    myFileFolderInfo = dir([filepath '*' fileext]); 

    myFileFolderInfo([myFileFolderInfo.bytes] < 10000000) = []; 

    numOfVids = length(myFileFolderInfo); 

    filename = [filepath  myFileFolderInfo(i).name]; 

    res = [1440 1920]; 

    [filtBW, BWprops, times, delta, framerate] = ... 

        LoadVideoND2_v2(filename, filenamestd, savepath, res); 

    numberOfFrames = length(times(:,1)); 

    %rename bf images to all match 
    cellfilename = [filepath psmSplit{1} ' FITC' psmSplit{2} '.tif'];  

  

    cellimg = imread(cellfilename); 

  

    %% select and save roi 

    savename1 = [filenamestd ' roi.mat']; 



49 

 

    savename2 = [filenamestd ' masks.mat']; 

    if exist([savepath savename2], 'file') ~= 2 

        masks = CellMasks_v2(imresize(cellimg, res)); 

        roiF = getframe; 

        roiI = frame2im(roiF); 
        roi = imresize(roiI,res); 

        save([savepath savename1], 'roi'); 

        save([savepath savename2],'masks'); 

    else 

        load([savepath savename1]); 

        load([savepath savename2]);  

    end 

  

    %% track particles 

    savename4 = [filenamestd ' distances-20.mat']; 

    savename10 = [filenamestd ' numParticles-20.mat']; 

    if exist([savepath savename4], 'file') ~= 2 
        startloc = length(BWprops); 

        startparticles = 0; 

        distances = TrackParticle(BWprops, startloc, startparticles, startparticles, masks); 

        numParticles = max(distances(1,:)); 

        save([savepath savename4], 'distances'); 

        save([savepath savename10], 'numParticles'); 

    else 

        load([savepath savename4]); 

        load([savepath savename10]); 

    end 

     
  

    %% measure segment distances 

    savename5 = [filenamestd ' onDist-20.mat']; 

    savename6 = [filenamestd ' offDist-20.mat']; 

    savename7 = [filenamestd ' onCount-20.mat']; 

    savename8 = [filenamestd ' offCount-20.mat']; 

    if exist([savepath savename5], 'file') ~= 2 

        onDist = NaN(1,length(distances(1,:))); 

        offDist = NaN(1,length(distances(1,:))); 

        onCount = 0; 

        offCount = 0; 

        for k = 1:max(distances(1,:)) 
            tempdist = distances(:, distances(1,:) == k); 

            tempdistoncell = tempdist(:, tempdist(3,:) == 1); 

            tempdistoffcell = tempdist(:, tempdist(3,:) == 0); 

            if ~isempty(tempdistoncell) 

                for n = 1:length(tempdistoncell(1,:))-1 

                    if tempdistoncell(2,n) == tempdistoncell(2,n+1) - 1 

                        onCount = onCount+1; 

                        onDist(onCount) = tempdistoncell(4,n); 

                    end 

                end 

            end 
            if ~isempty(tempdistoffcell) 

                for m = 1:length(tempdistoffcell(1,:))-1 

                    if tempdistoffcell(2,m) == tempdistoffcell(2,m+1) - 1 

                        offCount = offCount+1; 

                        offDist(offCount) = tempdistoffcell(4,m); 

                    end 

                end 

            end 
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        end 

        onDist = onDist(~isnan(onDist)); 

        offDist = offDist(~isnan(offDist)); 

        onAvg = mean(onDist); 

        onStd = std(onDist); 
        offAvg = mean(offDist); 

        offStd = std(offDist); 

        save([savepath savename5], 'onAvg'); 

        save([savepath savename6], 'offAvg'); 

        save([savepath savename7], 'onCount'); 

        save([savepath savename8], 'offCount'); 

    else 

        load([savepath savename5]); 

        load([savepath savename6]); 

        load([savepath savename7]); 

        load([savepath savename8]); 

    end 
     

     

    %% Total Distance Travelled from origin 

    savename11 = [filenamestd ' totOnDistFromOrigin-20.mat']; 

    savename12 = [filenamestd ' totOffDistFromOrigin-20.mat']; 

    savename13 = [filenamestd ' meanOnDistFromOrigin-20.mat']; 

    savename14 = [filenamestd ' meanOffDistFromOrigin-20.mat']; 

    if exist([savepath savename11], 'file') ~= 2 

        totOnDistFromOrigin = nan(3,numParticles); 

        totOffDistFromOrigin = nan(3,numParticles); 

        for q = 1:numParticles 
            tempdist = distances(:,distances(1,:)==q); 

            if length(tempdist(3,:))>1 

                if nnz(tempdist(3,:)) == length(tempdist(3,:)) 

                    totOnDistFromOrigin(1,q) = q; 

                    totOnDistFromOrigin(2,q) = pdist([[tempdist(5,end) tempdist(6,end)];... 

                        [tempdist(5,1) tempdist(6,1)]]); 

                    %check to see if the particle moves farther than its longest 

                    %step to tell if the particle is stuck 

                    if totOnDistFromOrigin(2,q) <= 2*max(tempdist(4,:))  

                        totOnDistFromOrigin(3,q) = 1; 

                    end 

                elseif nnz(~tempdist(3,:)) == length(tempdist(3,:)) 
                    totOffDistFromOrigin(1,q) = q; 

                    totOffDistFromOrigin(2,q) = pdist([[tempdist(5,end) tempdist(6,end)];... 

                        [tempdist(5,1) tempdist(6,1)]]); 

                    %check to see if the particle moves farther than its longest 

                    %step to tell if the particle is stuck 

                    if totOffDistFromOrigin(2,q) <= 2*max(tempdist(4,:))  

                        totOffDistFromOrigin(3,q) = 1; 

                    end 

                end 

            end 

        end 
        totOnDistFromOrigin = totOnDistFromOrigin(:,~isnan(totOnDistFromOrigin(1,:))); 

        meanOnDistFromOrigin = mean(totOnDistFromOrigin(2,:)); 

        totOffDistFromOrigin = totOffDistFromOrigin(:,~isnan(totOffDistFromOrigin(1,:))); 

        meanOffDistFromOrigin = mean(totOffDistFromOrigin(2,:)); 

        save([savepath savename11], 'totOnDistFromOrigin'); 

        save([savepath savename12], 'totOffDistFromOrigin'); 

        save([savepath savename13], 'meanOnDistFromOrigin'); 

        save([savepath savename14], 'meanOffDistFromOrigin'); 
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    else 

        load([savepath savename11]); 

        load([savepath savename12]); 

        load([savepath savename13]); 

        load([savepath savename14]); 
    end 

     

  

    %% particle color changer 

    savename9 = [filenamestd ' filtBW.mat']; 

    if exist([savepath savename9], 'file') ~= 2 

        for p = length(distances(1,:)):-1:1 

            if distances(3,p) == 1 

                j = 1; 

                while j <= length(BWprops{distances(2,p)}) 

                    if BWprops{distances(2,p)}(j).Centroid(1) == distances(5,p) &&... 

                            BWprops{distances(2,p)}(j).Centroid(2) == distances(6,p) 
                        filtBW{distances(2,p)}(BWprops{distances(2,p)}(j).PixelIdxList+... 

                            (res(1)*res(2)))=1; 

                        filtBW{distances(2,p)}(BWprops{distances(2,p)}(j).PixelIdxList)=0; 

                        j = length(BWprops{distances(2,p)}) + 1; 

                    end 

                    j = j+1; 

                end 

                if j ~= length(BWprops{distances(2,p)}) + 2 

                    sprintf('if failed at %d, %d', p,j); 

                end 

            else 
                k = 1; 

                while k <= length(BWprops{distances(2,p)}) 

                    if BWprops{distances(2,p)}(k).Centroid(1) == distances(5,p) &&... 

                            BWprops{distances(2,p)}(k).Centroid(2) == distances(6,p) 

                        filtBW{distances(2,p)}(BWprops{distances(2,p)}(k).PixelIdxList+... 

                            (res(1)*res(2)))=0; 

                        filtBW{distances(2,p)}(BWprops{distances(2,p)}(k).PixelIdxList)=1; 

                        k = length(BWprops{distances(2,p)}) + 1; 

                    end 

                    k = k+1; 

                end 

                if k ~= length(BWprops{distances(2,p)}) + 2 
                    sprintf('else failed at %d, %d', p,k); 

                end 

            end 

        end 

        save([savepath savename9], 'filtBW'); 

    else 

        load([savepath savename9]); 

    end 

  

    %% save blended video 

    savename3 = ['color Blended ' filenamestd '.avi']; 
    if exist([savepath savename3], 'file') ~= 2 

        vw = VideoWriter([savepath savename3]); 

        vw.FrameRate = framerate; 

        open(vw); 

        for n = 1:numberOfFrames-1 %%change when changing folders 

            video = imfuse(roi,filtBW{n},'blend'); 

            writeVideo(vw, video); 

        end 
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        close(vw); 

    end 

    xlswrite(xlsavepath, {numParticles offAvg}, num2str(date), [char(col) num2str(row+i)... 

        ':' char(col+1) num2str(row+i)]); 

    xlswrite(xlsavepath, {offCount offStd}, num2str(date), [char(col+3) num2str(row+i) ':'... 
        char(col+4) num2str(row+i)]); 

    i = i+1; 

    clearvars distances filtBW BWprops roi roiIroiF video onDist offDist masks 

end 

  

  

function [ filtBW, BWprops, times, delta, framerate ] = ... 

    LoadVideoND2_v2( filename, filenamestd, savepath, res) 

%LoadVideoND2_v2 loads videos and identifies particles 

% 

    %% load particle locations 

    savename4 = [filenamestd ' particle locs.mat']; 
    savename5 = [filenamestd ' particle props.mat']; 

    savename6 = [filenamestd ' frame times.mat']; 

    savename7 = [filenamestd ' frame deltas.mat']; 

    if exist([savepath savename4], 'file') ~= 2 

        BWprops = cell(1,1); 

        delta = zeros(1,1); 

        reader = bfGetReader(filename); 

        %extract filter 

        datasize = reader.getImageCount(); 

        filtBW = cell(datasize,1); 

        BWprops = cell(datasize,1); 
        times = zeros(datasize, 2); 

        %extract timing 

        timingmetastr = char(reader.getSeriesMetadata()); 

        [timingstartindex, timingstopindex] = regexp(timingmetastr, 'timestamp #[0-9]+=[0-9]+.[0-9]+'); 

        h = waitbar(0, 'Processing...'); 

        for n = 1:datasize 

            %extract timing 

            timeframestart = find(timingmetastr(timingstartindex(n):timingstopindex(n)) == '#')... 

                +timingstartindex(n); 

            timestart = find(timingmetastr(timingstartindex(n):timingstopindex(n)) == '=')... 

                +timingstartindex(n); 

            times(n,1) = str2double(timingmetastr(timeframestart:timestart-2)); 
            times(n,2) = str2double(timingmetastr(timestart:timingstopindex(n))); 

            %extract frames and change to binary 

            img = bfGetPlane(reader, n); 

            initialGrey = mat2gray(img); 

            gry = imadjust(initialGrey,[mean(initialGrey(:)); mean(initialGrey(:))+... 

                3*std(initialGrey(:))], [0; 1]); %change with each image 

            filtgry = imfilter(gry,ones(5,5) / 25); 

            BW = imbinarize(filtgry,0.5); 

            BW2 = bwmorph(BW, 'bridge'); 

            filtBW{n} = bwareafilt(BW2,[10,400]); 

            filtBW{n}(:,:,2) = zeros(res); 
            filtBW{n}(:,:,3) = zeros(res); 

            BWprops{n} = regionprops(filtBW{n}, 'Centroid', 'PixelList', 'PixelIdxList'); 

            waitbar(n/datasize,h); 

        end 

        times = sort(times,1); %make sure times are in the correct frame order 

        delta = zeros(1,length(times)-1); 

        for i = 2:length(times) 

            delta(i-1) = times(i,2)-times(i-1,2); %time between each frame 
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        end 

        framerate = 1/(sum(delta)/length(times)); %frames per second 

             

        save([savepath savename4], 'filtBW'); 

        save([savepath savename5], 'BWprops'); 
        save([savepath savename6], 'times'); 

        save([savepath savename7], 'delta'); 

        close(h); 

    else 

        load([savepath savename4], 'filtBW'); 

        load([savepath savename5], 'BWprops'); 

        load([savepath savename6], 'times'); 

        load([savepath savename7], 'delta'); 

        framerate = 1/(sum(delta)/length(times)); %frames per second 

    end 

  

end 
  

  

function masks = CellMasks_v2( cellimg ) 

%CellMasks_v2 creates a binary mask of the cell layer in the field of view  

  

    initialGrey = mat2gray(cellimg); 

    BW = imbinarize(initialGrey,0.05); 

    masks = bwareafilt(BW,[50,inf]); 

    BWoutline = bwperim(masks); 

    Segout = cellimg;  

    Segout(BWoutline) = max(Segout(:)); %add color 
    figure, imshow(Segout); 

end 

  

  

function [ distances, particle, prevparticle, BWprops ]... 

    = TrackParticle( BWprops, loc, particle, prevparticle, masks, prevCenter ) 

%TRACKPARTICLE Track brownian motion of particles within a certain radius 

%    

dbstop if error 

try 

    distances = []; 

    while ~isempty(BWprops) 
        if loc<=0 

            particle = particle+1; 

            break; 

        end 

        if loc > length(BWprops) 

            particle = particle+1; 

            loc = length(BWprops); 

        end 

        if isempty(BWprops{loc}) 

            BWprops(loc) = []; 

            loc = loc-1; 
            if loc ~= length(BWprops) 

                break; 

            end 

        else 

            if loc == length(BWprops) 

                particle = particle+1; 

                prevCenter = BWprops{loc}(1).Centroid; 

                if masks(round(prevCenter(2)), round(prevCenter(1))) == 1 
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                    OnCell = true; 

                else 

                    OnCell = false; 

                end 

                firstdistances = [particle; loc; OnCell; NaN;... 
                            BWprops{loc}(1).Centroid(1); BWprops{loc}(1).Centroid(2)]; 

                BWprops{loc}(1) = []; 

                [ prevdistances, particle, prevparticle, BWprops ]... 

                    = TrackParticle( BWprops, loc-1, particle, prevparticle,... 

                    masks, prevCenter ); 

                if isempty(prevdistances) 

                    firstdistances(1) = NaN; 

                else 

                    firstdistances(1) = prevdistances(1,1); 

                end 

                distances = [prevdistances firstdistances distances]; 

            else 
                for i = 1:length(BWprops{loc}) 

                    if abs(pdist([BWprops{loc}(i).Centroid; prevCenter])) < 20 

                        if diff([prevparticle particle]) > 1 

                            particle = prevparticle+1; 

                        end 

                        prevparticle = particle; 

                        if masks(round(BWprops{loc}(i).Centroid(2)),... 

                                round(BWprops{loc}(i).Centroid(1))) == 1 

                            OnCell = true; 

                        else 

                            OnCell = false; 
                        end 

                        distances = [particle; loc; OnCell; pdist([prevCenter;... 

                            BWprops{loc}(i).Centroid]);... 

                            BWprops{loc}(i).Centroid(1); BWprops{loc}(i).Centroid(2)]; 

                        prevCenter = BWprops{loc}(i).Centroid; 

                        BWprops{loc}(i) = []; 

                        [ prevdistances, particle, prevparticle, BWprops ]... 

                            = TrackParticle( BWprops, loc-1, particle, prevparticle,... 

                            masks, prevCenter ); 

                        distances = [prevdistances distances]; 

                        break; 

                    end 
                end 

                break; 

            end 

        end 

    end 

catch ME 

    disp(ME.stack(1)); 

    throw(ME); 

end 

end 
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APPENDIX B 

Appendix B shows the data analysis software for the flow chamber studies written in 

MATLAB (2018a). The BFMATLAB library was utilized from Bio-Formats at The 

Open Microscopy Environment. Full code downloadable from 

https://github.com/afishtex/APPLICATION-OF-OPTICAL-ANALYSES-TO-

CANCER-THERAPEUTICS-AND-DIAGNOSTICS. 

% Author: Andrew P. Fisher 

% Centre of NanoHealth, College of Science,  

% Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom 

   

%can take a folder of nd2 files and pull out the fluorescent ones and then 

%calculate average speed and std of the particles in each with relation to  

%its flowrate 

  

dbstop if error 

filestart = 'F:\Shared\Data exchange\Fisher\Flow Chamber\'; 
date = ''; 

surface = ''; 

particle = ''; 

run = 1; 

filepath = [filestart date '\' surface particle '\' num2str(run) '\']; %starting folder 

fileext = '.nd2'; 

myFileFolderInfo = dir([filepath '*' fileext]); 

numfiles = length(myFileFolderInfo); 

savepath = [filepath, 'Analysis1\']; 

if ~exist(savepath,'file') 

    mkdir(savepath); 

end 
playVideo = 0; %show video and trace particle/flow orientation 

saveVideo = 0; 

stoppedParticles = 0; 

saveWorkspace = 1; 

saveData = 1; 

distPerPixel = 0.36; %0.18 um/pixel at 20X, 0.36 um/pixel at 10X 

numberOfParticles = zeros(numfiles,1); 

avgSpeedPerVid = NaN(numfiles,1); 

stdSpeedPerVid = NaN(numfiles,1); 

speedums = cell(numfiles,1); %how to declare length of speedums when 

% some files have different frame rates 
numberOfOnParticles = zeros(numfiles,1); 

avgOnSpeedPerVid = NaN(numfiles,1); 

stdOnSpeedPerVid = NaN(numfiles,1); 

speedonums = cell(numfiles,1); 

numberOfOffParticles = zeros(numfiles,1); 

avgOffSpeedPerVid = NaN(numfiles,1); 

stdOffSpeedPerVid = NaN(numfiles,1); 

speedoffums = cell(numfiles,1); 

BWprops = cell(numfiles,1); 

deltatimes = cell(numfiles,1); 

stoppedParticleLocs = cell(numfiles+1,1); 

averages = cell(numfiles,1); 
onaverages = cell(numfiles,1); 



56 

 

offaverages = cell(numfiles,1); 

totalStoppedParticles = zeros(1,numfiles); 

totalStoppedOnParticles = zeros(1,numfiles); 

totalStoppedOffParticles = zeros(1,numfiles); 

newStoppedParticles = zeros(1,numfiles); 
newStoppedOnParticles = zeros(1,numfiles); 

newStoppedOffParticles = zeros(1,numfiles); 

cellimg = false(1440, 1920); 

excelSheets = {'Number Of Moving Particles/Video' 'Number of Stopped Particles/Video'... 

    'Number of New Stopped Particles/Video' 'Average Speed/Video' 'Standard Deviation/Video'... 

    'Average Particle Speed/Video' 'Particle Standard Deviation/Video'... 

    'Number Of Moving Particles On Cells/Video' 'Number of Stopped Particles On Cells/Video'... 

    'Number of New Stopped Particles On Cells/Video' 'Average Speed On Cells/Video'... 

    'Standard Deviation On Cells/Video' 'Average Particle Speed On Cells/Video'... 

    'Particle Standard Deviation On Cells/Video'... 

    'Number Of Moving Particles Off Cells/Video' 'Number of Stopped Particles Off Cells/Video'... 

    'Number of New Stopped Particles Off Cells/Video' 'Average Speed Off Cells/Video'... 
    'Standard Deviation Off Cells/Video' 'Average Particle Speed Off Cells/Video'... 

    'Particle Standard Deviation Off Cells/Video'... 

    'Average Speed/Flow Rate' 'Standard Deviation/Flow Rate' 'Average Particle Speed/Flow Rate'... 

    'Particle Standard Deviation/Flow Rate'... 

    'Average Speed On Cells/Flow Rate' 'Standard Deviation On Cells/Flow Rate'... 

    'Average Particle Speed On Cells/Flow Rate' 'Particle Standard Deviation On Cells/Flow Rate'... 

    'Average Speed Off Cells/Flow Rate' 'Standard Deviation Off Cells/Flow Rate'... 

    'Average Particle Speed Off Cells/Flow Rate' 'Particle Standard Deviation Off Cells/Flow Rate' ''};  

xlsavename = [date ' ' particle ' Particle Speeds Angled Line w gaps.xlsx']; 

xlsavepath = [savepath xlsavename]; 

% crossArea = .254*2.5; 
filecount = 1; 

startcount = 1; 

orientation = 180; 

totalstoppedparticleimage = zeros(1440, 1920); 

try 

    while filecount <= numfiles 

        if myFileFolderInfo(filecount).bytes > 10000000 

            if filecount == 1 

                [~, stopindex] = regexp(myFileFolderInfo(filecount).name, '[0-9]+ul-min'); 

                wksavename = ['Workspace ' myFileFolderInfo(filecount).name(1:stopindex)]; 

                wksavepath = [savepath wksavename '.mat']; 

            end 
            if ~exist(wksavepath,'file') 

                tic 

                 

                [BWprops{filecount}, deltatimes{filecount}, stoppedParticleLocs{filecount+1},... 

                    orientation, totalstoppedparticleimage] = ... 

                    LoadVideoBF(myFileFolderInfo(filecount).folder,... 

                    myFileFolderInfo(filecount).name, playVideo, saveVideo, orientation,... 

                    totalstoppedparticleimage); 

                toc 

            elseif filecount == 1 

                load(wksavepath, 'BWprops', 'deltatimes', 'stoppedParticleLocs', 'orientation',... 
                    'totalstoppedparticleimage'); 

            end 

            if ~isempty(BWprops{filecount}) 

                [flowstartindex, flowstopindex] = regexp(myFileFolderInfo(filecount).name,... 

                    '[0-9]+ul-min'); 

                flowrate = str2double(myFileFolderInfo(filecount).name(flowstartindex:flowstopindex-6)); 

                if filecount == 1 

                    prevflowrate = flowrate; 
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                end 

                if flowrate ~= prevflowrate 

                    tempspd = []; 

                    temppartspd = []; 

                    for i = startcount:filecount-1 
                        if isempty(speedums{i}) 

                            tempspd = [tempspd NaN]; 

                        else 

                            tempspd = [tempspd speedums{i}(3,:)]; 

                        end 

                        if isempty(averages{i}) 

                            temppartspd = [temppartspd NaN]; 

                        else 

                            temppartspd = [temppartspd averages{i}(2,:)]; 

                        end 

                    end 

                    avgSpeedFlowRate = [prevflowrate, mean(tempspd,'omitnan')]; 
                    stdSpeedFlowRate = [prevflowrate, std(tempspd,'omitnan')]; 

                    avgParticleSpeedFlowRate = [prevflowrate, mean(temppartspd,'omitnan')]; 

                    stdParticleSpeedFlowRate = [prevflowrate, std(temppartspd,'omitnan')]; 

         

                    temponspd = []; 

                    temponpartspd = []; 

                    for k = startcount:filecount-1 

                        if isempty(speedonums{k}) 

                            temponspd = [temponspd NaN]; 

                        else 

                            temponspd = [temponspd speedonums{k}(3,:)]; 
                        end 

                        if isempty(onaverages{k}) 

                            temponpartspd = [temponpartspd NaN]; 

                        else 

                            temponpartspd = [temponpartspd onaverages{k}(2,:)]; 

                        end 

                    end 

                    avgOnSpeedFlowRate = [prevflowrate, mean(temponspd,'omitnan')]; 

                    stdOnSpeedFlowRate = [prevflowrate, std(temponspd,'omitnan')]; 

                    avgOnParticleSpeedFlowRate = [prevflowrate, mean(temponpartspd,'omitnan')]; 

                    stdOnParticleSpeedFlowRate = [prevflowrate, std(temponpartspd,'omitnan')]; 

  
                    tempoffspd = []; 

                    tempoffpartspd = []; 

                    for k = startcount:filecount-1 

                        if isempty(speedoffums{k}) 

                            tempoffspd = [tempoffspd NaN]; 

                        else 

                            tempoffspd = [tempoffspd speedoffums{k}(3,:)]; 

                        end 

                        if isempty(offaverages{k}) 

                            tempoffpartspd = [tempoffpartspd NaN]; 

                        else 
                            tempoffpartspd = [tempoffpartspd offaverages{k}(2,:)]; 

                        end 

                    end 

                    avgOffSpeedFlowRate = [prevflowrate, mean(tempoffspd,'omitnan')]; 

                    stdOffSpeedFlowRate = [prevflowrate, std(tempoffspd,'omitnan')]; 

                    avgOffParticleSpeedFlowRate = [prevflowrate, mean(tempoffpartspd,'omitnan')]; 

                    stdOffParticleSpeedFlowRate = [prevflowrate, std(tempoffpartspd,'omitnan')]; 
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                    if saveWorkspace 

                        save(wksavepath); 

                    end 

                    if saveData 

                        excelSheets(2,22:33) = {avgSpeedFlowRate(2) stdSpeedFlowRate(2)... 
                            avgParticleSpeedFlowRate(2) stdParticleSpeedFlowRate(2)... 

                        avgOnSpeedFlowRate(2) stdOnSpeedFlowRate(2) avgOnParticleSpeedFlowRate(2)... 

                        stdOnParticleSpeedFlowRate(2) avgOffSpeedFlowRate(2) stdOffSpeedFlowRate(2)... 

                        avgOffParticleSpeedFlowRate(2) stdOffParticleSpeedFlowRate(2)};  

                        xlswrite(xlsavepath, excelSheets(:,:), num2str(prevflowrate)); 

                    end 

                    prevflowrate = flowrate; 

                    startcount = filecount; 

                    excelSheets = {'Number Of Moving Particles/Video'... 

                        'Number of Stopped Particles/Video' 'Number of New Stopped Particles/Video'... 

                        'Average Speed/Video' 'Standard Deviation/Video'... 

                        'Average Particle Speed/Video' 'Particle Standard Deviation/Video'... 
                        'Number Of Moving Particles On Cells/Video'... 

                        'Number of Stopped Particles On Cells/Video'... 

                        'Number of New Stopped Particles On Cells/Video'... 

                        'Average Speed On Cells/Video' 'Standard Deviation On Cells/Video'... 

                        'Average Particle Speed On Cells/Video'... 

                        'Particle Standard Deviation On Cells/Video'... 

                        'Number Of Moving Particles Off Cells/Video'... 

                        'Number of Stopped Particles Off Cells/Video'... 

                        'Number of New Stopped Particles Off Cells/Video'... 

                        'Average Speed Off Cells/Video' 'Standard Deviation Off Cells/Video'... 

                        'Average Particle Speed Off Cells/Video'... 
                        'Particle Standard Deviation Off Cells/Video'... 

                        'Average Speed/Flow Rate' 'Standard Deviation/Flow Rate'... 

                        'Average Particle Speed/Flow Rate' 'Particle Standard Deviation/Flow Rate'... 

                        'Average Speed On Cells/Flow Rate' 'Standard Deviation On Cells/Flow Rate'... 

                        'Average Particle Speed On Cells/Flow Rate'... 

                        'Particle Standard Deviation On Cells/Flow Rate'... 

                        'Average Speed Off Cells/Flow Rate' 'Standard Deviation Off Cells/Flow Rate'... 

                        'Average Particle Speed Off Cells/Flow Rate'... 

                        'Particle Standard Deviation Off Cells/Flow Rate' ''}; 

                    stoppedParticles = 0; 

                end 

                [speedums{filecount},speedonums{filecount},speedoffums{filecount},... 
                    numberOfParticles(filecount)] = CalculateSpeed(BWprops{filecount},... 

                    deltatimes{filecount}, distPerPixel, orientation, cellimg); 

                if numberOfParticles(filecount) 

                    [numberOfParticles(filecount), speedums{filecount}, averages{filecount},... 

                        avgSpeedPerVid(filecount), stdSpeedPerVid(filecount),... 

                        avgSpeedPerPartPerVid(filecount), stdSpeedPerPartPerVid(filecount)] =... 

                        AverageSpeeds(flowrate, speedums{filecount}); 

                    [numberOfOnParticles(filecount), speedonums{filecount}, onaverages{filecount},... 

                        avgOnSpeedPerVid(filecount), stdOnSpeedPerVid(filecount),... 

                        avgOnSpeedPerPartPerVid(filecount), stdOnSpeedPerPartPerVid(filecount)] =... 

                        AverageSpeeds(flowrate, speedonums{filecount}); 
                    [numberOfOffParticles(filecount), speedoffums{filecount}, offaverages{filecount},... 

                        avgOffSpeedPerVid(filecount), stdOffSpeedPerVid(filecount),... 

                        avgOffSpeedPerPartPerVid(filecount), stdOffSpeedPerPartPerVid(filecount)] =... 

                        AverageSpeeds(flowrate, speedoffums{filecount}); 

                    %pass cellimg into this to use it to decide on v off cell attachments 

                    [totalStoppedParticles(filecount), newStoppedParticles(filecount)] =... 

                        CountNewParticles(stoppedParticleLocs(filecount), stoppedParticleLocs(filecount+1)... 

                        ,ones(size(cellimg)));  
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                     %pass cellimg into this to use it to decide on v off cell attachments 

                    [totalStoppedOnParticles(filecount), newStoppedOnParticles(filecount)] =... 

                        CountNewParticles(stoppedParticleLocs(filecount),... 

                        stoppedParticleLocs(filecount+1),cellimg); 

                     %pass cellimg into this to use it to decide on v off cell attachments 
                    [totalStoppedOffParticles(filecount), newStoppedOffParticles(filecount)] =... 

                        CountNewParticles(stoppedParticleLocs(filecount),... 

                        stoppedParticleLocs(filecount+1),imcomplement(cellimg)); 

                    if playVideo 

                        figure(3); 

                        curaxes = axes; 

                        img = zeros(size(initialimage{1})); 

                        for m = 1:length(initialimage)-1 

                            tempimg = imbinarize(img,0.5); 

                            if nonzeros(speedums{filecount}(2,:) == m) 

                                row = floor(speedums{filecount}(5,speedums{filecount}(2,:) == m)); 

                                col = floor(speedums{filecount}(4,speedums{filecount}(2,:) == m)); 
                                for u = 1:length(col) 

                                    x1=row(u)-10; 

                                    x2=row(u)+10; 

                                    y1=col(u)-10; 

                                    y2=col(u)+10; 

                                    if x1 < 1 

                                        x1=1; 

                                    end 

                                    if y1<1 

                                        y1=1; 

                                    end 
                                    if x2>length(tempimg(:,1)) 

                                        x2 = length(tempimg(:,1)); 

                                    end 

                                    if y2>length(tempimg(1,:)) 

                                        y2 = length(tempimg(1,:)); 

                                    end 

                                    tempimg(x1:x2, y1:y2)=1; 

                                    tempimg(x1+3:x2-3, y1+3:y2-3)=0; 

                                end 

                            end 

                            imshow(tempimg, 'Parent', curaxes); %play video 

                            pause(1/10); 
                        end 

                    end 

                    excelSheets(filecount-startcount+2,1:21) = {numberOfParticles(filecount)... 

                        totalStoppedParticles(filecount) newStoppedParticles(filecount)... 

                        avgSpeedPerVid(filecount) stdSpeedPerVid(filecount) 

avgSpeedPerPartPerVid(filecount)... 

                        stdSpeedPerPartPerVid(filecount)... 

                        numberOfOnParticles(filecount) totalStoppedOnParticles(filecount)... 

                        newStoppedOnParticles(filecount) avgOnSpeedPerVid(filecount) 

stdOnSpeedPerVid(filecount)... 

                        avgOnSpeedPerPartPerVid(filecount) stdOnSpeedPerPartPerVid(filecount)... 
                        numberOfOffParticles(filecount) totalStoppedOffParticles(filecount)... 

                        newStoppedOffParticles(filecount) avgOffSpeedPerVid(filecount)... 

                        stdOffSpeedPerVid(filecount) avgOffSpeedPerPartPerVid(filecount)... 

                        stdOffSpeedPerPartPerVid(filecount)}; 

                    if isempty(speedums{filecount}) 

                        temp = NaN; 

                    else 

                        temp = speedums{filecount}(3,:); 
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                    end 

                    if isempty(averages{filecount}) 

                        temppart = NaN; 

                    else 

                        temppart = averages{filecount}(2,:); 
                    end 

                    excelSheets(1, 35+2*(filecount-startcount)) = {'Raw Data'}; 

                    excelSheets(2:length(temp(~isnan(temp)))+1, 35+2*(filecount-startcount)) =... 

                        num2cell(temp(~isnan(temp))); 

                    excelSheets(1, 36+2*(filecount-startcount)) = {'Averages'}; 

                    excelSheets(2:length(temppart(~isnan(temppart)))+1, 36+2*(filecount-startcount)) =... 

                        num2cell(temppart(~isnan(temppart))); 

                    clearvars temp temppart; 

                end 

                filecount=filecount+1; 

            else 

                myFileFolderInfo(filecount) = []; 
                numberOfParticles(filecount) = []; 

                avgSpeedPerVid(filecount) = []; 

                stdSpeedPerVid(filecount) = []; 

                speedums(filecount,:) = []; 

                numberOfOnParticles(filecount) = []; 

                avgOnSpeedPerVid(filecount) = []; 

                stdOnSpeedPerVid(filecount) = []; 

                speedonums(filecount,:) = []; 

                numberOfOffParticles(filecount) = []; 

                avgOffSpeedPerVid(filecount) = []; 

                stdOffSpeedPerVid(filecount) = []; 
                speedoffums(filecount,:) = []; 

                BWprops(filecount,:) = []; 

                deltatimes(filecount,:) = []; 

                stoppedParticleLocs(filecount) = []; 

                averages(:,filecount) = []; 

                onaverages(:,filecount) = []; 

                offaverages(:,filecount) = []; 

                totalStoppedParticles(filecount) = []; 

                totalStoppedOnParticles(filecount) = []; 

                totalStoppedOffParticles(filecount) = []; 

                newStoppedParticles(filecount) = []; 

                newStoppedOnParticles(filecount) = []; 
                newStoppedOffParticles(filecount) = []; 

                numfiles = length(myFileFolderInfo); 

            end 

        else 

            cellfile = regexp(myFileFolderInfo(filecount).name, 'FITC'); 

            if cellfile 

                cellimg = LoadCellsConfluent(myFileFolderInfo(filecount).folder,... 

                    myFileFolderInfo(filecount).name); 

            end 

            myFileFolderInfo(filecount) = []; 

            numberOfParticles(filecount) = []; 
            avgSpeedPerVid(filecount) = []; 

            stdSpeedPerVid(filecount) = []; 

            speedums(filecount,:) = []; 

            numberOfOnParticles(filecount) = []; 

            avgOnSpeedPerVid(filecount) = []; 

            stdOnSpeedPerVid(filecount) = []; 

            speedonums(filecount,:) = []; 

            numberOfOffParticles(filecount) = []; 
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            avgOffSpeedPerVid(filecount) = []; 

            stdOffSpeedPerVid(filecount) = []; 

            speedoffums(filecount,:) = []; 

            BWprops(filecount,:) = []; 

            deltatimes(filecount,:) = []; 
            numfiles = length(myFileFolderInfo); 

        end 

    end 

     

    %%used to capture the data from the final video in a folder 

    if filecount > 1 

        tempspd = []; 

        temppartspd = []; 

        for k = startcount:filecount-1 

            if isempty(speedums{k}) 

                tempspd = [tempspd NaN]; 

            else 
                tempspd = [tempspd speedums{k}(3,:)]; 

            end 

            if isempty(averages{k}) 

                temppartspd = [temppartspd NaN]; 

            else 

                temppartspd = [temppartspd averages{k}(2,:)]; 

            end 

        end 

        avgSpeedFlowRate = [prevflowrate, mean(tempspd,'omitnan')]; 

        stdSpeedFlowRate = [prevflowrate, std(tempspd,'omitnan')]; 

        avgParticleSpeedFlowRate = [prevflowrate, mean(temppartspd,'omitnan')]; 
        stdParticleSpeedFlowRate = [prevflowrate, std(temppartspd,'omitnan')]; 

         

        temponspd = []; 

        temponpartspd = []; 

        for k = startcount:filecount-1 

            if isempty(speedonums{k}) 

                temponspd = [temponspd NaN]; 

            else 

                temponspd = [temponspd speedonums{k}(3,:)]; 

            end 

            if isempty(onaverages{k}) 

                temponpartspd = [temponpartspd NaN]; 
            else 

                temponpartspd = [temponpartspd onaverages{k}(2,:)]; 

            end 

        end 

        avgOnSpeedFlowRate = [prevflowrate, mean(temponspd,'omitnan')]; 

        stdOnSpeedFlowRate = [prevflowrate, std(temponspd,'omitnan')]; 

        avgOnParticleSpeedFlowRate = [prevflowrate, mean(temponpartspd,'omitnan')]; 

        stdOnParticleSpeedFlowRate = [prevflowrate, std(temponpartspd,'omitnan')]; 

         

        tempoffspd = []; 

        tempoffpartspd = []; 
        for k = startcount:filecount-1 

            if isempty(speedoffums{k}) 

                tempoffspd = [tempoffspd NaN]; 

            else 

                tempoffspd = [tempoffspd speedoffums{k}(3,:)]; 

            end 

            if isempty(offaverages{k}) 

                tempoffpartspd = [tempoffpartspd NaN]; 
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            else 

                tempoffpartspd = [tempoffpartspd offaverages{k}(2,:)]; 

            end 

        end 

        avgOffSpeedFlowRate = [prevflowrate, mean(tempoffspd,'omitnan')]; 
        stdOffSpeedFlowRate = [prevflowrate, std(tempoffspd,'omitnan')]; 

        avgOffParticleSpeedFlowRate = [prevflowrate, mean(tempoffpartspd,'omitnan')]; 

        stdOffParticleSpeedFlowRate = [prevflowrate, std(tempoffpartspd,'omitnan')]; 

         

        if saveWorkspace 

            save(wksavepath); 

        end 

        if saveData 

            excelSheets(2,22:33) = {avgSpeedFlowRate(2) stdSpeedFlowRate(2)... 

                avgParticleSpeedFlowRate(2) stdParticleSpeedFlowRate(2)... 

                avgOnSpeedFlowRate(2) stdOnSpeedFlowRate(2) avgOnParticleSpeedFlowRate(2)... 

                stdOnParticleSpeedFlowRate(2)... 
                avgOffSpeedFlowRate(2) stdOffSpeedFlowRate(2) avgOffParticleSpeedFlowRate(2)... 

                stdOffParticleSpeedFlowRate(2)}; 

            xlswrite(xlsavepath, excelSheets(:,:), num2str(prevflowrate)); 

        end 

    end 

    allPeak = PlotHistogram(averages); 

    if allPeak 

        title({filepath; 'All Averages'}); 

        savefig([savepath 'AllAverageParticleSpeedHistogram']); 

    end 

    onPeak = PlotHistogram(onaverages); 
    if onPeak 

        title({filepath; 'On Averages'}); 

        savefig([savepath 'OnAverageParticleSpeedHistogram']); 

    end 

    offPeak = PlotHistogram(offaverages); 

    if offPeak 

        title({filepath; 'Off Averages'}); 

        savefig([savepath 'OffAverageParticleSpeedHistogram']); 

    end 

    normalizedtotalstoppedparticleimage = mat2gray(totalstoppedparticleimage/numfiles); 

    bwnormalizedtotalstoppedparticleimage = imbinarize(normalizedtotalstoppedparticleimage, 0.25); 

    stoppedparticleregions = regionprops(bwnormalizedtotalstoppedparticleimage,... 
        normalizedtotalstoppedparticleimage, 'WeightedCentroid', 'MeanIntensity'); 

    histogram([stoppedparticleregions.MeanIntensity].*100,... 

        ceil(max([stoppedparticleregions.MeanIntensity].*100) -... 

        min([stoppedparticleregions.MeanIntensity].*100))); 

    xlabel('% of Video Stationary'); 

    ylabel('Number of Particles'); 

    if ~isempty(stoppedparticleregions) 

        title({filepath; 'Length of Stopped Particles'}); 

        savefig([savepath 'LengthOfStoppedParticles']); 

    end 

     
catch ME 

    disp(ME.stack(1)); 

    throw(ME); 

end 

  

  

function [ BWprops, delta, stoppedparticleprops, orientation, totalstoppedparticleimage ] =... 

    LoadVideoBF( path, name, vid, saveV, orientation, totalstoppedparticleimage ) 
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%LoadVideoBF Loads the video into matlab 

%   also detects particle locations in each frame 

dbstop if error 

    filename = [path '\' name]; 

    try 
        BWprops = cell(1,1); 

        delta = zeros(1,1); 

        reader = bfGetReader(filename); 

        filtermetastr = char(reader.getGlobalMetadata()); 

        %extract filter 

        fluor = regexp(filtermetastr, 'BF1'); 

        clearvars filtermetastr filename; 

        if fluor %check difference between TRITC and BF 

            datasize = reader.getImageCount(); 

            img = cell(datasize,1); 

            filtBW3 = cell(datasize,1); 

            BWprops = cell(datasize,1); 
            times = zeros(datasize, 2); 

            %extract timing 

            timingmetastr = char(reader.getSeriesMetadata()); 

            [timingstartindex, timingstopindex] = regexp(timingmetastr,... 

                'timestamp #[0-9]+=[0-9]+.[0-9]+'); 

  

            if vid 

                figure(1); 

                currAxes = axes; 

                figure(2); 

                otherAxes = axes; 
            end 

            h = waitbar(0,[name ', Please wait...']); 

            for n = 1:datasize 

                %extract timing 

                timeframestart = find(timingmetastr(timingstartindex(n):timingstopindex(n)) == '#')... 

                    +timingstartindex(n); 

                timestart = find(timingmetastr(timingstartindex(n):timingstopindex(n)) == '=')... 

                    +timingstartindex(n); 

                times(n,1) = str2double(timingmetastr(timeframestart:timestart-2)); 

                times(n,2) = str2double(timingmetastr(timestart:timingstopindex(n))); 

                %extract frames and change to binary 

                img = imcomplement(bfGetPlane(reader, n)); 
                 

                initialGrey = mat2gray(img); 

                BW = imbinarize(initialGrey,mean(initialGrey(:))+3.5*std(initialGrey(:))); 

                %a little more than a 1um particle up to a 3um particle area 

                filtBW = bwareafilt(BW,[40,100]); 

                filtBW2 = bwpropfilt(filtBW,'Eccentricity',[0 0.75]); 

                filtBW3{n} = bwpropfilt(filtBW2,'Solidity',[0.9 1]); 

                BWprops{n} = regionprops(filtBW3{n}, 'Eccentricity', 'Orientation',... 

                    'Area', 'Centroid', 'Solidity'); 

                if vid 

                    imshow(filtBW3{n}, 'Parent', currAxes); %play video 
                    imshow(initialGrey, 'Parent',otherAxes); 

                end 

                waitbar(n/datasize,h); 

            end 

            close(h); 

            if isnan(orientation) 

                figure; 

                imshow(initialGrey); 
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                direction = imline(gca); 

                position = wait(direction); 

                %y posititions swapped due to the y axis being zero in the top 

                %left corner and increasing as it goes down 

                orientation = atan2d(position(2,2)-position(1,2),position(2,1)-position(1,1)); 
            end 

            times = sort(times,1); %make sure times are in the correct frame order 

            delta = zeros(1,length(times)-1); 

            for i = 2:length(times) 

                delta(i-1) = times(i,2)-times(i-1,2); %time between each frame 

            end 

            framerate = 1/(sum(delta)/length(times)); %frames per second 

            savename = ['Binary ' name(1:end-4)]; 

            savepath = [path '\Analysis1\' savename]; 

            if saveV 

                v = VideoWriter(savepath); 

                v.FrameRate = framerate; 
                open(v); 

                g = waitbar(0,'Saving Video, Please wait...'); 

            end 

            individualstoppedparticleimage = zeros(1440,1920); 

            for j = 1:length(filtBW3) 

                if saveV 

                    writeVideo(v,uint8(filtBW3{j})*255);  

                    waitbar(j/length(filtBW3),g); 

                end 

                individualstoppedparticleimage = individualstoppedparticleimage+filtBW3{j}; 

            end 
            normalizedstoppedparticleimage = individualstoppedparticleimage./length(filtBW3); 

            totalstoppedparticleimage = totalstoppedparticleimage+normalizedstoppedparticleimage; 

            bwstoppedparticle = imbinarize(mat2gray(normalizedstoppedparticleimage)); 

            bw2stoppedparticle = bwpropfilt(bwstoppedparticle,'Eccentricity',[0 0.5]); 

            stoppedparticleprops = regionprops(bw2stoppedparticle, 'Centroid'); 

%             figure; 

%             imshow(bw2stoppedparticle); 

%             greystoppedparticleimage = mat2gray(normalizedstoppedparticleimage); 

%             individualstoppedparticleregions = regionprops(bw2stoppedparticle,... 

%             greystoppedparticleimage, 'WeightedCentroid', 'MeanIntensity'); 

%             figure; 

%             histogram([individualstoppedparticleregions.MeanIntensity],20); 
            if saveV 

                close(g); 

                close(v); 

            end 

        end 

        reader.close(); 

    catch ME 

        disp(ME.stack(1)); 

        throw(ME); 

    end 

  
end 

  

  

function [ speed, speedon, speedoff, numparticles ] =... 

    CalculateSpeed( BWprops, deltatimes, umPerPix, orient, masks ) 

%CALCULATESPEED calculates the speed of the tracked particles 

%    

    dbstop if error 
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    speed = []; 

    speedon = []; 

    speedoff = []; 

    numparticles = 0; 

    startparticles = 0; 
    startloc = length(BWprops); 

    try 

        distance = TrackParticle( BWprops, startloc, startparticles, startparticles, orient); 

        if ~isempty(distance) 

            speed(1:2,:) = distance(1:2,:); 

            speed(4:6,:) = distance(4:6,:); 

            for i = 1:length(distance(3,:)) 

            speed(3,i) = distance(3,i)*umPerPix./deltatimes(distance(2,i)); 

                if masks(round(speed(5,i)), round(speed(4,i))) == 1 

                    speedon = [speedon speed(:,i)]; 

                else 

                    speedoff = [speedoff speed(:,i)]; 
                end 

            end 

            numparticles = speed(1,1); 

        else 

            speed = NaN(3,1); 

        end 

    catch ME 

        disp(ME.stack(1)); 

        throw(ME); 

    end 

end 
  

  

function [ distances, particle, prevparticle, BWprops ] =... 

    TrackParticle( BWprops, loc, particle, prevparticle, orient, prevcent, missedparticle ) 

%TRACKPARTICLE tracks individual particles through multiple frames 

%   using recursion 

dbstop if error 

try 

    distances = []; 

    while ~isempty(BWprops)  

        if loc<=0 

            particle = particle+1; 
            break; 

        end 

        if loc > length(BWprops) 

            particle = particle+1; 

            loc = length(BWprops); 

        end 

        if isempty(BWprops{loc}) 

            BWprops(loc) = []; 

            loc = loc-1; 

            if loc ~= length(BWprops) 

                break; 
            end 

        else 

            if loc == length(BWprops) 

                particle = particle+1; 

                prevcent = BWprops{loc}(1).Centroid; 

                BWprops{loc}(1) = []; 

                missedparticle = 0; 

                [ prevdistances, particle, prevparticle, BWprops ] =... 
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                    TrackParticle( BWprops, loc-1, particle, prevparticle,... 

                    orient, prevcent, missedparticle ); 

                distances = [prevdistances distances]; 

            else 

%                 figure(4); hold on; plot(prevcent(1), prevcent(2),'x');... 
%                 xlim([0 1920]); ylim([0 1440]); pause(1/1000); 

                a = tand(orient); 

                b = -1; 

                c = prevcent(2)-tand(orient)*prevcent(1); 

                i=1; 

                while i <= length(BWprops{loc}) 

                    %because particles are being tracked from the end of 

                    %the video to the beginning, particles with centers to 

                    %the left of the last particle should not be 

                    %considered. particles who are less than 10 pixels off 

                    %of the slope line should be considered. 

                    if BWprops{loc}(i).Centroid(1) >= prevcent(1)-10 &&... 
                            abs(a*BWprops{loc}(i).Centroid(1)+b*BWprops{loc}(i).Centroid(2)+c)... 

                            /sqrt(a^2+b^2)< 20 

                        missedparticle = 0; 

                        if diff([prevparticle particle]) > 1 

                            particle = prevparticle+1; 

                        end 

                        prevparticle = particle; 

                        distances = [particle; loc; pdist([prevcent; BWprops{loc}(i).Centroid]);... 

                            min([max([BWprops{loc}(i).Centroid(1) 1]) 1440]);... 

                            min([max([BWprops{loc}(i).Centroid(2) 1]) 1920]); BWprops{loc}(i).Eccentricity]; 

                         
                        prevcent = BWprops{loc}(i).Centroid; 

                        BWprops{loc}(i) = []; 

                        [ prevdistances, particle, prevparticle, BWprops ] = TrackParticle( BWprops, loc-1,... 

                            particle, prevparticle, orient, prevcent, missedparticle ); 

                        distances = [prevdistances distances]; 

                         %prevent code from hitting missed particles after successfully finding a particle 

                        missedparticle = 1; 

                        break; 

                    end 

                    i=i+1; 

                end 

                if loc <= length(BWprops) && i == length(BWprops{loc})+1 && ~missedparticle 
                    missedparticle = 1; 

                    if diff([prevparticle particle]) > 1 

                        particle = prevparticle+1; 

                    end 

                    distances = [particle; loc; NaN; prevcent(1); prevcent(2); NaN]; 

                    [ prevdistances, particle, prevparticle, BWprops ] =... 

                        TrackParticle( BWprops, loc-1, particle, prevparticle,... 

                        orient, prevcent, missedparticle ); 

                    if isempty(prevdistances) 

                        distances = []; 

                        break; 
                    end 

                    prevdistances(3,end) = prevdistances(3,end)/2; 

                    distances(3) = prevdistances(3,end); 

                    distances(4:6) = [min([max([prevdistances(4,end)+cosd(orient)*distances(3) 1]) 1440]);... 

                        min([max([prevdistances(5,end)+sind(orient)*distances(3) 1]) 1920]); 

prevdistances(6,end)]; 

                    distances = [prevdistances distances]; 

                end 
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                break; 

            end 

        end 

    end 

catch ME 
    disp(ME.stack(1)); 

    throw(ME); 

end 

end 

  

  

function [ numberOfParticles, speed, averages, avgSpeedPerVid, stdSpeedPerVid, 

avgSpeedPerPartPerVid,... 

    stdSpeedPerPartPerVid ] = AverageSpeeds( flowrate, speed ) 

%AverageSpeeds averages the speeds of individual particles over the entire 

%   time they're in the field of view 

    dbstop if error 
    try 

        if isempty(speed) 

            %totalStoppedParticles = 0; 

            numberOfParticles = 0; 

            averages = []; 

            avgSpeedPerVid = NaN; 

            stdSpeedPerVid = NaN; 

            avgSpeedPerPartPerVid = NaN; 

            stdSpeedPerPartPerVid = NaN; 

        else 

             % V = (3/4)Q(H^2-y^2)/(WH^3)   um/s within 10um of the surface (cell height between 1-4 
um in vitro; 

             %http://www.sciencedirect.com/science/article/pii/S0006349500765714) DOF ~ 700nm 

            maximum = ((3/4)*(flowrate*10^9/60)*(127^2-117^2))/(2500*127^3); 

            minimum = 3.6;% if it moves farther than 1.8 um, it cannot move back because of the 

                          %10 pixel backward limit, doubled for insurance. cannot use equation because 

                          %the whole point is to account for drag on the cells 

  

            speed(:,speed(3,:)<minimum)=NaN; 

            %removes velocities moving faster than the flow profile would allow 

            speed(:,speed(3,:)>maximum)=NaN; 

            %removes outliers in hopes of removing false information from the datasets 

            speed(:,isoutlier(speed(3,:))) = NaN;  
            p = 1; 

            tempspeeds = []; 

            averages = []; 

            cropspeedums = speed(:,~isnan(speed(1,:))); 

            while p < length(cropspeedums(1,:)) 

                k = cropspeedums(1,p); 

                while p < length(cropspeedums(1,:)) && cropspeedums(1,p) == k 

                    tempspeeds = [tempspeeds cropspeedums(3,p)]; 

                    p = p+1; 

                end 

                if length(tempspeeds)>1 %ensure there is enough points to create a reasonable average 
                    averages = [averages [k;mean(tempspeeds)]]; 

                end 

                tempspeeds = []; 

            end 

            numberOfParticles = length(averages); 

            if ~isempty(speed) 

                avgSpeedPerVid = mean(mean(speed(3,:),'omitnan'),'omitnan'); 

                stdSpeedPerVid = std(speed(3,:),'omitnan'); 
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            else 

                avgSpeedPerVid = NaN; 

                stdSpeedPerVid = NaN; 

            end 

            if ~isempty(averages) 
                avgSpeedPerPartPerVid = mean(averages(2,:)); 

                stdSpeedPerPartPerVid = std(averages(2,:)); 

            else 

                avgSpeedPerPartPerVid = NaN; 

                stdSpeedPerPartPerVid = NaN; 

            end 

        end 

    catch ME 

        disp(ME.stack(1)); 

        throw(ME); 

    end 

end 
  

  

function [totalparticles, newparticles] = CountNewParticles( old, present, cellimg ) 

%CountNewParticles counts how many new particles have become stuck in a one 

%minute window 

    n = 1; 

    while n <= length(old{1}) 

        temp = old{1}; 

        if ~cellimg(round(temp(n).Centroid(2)), round(temp(n).Centroid(1))) 

            old{1}(n) = []; 

            n = n-1; 
        end 

        n = n+1; 

    end 

    m = 1; 

    while m <= length(present{1}) 

        temp = present{1}; 

        if ~cellimg(round(temp(m).Centroid(2)), round(temp(m).Centroid(1))) 

            present{1}(m) = []; 

            m = m-1; 

        end 

        m = m+1; 

    end 
  

    newparticles = length(present{1}); 

    if ~isempty(old{1}) 

        for i = 1:length(present{1}) 

            for j = 1:length(old{1}) 

                temppres = present{1}; 

                tempold = old{1}; 

                if pdist([temppres(i).Centroid; tempold(j).Centroid]) < 10 

                    newparticles = newparticles-1; 

                end 

            end 
        end 

    else 

        newparticles = length(present{1}); 

    end 

    totalparticles = length(present{1}); 

end 
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function filtBW2 = LoadCellsConfluent( path, name ) 

%LoadCellsConfluent loads and locates the cell locations in the frame 

%   based on fluorescent images 

dbstop if error 

    filename = [path '\' name]; 
    try 

        reader = bfGetReader(filename); 

        %extract frames and change to binary 

        img = bfGetPlane(reader, 1); 

         

        initialGrey = mat2gray(img); 

        adj = imadjust(initialGrey); 

        BW = imbinarize(adj,0.3); 

        dilatedImage = imdilate(BW,strel('disk',2)); 

        BW2 = bwmorph(dilatedImage, 'bridge'); 

        BW3 = imfill(BW2,'holes'); 

        filtBW = bwareafilt(BW3,[500,inf]);%a little more than a 1um particle up to a 3um particle area 
%         figure; 

%         imshow(filtBW); %play video 

%         figure; 

%         imshow(initialGrey); 

        filtBW2 = imresize(filtBW,[1440 1920]); 

        reader.close(); 

    catch ME 

        disp(ME.stack(1)); 

        throw(ME); 

    end 

  
end 

  

  

function complete = PlotHistogram( average ) 

%PlotHistogram plots a histogram of the average speeds of the particles 

  

    complete = 0; 

    lognorm2 = fittype(@(a,b,c,I0,offset,x) offset+(I0*b./(x-a)).*... 

        exp(-c^2).*exp(-(1/(2*c^2))*(log((x-a)./b)).^2));  

    x = 0:10:300; 

    n = zeros(length(average(:,1)),length(x)); 

    y = zeros(1,length(average(:,1))); 
    for u = 1:length(average(:,1)) 

        if average{u} 

            n(u,:) = hist(average{u}(2,:),x); 

        end 

    end 

    if ~isempty(n) 

        for v = 1:length(n(1,:)) 

            y(v) = mean(n(:,v)); 

        end 

        [F, ~] = fit(x',y',lognorm2,'StartPoint',[mean([min(x)-eps -max(x)]),... 

            500,.5,max(y)-mean(y(end-20:end)),mean(y(end-20:end))],... 
            'Upper',[min(x)-eps,2000,10,max(y),max(y)],'Lower',[-max(x),eps,eps,0,0]); 

        xres = 0:.1:300; 

        funct = F.offset+(F.I0*F.b./(xres-F.a)).*exp(-F.c^2).*exp(-(1/(2*F.c^2))*... 

            (log((xres-F.a)./F.b)).^2); 

        [pks, locs] = findpeaks(funct,xres); 

        figure; 

        bar(x, n'); 

        legend('show'); 
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        hold on; 

        plot(F); 

        hold off; 

        xlabel('Average Particle Speed (\mum/sec)'); 

        ylabel('Frequency'); 
        text(locs+10, pks, [num2str(locs) ' \mum/s']); 

        complete = 1; 

    end 

end 
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APPENDIX C 

Appendix C shows the data analysis software for the TLS studies written in 

MATLAB (2018a). The function bpass was written by John C. Crocker and David 

G. Grier at the University of Chicago in 1997 and the function pkfnd was created by 

Eric R. Dufresne at Yale University in 2005. Both are freely distributed for use by 

the public. Full code downloadable from https://github.com/afishtex/APPLICATION-

OF-OPTICAL-ANALYSES-TO-CANCER-THERAPEUTICS-AND-DIAGNOSTICS. 

% Author: Andrew P. Fisher 

% Centre of NanoHealth, College of Science,  
% Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom 

  

samples = ['1.1A'; '1.1B'; '1.2A'; '1.3B'; '2.1A'; '2.1B'; '2.2A'; '2.2B';... 

    '2.3A'; '2.3B'; '3.1A'; '3.1B'; '3.2A'; '3.2B'; '3.3A'; '3.3B'; '4.1A';... 

    '4.1B'; '4.2A'; '4.2B'; '4.3B'; '5.1B'; '5.2A'; '5.2B'; '5.3A'; '5.3B'; '5.4A']; 

  

toPlot = 0; 

for i = 1:length(samples(:,1)) 

    tertiaryLymphoidStructure(samples(i,:), toPlot); 

end 

  
  

function tertiaryLymphoidStructure(sample,toPlot) 

    version = 'v2'; 

    filepath = 'C:\Users\Andrew\Documents\Clearing TLS\'; 

    loadpath = [filepath 'tifs\Raw\']; 

    savepath = [filepath version '\Analysis\' sample '\']; 

    if ~exist(savepath, 'dir') 

      mkdir(savepath); 

    end 

    filename = [sample]; 

    file = [loadpath filename]; 

    savefile =[savepath sample(1) '-' sample(3:end) ' filtered']; 
    cellDiameterPxl = 12; 

    zStep = 10; %microns between images 

    %number of consecutive planes that are required to consider a cell to be a cell 

    numPlanes = 2; 

  

    %% Load planes 

    [planecentersDAPI, binaryFITC, planecentersTRITC, planecentersCy5,... 

        voxel_size, imageSpecs, mmVolume, tumorMask] =... 

        loadTifImages(file, cellDiameterPxl, savefile, zStep); 

    boxDim = [ceil(100/voxel_size(1)),ceil(100/voxel_size(1)),10];  

             %[100 um X 100 um X 100 um] 
  

    %% Find areas that are likely cells 

    if ~exist([savefile ' centers3DDAPI.mat'],'file') || ~exist([savefile... 

            ' centers3DTRITC.mat'],'file') || ~exist([savefile... 

            ' centers3DCy5.mat'],'file') || ~exist([savefile... 

            ' skelFITC.mat'],'file') 

  

        h = waitbar(0, [sample ': Finding DAPI Cells...']); 
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        centers3DDAPI = findCenters3D(imageSpecs, planecentersDAPI,... 

            cellDiameterPxl, numPlanes); 

  

        waitbar(0.25, h, [sample ': Finding TRITC Cells...']); 

        centers3DTRITC = findCenters3D(imageSpecs, planecentersTRITC,... 
            cellDiameterPxl, numPlanes); 

  

        waitbar(0.5, h, [sample ': Finding Cy5 Cells...']); 

        centers3DCy5 = findCenters3D(imageSpecs, planecentersCy5,... 

            cellDiameterPxl, numPlanes); 

  

        centers3DDAPI(~tumorMask)=false; 

        centers3DTRITC(~tumorMask)=false; 

        centers3DCy5(~tumorMask)=false; 

        binaryFITC(~tumorMask)=false; 

  

        waitbar(0.75, h, [sample ': Skeletonizing FITC Vessels...']); 
        dirtySkelFITC = bwskel(binaryFITC); 

        cleanedSkelFITC = bwmorph3(dirtySkelFITC, 'clean'); 

        skelFITC = cleanedSkelFITC; 

  

        skelprops = regionprops3(skelFITC,'Volume','VoxelIdxList'); 

        for i = 1:height(skelprops) 

            %not any smaller than a single cell or any larger than a  

            %string of 50 cells 

            if skelprops.Volume(i) > 500 || skelprops.Volume(i) < 10  

  

                skelFITC(skelprops.VoxelIdxList{i})=false; 
            end 

        end 

         

        save([savefile ' centers3DDAPI.mat'],'centers3DDAPI'); 

        save([savefile ' centers3DTRITC.mat'],'centers3DTRITC'); 

        save([savefile ' centers3DCy5.mat'],'centers3DCy5'); 

        save([savefile ' skelFITC.mat'],'skelFITC'); 

        close(h); 

    else 

        load([savefile ' centers3DDAPI.mat']); 

        load([savefile ' centers3DTRITC.mat']); 

        load([savefile ' centers3DCy5.mat']); 
        load([savefile ' skelFITC.mat']); 

    end 

  

    clear planecentersDAPI binaryFITC planecentersTRITC planecentersCy5 tumorMask; 

  

    %% Plot cells in 3D 

    marker_size = 0; 

    h = waitbar(0, [sample ': Plotting DAPI Cells...']); 

    [marker_size, totalDAPICells] = plot3DCenters(centers3DDAPI, imageSpecs,... 

        cellDiameterPxl, marker_size, toPlot, 'b'); 

    waitbar(0.25, h, [sample ': Plotting TRITC Cells...']); 
    [marker_size, totalTRITCCells] = plot3DCenters(centers3DTRITC, imageSpecs,... 

        cellDiameterPxl, marker_size, toPlot, 'r'); 

    waitbar(0.5, h, [sample ': Plotting Cy5 Cells...']); 

    [marker_size, totalCy5Cells] = plot3DCenters(centers3DCy5, imageSpecs,... 

        cellDiameterPxl, marker_size, toPlot, 'm'); 

    waitbar(0.75, h, [sample ': Plotting FITC Vessels...']); 

    plotVessels(skelFITC, imageSpecs, toPlot); 

    close(h); 
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    % hold off; 

    concDAPI = totalDAPICells/mmVolume; 

    concTRITC = totalTRITCCells/mmVolume; 

    concCy5 = totalCy5Cells/mmVolume; 

     %because its a skeleton and the average diameter of a cell is around 10um 
    totalFITCCells = sum(sum(sum(skelFITC)))/10; 

    concFITC = totalFITCCells/mmVolume; 

  

    h = waitbar(0, [sample ': Scanning DAPI Cells...']); 

%     if ~exist([savefile ' boxNumDAPI.mat'],'file') 

%         boxNumDAPI = boxConcentrations(centers3DDAPI,boxDim); 

%         save([savefile ' boxNumDAPI.mat'],'boxNumDAPI','-v7.3'); 

%     else 

%         load([savefile ' boxNumDAPI.mat']); 

%     end 

    waitbar(0.25, h, [sample ': Scanning TRITC Cells...']); 

    if ~exist([savefile ' boxNumTRITC.mat'],'file') 
        boxNumTRITC = boxConcentrations(centers3DTRITC,boxDim); 

        save([savefile ' boxNumTRITC.mat'],'boxNumTRITC','-v7.3'); 

    else 

        load([savefile ' boxNumTRITC.mat']); 

    end 

    waitbar(0.5, h, [sample ': Scanning Cy5 Cells...']); 

    if ~exist([savefile ' boxNumCy5.mat'],'file') 

        boxNumCy5 = boxConcentrations(centers3DCy5,boxDim); 

        save([savefile ' boxNumCy5.mat'],'boxNumCy5','-v7.3'); 

    else 

        load([savefile ' boxNumCy5.mat']); 
    end 

    waitbar(0.75, h, [sample ': Scanning FITC Cells...']); 

    if ~exist([savefile ' boxNumFITC.mat'],'file') 

        boxNumFITC = boxConcentrations(skelFITC,boxDim); 

        save([savefile ' boxNumFITC.mat'],'boxNumFITC','-v7.3'); 

    else 

        load([savefile ' boxNumFITC.mat']); 

    end 

    close(h); 

    %clear skelFITC centers3DTRITC centers3DCy5 centers3DDAPI; 

    printExcel(sample, [savepath(1:end-6) '\Combined Hot Spots' sample '.xlsx'],... 

        boxDim, totalTRITCCells,totalCy5Cells,totalFITCCells,mmVolume,... 
        boxNumTRITC,boxNumCy5,boxNumFITC,centers3DTRITC,centers3DCy5,... 

        skelFITC,toPlot); 

end 

  

  

function [ centersDAPI, binaryFITC, centersTRITC, centersCy5, voxel_size,... 

    imageSpecs, mmVolume, tumorMask ] = loadTifImages( file, cellSizePxl,... 

    savefile, zStep ) 

%loadTifImages Searches for cell sized fluorescence 

%   outputs center values for all colors 

    oneroundavgmin = 0; 
    info = imfinfo([file '.tif']); 

    %% extract dimensions 

    numImages = length(info); 

    umPxl = 1.05;%microns/pixel 

    voxel_size = [umPxl, zStep]; %microns 

    frameWidth = info(1).Width; %pixels 

    frameLength = info(1).Height; %pixels 

    umVolume = 0; 
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    numberOfColors = 4; 

    planes = numImages/numberOfColors; 

    imageSpecs = [frameWidth, frameLength, planes]; 

    tumorMask = false(imageSpecs); 

    centersDAPI = cell(1,numImages/numberOfColors); 
    fillFactor = 0.66; 

     

    if ~exist([savefile ' centersTRITC.mat'],'file') 

  

        %% extract frames and change to binary 

        centersDAPI = cell(1,numImages/numberOfColors); 

        binaryFITC = false(frameWidth, frameLength, numImages/numberOfColors); 

        centersTRITC = cell(1,numImages/numberOfColors); 

        centersCy5 = cell(1,numImages/numberOfColors); 

        h = waitbar(0, 'Loading...'); 

        tic; 

        for n = 1:numImages/numberOfColors 
            %% import and identify centers of DAPI images 

            %currently only used to find tumour volume shape, adjust to 

            %look like other color profiles if necessary 

            img1 = imread([file '.tif'],n*4-3); 

            initialGreyDAPI = mat2gray(img1); 

  

            Y = imboxfilt(imadjust(initialGreyDAPI),21); 

            bw1 = imbinarize(Y); 

            clear img1 initialGreyDAPI Y; 

  

            %% Import and find FITC vessels 
            img2 = imread([file '.tif'], n*4-2); 

            volFITC = mat2gray(img2); 

            img3 = imread([file '.tif'], n*4-1); 

            volTRITC = mat2gray(img3); 

            img4 = imread([file '.tif'], n*4); 

            volCy5 = mat2gray(img4); 

            %remove background from fitc; channels shouldn't overlap 

            [initialGreyFITC,~] = calcComp(volFITC,volTRITC); 

             %remove background from tritc; channels shouldn't overlap 

            [initialGreyTRITC,~] = calcComp(volTRITC,volFITC); 

             %remove background from cy5; channels shouldn't overlap 

            initialGreyCy5 = volCy5; 
            initialGreyFITC(initialGreyFITC<0) = 0; 

            initialGreyTRITC(initialGreyTRITC<0) = 0; 

            initialGreyCy5(initialGreyCy5<0) = 0; 

            clear img2 img3 img4; 

  

             %filter out small noise, similar to denoising but works between  

             %large items 

            gry2 = bpass(initialGreyFITC,3,cellSizePxl); 

             % threshold of 50 based on choice from 5.2B 

            bw2 = logical(imbinarize(gry2,max(gry2(:))/10)); 

             %from a single cell area to much larger to account for long branches 
             %of vasculature all in one plane 

            bw2filt = bwareafilt(bw2,[ceil(pi*(cellSizePxl/3)^2) 1000]); 

  

            binaryFITC(:,:,n) = bw2filt; 

  

%             figure; imshow(gry2); 

%             figure; imshow(binaryFITC(:,:,n)); 
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            clear A2 B2 J2 gry2 bw2 initialGreyFITC; 

             

             

            %% import and identify centers of TRITC images 

            gry3 = bpass(initialGreyTRITC,3,cellSizePxl); 
            centersTRITC{n} = pkfnd(gry3, max(max(gry3))/25,cellSizePxl, fillFactor); 

%             radiiTRITC = ones(length(centersTRITC{n}(:,1)),1)*(cellSizePxl/2); 

%  

%             figure; imshow(gry3); 

%             viscircles([centersTRITC{n}(:,2) centersTRITC{n}(:,1)],... 

%             radiiTRITC,'Color','b'); 

             

            clear gry3 bw3 gry3filt initialGreyTRITC; 

             

            %% Import and find centers of cy5 images 

            gry4 = bpass(initialGreyCy5,3,cellSizePxl); % use 3 on next pass 

            centersCy5{n} = pkfnd(gry4, max(max(gry4))/50,cellSizePxl, fillFactor); 
%             radiiCy5 = ones(length(centersCy5{n}(:,1)),1)*(cellSizePxl/2); 

%              

%             figure; imshow(gry4); 

%             viscircles([centersCy5{n}(:,2) centersCy5{n}(:,1)], radiiCy5,'Color','b'); 

             

            clear img4 bw4 gry4filt initialGreyCy5; 

  

            %% show image and digital cell location overlay 

%             rgb = zeros(imageSpecs(1), imageSpecs(2),3); 

%             rgb(:,:,1) = initialGreyTRITC; 

%             rgb(:,:,2) = initialGreyFITC; 
%             rgb(:,:,3) = initialGreyCy5; 

%             for m = 1:length(centersTRITC{n}(:,1)) 

%                 rgb(centersTRITC{n}(m,2),centersTRITC{n}(m,1),:) = 1; 

%             end 

%             for p = 1:length(centersCy5{n}(:,1)) 

%                 rgb(centersCy5{n}(p,2),centersCy5{n}(p,1),:) = 1; 

%             end 

%             skeleton = bwskel(binaryFITC(:,:,n)); 

%             for r = 1:imageSpecs(1) 

%                 for q = 1:imageSpecs(2) 

%                     if skeleton(r,q) 

%                         rgb(r,q,:) = 1; 
%                     end 

%                 end 

%             end 

%             figure; imshow(rgb); 

  

            %% Volume Estimation 

            sliceMask = false(frameWidth,frameLength); 

            area = 0; 

            grys = bw1+imbinarize(volFITC,max(max(volFITC))/50)+... 

                imbinarize(volTRITC,max(max(volTRITC))/50)+... 

                imbinarize(volCy5,max(max(volCy5))/50); 
            for j = 1:10:frameLength-10 %step through lengths 

                start = inf; 

                finish = -inf; 

                %search 10 different lengths for the largest one and use that for all 10 

                for k = 0:9 

                    %alleviates the problem of a limited number of cells used 

                    %to try and calculate a volume 

                    tempstart = find(grys(:,j+k)>0,1,'first'); %index in pixels 
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                    tempfinish = find(grys(:,j+k)>0,1,'last'); %index in pixels 

                    if tempstart < start 

                        start = tempstart; %index in pixels 

                    end 

                    if tempfinish > finish 
                        finish = tempfinish; %index in pixels 

                    end 

                end 

                if start ~= inf && finish ~= -inf && start ~= finish 

                    width = (finish-start)*umPxl; %um 

                    area = area+width*umPxl*10; %um^2 

                    sliceMask(start:finish,j:j+9) = true; 

                end 

            end 

            umVolume = umVolume+(area*zStep); %um^3 

            sliceMask(~imerode(sliceMask,strel('disk',50))) = false; 

            tumorMask(:,:,n) = sliceMask; 
  

            %% Display time remaining 

            oneround = toc; 

            oneroundavgmin = (oneroundavgmin*(n-1)+oneround/60)/n; 

            waittimemin = round(oneroundavgmin*(planes-n),4,'significant'); 

            clear bw1 gry2 gry3 gry4 grys sliceMask; 

            tic; 

            waitbar(n/(numImages/numberOfColors),h,['Loading...' newline... 

                num2str(waittimemin) ' min remaining']); 

        end 

        mmVolume = umVolume/10^9; 
        binaryFITC = logical(binaryFITC); 

%         save([savefile ' centersDAPI.mat'], 'centersDAPI'); 

        save([savefile ' binaryFITC.mat'], 'binaryFITC'); 

        save([savefile ' centersTRITC.mat'], 'centersTRITC'); 

        save([savefile ' centersCy5.mat'], 'centersCy5'); 

        save([savefile ' mmVolume.mat'], 'mmVolume'); 

        save([savefile ' tumorMask.mat'], 'tumorMask'); 

        save([savefile ' imageSpecs.mat'], 'imageSpecs'); 

        save([savefile ' voxel_size.mat'], 'voxel_size'); 

        close(h); 

    else 

%         load([savefile ' centersDAPI.mat']); 
        load([savefile ' binaryFITC.mat']); 

        load([savefile ' centersTRITC.mat']); 

        load([savefile ' centersCy5.mat']); 

        load([savefile ' mmVolume.mat']); 

        load([savefile ' tumorMask.mat']); 

        load([savefile ' imageSpecs.mat']); 

        load([savefile ' voxel_size.mat']); 

    end 

end 

  

  
function [filtImg, compFactor] = calcComp( giver, taker ) 

%calcComp Caclulates the compensation factor between two images to subtract 

%   out background autofluorescence 

    compFactor = 0; 

    minimum = inf; 

    for i = 0:0.1:5 

        summation = sum(sum(abs(giver-taker*i))); 

        if summation < minimum 
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            minimum = summation; 

            compFactor = i; 

            filtImg = giver-taker*i; 

        end 

    end 
%     figure; imshow(giver); 

%     figure; imshow(filtImg); 

end 

  

  

function res = bpass(image_array,lnoise,lobject,threshold) 

%  

% NAME: 

%               bpass 

% PURPOSE: 

%               Implements a real-space bandpass filter that suppresses  

%               pixel noise and long-wavelength image variations while  
%               retaining information of a characteristic size. 

%  

% CATEGORY: 

%               Image Processing 

% CALLING SEQUENCE: 

%               res = bpass( image_array, lnoise, lobject ) 

% INPUTS: 

%               image:  The two-dimensional array to be filtered. 

%               lnoise: Characteristic lengthscale of noise in pixels. 

%                       Additive noise averaged over this length should 

%                       vanish. May assume any positive floating value. 
%                       May be set to 0 or false, in which case only the 

%                       highpass "background subtraction" operation is  

%                       performed. 

%               lobject: (optional) Integer length in pixels somewhat  

%                       larger than a typical object. Can also be set to  

%                       0 or false, in which case only the lowpass  

%                       "blurring" operation defined by lnoise is done, 

%                       without the background subtraction defined by 

%                       lobject.  Defaults to false. 

%               threshold: (optional) By default, after the convolution, 

%                       any negative pixels are reset to 0.  Threshold 

%                       changes the threshhold for setting pixels to 
%                       0.  Positive values may be useful for removing 

%                       stray noise or small particles.  Alternatively, can 

%                       be set to -Inf so that no threshholding is 

%                       performed at all. 

% 

% OUTPUTS: 

%               res:    filtered image. 

% PROCEDURE: 

%               simple convolution yields spatial bandpass filtering. 

% NOTES: 

% Performs a bandpass by convolving with an appropriate kernel.  You can 
% think of this as a two part process.  First, a lowpassed image is 

% produced by convolving the original with a gaussian.  Next, a second 

% lowpassed image is produced by convolving the original with a boxcar 

% function. By subtracting the boxcar version from the gaussian version, we 

% are using the boxcar version to perform a highpass. 

%  

% original - lowpassed version of original => highpassed version of the 

% original 
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%  

% Performing a lowpass and a highpass results in a bandpassed image. 

%  

% Converts input to double.  Be advised that commands like 'image' display  

% double precision arrays differently from UINT8 arrays. 
  

% MODIFICATION HISTORY: 

%               Written by David G. Grier, The University of Chicago, 2/93. 

% 

%               Greatly revised version DGG 5/95. 

% 

%               Added /field keyword JCC 12/95. 

%  

%               Memory optimizations and fixed normalization, DGG 8/99. 

%               Converted to Matlab by D.Blair 4/2004-ish 

% 

%               Fixed some bugs with conv2 to make sure the edges are 
%               removed D.B. 6/05 

% 

%               Removed inadvertent image shift ERD 6/05 

%  

%               Added threshold to output.  Now sets all pixels with 

%               negative values equal to zero.  Gets rid of ringing which 

%               was destroying sub-pixel accuracy, unless window size in 

%               cntrd was picked perfectly.  Now centrd gets sub-pixel 

%               accuracy much more robustly ERD 8/24/05 

% 

%               Refactored for clarity and converted all convolutions to 
%               use column vector kernels for speed.  Running on my  

%               macbook, the old version took ~1.3 seconds to do 

%               bpass(image_array,1,19) on a 1024 x 1024 image; this 

%               version takes roughly half that. JWM 6/07 

% 

%       This code 'bpass.pro' is copyright 1997, John C. Crocker and  

%       David G. Grier.  It should be considered 'freeware'- and may be 

%       distributed freely in its original form when properly attributed.   

  

if nargin < 3, lobject = false; end 

if nargin < 4, threshold = 0; end 

  
normalize = @(x) x/sum(x); 

  

image_array = double(image_array); 

  

if lnoise == 0 

  gaussian_kernel = 1; 

else       

  gaussian_kernel = normalize(... 

    exp(-((-ceil(5*lnoise):ceil(5*lnoise))/(2*lnoise)).^2)); 

end 

  
if lobject   

  boxcar_kernel = normalize(... 

      ones(1,length(-round(lobject):round(lobject)))); 

end 

   

% JWM: Do a 2D convolution with the kernels in two steps each.  It is 

% possible to do the convolution in only one step per kernel with  

% 
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  % gconv = conv2(gaussian_kernel',gaussian_kernel,image_array,'same'); 

  % bconv = conv2(boxcar_kernel', boxcar_kernel,image_array,'same'); 

%  

% but for some reason, this is slow.  The whole operation could be reduced 

% to a single step using the associative and distributive properties of 
% convolution: 

% 

  % filtered = conv2(image_array,... 

  %   gaussian_kernel'*gaussian_kernel - boxcar_kernel'*boxcar_kernel,... 

  %   'same'); 

% 

% But this is also comparatively slow (though inexplicably faster than the 

% above).  It turns out that convolving with a column vector is faster than 

% convolving with a row vector, so instead of transposing the kernel, the 

% image is transposed twice. 

  

gconv = conv2(image_array',gaussian_kernel','same'); 
gconv = conv2(gconv',gaussian_kernel','same'); 

  

if lobject 

  bconv = conv2(image_array',boxcar_kernel','same'); 

  bconv = conv2(bconv',boxcar_kernel','same'); 

  

  filtered = gconv - bconv; 

else 

  filtered = gconv; 

end 

  
% Zero out the values on the edges to signal that they're not useful.      

lzero = max(lobject,ceil(5*lnoise)); 

  

filtered(1:(round(lzero)),:) = 0; 

filtered((end - lzero + 1):end,:) = 0; 

filtered(:,1:(round(lzero))) = 0; 

filtered(:,(end - lzero + 1):end) = 0; 

  

% JWM: I question the value of zeroing out negative pixels.  It's a 

% nonlinear operation which could potentially mess up our expectations 

% about statistics.  Is there data on 'Now centroid gets subpixel accuracy 

% much more robustly'?  To choose which approach to take, uncomment one of 
% the following two lines. 

% ERD: The negative values shift the peak if the center of the cntrd mask 

% is not centered on the particle. 

  

% res = filtered; 

filtered(filtered < threshold) = 0; 

res = filtered; 

end 

  

  

function out=pkfnd(im,th,sz,fillFactor) 
% finds local maxima in an image to pixel level accuracy.    

%  this provides a rough guess of particle 

%  centers to be used by cntrd.m.  Inspired by the lmx subroutine of Grier 

%  and Crocker's feature.pro 

% INPUTS: 

% im: image to process, particle should be bright spots on dark background  

% with little noise 

%   ofen an bandpass filtered brightfield image (fbps.m, fflt.m or bpass.m) or a nice 
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%   fluorescent image 

% th: the minimum brightness of a pixel that might be local maxima.  

%   (NOTE: Make it big and the code runs faster 

%   but you might miss some particles.  Make it small and you'll get 

%   everything and it'll be slow.) 
% sz:  if your data's noisy, (e.g. a single particle has multiple local 

% maxima), then set this optional keyword to a value slightly larger than  

% the diameter of your blob.  if 

% multiple peaks are found withing a radius of sz/2 then the code will keep 

% only the brightest.  Also gets rid of all peaks within sz of boundary 

%OUTPUT:  a N x 2 array containing, [row column] coordinates of local maxima 

%CREATED: Eric R. Dufresne, Yale University, Feb 4 2005 

%MODIFIED: ERD, 5/2005, got rid of ind2rc.m to reduce overhead on tip by 

%  Dan Blair;  added sz keyword  

% ERD, 6/2005: modified to work with one and zero peaks, removed automatic 

%  normalization of image 

% ERD, 6/2005: due to popular demand, altered output to give x and y 
%  instead of row and column 

% ERD, 8/24/2005: pkfnd now exits politely if there's nothing above 

%  threshold instead of crashing rudely 

% ERD, 6/14/2006: now exits politely if no maxima found 

% ERD, 10/5/2006:  fixed bug that threw away particles with maxima 

%  consisting of more than two adjacent points 

  

  

  

%find all the pixels above threshold 

%im=im./max(max(im));  
ind=find(im > th); 

[nr,nc]=size(im); 

tst=zeros(nr,nc); 

n=length(ind); 

if n==0 

    out=[]; 

    display('nothing above threshold'); 

    return; 

end 

mx=[]; 

%convert index from find to row and column 

rc=[mod(ind,nr),floor(ind/nr)+1]; 
for i=1:n 

    r=rc(i,1);c=rc(i,2); 

    %check each pixel above threshold to see if it's brighter than it's neighbors 

    %  THERE'S GOT TO BE A FASTER WAY OF DOING THIS.  I'M CHECKING SOME 

MULTIPLE TIMES, 

    %  BUT THIS DOESN'T SEEM THAT SLOW COMPARED TO THE OTHER ROUTINES, 

ANYWAY. 

    if r>1 & r<nr & c>1 & c<nc 

        if im(r,c)>=im(r-1,c-1) & im(r,c)>=im(r,c-1) & im(r,c)>=im(r+1,c-1) & ... 

         im(r,c)>=im(r-1,c)  & im(r,c)>=im(r+1,c) &   ... 

         im(r,c)>=im(r-1,c+1) & im(r,c)>=im(r,c+1) & im(r,c)>=im(r+1,c+1) 
        mx=[mx,[r,c]'];  

        %tst(ind(i))=im(ind(i)); 

        end 

    end 

end 

%out=tst; 

mx=mx'; 
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[npks,crap]=size(mx); 

  

%if size is specified, then get rid of pks within size of boundary + border 

%from bpass filter (15 points from the edge) 

if nargin>=3 & npks>0 
   %throw out all pks within sz of boundary; 

    ind=find(mx(:,1)>(sz+15) & mx(:,1)<(nr-(sz+15)) & mx(:,2)>(sz+15) & ... 

        mx(:,2)<(nc-(sz+15))); 

    mx=mx(ind,:);  

end 

  

%prevent from finding peaks within size of each other 

[npks,crap]=size(mx); 

if npks > 1  

    %CREATE AN IMAGE WITH ONLY PEAKS 

    nmx=npks; 

    tmp=0.*im; %variable declaration, similar to zeros() 
    for i=1:nmx 

         %tmp is zero everywhere except where the peaks are 

        tmp(mx(i,1),mx(i,2))=im(mx(i,1),mx(i,2)); 

    end 

    %LOOK IN NEIGHBORHOOD AROUND EACH PEAK, PICK THE BRIGHTEST 

    for i=1:nmx 

         %defines the region of interest around the peak 

        roi=tmp( (mx(i,1)-floor(sz/2)):(mx(i,1)+(floor(sz/2)+1)),(mx(i,2)-... 

            floor(sz/2)):(mx(i,2)+(floor(sz/2)+1))); 

        [mv,indi]=max(roi); %save max value of the columns in the roi and the column position 

        [mv,indj]=max(mv); %save the max value of the rows and the row position 
        tmp( (mx(i,1)-floor(sz/2)):(mx(i,1)+(floor(sz/2)+1)),... 

            (mx(i,2)-floor(sz/2)):(mx(i,2)+(floor(sz/2)+1)))=0; 

        tmp(mx(i,1)-floor(sz/2)+indi(indj)-1,mx(i,2)-floor(sz/2)+indj-1)=mv; 

    end 

    ind=find(tmp>0); 

    mx=[mod(ind,nr),floor(ind/nr)+1]; 

end 

  

[npks,crap]=size(mx); 

if npks > 1  

    %CREATE AN IMAGE WITH ONLY PEAKS 

    nmx=npks; 
    tmp=0.*im; %variable declaration, similar to zeros() 

    for i=1:nmx 

         %tmp is zero everywhere except where the peaks are 

        tmp(mx(i,1),mx(i,2))=im(mx(i,1),mx(i,2)); 

    end 

    %LOOK IN NEIGHBORHOOD AROUND EACH PEAK, PICK THE BRIGHTEST 

    for i=1:nmx 

        %added by Andrew Fisher 20190219 

        %remove peaks in areas where it does not fill at least *fillFactor* of the circle of 

        %interest 

        imROI = im( (mx(i,1)-floor(sz/2)):(mx(i,1)+(floor(sz/2)+1)),... 
            (mx(i,2)-floor(sz/2)):(mx(i,2)+(floor(sz/2)+1))); 

        emptyness = find(imROI(:) < th); 

        if length(emptyness) >= floor(fillFactor*length(imROI(:))) 

            tmp( (mx(i,1)-floor(sz/2)):(mx(i,1)+(floor(sz/2)+1)),... 

                (mx(i,2)-floor(sz/2)):(mx(i,2)+(floor(sz/2)+1)))=0; 

        end 

        %make sure there is a local contrast larger than one pixel, look at 

        %the maximum third of pixels compared to the minimum third. 
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        mid = logical([0,0,0,0,0,0,0,0,0,0,0,0,0,0;... 

               0,0,0,0,0,0,0,0,0,0,0,0,0,0;... 

               0,0,0,0,0,0,0,0,0,0,0,0,0,0;... 

               0,0,0,1,1,1,1,1,1,1,1,0,0,0;... 

               0,0,0,1,1,1,1,1,1,1,1,0,0,0;... 
               0,0,0,1,1,1,1,1,1,1,1,0,0,0;... 

               0,0,0,1,1,1,1,1,1,1,1,0,0,0;... 

               0,0,0,1,1,1,1,1,1,1,1,0,0,0;... 

               0,0,0,1,1,1,1,1,1,1,1,0,0,0;... 

               0,0,0,1,1,1,1,1,1,1,1,0,0,0;... 

               0,0,0,1,1,1,1,1,1,1,1,0,0,0;... 

               0,0,0,0,0,0,0,0,0,0,0,0,0,0;... 

               0,0,0,0,0,0,0,0,0,0,0,0,0,0;... 

               0,0,0,0,0,0,0,0,0,0,0,0,0,0]); 

        edge = logical([1,1,1,1,1,1,1,1,1,1,1,1,1,1;... 

                1,0,0,0,0,0,0,0,0,0,0,0,0,1;... 

                1,0,0,0,0,0,0,0,0,0,0,0,0,1;... 
                1,0,0,0,0,0,0,0,0,0,0,0,0,1;... 

                1,0,0,0,0,0,0,0,0,0,0,0,0,1;... 

                1,0,0,0,0,0,0,0,0,0,0,0,0,1;... 

                1,0,0,0,0,0,0,0,0,0,0,0,0,1;... 

                1,0,0,0,0,0,0,0,0,0,0,0,0,1;... 

                1,0,0,0,0,0,0,0,0,0,0,0,0,1;... 

                1,0,0,0,0,0,0,0,0,0,0,0,0,1;... 

                1,0,0,0,0,0,0,0,0,0,0,0,0,1;... 

                1,0,0,0,0,0,0,0,0,0,0,0,0,1;... 

                1,0,0,0,0,0,0,0,0,0,0,0,0,1;... 

                1,1,1,1,1,1,1,1,1,1,1,1,1,1]); 
        if mean(imROI(mid)) < 3*mean(imROI(edge)) 

            tmp( (mx(i,1)-floor(sz/2)):(mx(i,1)+(floor(sz/2)+1)),... 

                (mx(i,2)-floor(sz/2)):(mx(i,2)+(floor(sz/2)+1)))=0; 

        end 

    end 

    ind=find(tmp>0); 

    mx=[mod(ind,nr),floor(ind/nr)+1]; 

end 

  

if size(mx)==[0,0] 

    out=[]; 

else 
    out = mx; 

end 

end 

  

  

function centers3D = findCenters3D(imageSpecs,planecenters,cellDiameterPxl,numPlanes) 

%findCenters3D Finds cells that are at least numPlanes in depth 

%   and no longer than numPlanes+1 in depth 

  

    frameWidth = imageSpecs(1); 

    frameLength = imageSpecs(2); 
    planes = imageSpecs(3); 

    centers3D = false(frameWidth, frameLength, planes); 

    for i = planes:-1:2 %loop through the planes 

        j = 1; 

        if ~isempty(planecenters{:,i}) 

             %loop through the center points in the i-th plane 

            while j <= length(planecenters{:,i}(:,1)) 

                loopNum = 1; 
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                below = 0; 

                [loopNum, below, planecenters] = ... 

                    findMatchingCenter(planecenters,i,j,loopNum,below,... 

                    cellDiameterPxl,numPlanes); 

                if loopNum < numPlanes+1 && below 
                     %create a binary matrix of center points in 3D space 

                    centers3D(planecenters{1,i}(j,1),planecenters{1,i}(j,2),i) = 1; 

                end 

                j = j+1; 

            end 

        end 

    end 

  

end 

  

  

function [loopNum, anotherOne, planecenters] =... 
    findMatchingCenter(planecenters,i,j,loopNum,below,cellDiameterPxl,numPlanes) 

%findMatchingCenter Summary of this function goes here 

%   Detailed explanation goes here 

    n=0; 

    anotherOne = 0; 

    if i-loopNum > 0 && ~isempty(planecenters{1,i}) && ~isempty(planecenters{1,i-loopNum}) 

         %loop through the centerpoints in the k-th plane 

        for k = 1:length(planecenters{:,i-loopNum}(:,1)) 

            if pdist([planecenters{1,i}(j,:); planecenters{1,i-loopNum}(k,:)])... 

                    < cellDiameterPxl/4 

                anotherOne=1; 
                n=k; 

            end 

        end 

        if anotherOne == 1 

            below = below + anotherOne; 

            currentLoop = loopNum; 

            loopNum=loopNum+1; 

            [loopNum,~,planecenters] =... 

                findMatchingCenter(planecenters,i,j,loopNum,below,cellDiameterPxl,numPlanes); 

        end 

        %once we find more than numPlanes points that connect to a single xy point,  

        %we delete all future points to prevent multiple counts of the same cell 
        if loopNum > numPlanes && anotherOne  

            planecenters{1,i-currentLoop}(n,:) = []; 

        end 

    end 

         

end 

  

  

function [marker_size, numCells] =... 

    plot3DCenters(centers3D, imageSpecs, cellDiameterPxl,... 

    marker_size, toPlot, color) 
%plot3DCenters creates a 3D representation of the cells 

  

    frameWidth = imageSpecs(1); 

    frameLength = imageSpecs(2); 

    centerIndex = find(centers3D==1); 

    numCells = length(centerIndex); 

    centerX = zeros(numCells,1); 

    centerY = zeros(numCells,1); 
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    centerZ = zeros(numCells,1); 

  

  

    for m = 1:numCells 

        centerZ(m) = ceil(centerIndex(m)/(frameWidth*frameLength)); 
        centerX(m) = ceil((centerIndex(m)-(centerZ(m)-1)*frameWidth*frameLength)/frameLength); 

        centerY(m) = centerIndex(m)-(centerZ(m)-1)*frameWidth*frameLength-... 

            (centerX(m)-1)*frameLength; 

        centerZ(m) = centerZ(m)*10; %goes from plane number, to um. 10 um per plane step 

    end 

    if marker_size == 0 && toPlot 

        figure; 

        xlim([0 2000]); 

        ylim([0 2000]); 

        zlim([0 2000]); 

  

        ax = gca; 
        AR = get(gca, 'dataaspectratio'); 

        if ~isequal(AR(1:3), [1 1 1]) 

          error(['Units are not equal on X, Y, and Z, cannot create marker'... 

              'size that is one unit on both']); 

        end 

        oldunits = get(ax, 'Units'); 

        set(ax, 'Units', 'points'); 

        pos = get(ax, 'Position');    %[X Y Z width height depth] 

        set(ax, 'Units', oldunits'); 

        XL = xlim(ax); 

        points_per_unit = pos(3) / (XL(2) - XL(1)); 
        marker_size = (points_per_unit*cellDiameterPxl) .^2 * pi / 4; 

    end 

    if toPlot 

        scatter3(centerX, centerY, centerZ, marker_size, 'filled',... 

            'MarkerEdgeColor','k', 'MarkerFaceColor', color); 

            xlabel('X (\mum)');    

            ylabel('Y (\mum)'); 

            zlabel('Z (\mum)'); 

            xlim([0 2000]); 

            ylim([0 2000]); 

            zlim([0 2000]); 

        hold on; 
    end 

end 

  

  

function plotVessels(skelFITC,imageSpecs,toPlot) 

%plotVessels creates a 3D representation of the vessels 

%    

    frameWidth = imageSpecs(1); 

    frameLength = imageSpecs(2); 

    vesselIndex = find(skelFITC==1); 

    numCells = length(vesselIndex); 
    for m = 1:numCells 

        vesselZ(m) = ceil(vesselIndex(m)/(frameWidth*frameLength)); 

        vesselX(m) = ceil((vesselIndex(m)-(vesselZ(m)-1)*frameWidth*frameLength)/frameLength); 

        vesselY(m) = vesselIndex(m)-(vesselZ(m)-1)*frameWidth*frameLength-(vesselX(m)-

1)*frameLength; 

        vesselZ(m) = vesselZ(m)*10; %goes from plane number, to um, to pixels 

    end 

    if toPlot 
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        plot3(vesselY,vesselX,vesselZ,'.','Color','g'); %row,col,z 

    end 

end 

  

  
function conc = boxConcentrations(centers,boxDim) 

%boxConcentrations Counts the number of cells in each volume 

%   Volume defined by boxDim 

    imageDim = size(centers); 

    conc = zeros(imageDim(1)-(boxDim(1)-1),imageDim(2)-(boxDim(2)-1),... 

        imageDim(3)-(boxDim(3)-1)); 

    if max(max(max(centers))) ~= 0 

        for i = 1:size(conc,3) %:floor(boxDim(3)/10): 

            for j = 1:floor(boxDim(2)/10):size(conc,2) 

                for k = 1:floor(boxDim(1)/10):size(conc,1) 

                    conc(k,j,i) = sum(sum(sum(centers(k:k+(boxDim(1)-1),... 

                        j:j+(boxDim(2)-1),i:i+(boxDim(3)-1))))); 
                end 

            end 

        end 

    end 

end 

  

  

function printExcel(sample, filename, boxDim,totalTRITCCells,totalCy5Cells,... 

    totalFITCCells,mmVolume,boxNumTRITC,boxNumCy5,boxNumFITC,centers3DTRITC,... 

    centers3DCy5,skelFITC, toPlot) 

%printExcel Summary of this function goes here 
%   FITC is divided by 10X more because it is a single line so each cell 

%   with approx 10um diameter would have 10 pixels across it. 

  

[index210, filteredHotSpots210] = 

findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,2,10,50); 

  

[index220, ~] = findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,2,20,50); 

  

[index230, ~] = findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,2,30,50); 

  

[index22, ~] = findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,2,2,50); 

  
[index25, ~] = findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,2,5,50); 

  

[index510, filteredHotSpots510] = 

findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,5,10,50); 

  

[index520, ~] = findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,5,20,50); 

  

[index530, ~] = findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,5,30,50); 

  

[index52, ~] = findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,5,2,50); 

  
[index55, ~] = findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,5,5,50); 

  

[index1010, ~] = findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,10,10,50); 

  

[index1020, filteredHotSpots1020] = 

findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,10,20,50); 

  

[index1030, ~] = findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,10,30,50); 
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[index102, ~] = findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,10,2,50); 

  

[index105, ~] = findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,10,5,50); 

  
totalNumCells = sum([totalTRITCCells,totalCy5Cells,totalFITCCells]); 

  

  

hotSpotTRITCCells210 = zeros(1,height(filteredHotSpots210)); 

hotSpotCy5Cells210 = zeros(1,height(filteredHotSpots210)); 

hotSpotFITCCells210 = zeros(1,height(filteredHotSpots210)); 

for n = 1:height(filteredHotSpots210) 

    if toPlot 

        h = figure; 

    end 

    hotSpotTRITCCells210(n) = plotHotSpot(filteredHotSpots210(n,:), centers3DTRITC,... 

        'r', 0, toPlot); 
    hotSpotCy5Cells210(n) = plotHotSpot(filteredHotSpots210(n,:), centers3DCy5, 'm',... 

        0, toPlot); 

    hotSpotFITCCells210(n) = plotHotSpot(filteredHotSpots210(n,:), skelFITC, 'g', 10, toPlot); 

    if toPlot 

        pause; 

        close(h); 

    end 

end 

  

hotSpotTRITCCells510 = zeros(1,height(filteredHotSpots510)); 

hotSpotCy5Cells510 = zeros(1,height(filteredHotSpots510)); 
hotSpotFITCCells510 = zeros(1,height(filteredHotSpots510)); 

for n = 1:height(filteredHotSpots510) 

    if toPlot 

        h = figure; 

    end 

    hotSpotTRITCCells510(n) = plotHotSpot(filteredHotSpots510(n,:), centers3DTRITC,... 

        'r', 0, toPlot); 

    hotSpotCy5Cells510(n) = plotHotSpot(filteredHotSpots510(n,:), centers3DCy5, 'm',... 

        0, toPlot); 

    hotSpotFITCCells510(n) = plotHotSpot(filteredHotSpots510(n,:), skelFITC, 'g', 10, toPlot); 

    if toPlot 

        pause; 
        close(h); 

    end 

end 

  

hotSpotTRITCCells1020 = zeros(1,height(filteredHotSpots1020)); 

hotSpotCy5Cells1020 = zeros(1,height(filteredHotSpots1020)); 

hotSpotFITCCells1020 = zeros(1,height(filteredHotSpots1020)); 

for n = 1:height(filteredHotSpots1020) 

    if toPlot 

        h = figure; 

    end 
    hotSpotTRITCCells1020(n) = plotHotSpot(filteredHotSpots1020(n,:), centers3DTRITC,... 

        'r', 0, toPlot); 

    hotSpotCy5Cells1020(n) = plotHotSpot(filteredHotSpots1020(n,:), centers3DCy5, 'm',... 

        0, toPlot); 

    hotSpotFITCCells1020(n) = plotHotSpot(filteredHotSpots1020(n,:), skelFITC, 'g', 10, toPlot); 

    if toPlot 

        pause; 

        close(h); 



87 

 

    end 

end 

  

  

exl = {'Volume (mm^3)' 'Total Cells' 'Immune Cell Concentration (Cells/mm^3)' ... 
    'Total TRITC Cells' 'TRITC Cell Concentration (Cells/mm^3)' 'Total Cy5 Cells'... 

    'Cy5 Cell Concentration (Cells/mm^3)' 'Total FITC Cells' 'FITC Cell Concentration 

(Cells/mm^3)'... 

    '' '' ''}; 

exl(2,:) = {mmVolume totalNumCells totalNumCells/mmVolume totalTRITCCells... 

    totalTRITCCells/mmVolume totalCy5Cells totalCy5Cells/mmVolume totalFITCCells... 

    totalFITCCells/mmVolume '' '' ''}; 

exl(3,:) = {'' '' '' '' '' '' '' '' '' '' '' ''}; 

exl(4,:) = {'Number of Cells of Each Type in Box' '' 'Populated TRITC Boxes'... 

    'Populated Cy5 Boxes' 'Populated FITC Boxes' 'Box Dimensions' '' '' '' 'Hot Spots' '' ''}; 

exl(5,:) = {2 'FITC25' length(find(floor(boxNumTRITC/2)>0)) 

length(find(floor(boxNumCy5/2)>0))... 
    length(find(floor(boxNumFITC/25)>0)) [num2str(boxDim(1)) 'x' num2str(boxDim(2)) 'x'... 

    num2str(boxDim(3))] '' '' '' '' 'B Cells' ''}; 

exl(6,:) = {5 '' length(find(floor(boxNumTRITC/5)>0)) length(find(floor(boxNumCy5/5)>0))... 

    length(find(floor(boxNumFITC/50)>0)) '' '' '' '' '2' '5' '10'}; 

exl(7,:) = {10 '' length(find(floor(boxNumTRITC/10)>0)) length(find(floor(boxNumCy5/10)>0))... 

    length(find(floor(boxNumFITC/100)>0)) '' '' '' '2' index22 index52 index102}; 

exl(8,:) = {20 '' length(find(floor(boxNumTRITC/20)>0)) length(find(floor(boxNumCy5/20)>0))... 

    length(find(floor(boxNumFITC/200)>0)) '' '' '' '5' index25 index55 index105}; 

exl(9,:) = {30 '' length(find(floor(boxNumTRITC/30)>0)) length(find(floor(boxNumCy5/30)>0))... 

    length(find(floor(boxNumFITC/300)>0)) '' '' 'T Cells' '10' index210 index510 index1010}; 

exl(10,:) = {40 '' length(find(floor(boxNumTRITC/40)>0)) length(find(floor(boxNumCy5/40)>0))... 
    length(find(floor(boxNumFITC/400)>0)) '' '' '' '20' index220 index520 index1020}; 

exl(11,:) = {50 '' length(find(floor(boxNumTRITC/50)>0)) length(find(floor(boxNumCy5/50)>0))... 

    length(find(floor(boxNumFITC/500)>0)) '' '' '' '30' index230 index530 index1030}; 

exl(12,:) = {'' '' '' '' '' '' '' '' '' '' '' ''}; 

exl(13,:) = {'' '' '/mm^3' '' '' '' '' '' '' '' '' ''}; 

exl(14,:) = {'Number of Cells of Each Type in Box' 'Hot Spots' 'Populated TRITC Boxes'... 

    'Populated Cy5 Boxes' 'Populated FITC Boxes' '' '' '' '' 'Hot Spots/mm^3' '' ''}; 

exl(15,:) = {2 'FITC25' length(find(floor(boxNumTRITC/2)>0))/mmVolume... 

    length(find(floor(boxNumCy5/2)>0))/mmVolume 

length(find(floor(boxNumFITC/25)>0))/mmVolume... 

    '' '' '' '' '' 'B Cells' ''}; 

exl(16,:) = {5 '' length(find(floor(boxNumTRITC/5)>0))/mmVolume...  
    length(find(floor(boxNumCy5/5)>0))/mmVolume 

length(find(floor(boxNumFITC/50)>0))/mmVolume...  

    '' '' '' '' '2' '5' '10'}; 

exl(17,:) = {10 '' length(find(floor(boxNumTRITC/10)>0))/mmVolume...  

    length(find(floor(boxNumCy5/10)>0))/mmVolume 

length(find(floor(boxNumFITC/100)>0))/mmVolume...  

    '' '' '' '2' index22/mmVolume index52/mmVolume index102/mmVolume}; 

exl(18,:) = {20 '' length(find(floor(boxNumTRITC/20)>0))/mmVolume...  

    length(find(floor(boxNumCy5/20)>0))/mmVolume 

length(find(floor(boxNumFITC/200)>0))/mmVolume...  

    '' '' '' '5' index25/mmVolume index55/mmVolume index105/mmVolume}; 
exl(19,:) = {30 '' length(find(floor(boxNumTRITC/30)>0))/mmVolume...  

    length(find(floor(boxNumCy5/30)>0))/mmVolume 

length(find(floor(boxNumFITC/300)>0))/mmVolume...  

    '' '' 'T Cells' '10' index210/mmVolume index510/mmVolume index1010/mmVolume}; 

exl(20,:) = {40 '' length(find(floor(boxNumTRITC/40)>0))/mmVolume...  

    length(find(floor(boxNumCy5/40)>0))/mmVolume 

length(find(floor(boxNumFITC/400)>0))/mmVolume...  

    '' '' '' '20' index220/mmVolume index520/mmVolume index1020/mmVolume}; 
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exl(21,:) = {50 '' length(find(floor(boxNumTRITC/50)>0))/mmVolume...  

    length(find(floor(boxNumCy5/50)>0))/mmVolume 

length(find(floor(boxNumFITC/500)>0))/mmVolume...  

    '' '' '' '30' index230/mmVolume index530/mmVolume index1030/mmVolume}; 

exl(22,:) = {'' '' '' '' '' '' '' '' '' '' '' ''}; 
exl(23,:) = {'210 Volumes' '210 TRITC' '210 Cy5' '210 FITC' '510 Volumes' '510 TRITC' '510 Cy5'...  

    '510 FITC' '1020 Volumes' '1020 TRITC' '1020 Cy5' '1020 FITC'}; 

% looking at the volumes of these TLS 

for i = 1:max([index210 index1020 index510]) 

    if i<=min([index210 index1020 index510]) 

        exl(23+i,:) = {filteredHotSpots210{i,1} hotSpotTRITCCells210(i) hotSpotCy5Cells210(i)...  

            hotSpotFITCCells210(i) filteredHotSpots510{i,1} hotSpotTRITCCells510(i)...  

            hotSpotCy5Cells510(i) hotSpotFITCCells510(i) filteredHotSpots1020{i,1}... 

            hotSpotTRITCCells1020(i) hotSpotCy5Cells1020(i) hotSpotFITCCells1020(i)}; 

    elseif i<=index210 && i<=index510 

        exl(23+i,:) = {filteredHotSpots210{i,1} hotSpotTRITCCells210(i) hotSpotCy5Cells210(i)...  

            hotSpotFITCCells210(i) filteredHotSpots510{i,1} hotSpotTRITCCells510(i)...  
            hotSpotCy5Cells510(i) hotSpotFITCCells510(i) '' '' '' ''}; 

    elseif i<=index210 && i<=index1020 

        exl(23+i,:) = {filteredHotSpots210{i,1} hotSpotTRITCCells210(i) hotSpotCy5Cells210(i)...  

            hotSpotFITCCells210(i) '' '' '' '' filteredHotSpots1020{i,1} hotSpotTRITCCells1020(i)...  

            hotSpotCy5Cells1020(i) hotSpotFITCCells1020(i)}; 

    elseif i<=index510 && i<=index1020 

        exl(23+i,:) = { '' '' '' '' filteredHotSpots510{i,1} hotSpotTRITCCells510(i)...  

            hotSpotCy5Cells510(i) hotSpotFITCCells510(i) filteredHotSpots1020{i,1}...  

            hotSpotTRITCCells1020(i) hotSpotCy5Cells1020(i) hotSpotFITCCells1020(i)}; 

    elseif i<=index210 

        exl(23+i,:) = {filteredHotSpots210{i,1} hotSpotTRITCCells210(i) hotSpotCy5Cells210(i)...  
            hotSpotFITCCells210(i) '' '' '' '' '' '' '' ''}; 

    elseif i<=index510 

        exl(23+i,:) = {'' '' '' '' filteredHotSpots510{i,1} hotSpotTRITCCells510(i)...  

            hotSpotCy5Cells510(i) hotSpotFITCCells510(i) '' '' '' ''}; 

    elseif i<=index1020 

        exl(23+i,:) = {'' '' '' '' '' '' '' '' filteredHotSpots1020{i,1} hotSpotTRITCCells1020(i)...  

            hotSpotCy5Cells1020(i) hotSpotFITCCells1020(i)}; 

    end 

end 

  

xlswrite(filename, exl, sample); 

end 
  

  

function [index,filteredHotSpots] = findHotSpots(boxNumTRITC,boxNumCy5,boxNumFITC,... 

    numTRITCCells,numCy5Cells,numFITCCells) 

%findHotSpots finds and connects area that have the required concentration 

%   of each cell type to define a TLS 

  

    heatMap=floor(boxNumTRITC/numTRITCCells).*floor(boxNumCy5/numCy5Cells).*... 

        floor(boxNumFITC/numFITCCells); 

    hotSpots = heatMap>0; 

    dilStep = 100; 
        %1.5X step size allows for small gaps between positive overlapping regions,  

        % use this to extend the box to see if there is overlap between neighbors  

        % and consider them to be a single TLS 

    se = strel('cuboid',[dilStep dilStep dilStep/10]);  

    dilatedHotSpots = imdilate(hotSpots,se); 

    hotSpotProps = regionprops3(dilatedHotSpots); 

    filteredHotSpots = hotSpotProps; 

    j = 1; 
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    while j <= height(filteredHotSpots) 

         % 400000 because 200x200x100 um / 10um/step in the z direction  

        if filteredHotSpots{j,1} < 200000 

            filteredHotSpots(j,:) = []; 

            j = j-1; 
        end 

        j = j+1; 

    end 

  

    %% adjust edges of the bounding box so that the hot spot can be plotted 

    index = length(filteredHotSpots.Volume); 

    for i=1:index 

        for j = 1:3 

            if j < 3  

                filteredHotSpots.BoundingBox(i,j) = filteredHotSpots.BoundingBox(i,j)+... 

                    dilStep/2;% shift the dilation from center to corner 

                if 100-dilStep>0 
                    filteredHotSpots.BoundingBox(i,j+3) = filteredHotSpots.BoundingBox(i,j+3)... 

                        +(100-dilStep);% correct for smaller dilation sizes than counting box sizes 

                end 

                if filteredHotSpots.BoundingBox(i,j)+filteredHotSpots.BoundingBox(i,j+3)>... 

                        size(boxNumTRITC,j)+95 %make sure it doesn't go out of bounds 

                    filteredHotSpots.BoundingBox(i,j+3) = floor(size(boxNumTRITC,j)+95-... 

                        filteredHotSpots.BoundingBox(i,j)); 

                end 

            else 

                % shift the dilation from center to corner 

                filteredHotSpots.BoundingBox(i,j) = filteredHotSpots.BoundingBox(i,j)+dilStep/20; 
                if 100-dilStep>0 

                    filteredHotSpots.BoundingBox(i,j+3) = filteredHotSpots.BoundingBox(i,j+3)+... 

                        ((100-dilStep)/10);% correct for smaller dilation sizes than counting box sizes 

                end 

                if filteredHotSpots.BoundingBox(i,j)+filteredHotSpots.BoundingBox(i,j+3)>... 

                        size(boxNumTRITC,j)+9 %make sure it doesn't go out of bounds 

                    filteredHotSpots.BoundingBox(i,j+3) = floor(size(boxNumTRITC,j)+9-... 

                        filteredHotSpots.BoundingBox(i,j)); 

                end 

            end 

        end 

    end 
end 

  

  

function tlsNumCells = plotHotSpot(filteredHotSpot, centers3D, color, markerSize, toPlot) 

%plotHotSpot creates a 3D representation of the TLS 

  

    box = [filteredHotSpot.BoundingBox]; 

    tlsNumCells = sum(sum(sum(centers3D(floor(box(2)):ceil(box(2))+ceil(box(5)),... 

        floor(box(1)):ceil(box(1))+ceil(box(4)), floor(box(3)):ceil(box(3))+ceil(box(6)))))); 

    if toPlot 

  
        frameWidth = length(centers3D(1,:,1)); 

        frameLength = length(centers3D(:,1,1)); 

  

        centerIndex = find(centers3D==1); 

        totalNumCells = length(centerIndex); 

        centerX = zeros(totalNumCells,1); 

        centerY = zeros(totalNumCells,1); 

        centerZ = zeros(totalNumCells,1); 
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        centerZpxl = zeros(totalNumCells,1); 

  

  

        for m = 1:totalNumCells 

            centerZpxl(m) = ceil(centerIndex(m)/(frameWidth*frameLength)); 
            centerX(m) = ceil((centerIndex(m)-(centerZpxl(m)-1)*frameWidth*frameLength)... 

                /frameLength); 

            centerY(m) = centerIndex(m)-(centerZpxl(m)-1)*frameWidth*frameLength-... 

                (centerX(m)-1)*frameLength; 

            centerZ(m) = centerZpxl(m)*10; %goes from plane number, to um, to pixels 

        end 

  

        cubeMaxSide = max([box(4) box(5) box(6)*10]); 

        xlim([floor(box(1)) floor(box(1))+cubeMaxSide+1]); 

        ylim([floor(box(2)) floor(box(2))+cubeMaxSide+1]); 

        zlim([floor(box(3))*10 floor(box(3))*10+cubeMaxSide+1]); 

        if markerSize == 0 
            ax = gca; 

            AR = get(gca, 'dataaspectratio'); 

            if ~isequal(AR(1:3), [1 1 1]) 

              error(['Units are not equal on X, Y, and Z, cannot create marker size'... 

                  'that is one unit on both']); 

            end 

            oldunits = get(ax, 'Units'); 

            set(ax, 'Units', 'points'); 

            pos = get(ax, 'Position');    %[X Y Z width height depth] 

            set(ax, 'Units', oldunits'); 

            XL = xlim(ax); 
            points_per_unit = pos(3) / (XL(2) - XL(1)); 

            markerSize = (points_per_unit*10) .^2 * pi / 4; 

        end 

        scatter3(centerX, centerY, centerZ, markerSize, 'filled',... 

            'MarkerEdgeColor','k', 'MarkerFaceColor', color); 

  

        xlim([floor(box(1)) floor(box(1))+cubeMaxSide+1]); 

        ylim([floor(box(2)) floor(box(2))+cubeMaxSide+1]); 

        zlim([floor(box(3))*10 floor(box(3))*10+cubeMaxSide+1]); 

        xlabel('X (\mum)');    

        ylabel('Y (\mum)'); 

        zlabel('Z (\mum)'); 
  

        volume = filteredHotSpot.Volume; 

        title(['TLS Volume: ' num2str(volume) '\mum^3']) 

        hold on; 

    end 

end 

 

  



91 

 

APPENDIX D 

Appendix D shows the data analysis software for the Raman/fluorescence extraction 

studies written in MATLAB (2015b). Full code downloadable from 

https://github.com/afishtex/APPLICATION-OF-OPTICAL-ANALYSES-TO-

CANCER-THERAPEUTICS-AND-DIAGNOSTICS. 

function varargout = Raman_process_v5(varargin) 

% RAMAN_PROCESS_V5 MATLAB code for Raman_process_v5.fig 

%      RAMAN_PROCESS_V5, by itself, creates a new RAMAN_PROCESS_V5 or raises  

%      the existing singleton*. 

% 

%      H = RAMAN_PROCESS_V5 returns the handle to a new RAMAN_PROCESS_V5 or the 

%      handle to the existing singleton*. 

% 
%      RAMAN_PROCESS_V5('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in RAMAN_PROCESS_V5.M with the given input arguments. 

% 

%      RAMAN_PROCESS_V5('Property','Value',...) creates a new RAMAN_PROCESS_V5 or  

%      raises the existing singleton*.  Starting from the left, property value pairs  

%      are applied to the GUI before Raman_process_v5_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to Raman_process_v5_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 
% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help Raman_process_v5 

  

% Last Modified by GUIDE v2.5 11-Jan-2018 10:51:53 

  

% Author(s): A. Fisher, K. Meissner 

% Centre of NanoHealth, College of Science,  

% Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom 

  

% Begin initialization code - DO NOT EDIT 
  

  

    gui_Singleton = 1; 

    gui_State = struct('gui_Name',       mfilename, ... 

                       'gui_Singleton',  gui_Singleton, ... 

                       'gui_OpeningFcn', @Raman_process_v5_OpeningFcn, ... 

                       'gui_OutputFcn',  @Raman_process_v5_OutputFcn, ... 

                       'gui_LayoutFcn',  [] , ... 

                       'gui_Callback',   []); 

    if nargin && ischar(varargin{1}) 

        gui_State.gui_Callback = str2func(varargin{1}); 
    end 

  

    if nargout 

        [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

    else 

        gui_mainfcn(gui_State, varargin{:}); 
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    end 

% End initialization code - DO NOT EDIT 

end 

  

  
% --- Executes just before Raman_process_v5 is made visible. 

function Raman_process_v5_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to Raman_process_v5 (see VARARGIN) 

  

    % Choose default command line output for Raman_process_v5 

    handles.output = hObject; 

  

    % Update handles structure 
    guidata(hObject, handles); 

    xlabel('Raman Shift (cm^{-1})'); 

    ylabel('Signal'); 

    title('Input Data'); 

    handles.lt_bl = [.871,.922,.98]; 

    handles.dk_bl = [.729,.831,.957]; 

    handles.lt_rd = [.961,.922,.922]; 

    handles.dk_rd = [.925,.839,.839]; 

    guidata(hObject,handles); 

  

    % UIWAIT makes Raman_process_v5 wait for user response (see UIRESUME) 
    % uiwait(handles.figure1); 

end 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = Raman_process_v5_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

    % Get default command line output from handles structure 
    varargout{1} = handles.output; 

end 

  

  

% --- Executes on button press in export. 

function export_Callback(hObject, eventdata, handles) 

% hObject    handle to export (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

    if get(handles.exp_fitparams,'Value') == 1 

        assignin('base','fit_param',handles.fit_array); 
    end 

    if get(handles.exp_fitgood,'Value') == 1 

        assignin('base','fit_goodness',handles.goodness_array); 

    end 

    if get(handles.exp_fluor_fitparams,'Value') == 1 

        assignin('base','fit_param',handles.fluor_fit_array); 

    end 

    if get(handles.exp_fluor_fitgood,'Value') == 1 
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        assignin('base','fit_goodness',handles.fluor_goodness_array); 

    end 

    if get(handles.exp_mag,'Value') == 1 

        assignin('base','image_mag',handles.image_mag); 

    end 
    if get(handles.exp_ctr,'Value') == 1 

        assignin('base','image_ctr',handles.image_ctr); 

    end 

    if get(handles.exp_width,'Value') == 1 

        assignin('base','image_width',handles.image_width); 

    end 

    if get(handles.exp_r2,'Value') == 1 

        assignin('base','image_r2',handles.image_r2); 

    end 

    if get(handles.exp_fluor_mag,'Value') == 1 

        assignin('base','image_mag',handles.fluor_mag); 

    end 
    if get(handles.exp_fluor_asym,'Value') == 1 

        assignin('base','image_ctr',handles.fluor_asym); 

    end 

    if get(handles.exp_fluor_width,'Value') == 1 

        assignin('base','image_width',handles.fluor_width); 

    end 

    if get(handles.exp_fluor_r2,'Value') == 1 

        assignin('base','image_r2',handles.fluor_r2); 

    end 

    if get(handles.exp_raw,'Value') == 1 

        assignin('base','data',handles.data); 
        assignin('base','shift_axis',handles.shift_axis); 

    end 

    if get(handles.exp_raw_dec,'Value') == 1 

        assignin('base','data_dec',handles.data_dec); 

    end 

    if get(handles.exp_f_dec,'Value') == 1 

        assignin('base','data_f_dec',handles.data_f_dec); 

    end 

    if get(handles.exp_f_b_dec,'Value') == 1 

        assignin('base','data_f_b_dec',handles.data_f_b_dec); 

    end 

    if (get(handles.exp_raw_dec,'Value') == 1) || (get(handles.exp_f_b_dec,'Value')... 
            == 1) || (get(handles.exp_f_b_dec,'Value') == 1) 

        assignin('base','shift_axis_dec',handles.shift_axis_dec); 

    end 

end 

  

  

% --- Executes on button press in clear. 

function clear_Callback(hObject, eventdata, handles) 

% hObject    handle to clear (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 
    cla(handles.input_plot); 

    handles.data=[];handles.shift_axis=[]; 

    handles.data_dec=[];handles.data_f_dec=[];handles.data_f_b_dec=[];... 

        handles.shift_axis_dec=[]; 

    handles.image_mag=[];handles.image_ctr=[];handles.image_width=[];... 

        handles.image_r2=[]; 

    handles.rows=0;handles.cols=0;handles.spec=0; 

    axis auto; 
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    xlabel('Raman Shift (cm^{-1})'); 

    ylabel('Signal'); 

    title('Input Data'); 

    s = sprintf('Rows: %.0f',handles.rows); 

    set(handles.row_label,'String',s); 
    s = sprintf('Cols: %.0f',handles.cols); 

    set(handles.col_label,'String',s); 

    set(handles.file_info,'String','No File'); 

    set(handles.decimate,'BackgroundColor',handles.dk_rd); 

    set(handles.average,'BackgroundColor',handles.dk_rd); 

    set(handles.process,'BackgroundColor',handles.dk_rd); 

    set(handles.file_load,'BackgroundColor',handles.dk_bl); 

    set(handles.file_info,'BackgroundColor',[.94,.94,.94]); 

    set(handles.sav_raw,'Value',0); 

    set(handles.exp_raw,'Value',0); 

    set(handles.sav_raw_dec,'Value',0); 

    set(handles.exp_raw_dec,'Value',0); 
    set(handles.sav_f_dec,'Value',0); 

    set(handles.exp_f_dec,'Value',0); 

    set(handles.sav_f_b_dec,'Value',0); 

    set(handles.exp_f_b_dec,'Value',0); 

    set(handles.sav_mag,'Value',0); 

    set(handles.sav_ctr,'Value',0); 

    set(handles.sav_width,'Value',0); 

    set(handles.sav_r2,'Value',0); 

    set(handles.exp_mag,'Value',0); 

    set(handles.exp_ctr,'Value',0); 

    set(handles.exp_width,'Value',0); 
    set(handles.exp_r2,'Value',0); 

    set(handles.exp_fitgood,'Value',0); 

    set(handles.exp_fitparams,'Value',0); 

    set(handles.exp_fluor_fitgood,'Value',0); 

    set(handles.exp_fluor_fitparams,'Value',0); 

    set(handles.exp_fluor_mag,'Value',0); 

    set(handles.exp_fluor_asym,'Value',0); 

    set(handles.exp_fluor_width,'Value',0); 

    set(handles.exp_fluor_r2,'Value',0); 

    set(handles.sav_fluor_mag,'Value',0); 

    set(handles.sav_fluor_asym,'Value',0); 

    set(handles.sav_fluor_width,'Value',0); 
    set(handles.sav_fluor_r2,'Value',0); 

    pause(.25); 

    set(handles.file_info,'String','No File'); 

    set(handles.file_info,'BackgroundColor',[.8,.8,.8]); 

    guidata(hObject,handles); 

end 

  

% --- Executes on button press in exp_mag. 

function exp_mag_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_mag (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in exp_ctr. 

function exp_ctr_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_ctr (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in exp_width. 
function exp_width_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_width (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in exp_r2. 

function exp_r2_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_r2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 
end 

  

  

% --- Executes on button press in exp_raw. 

function exp_raw_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_raw (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  
% --- Executes on button press in exp_f_dec. 

function exp_filt_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_f_dec (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in save. 

function save_Callback(hObject, eventdata, handles) 

% hObject    handle to save (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

    %%%%%Store data as files%%%%% 

    %Get filename and path 

    [FileName,PathName] = uiputfile('*.txt'); 

    %Write image cubes to 2D arrays 

    [rows cols spec] = size(handles.data); 

    tmpraw = zeros(rows*cols+1,spec+2); 

    tmpraw(1,1)=0; 

    tmpraw(1,2)=0; 

    tmpraw(1,3:end)=handles.shift_axis(1,:); 
    cntc = 0; 

    cntr = 1; 

    for r = 1:rows 

        for c = 1:cols 

            cntc = cntc+1; 

            cntr = cntr+1; 

            tmpraw(cntr,1) = r; 

            tmpraw(cntr,2) = cntc; 
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            for sp = 1:spec 

                tmpraw(cntr,sp+2) = handles.data(r,c,sp); 

            end 

        end 

        cntc = 0; 
    end 

  

    %run the filtered data separately since spatial filtering may have altered 

    %dimensions of array 

    [rows cols spec] = size(handles.data_f_dec); 

    tmpfilt_dec = zeros(rows*cols+1,spec+2); 

    tmpfiltb_dec = zeros(rows*cols+1,spec+2); 

    tmpfilt_dec(1,1)=0; 

    tmpfilt_dec(1,2)=0; 

    tmpfilt_dec(1,3:end)=handles.shift_axis_dec(1,:); 

    tmpfiltb_dec(1,1)=0; 

    tmpfiltb_dec(1,2)=0; 
    tmpfiltb_dec(1,3:end)=handles.shift_axis_dec(1,:); 

    cntc = 0; 

    cntr = 1; 

    for r = 1:rows 

        for c = 1:cols 

            cntc = cntc+1; 

            cntr = cntr+1; 

            tmpfilt_dec(cntr,1) = r; 

            tmpfilt_dec(cntr,2) = cntc; 

            tmpfiltb_dec(cntr,1) = r; 

            tmpfiltb_dec(cntr,2) = cntc; 
            for sp = 1:spec 

                tmpfilt_dec(cntr,sp+2) = handles.data_f_dec(r,c,sp); 

                tmpfiltb_dec(cntr,sp+2) = handles.data_f_b_dec(r,c,sp); 

            end 

        end 

        cntc = 0; 

    end 

  

    [rows cols spec] = size(handles.data_dec); 

    tmpraw_dec = zeros(rows*cols+1,spec+2); 

    cntc = 0; 

    cntr = 1; 
    for r = 1:rows 

        for c = 1:cols 

            cntc = cntc+1; 

            cntr = cntr+1; 

            tmpraw_dec(cntr,1) = r; 

            tmpraw_dec(cntr,2) = cntc; 

            for sp = 1:spec 

                tmpraw_dec(cntr,sp+2) = handles.data_dec(r,c,sp); 

            end 

        end 

        cntc = 0; 
    end 

  

    %Write files to path/filename with extension 

    if get(handles.sav_raw,'Value') == 1 

        s = sprintf('%s%s%s%s',PathName,FileName(1:end-4),... 

            '_Data_Raw','.txt'); 

        save(s,'tmpraw','-ascii'); 

    end 
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    if get(handles.sav_raw_dec,'Value') == 1 

        s = sprintf('%s%s%s%s',PathName,FileName(1:end-4),... 

            '_Data_Raw_Dec','.txt'); 

        save(s,'tmpraw_dec','-ascii'); 

    end 
    if get(handles.sav_f_dec,'Value') == 1 

        s = sprintf('%s%s%s%s',PathName,FileName(1:end-4),... 

            '_Data_Filt_Dec','.txt'); 

        save(s,'tmpfilt_dec','-ascii'); 

    end 

    if get(handles.sav_f_b_dec,'Value') == 1 

        s = sprintf('%s%s%s%s',PathName,FileName(1:end-4),... 

            '_Data_Filt_Back_Dec','.txt'); 

        save(s,'tmpfiltb_dec','-ascii'); 

    end 

    if get(handles.sav_mag,'Value') == 1 

        s = sprintf('%s%s%s%s',PathName,FileName(1:end-4),... 
            '_Raman_Image_Magnitude','.txt'); 

        tmp = handles.image_mag; 

        save(s,'tmp','-ascii'); 

    end 

    if get(handles.sav_ctr,'Value') == 1 

        s = sprintf('%s%s%s%s',PathName,FileName(1:end-4),... 

            '_Raman_Image_Center','.txt'); 

        tmp = handles.image_ctr; 

        save(s,'tmp','-ascii'); 

    end 

    if get(handles.sav_width,'Value') == 1 
        s = sprintf('%s%s%s%s',PathName,FileName(1:end-4),... 

            '_Raman_Image_Width','.txt'); 

        tmp = handles.image_width; 

        save(s,'tmp','-ascii'); 

    end 

    if get(handles.sav_r2,'Value') == 1 

        s = sprintf('%s%s%s%s',PathName,FileName(1:end-4),... 

            '_Raman_Image_RSquared','.txt'); 

        tmp = handles.image_r2; 

        save(s,'tmp','-ascii'); 

    end 

    if get(handles.exp_fluor_mag,'Value') == 1 
        s = sprintf('%s%s%s%s',PathName,FileName(1:end-4),... 

            '_Fluorescence_Image_Magnitude','.txt'); 

        tmp = handles.fluor_mag; 

        save(s,'tmp','-ascii'); 

    end 

    if get(handles.exp_fluor_asym,'Value') == 1 

        s = sprintf('%s%s%s%s',PathName,FileName(1:end-4),... 

            '_Fluorescence_Image_Asymmetry','.txt'); 

        tmp = handles.fluor_mag; 

        save(s,'tmp','-ascii'); 

    end 
    if get(handles.exp_fluor_width,'Value') == 1 

        s = sprintf('%s%s%s%s',PathName,FileName(1:end-4),... 

            '_Fluorescence_Image_Width','.txt'); 

        tmp = handles.fluor_width; 

        save(s,'tmp','-ascii'); 

    end 

    if get(handles.exp_fluor_r2,'Value') == 1 

        s = sprintf('%s%s%s%s',PathName,FileName(1:end-4),... 
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            '_Fluorescence_Image_RSquared','.txt'); 

        tmp = handles.fluor_r2; 

        save(s,'tmp','-ascii'); 

    end 

end 
  

  

% --- Executes on button press in sav_mag. 

function sav_mag_Callback(hObject, eventdata, handles) 

% hObject    handle to sav_mag (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in sav_ctr. 

function sav_ctr_Callback(hObject, eventdata, handles) 
% hObject    handle to sav_ctr (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in sav_width. 

function sav_width_Callback(hObject, eventdata, handles) 

% hObject    handle to sav_width (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 
end 

  

  

% --- Executes on button press in sav_r2. 

function sav_r2_Callback(hObject, eventdata, handles) 

% hObject    handle to sav_r2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in sav_raw. 
function sav_raw_Callback(hObject, eventdata, handles) 

% hObject    handle to sav_raw (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in sav_f_dec. 

function sav_filt_Callback(hObject, eventdata, handles) 

% hObject    handle to sav_f_dec (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in decimate. 

function decimate_Callback(hObject, eventdata, handles) 

% hObject    handle to decimate (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 

    start_shift = str2num(get(handles.lam_start,'String')); 

    stop_shift = str2num(get(handles.lam_stop,'String')); 

    bkg_size = str2num(get(handles.bkg_pts,'String')); 

  
    %determine indices of start and stop 

    tmp = abs(handles.shift_axis-start_shift); 

    [min_val min_index] = min(tmp); %value and index of closest value 

    start = min_index; %start index 

    clear tmp;  

    tmp = abs(handles.shift_axis-stop_shift); 

    [min_val min_index] = min(tmp); %value and index of closest value 

    stop = min_index; %stop index 

    %add the background on either side of the fit to remove  

    handles.bkg1 = start - bkg_size; 

    handles.bkg2 = stop + bkg_size; 

  
    handles.data_dec = handles.data(:,:,handles.bkg1:handles.bkg2); 

    handles.shift_axis_dec = handles.shift_axis(1,handles.bkg1:handles.bkg2); 

    set(handles.decimate,'BackgroundColor',handles.lt_rd); 

    s = sprintf('Spec: %.0f',handles.bkg2-handles.bkg1+1); 

    set(handles.spec_label,'String',s); 

    set(handles.sav_raw_dec,'Value',1); 

    set(handles.exp_raw_dec,'Value',1); 

    guidata(hObject,handles); 

end 

  

% --- Executes on button press in average. 
function average_Callback(hObject, eventdata, handles) 

% hObject    handle to average (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

    %Remove noise 

    if get(handles.ave_none,'Value')==1 

        handles.label_spectral = 'None'; 

        handles.data_f = handles.data; 

        handles.data_f_dec = handles.data_dec; 

    elseif get(handles.ave_box,'Value')==1 

        handles.label_spectral = 'Boxcar';         

        box_size = str2num(get(handles.box_win,'String'));        
        handles.data_f = filter(ones(1,box_size)/box_size,1,handles.data,[],3); 

        handles.data_f_dec = handles.data_f(:,:,handles.bkg1:handles.bkg2); 

    elseif get(handles.ave_sg,'Value')==1 

        handles.label_spectral = sprintf('Sovitzky-Golay Ord: %s Win: %s',... 

            get(handles.sg_order,'String'),get(handles.sg_win,'String'));         

        order = str2num(get(handles.sg_order,'String')); 

        box_size = str2num(get(handles.sg_win,'String'));                 

        handles.data_f = sgolayfilt_3D(handles.data,order,box_size,[],3); 

        handles.data_f_dec = handles.data_f(:,:,handles.bkg1:handles.bkg2); 

    end 

    if get(handles.ave_spatial,'Value')==1 
        handles.data_f_dec = spatial_filter(handles.data_f_dec,handles.spatial_array); 

        handles.data_f = spatial_filter(handles.data_f,handles.spatial_array); 

    else 

        handles.label_spatial = 'No Spatial'; 

    end 

    set(handles.average,'BackgroundColor',handles.lt_rd); 

    set(handles.sav_f_dec,'Value',1); 

    set(handles.exp_f_dec,'Value',1); 
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    guidata(hObject,handles); 

end 

  

  

% --- Executes on button press in process. 
function process_Callback(hObject, eventdata, handles) 

% hObject    handle to process (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

    %Set limits for determining poor fit 

    mag_lim = 0; 

    width_lim = 1; 

    r2_lim = 0.2; 

  

    %Remove background and fit the data 

    if get(handles.bkg_detrend,'Value')==1 
        handles.label_bkg = 'Detrend'; 

        [handles.image_mag,handles.image_ctr,handles.image_width,handles.image_r2,... 

            handles.data_f_b_dec,handles.fit_array,handles.goodness_array] =... 

            process_detrend(handles.data_f_dec,handles.shift_axis_dec',... 

            str2num(get(handles.bkg_pts,'String')),mag_lim,width_lim,r2_lim,... 

            get(handles.gauss_fit,'Value')); 

  

    else get(handles.bkg_poly,'Value')==1 

        handles.label_bkg = 'Poly'; 

        if get(handles.poly_fit,'Value')==1 

            poly = 'poly1'; 
        elseif get(handles.poly_fit,'Value')==2 

            poly = 'poly2'; 

        end 

        [handles.image_mag,handles.image_ctr,handles.image_width,handles.image_r2,... 

            handles.data_f_b_dec,handles.fit_array,handles.goodness_array] =... 

            process_poly(handles.data_f_dec,handles.shift_axis_dec',... 

            str2num(get(handles.bkg_pts,'String')),mag_lim,width_lim,r2_lim,poly,... 

            get(handles.gauss_fit,'Value')); 

    end 

    if get(handles.gauss_fit,'Value')==1 

        handles.label_fit = 'Gaussian'; 

    else 
        handles.label_fit = 'Lorentzian'; 

    end 

    figure('Name',get(handles.file_display,'String')); 

    subplot(2,2,1); 

    X = -5:5/8:5; 

    Y = 5:-5/8:-5; 

    imagesc(X, Y, handles.image_mag/max(max(handles.image_mag))); 

    colormap('jet'); 

    caxis([0,1]); 

    colorbar; 

    title('Normalized Magnitude'); 
    xlabel('X (\mum)'); 

    ylabel('Y (\mum)'); 

    text(min(X)-3.5, min(Y),'(b)','FontWeight','bold','FontSize',16,'Color','k',... 

        'BackgroundColor','w'); 

    fprintf('Avg Mag: %.3f\n', mean(handles.image_mag(:))); 

    subplot(2,2,2); 

    imagesc(X, Y, handles.image_ctr); 

    caxis([str2num(get(handles.lam_start,'String')),... 
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        str2num(get(handles.lam_stop,'String'))]); 

    colorbar; 

    title('Center'); 

    xlabel('X (\mum)'); 

    ylabel('Y (\mum)'); 
    text(min(X)-3.5, min(Y),'(d)','FontWeight','bold','FontSize',16,'Color','k',... 

        'BackgroundColor','w'); 

    fprintf('Avg Ctr: %.3f\n', mean(handles.image_ctr(:))); 

    subplot(2,2,3); 

    imagesc(X, Y, handles.image_width); 

    caxis([0,(str2num(get(handles.lam_stop,'String'))-... 

        str2num(get(handles.lam_start,'String')))/2]); 

    colorbar; 

    title('Width'); 

    xlabel('X (\mum)'); 

    ylabel('Y (\mum)'); 

    text(min(X)-3.5, min(Y),'(c)','FontWeight','bold','FontSize',16,'Color','k',... 
        'BackgroundColor','w'); 

    fprintf('Avg Width: %.3f\n', mean(handles.image_width(:))); 

    subplot(2,2,4); 

    imagesc(X, Y, handles.image_r2); 

    caxis([0,1]); 

    colorbar; 

    title('R^{2}'); 

    xlabel('X (\mum)'); 

    ylabel('Y (\mum)'); 

    text(min(X)-3.5, min(Y),'(e)','FontWeight','bold','FontSize',16,'Color','k',... 

        'BackgroundColor','w'); 
    fprintf('Avg R-Squared: %.3f\n', mean(handles.image_r2(:))); 

    suptitle(sprintf(['Raman Data: Spectral Ave: %s\nSpatial Ave: %s,',... 

        ' Background: %s, Fit: %s, Range: %.0f - %.0f cm^{-1}'],... 

        handles.label_spectral,handles.label_spatial,handles.label_bkg,... 

        handles.label_fit,str2num(get(handles.lam_start,'String')),... 

        str2num(get(handles.lam_stop,'String')))); 

    set(handles.process,'BackgroundColor',handles.lt_rd); 

    set(handles.sav_f_b_dec,'Value',1); 

    set(handles.exp_f_b_dec,'Value',1); 

    set(handles.sav_mag,'Value',1); 

    set(handles.sav_ctr,'Value',1); 

    set(handles.sav_width,'Value',1); 
    set(handles.sav_r2,'Value',1); 

    set(handles.exp_mag,'Value',1); 

    set(handles.exp_ctr,'Value',1); 

    set(handles.exp_width,'Value',1); 

    set(handles.exp_r2,'Value',1); 

    set(handles.exp_fitgood,'Value',1); 

    set(handles.exp_fitparams,'Value',1); 

    guidata(hObject,handles); 

end 

  

% --- Executes on button press in fluor_fit. 
function fluor_fit_Callback(hObject, eventdata, handles) 

% hObject    handle to fluor_fit (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

    %Set limits for determining poor fit 

    mag_lim = 0; 

    r2_lim = 0.2; 
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    [handles.fluor_mag,handles.fluor_asym,handles.fluor_width,handles.fluor_r2,... 

        handles.fluor_fit_array,handles.fluor_goodness_array] =... 

        process_fluor(handles.data_f,handles.shift_axis,mag_lim,r2_lim); 

    figure('Name',get(handles.file_display,'String')); 
    X = -5:5/8:5; 

    Y = 5:-5/8:-5; 

    colormap('jet'); 

    subplot(2,2,1); 

    imagesc(X, Y, handles.fluor_mag/max(max(handles.fluor_mag))); 

    caxis([0,1]); 

    colorbar; 

    title('Normalized Fluorescence'); 

    xlabel('X (\mum)'); 

    ylabel('Y (\mum)'); 

    subplot(2,2,2); 

    imagesc(X, Y, handles.fluor_asym); 
    colorbar; 

    title('Asymmetry'); 

    xlabel('X (\mum)'); 

    ylabel('Y (\mum)'); 

    subplot(2,2,3); 

    imagesc(X, Y, handles.fluor_width); 

    colorbar; 

    title('Width'); 

    xlabel('X (\mum)'); 

    ylabel('Y (\mum)'); 

    subplot(2,2,4); 
    imagesc(X, Y, handles.fluor_r2); 

    caxis([0,1]); 

    colorbar; 

    title('R^{2}'); 

    xlabel('X (\mum)'); 

    ylabel('Y (\mum)'); 

    suptitle(sprintf(['Fluorescence Data: Spectral Ave: %s\nSpatial Ave: %s,',... 

        ' Fit: Lognormal'],handles.label_spectral,handles.label_spatial)); 

    set(handles.process,'BackgroundColor',handles.lt_rd); 

    set(handles.exp_fluor_fitgood,'Value',1); 

    set(handles.exp_fluor_fitparams,'Value',1); 

    set(handles.exp_fluor_mag,'Value',1); 
    set(handles.exp_fluor_asym,'Value',1); 

    set(handles.exp_fluor_width,'Value',1); 

    set(handles.exp_fluor_r2,'Value',1); 

    set(handles.sav_fluor_mag,'Value',1); 

    set(handles.sav_fluor_asym,'Value',1); 

    set(handles.sav_fluor_width,'Value',1); 

    set(handles.sav_fluor_r2,'Value',1); 

    guidata(hObject,handles); 

end 

   

  
function file_display_Callback(hObject, eventdata, handles) 

% hObject    handle to file_display (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes during object creation, after setting all properties. 
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function file_display_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to file_display (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  
    if ispc && isequal(get(hObject,'BackgroundColor'), ... 

            get(0,'defaultUicontrolBackgroundColor')) 

        set(hObject,'BackgroundColor','white'); 

    end 

end 

  

  

% --- Executes on button press in file_load. 

function file_load_Callback(hObject, eventdata, handles) 

% hObject    handle to file_load (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 
    [FileName,PathName,FilterIndex] = uigetfile('*.txt'); 

    set(handles.file_display,'String',FileName); 

    handles.file = sprintf('%s%s',PathName,FileName); 

    A = importdata(handles.file,'\t'); 

    %Determine the number of row_label and columns - assume row 1 is Raman shift 

    % row 2 begins data, col 1 is row_label and col 2 is columns 

    handles.cols = length(find(A(:,1)==A(2,1))); %find # cols in first row 

    Adim = size(A); 

    handles.rows = (Adim(1)-1)/handles.cols; %ignore first row and calc # of rows 

    % put data in an image cube with (row,column,spectrum) 

    handles.data =... 
        zeros(handles.rows,handles.cols,Adim(2)-2); %spectra ignore first two cols 

    handles.shift_axis = A(1,3:end); %establish the Raman shift axis 

    for r = 1:handles.rows 

        for c = 1:handles.cols 

            handles.data(r,c,:) = A((r-1)*handles.cols+c+1,3:end); 

        end 

    end 

    s = sprintf('Rows: %.0f',handles.rows); 

    set(handles.row_label,'String',s); 

    s = sprintf('Cols: %.0f',handles.cols); 

    set(handles.col_label,'String',s); 

    s = sprintf('Spec: %.0f',Adim(2)-2); 
    set(handles.spec_label,'String',s); 

    set(handles.file_info,'BackgroundColor',[.94,.94,.94]); 

    pause(.25); 

    set(handles.file_info,'String','File Loaded'); 

    set(handles.file_info,'BackgroundColor',[.8,.8,.8]); 

    set(handles.file_load,'BackgroundColor',handles.lt_bl); 

    handles.input_plot; 

    for r = 1:handles.rows 

        for c = 1:handles.cols 

            plot(handles.shift_axis(1,:),squeeze(handles.data(r,c,:))); 

            hold on; 
        end 

    end 

    set(handles.file_info,'BackgroundColor',[.94,.94,.94]); 

    pause(.25); 

    set(handles.file_info,'BackgroundColor',[.8,.8,.8]); 

    set(handles.file_info,'String','File Loaded'); 

    set(handles.file_info,'String','Raw Data'); 

    set(handles.file_plot,'BackgroundColor',handles.lt_bl); 
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    set(handles.sav_raw,'Value',1); 

    set(handles.exp_raw,'Value',1); 

    guidata(hObject,handles); 

end 

  
  

% --- Executes on button press in file_plot. 

function file_plot_Callback(hObject, eventdata, handles) 

% hObject    handle to file_plot (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

    handles.input_plot; 

    for r = 1:handles.rows 

        for c = 1:handles.cols 

            plot(handles.shift_axis(1,:),squeeze(handles.data(r,c,:))); 

            hold on; 

        end 
    end 

    set(handles.file_info,'BackgroundColor',[.94,.94,.94]); 

    pause(.25); 

    set(handles.file_info,'BackgroundColor',[.8,.8,.8]); 

    set(handles.file_info,'String','File Loaded'); 

    set(handles.file_info,'String','Raw Data'); 

end 

  

  

function lam_start_Callback(hObject, eventdata, handles) 

% hObject    handle to lam_start (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes during object creation, after setting all properties. 

function lam_start_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to lam_start (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

    if ispc && isequal(get(hObject,'BackgroundColor'), ... 
            get(0,'defaultUicontrolBackgroundColor')) 

        set(hObject,'BackgroundColor','white'); 

    end 

end 

  

  

function lam_stop_Callback(hObject, eventdata, handles) 

% hObject    handle to lam_stop (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles structure with handles and user data (see GUIDATA) 

end 
  

  

% --- Executes during object creation, after setting all properties. 

function lam_stop_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to lam_stop (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 
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    if ispc && isequal(get(hObject,'BackgroundColor'), ... 

            get(0,'defaultUicontrolBackgroundColor')) 

        set(hObject,'BackgroundColor','white'); 

    end 

end 
  

  

  

function bkg_pts_Callback(hObject, eventdata, handles) 

% hObject    handle to bkg_pts (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes during object creation, after setting all properties. 

function bkg_pts_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to bkg_pts (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

    if ispc && isequal(get(hObject,'BackgroundColor'), ... 

            get(0,'defaultUicontrolBackgroundColor')) 

        set(hObject,'BackgroundColor','white'); 

    end 

end 

  

  
% --- Executes on selection change in poly_fit. 

function poly_fit_Callback(hObject, eventdata, handles) 

% hObject    handle to poly_fit (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes during object creation, after setting all properties. 

function poly_fit_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to poly_fit (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  

    if ispc && isequal(get(hObject,'BackgroundColor'), ... 

            get(0,'defaultUicontrolBackgroundColor')) 

        set(hObject,'BackgroundColor','white'); 

    end 

end 

  

  

function sg_order_Callback(hObject, eventdata, handles) 

% hObject    handle to sg_order (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes during object creation, after setting all properties. 

function sg_order_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to sg_order (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

    if ispc && isequal(get(hObject,'BackgroundColor'), ... 

            get(0,'defaultUicontrolBackgroundColor')) 
        set(hObject,'BackgroundColor','white'); 

    end 

end 

  

  

function sg_win_Callback(hObject, eventdata, handles) 

% hObject    handle to sg_win (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  
% --- Executes during object creation, after setting all properties. 

function sg_win_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to sg_win (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

    if ispc && isequal(get(hObject,'BackgroundColor'), ... 

            get(0,'defaultUicontrolBackgroundColor')) 

        set(hObject,'BackgroundColor','white'); 

    end 

end 
  

  

function box_win_Callback(hObject, eventdata, handles) 

% hObject    handle to box_win (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes during object creation, after setting all properties. 

function box_win_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to box_win (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

    if ispc && isequal(get(hObject,'BackgroundColor'), ... 

            get(0,'defaultUicontrolBackgroundColor')) 

        set(hObject,'BackgroundColor','white'); 

    end 

end 

  

  

% --- Executes on button press in exp_raw_dec. 
function exp_raw_dec_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_raw_dec (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in exp_f_dec. 
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function exp_f_dec_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_f_dec (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 
  

  

% --- Executes on button press in exp_f_b_dec. 

function exp_f_b_dec_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_f_b_dec (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in sav_raw_dec. 

function sav_raw_dec_Callback(hObject, eventdata, handles) 
% hObject    handle to sav_raw_dec (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in sav_f_dec. 

function sav_f_dec_Callback(hObject, eventdata, handles) 

% hObject    handle to sav_f_dec (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 
end 

  

  

% --- Executes on button press in sav_f_b_dec. 

function sav_f_b_dec_Callback(hObject, eventdata, handles) 

% hObject    handle to sav_f_b_dec (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in roi_plot. 
function roi_plot_Callback(hObject, eventdata, handles) 

% hObject    handle to roi_plot (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

    cla(handles.input_plot); 

    axis auto; 

    xlabel('Raman Shift (cm^{-1})'); 

    ylabel('Signal'); 

    title('Input Data'); 

    [rows cols spec] = size(handles.data_dec); 

    for r = 1:rows 
        for c = 1:cols 

            plot(handles.shift_axis_dec(1,:),squeeze(handles.data_dec(r,c,:))); 

            hold on; 

        end 

    end 

    set(handles.file_info,'BackgroundColor',[.94,.94,.94]); 

    pause(.25); 

    set(handles.file_info,'String','ROI'); 
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    set(handles.file_info,'BackgroundColor',[.8,.8,.8]); 

end 

  

  

% --- Executes on button press in proc_plot. 
function proc_plot_Callback(hObject, eventdata, handles) 

% hObject    handle to proc_plot (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

    cla(handles.input_plot); 

    axis auto; 

    xlabel('Raman Shift (cm^{-1})'); 

    ylabel('Signal'); 

    title('Input Data'); 

    [rows cols spec] = size(handles.data_f_b_dec); 

    for r = 1:rows 

        for c = 1:cols 
            plot(handles.shift_axis_dec(1,:),squeeze(handles.data_f_b_dec(r,c,:))); 

            hold on; 

        end 

    end 

    set(handles.file_info,'BackgroundColor',[.94,.94,.94]); 

    pause(.25); 

    set(handles.file_info,'String','Processed'); 

    set(handles.file_info,'BackgroundColor',[.8,.8,.8]); 

end 

  

  
% --- Executes on button press in ave_plot. 

function ave_plot_Callback(hObject, eventdata, handles) 

% hObject    handle to ave_plot (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

    cla(handles.input_plot); 

    axis auto; 

    xlabel('Raman Shift (cm^{-1})'); 

    ylabel('Signal'); 

    title('Input Data'); 

    [rows cols spec] = size(handles.data_f_dec); 

    for r = 1:rows 
        for c = 1:cols 

            plot(handles.shift_axis_dec(1,:),squeeze(handles.data_f_dec(r,c,:))); 

            hold on; 

        end 

    end 

    set(handles.file_info,'BackgroundColor',[.94,.94,.94]); 

    pause(.25); 

    set(handles.file_info,'String','Averaged'); 

    set(handles.file_info,'BackgroundColor',[.8,.8,.8]); 

end 

  
  

% --- Executes on button press in ave_spatial. 

function ave_spatial_Callback(hObject, eventdata, handles) 

% hObject    handle to ave_spatial (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 
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% --- Executes on button press in exp_fitparams. 

function exp_fitparams_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_fitparams (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in exp_fitgood. 

function exp_fitgood_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_fitgood (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  
% --- Executes on selection change in ave_spatial_array. 

function ave_spatial_array_Callback(hObject, eventdata, handles) 

% hObject    handle to ave_spatial_array (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

    switch(get(handles.ave_spatial_array,'Value')) 

        case 1 

            handles.spatial_array = [0,.2,0;.2,.2,.2;0,.2,0]; 

            handles.label_spatial = 'NN Uniform'; 

        case 2 
            handles.spatial_array = [0,.15,0;.15,.4,.15;0,.15,0]; 

            handles.label_spatial = 'NN .40, 4x.15'; 

        case 3 

            handles.spatial_array = [0,.10,0;.10,.6,.10;0,.10,0]; 

            handles.label_spatial = 'NN .60, 4x.10'; 

        case 4 

            handles.spatial_array = [0,.05,0;.05,.8,.05;0,.05,0]; 

            handles.label_spatial = 'NN .80, 4x.05'; 

        case 5 

            handles.spatial_array = (1/9)*ones(3,3); 

            handles.label_spatial = 'NNN Uniform'; 

        case 6 
            handles.spatial_array = [.1,.1,.1;.1,.2,.1;.1,.1,.1]; 

            handles.label_spatial = 'NNN .20, 8x.10'; 

        case 7 

            handles.spatial_array = [.05,.15,.05;.15,.2,.15;.05,.15,.05]; 

            handles.label_spatial = 'NNN .20, 4x.15, 4x.05'; 

        case 8 

            handles.spatial_array = [.05,.10,.05;.10,.4,.10;.05,.10,.05]; 

            handles.label_spatial = 'NNN .40, 4x.10, 4x.05'; 

        case 9 

            handles.spatial_array = [.05,.05,.05;.05,.6,.05;.05,.05,.05]; 

            handles.label_spatial = 'NNN .60, 8x.05'; 
        case 10 

            handles.spatial_array = [.025,.075,.025;.075,.6,.075;.025,.075,.025]; 

            handles.label_spatial = 'NNN .60, 4x.075, 4x.025'; 

        case 11 

            handles.spatial_array = [.025,.025,.025;.025,.8,.025;.025,.025,.025]; 

            handles.label_spatial = 'NNN .80, 8x.025'; 

        otherwise 

            handles.spatial_array = zeros(3,3); 
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            handles.label_spatial = 'Error: all zeros'; 

    end 

    guidata(hObject,handles); 

end 

  
  

% --- Executes during object creation, after setting all properties. 

function ave_spatial_array_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to ave_spatial_array (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

    if ispc && isequal(get(hObject,'BackgroundColor'), ... 

            get(0,'defaultUicontrolBackgroundColor')) 

        set(hObject,'BackgroundColor','white'); 

    end 

  
    handles.spatial_array = [0,.2,0;.2,.2,.2;0,.2,0]; 

    handles.label_spatial = 'NN Uniform'; 

    guidata(hObject,handles); 

end 

  

  

% --- Executes on button press in exp_fluor_fitparams. 

function exp_fluor_fitparams_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_fluor_fitparams (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 
end 

  

  

% --- Executes on button press in exp_fluor_fitgood. 

function exp_fluor_fitgood_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_fluor_fitgood (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes during object creation, after setting all properties. 
function average_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to average (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

end 

  

  

% --- Executes on button press in exp_fluor_mag. 

function exp_fluor_mag_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_fluor_mag (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in exp_fluor_asym. 

function exp_fluor_asym_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_fluor_asym (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in exp_fluor_width. 
function exp_fluor_width_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_fluor_width (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in exp_fluor_r2. 

function exp_fluor_r2_Callback(hObject, eventdata, handles) 

% hObject    handle to exp_fluor_r2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 
end 

  

  

% --- Executes on button press in sav_fluor_mag. 

function sav_fluor_mag_Callback(hObject, eventdata, handles) 

% hObject    handle to sav_fluor_mag (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  
% --- Executes on button press in sav_fluor_asym. 

function sav_fluor_asym_Callback(hObject, eventdata, handles) 

% hObject    handle to sav_fluor_asym (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in sav_fluor_width. 

function sav_fluor_width_Callback(hObject, eventdata, handles) 

% hObject    handle to sav_fluor_width (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

end 

  

  

% --- Executes on button press in sav_fluor_r2. 

function sav_fluor_r2_Callback(hObject, eventdata, handles) 

% hObject    handle to sav_fluor_r2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

end 

  
  

function [ arrayout ] = spatial_filter( arrayin,filter_template ) 

%SPATIAL_FILTER Spatial averages an array by Nearest Neighbor (NN) or Next- 

%Nearest Neighbor (NNN) 

%   filter in is a 3x3 array showing the weight for each plane. Each plane 

%   in arrayin should be multipled by filter and summed. 

%   output array will be reduced by 2 rows and 2 columns 
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%   Author(s): A. Fisher, K. Meissner 

%   Centre of NanoHealth, College of Science,  

%   Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom 

  

    [rows,cols,spec] = size(arrayin); 
    arrayout = zeros(rows-2,cols-2,spec); 

    filtmat = repmat(filter_template,1,1,spec); 

    for r = 2:rows-1 

        for c = 2:cols-1 

            tmp = arrayin(r-1:r+1,c-1:c+1,:).*filtmat; 

            arrayout(r-1,c-1,:) = sum(sum(tmp,1),2); 

        end 

    end 

end 

  

  

function y=sgolayfilt_3D(x,order,framelen,weights,dim) 
%SGOLAYFILT Savitzky-Golay Filtering. 

%   SGOLAYFILT(X,ORDER,FRAMELEN) smoothes the signal X using a 

%   Savitzky-Golay (polynomial) smoothing filter.  The polynomial order, 

%   ORDER, must be less than the frame length, FRAMELEN, and FRAMELEN must 

%   be odd.  The length of the input X must be >= FRAMELEN.  If X is a 

%   matrix, the filtering is done on the columns of X. 

% 

%   Note that if the polynomial order ORDER equals FRAMELEN-1, no smoothing 

%   will occur. 

% 

%   SGOLAYFILT(X,ORDER,FRAMELEN,WEIGHTS) specifies a weighting vector 
%   WEIGHTS with length FRAMELEN containing real, positive valued weights 

%   employed during the least-squares minimization. If not specified, or if 

%   specified as empty, WEIGHTS defaults to an identity matrix. 

% 

%   SGOLAYFILT(X,ORDER,FRAMELEN,[],DIM) and 

%   SGOLAYFILT(X,ORDER,FRAMELEN,WEIGHTS,DIM) operate along the dimension DIM. 

% 

%   % Example: 

%   %   Smooth the mtlb signal by applying a cubic Savitzky-Golay filter  

%   %   to data frames of length 41. 

%   load mtlb                        % Load data 

%   smtlb = sgolayfilt(mtlb,3,41);   % Apply 3rd-order filter 
%   plot([mtlb smtlb]); 

%   legend('Original Data','Filtered Data'); 

% 

%   See also SGOLAY, MEDFILT1, FILTER 

  

%   References: 

%     [1] Sophocles J. Orfanidis, INTRODUCTION TO SIGNAL PROCESSING, 

%              Prentice-Hall, 1995, Chapter 8. 

  

%   Author(s): R. Losada 

%   Copyright 1988-2016 The MathWorks, Inc. 
  

    narginchk(3,5); 

  

    % Check if the input arguments are valid 

    if round(framelen) ~= framelen 

        error(message('signal:sgolayfilt:MustBeIntegerFrameLength')) 

    end 

    if rem(framelen,2) ~= 1 
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        error(message('signal:sgolayfilt:SignalErr')) 

    end 

    if round(order) ~= order 

        error(message('signal:sgolayfilt:MustBeIntegerPolyDegree')) 

    end 
    if order > framelen-1 

        error(message('signal:sgolayfilt:InvalidRangeDegree')) 

    end 

  

    if nargin < 4 

       weights = []; 

    elseif ~isempty(weights) 

       % Check for right length of WEIGHTS 

       if length(weights) ~= framelen 

           error(message('signal:sgolayfilt:InvalidDimensionsWeight')) 

       end 

       % Check to see if all elements are positive 
       if min(weights) <= 0 

           error(message('signal:sgolayfilt:InvalidRangeWeight')) 

       end 

    end 

  

    if nargin < 5, dim = []; end 

  

    % Check the input data type. Single precision is not supported. 

    %chkinputdatatype(x,order,framelen,weights,dim); 

  

    % Compute the projection matrix B 
    B = sgolay(order,framelen,weights); 

  

    if ~isempty(dim) && dim > ndims(x) 

        error(message('signal:sgolayfilt:InvalidDimensionsInput', 'X')) 

    end 

  

    % Reshape X into the right dimension. 

    if isempty(dim) 

        % Work along the first non-singleton dimension 

        [x, nshifts] = shiftdim(x); 

    else 

        % Put DIM in the first dimension (this matches the order  
        % that the built-in filter function uses) 

        perm = [dim,1:dim-1,dim+1:ndims(x)]; 

        x = permute(x,perm); 

    end 

  

    if size(x,1) < framelen 

        error(message('signal:sgolayfilt:InvalidDimensionsTooSmall')) 

    end 

    for i = 1:length(x(1,1,:)) 

            % Compute the transient on 

            ybegin = B(end:-1:(framelen-1)/2+2,:) * x(framelen:-1:1,:,i); 
  

            % Compute the steady state output 

            ycenter = filter(B((framelen-1)./2+1,:), 1, x(:,:,i)); 

  

            % Compute the transient off 

            yend = B((framelen-1)/2:-1:1,:) * x(end:-1:end-(framelen-1),:,i); 

  

            % Concatenate 
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            y(:,:,i) = [ybegin; ycenter(framelen:end,:); yend]; 

    end 

  

    % Convert Y to the original shape of X 

    if isempty(dim) 
        y = shiftdim(y, -nshifts); 

    else 

        y = ipermute(y,perm); 

    end 

end 

  

  

function [imag,ictr,iwidth,ir2,dout,foutf,foutg ] = ... 

    process_detrend( d,x,b_size,ml,wl,r2l,f) 

%DATA_DETREND remove any background drift and fit Raman peaks 

%   background drift removed with MATLAB's detrend function. 

%   raman peaks fit to user's choice of gaussian or lorentzian functions. 
  

%   Author(s): A. Fisher, K. Meissner 

%   Centre of NanoHealth, College of Science,  

%   Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom 

  

    [rmax, cmax, spec] = size(d); 

    shift = x; 

    dout = zeros(rmax,cmax,spec); 

    foutf = cell(rmax,cmax); 

    foutg = cell(rmax,cmax); 

    if f ~= 1 %1 means Gaussian fit, otherwise Lorentzian 
        lzt = fittype( @(a1,b1,c1,x)... 

            (a1)*((c1^2)./(((x-b1).^2)+c1^2 ))); % create Lorentzian fit 

    end 

    wb = waitbar(0,'Processing Spectra...'); 

    for r = 1:rmax 

        for c = 1:cmax 

            data_sh = squeeze(d(r,c,:)); 

  

            %use detrend to remove background 

            data_sh_detr = detrend(data_sh); 

            data_sh_detr = data_sh_detr - mean(data_sh_detr(1:b_size)); 

            dout(r,c,:) = data_sh_detr; 
            if f == 1 

                [F1,G1] = fit(shift,data_sh_detr,'Gauss1'); 

            else 

                [F1,G1] = fit(shift,data_sh_detr,lzt,'StartPoint',... 

                    [max(data_sh_detr)/2,mean(shift),shift(2)-shift(1)]); 

            end 

            foutf{r,c} = F1; 

            foutg{r,c} = G1; 

            if F1.a1 <= ml 

                imag(r,c) = 0; %if mag < 0, make all values 0 = bad fit 

                ictr(r,c) = 0;  
                iwidth(r,c) = 0;  

                ir2(r,c) = 0;  

            elseif F1.c1 < wl 

                imag(r,c) = 0; %if width too small, bad fit 

                ictr(r,c) = 0;  

                iwidth(r,c) = 0;  

                ir2(r,c) = 0;  

            elseif G1.rsquare < r2l 
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                imag(r,c) = 0; %if rsquared too small, bad fit 

                ictr(r,c) = 0;  

                iwidth(r,c) = 0;  

                ir2(r,c) = 0;  

            else 
                imag(r,c) = F1.a1; %make an image from the magnitude of fit 

                ictr(r,c) = F1.b1; %make an image from the center of fit 

                iwidth(r,c) = F1.c1; %make an image from the width of fit 

                ir2(r,c) = G1.rsquare; %make an image from the r^2 of fit 

            end 

  

        end 

        waitbar(r/rmax); 

    end 

    close(wb); 

end 

  
  

function [ imag,ictr,iwidth,ir2,dout,foutf,foutg  ] = ... 

    process_poly(d,x,b_size,ml,wl,r2l,p,f ) 

%DATA_POLY remove any background drift and fit Raman peaks 

%   background drift removed by subtracting a polynomial fit of the first 

%   b_size points. 

%   raman peaks fit to user's choice of gaussian or lorentzian functions. 

  

%   Author(s): A. Fisher, K. Meissner 

%   Centre of NanoHealth, College of Science,  

%   Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom 
  

    [rmax, cmax, spec] = size(d); 

    shift = x; 

    dout = zeros(rmax,cmax,spec); 

    foutf = cell(rmax,cmax); 

    foutg = cell(rmax,cmax); 

    if f ~= 1 %1 means Gaussian fit, otherwise Lorentzian 

        lzt = fittype( @(a1,b1,c1,x) ... 

            (a1)*((c1^2)./(((x-b1).^2)+c1^2 ))); % create Lorentzian fit 

    end 

    wb = waitbar(0,'Processing Spectra...'); 

    for r = 1:rmax 
        for c = 1:cmax 

            data_sh = squeeze(d(r,c,:)); 

  

            %use polynomial to remove background 

            num = b_size*2; %number of background points 

            data_bkgnd = zeros(num,2); 

            data_bkgnd(:,1) = [shift(1:b_size);shift(end-b_size+1:end)]; 

            data_bkgnd(:,2) = [data_sh(1:b_size);data_sh(end-b_size+1:end)]; 

            [F2,~] = fit(data_bkgnd(:,1),data_bkgnd(:,2),p); 

            data_sh_poly(:,1) = data_sh; 

            background(:,1) = F2(shift); 
            data_sh_poly(:,2) = data_sh_poly(:,1) - background(:,1); 

            dout(r,c,:) = data_sh_poly(:,2); 

            tmp = sort(d,'descend'); 

            fit_max = tmp(3)*2; 

            if f == 1 

                [F3,G3] = fit(shift,data_sh_poly(:,2),'Gauss1',... 

                    'Lower',[0,min(shift),eps],... 

                    'Upper',[fit_max,max(shift),max(shift)-min(shift)]); 
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            else 

                [F3,G3] = fit(shift,data_sh_poly(:,2),lzt,... 

                    'StartPoint',[max(data_sh_poly(:,2))/2,mean(shift),... 

                    shift(2)-shift(1)],'Lower',[0,min(shift),eps],'Upper',... 

                    [fit_max,max(shift),max(shift)-min(shift)]); 
            end 

            data_sh_poly(:,3) = F3(shift); 

            foutf{r,c} = F3; 

            foutg{r,c} = G3; 

            if F3.a1 <= ml 

                imag(r,c) = 0; %if mag < 0, make all values 0 = bad fit 

                ictr(r,c) = 0;  

                iwidth(r,c) = 0;  

                ir2(r,c) = 0;  

            elseif F3.c1 < wl 

                imag(r,c) = 0; %if width too large, make all values 0 = bad fit 

                ictr(r,c) = 0;  
                iwidth(r,c) = 0;  

                ir2(r,c) = 0;  

            elseif G3.rsquare < r2l 

                imag(r,c) = 0; %if r^2 too small, make all values 0 = bad fit 

                ictr(r,c) = 0;  

                iwidth(r,c) = 0;  

                ir2(r,c) = 0;  

            else 

                imag(r,c) = F3.a1; %make an image from the magnitude of fit 

                ictr(r,c) = F3.b1; %make an image from the center of fit 

                iwidth(r,c) = F3.c1; %make an image from the width of fit 
                ir2(r,c) = G3.rsquare; %make an image from the r^2 of fit 

            end 

  

        end 

        waitbar(r/rmax); 

    end 

    close(wb); 

end 

  

  

  

function [ imag,iasym,iwidth,ir2,foutf,foutg ] = process_fluor(d,x,ml,r2l) 
%PROCESS_FLUOR Fits the fluorescence data 

%   fits to a lognormal function 

  

%   Author(s): A. Fisher, K. Meissner 

%   Centre of NanoHealth, College of Science,  

%   Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom 

  

    lognorm2 = fittype(@(a,b,c,I0,offset,x) offset+(I0*b./(x-a)).*exp(-c^2).* ... 

        exp(-(1/(2*c^2))*(log((x-a)./b)).^2));  

    [rmax, cmax, ~] = size(d); 

    foutf = cell(rmax,cmax); 
    foutg = cell(rmax,cmax); 

    wb = waitbar(0,'Processing Spectra...'); 

        for r = 1:rmax 

            for c = 1:cmax 

                [F, G] = fit(x',squeeze(d(r,c,:)),lognorm2,'StartPoint',... 

                    [mean([min(x)-eps -max(x)]),500,.5,... 

                    max(d(r,c,:))-mean(d(r,c,end-20:end)),mean(d(r,c,end-20:end))],... 

                    'Upper',[min(x)-eps,2000,10,max(d(r,c,:)),max(d(r,c,:))],... 
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                    'Lower',[-max(x),eps,eps,0,0]); 

  

                foutf{r,c} = F; 

                foutg{r,c} = G; 

  
                if F.I0 <= ml 

                    imag(r,c) = 0; %if mag < 0, make all values 0 = bad fit 

                    iasym(r,c) = 0;  

                    iwidth(r,c) = 0;  

                    ir2(r,c) = 0;  

                elseif G.rsquare < r2l 

                    imag(r,c) = 0; %if r^2 too small, make all values 0 = bad fit 

                    iasym(r,c) = 0;  

                    iwidth(r,c) = 0;  

                    ir2(r,c) = 0;  

                else 

                    imag(r,c) = F.I0; %make an image from the magnitude of fit 
                    iasym(r,c) = F.c; %make an image from the asymmetry of fit 

                    iwidth(r,c) = F.b; %make an image from the width of fit 

                    ir2(r,c) = G.rsquare; 

                end 

            end 

            waitbar(r/rmax); 

        end 

    close(wb) 

    % figure; 

    %  

    % subplot(2,2,1); 
    % imagesc(imag/max(max(imag))); 

    % caxis([0,1]); 

    % colorbar; 

    % title('Normalized Magnitude'); 

    % subplot(2,2,2); 

    % imagesc(iasym); 

    % colorbar; 

    % title('Assymetry'); 

    % subplot(2,2,3); 

    % imagesc(iwidth); 

    % colorbar; 

    % title('Width'); 
    % subplot(2,2,4); 

    % imagesc(ir2); 

    % caxis([0,1]); 

    % colorbar; 

    % title('R Squared');     

end 




