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A B S T R A C T   

Cancer presenting with non-specific vague symptoms remains a clinical challenge. The purpose of this study was 
to assess the feasibility of serum Raman spectroscopy for cancer detection in a rapid diagnosis center (RDC) 
setting. The primary aim was to identify significant spectral peaks of change in sera from cancer patients and the 
secondary aim was to assign molecular species at Raman peaks. 

In this prospective observation study of a secondary care RDC, patients referred with vague cancer-related 
symptoms were recruited. Raman spectra of blood sera of 54 patients was obtained. Of these, 10 patients 
were diagnosed with cancer, and 44 no significant pathology (control). Common spectral increase/decrease 
between control and cancer was seen in spectral peaks 830 cm− 1, 878 cm− 1, 1031 cm− 1, 1174 cm− 1, 1397 cm− 1 

tentatively attributed to amino acids, carbohydrates, fatty acids, and proteins. Individual differences between 
cancer and control via statistical analysis identifies 3 peaks with significance for all 10 of the cancer patients. The 
peaks are 878 cm− 1, 1449 cm− 1 and 1519 cm− 1, tentatively attributed to proteins, amino acids, lipids, fatty 
acids, glycoproteins, carbohydrates, and carotenoids. Differences are also seen for at least 9 of the cancers in the 
peaks at 830 cm− 1, 851 cm− 1, 1127 cm− 1, 1174 cm− 1, 1270 cm− 1, and 1656 cm− 1, tentatively attributed to 
amino acids, lactate, lipids, triglycerides, carbohydrates, and proteins. 

Raman spectroscopy has the potential to enhance RDC referral criteria through the detection of peak differ
ences seen commonly with different cancer types. Development of Artificial Intelligence (AI) based models could 
enable rapid detection and discrimination of different cancer types with more data availability.   

1. Introduction 

Diagnosis of cancer at an early stage is known to improve survival. 
The urgent suspected cancer (USC) pathways were introduced across the 
UK to standardize referrals and investigations for suspected cancer in an 
effort to reduce time to diagnosis. The National Institute for Health and 
Care Excellence (NICE) guidelines for USC pathways are based upon 
cancer site-specific criteria including age, ‘red flag’ symptoms or clinical 
signs. Many patients do not fulfill the NICE criteria due to vague and 
non-specific symptoms. Studies have shown up to 50% of patients 
diagnosed with cancer do not present to primary care with pathway- 
specific red flag symptoms that fulfill the current NICE criteria. These 
patients wait a median of 34 days longer for a diagnosis compared with 
patients presenting with symptoms that fulfill the criteria [1]. The 

ongoing global COVID-19 pandemic has placed a huge burden upon 
healthcare and led to delays in diagnostic pathways with consequent 
effects on cancer outcomes [2]. This threatens the goals of the NHS Long 
Term Plan which seeks to diagnose 75% of cancers at an earlier stage 
(I/II) by 2028 and to facilitate the faster diagnostic standard of 28 days 
[3]. 

Rapid Diagnosis Centers (RDCs) provide an opportunity for detection 
of cancer when site specific symptoms are absent. Based on a similar 
clinic model developed in Denmark [4] two RDCs are currently estab
lished in Wales with planned roll-out in all health boards. A study of RDC 
activity in Swansea Bay University Health Board between 2017 and 
2018 showed that the mean time to diagnosis was just 5.9 days when 
diagnosis was made through the clinic compared to 84.2 days in usual 
care [5]. Above 80% capacity the RDC produced more quality-adjusted 
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life years (QALYs) and was less costly than standard clinical practice. 
High levels of patient and GP satisfaction with the RDC service are re
ported in Wales [6]. In parallel this model is being rolled out nationally 
by NHS England and NHS Improvement. Pilot Multi-Disciplinary Cen
ters (MDCs) were established to improve cancer outcomes within the 
Accelerate Coordinate Evaluate (ACE) program [7] with at least one 
Rapid Access Center mandated per cancer alliance with full population 
coverage by 2024 [8]. 

Due to the nature of referrals with non-specific symptoms there is a 
low conversion rate to a cancer diagnosis observed within RDCs 
(7–12%). It would be beneficial to develop simple blood-based triage 
tests to align with the top ten priorities of early cancer detection and 
with the RDC model [9]. 

Raman spectroscopy (RS) is a vibrational spectroscopic technique 
that provides rapid analysis of biological samples. RS simultaneously 
measures a range of molecular species (including proteins, nucleic acids, 
and lipids) within biological samples to produce a spectrum or ‘chemical 
fingerprint’ unique to the sample. RS techniques have been developed 
with the ability to detect disease in both tissue and serum for a range of 
cancers including but not limited to leukemia, cervical, colorectal, oral 
squamous cell, and breast cancer [10–14]. The advantage of serum is the 
ease of collection, storage and transport allowing it to be analysed 
centrally. The ability of RS to detect many different types of cancer could 
be utilized in an RDC setting with a serum test potentially allowing a 
reduction in the number of diagnostic investigations needed or more 
targeted investigations to be carried out and reduce time to diagnosis. 

The aims of this study were to explore the potential of RS to identify 
significant peaks changes in serum from RDC cancer patients and assign 
Raman peaks with a view to the future development of cancer diagnosis 
site models. 

2. Methods 

2.1. Patient recruitment 

Full ethical approval for all aspects of this study was granted by the 
Wales Research and Ethics Committee (REC reference 14/WA/0028). 
Patients referred to RDC clinic between February 2018 and March 2020 
were recruited prior to their initial consultation and a fasting blood 
sample was obtained by trained staff. Patient demographic data, diag
nosis and outcomes were recorded. Exclusion criteria was patients un
willing or unable to give consent or from vulnerable groups. Clinical 
diagnosis and patient outcomes were obtained from electronic medical 
records. Cancer diagnosis was confirmed with histopathology. Control 
patients were followed up for 6 months to ensure no further significant 
diagnosis were made and to ensures no cancer diagnosis were missed. 
RDC researchers were blinded to patient diagnosis and outcomes during 
data collection. Age, gender, polypharmacy (> 5 medications), smoking 
status, presence of cardiovascular or hepatic disease, and overall diag
nosis for patients is shown in Table 1. 

2.2. Rapid diagnosis center 

Patients fulfilling referral criteria (unexplained weight loss, pain, 
fatigue, or shortness of breath) are referred from their GP to the RDC and 
are seen within a 2-week target. The service is composed of a multi
disciplinary team of consultant physician, radiologist, clinical nurse 
specialist and healthcare support workers. At referral, the GP arranges a 
panel of routine blood tests, tumor markers and a chest radiograph. 
Patients are evaluated in the clinic by history and clinical examination 
then computed tomography (CT) scan of chest abdomen and pelvis. 
Results are evaluated on the same day by the MDT before the patient is 
informed of the outcome: (1) cancer diagnosis with referral to specialist, 
(2) non-cancer diagnosis, (3) no serious pathology found discharge back 
to GP, and (4) no diagnosis, continue investigations [5]. 

2.3. Patient and public involvement 

2 former patients from Health and Care Research Wales’ Public 
Involvement Community were involved in the research management of 
this work. They aided in the development of research protocols, patient 
information sheets and lay summaries as well as with interpretation of 
the practical relevance of results arising from the research ensuring that 
the research was relevant to patient and public need. 

2.4. Sample handling and spectral acquisition 

Serum samples were stored at − 80 ◦C until thawing for spectral 
acquisition. Raman spectra were obtained using an InVia Qontor 
(Renishaw, UK) Raman spectrometer. A previously designed high 
throughput system was used with inbuilt temperature control to prevent 
sample degradation [12]. In brief, the frozen serum was thawed then 
pipetted into a medical-grade stainless steel well plate at a volume of 
200 µl per well. 3 repeat liquid serum spectra were obtained from each 
sample at the 785 nm laser line across a wavenumber range of 
610–1720 cm− 1. 

2.5. Spectral pre-processing 

Data analysis within this study was carried out within the R pro
gramming environment [15]. Spectra were processed using 
Savitsky-Golay [16] filtering with a filter length of 9 and a polynomial 
order of 4 for spectral smoothing, fluorescent background has been 
corrected using a modified polynomial fitting algorithm [17] modeling 
with a 5th order polynomial, and spectra have been normalized using 
standard-normal-variate[18] followed by normalization to the phenyl
alanine peak at 1002 cm− 1. This procedure was developed in a 
high-performance computing workflow for optimization using a 
pre-processing package developed in-house [19]. A mean of 3 replicate 
spectra was taken as a patient’s measurement. 

Table 1 
Demographic and clinical data. 4 patients with significant other pathology have 
been excluded from demographic table and further analysis., * 1 Patient was 
considered too frail to undergo further investigation following initial CT scan in 
RDC.  

Total n = 54 

Demographic data Total Cancer Control 

Male (%) 35 (65%) 6 29 
Female (%) 19 (35%) 4 15 
Age median (range) 71 (28–90) years 
Polypharmacy (on ≥5 medications) (%) 36 

(67%)   
Smoking status Total Cancer Control 
Non-smoker (%) 29 (54%) 4 25 
Ex-smoker (%) 20 (37%) 5 15 
Current smoker (%) 5 (9%) 1 4 
Other health issues Total Cancer Control 
Cardiovascular disease 37 (69%) 7 

(70%) 
30 
(68%) 

Hepatic disease 3 (6%) 0 (0%) 3 (7%) 
Diagnosis  
Cancer (%) 10 (19%) 
Colorectal cancer (%)(1 x Colorectal liver 

metastasis*, 1 x Splenic flexure, 1 x Cecal) 
3 (5%) 

Pancreatic cancer (%) 2 (3%) 
Small cell lung cancer (%) 1 (2%) 
Pseudomyxoma peritonei (%) 1 (2%) 
Metastatic bone disease (breast cancer 

recurrence) (%) 
1 (2%) 

Anaplastic thyroid cancer (%) 1 (2%) 
Hepatocellular carcinoma (HCC) 1 (2%) 
Control (%) 44 (81%) 
Previous diagnosis of cancer (treatment 

completed) (%) 
5 (9%)  
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2.6. Statistical analysis 

Analysis is conducted in the programming language R using in-house 
scripts utilizing the base “stats” package containing several commonly 
used statistical techniques. Spectra from patients first are subjected to a 
Shapiro-Wilk test for normality to test appropriateness of using inde
pendent Welch t-test, and a Mann-Whitney U test for non-normality 
between the groups cancer and control. Each different type of cancer 
observed is then compared with the control set individually using a 
Wilcoxon signed rank. Welch’s t-test, Mann-Whitney U test, and Wil
coxon signed rank remain robust for imbalanced data sets as in this study 
[20–22]. 

3. Results 

126 patients were approached to take part, 5 patients declined to 
participate, and 121 patients consented (see Fig. 1 for STROBE dia
gram). Of these 58 patients provided a serum sample suitable for anal
ysis. There were 22 females and 36 males with a median age of 59 years 
(range 28–90 years). Demographics of the cohort can be seen in Table 1. 

Final diagnosis for the 58 patients was 10 cancers, 44 controls (no 
cancer or significant other disease diagnosis), and 4 significant other 
disease. For the purposes of this study the 4 significant other disease are 
not considered. Table 1 includes whether the patient has cardiovascular 
and/or hepatic disease, both of which have been shown to affect Raman 
spectra [38,39]. No patients in this cohort were noted to have a history 
of alcoholism or underlying infection. 

We first compare the 2 groups cancer and control for each wave
number. A Shapiro-Wilk test was first conducted to test for normality. 
Where peak differences could be seen, a Mann-Whitney U test (non- 
parametric) was conducted to test for significance between the collec
tive cancer and control groups. The aim of this analysis is to identify 
peaks in the spectrum which are statistically significant. We then extend 
this to assess the significant peaks in individual cancers and controls 

using Wilcoxon signed rank for comparison. 
Fig. 2 shows the mean control spectrum from 44 patients and the 

mean cancer spectrum from 10 patients in the RDC patient group, and 
the difference spectrum (mean control – mean cancer). The shaded 
purple and green regions outline the spectra ± the standard deviation. 
The spectra are produced by molecular vibrations within the serum 
sample, the peaks corresponding to vibrational modes. Subtle differ
ences are observed between the cancer and control spectra with both 
increases and decreases in relative peak intensity. Statistical testing is 
applied to peak intensities to identify significance between cancers and 

Fig. 1. STROBE diagram for the Raman-RDC study. High attrition due to patients’ consent being obtained when not fasted and asked to return but did not.  

Fig. 2. Mean and standard deviation of Raman spectra for the cancer (n = 10) 
and control (n = 44) groups, and difference spectra between the two groups 
(control – cancer). Cancer spectra is offset for clarity on y-axis. Spectra are 
processed to corrected for background fluorescence, laser intensity fluctuations, 
and spectral noise. Peaks highlighted from Mann-Whitney U test. Red vertical 
regions indicate where a common increase in cancer intensity is observed again 
the control group, blue for decreases in cancer intensity. 
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controls. While the difference spectrum shows many regions where 
cancers and controls differ, only 5 are statistically significant due to 
large deviations in these other areas. 

Several regions have been identified as significant between the 
control and cancer groupings; however, it must be noted these are cases 
where differences are in the same direction for each cancer i.e., either an 
increase in intensity compared to control, or a decrease overall. For 5 
regions; 830 cm− 1, 878 cm− 1, 1031 cm− 1, 1174 cm− 1, and 1398 cm− 1. 
Tentative peak assignments are given in Table 2 in which a database of 
biological peak assignment has been produced from multiple literature 
sources and matched to significant peaks. 

We now move to compare individual patients diagnosed with cancer 
in the RDC group with the control cohort. Due to small sample set this 
analysis is exploratory and is limited to direct comparison of cancer 
spectra to control group using one sample Wilcoxon ranked sign. 

Table 3 shows the peaks where greater than 4 of the cancers observe 
significance from the control set with tentative Raman peak assignments 
included. In 3 peaks, we see all 10 cancers in the RDC set showing sig
nificance. These peaks at 878 cm− 1, 1449 cm− 1 and 1519 cm− 1, tenta
tively attributed to proteins, amino acids, lipids, fatty acids, 
glycoproteins, carbohydrates, and carotenoids. Note this is increase and 
decreases in relative intensity, whereas important peaks described from 
the Mann-Whitney U test are where there are common increases and 
decreases between the cancers and controls on average. 

Fig. 3 shows an example spectrum with each of the peaks in Table 3 
show, along with the number of cancers where Wilcoxon sign rank 
shows significance between the cancer and control set. 

4. Discussion 

This study presents the first Raman diagnostic study in a cohort of 
non-specific symptomatic patients in an RDC setting. We found peaks in 
human blood sera spectra indicating significance between cancer and 
control samples in the cohort of 58 patients. 

This study shows promising preliminary results in demonstrating a 
cohesive approach for cancer detection via a Raman based blood assay. 
Due to the nature of the study, single types of most cancers are seen, with 
only CRC and pancreatic cancer diagnosed in more than 1 patient. This 
limits analysis for some types to 1 vs. all controls. Future studies aim to 
collect larger datasets to improve confidence of cancer groupings 

Table 2 
Tentative peak assignment for significant wavenumbers between cancer and control 
globally.[23–27].  

Peak 
position 
/ cm− 1 

Tentative 
assignment 
(Band) 

Tentative 
component 
assignment 

Cancer 
increase/ 
decrease 

P value Effect 
size  

830 C-H ring 
stretching 

Tyrosine; 
Phenylalanine; 
Mannose; 
Acetoacetate 

↑ 0.002 * * Medium 
Effect  

878  Glutamate; 
Mannitol; 
Unsaturated 
Fatty Acids; 
Coenzyme A, 
Carbohydrates; 
Arginine 

↑ 0.028 * Small 
Effect  

1031  Phenylalanine; 
Proline 

↑ 0.014 * Medium 
Effect  

1174 Amino Acid Tyrosine; 
Histidine; 
Saturated Fatty 
Acids 

↓ 0.016 * Small 
Effect  

1398  Isoleucine; 
Glycine; Valine; 
Lysine; 
Acetoacetate; 
Carbohydrates 

↑ 0.048 * Small 
Effect  

Table 3 
Tentative peak assignments for significant peaks identified individually between 
each cancer type and the control cohort. The following abbreviations are used; 
SCLC- Small cell lung cancer, SFC- splenic flexure carcinoma, PMP – pseudo
myxoma peritonei, ATC – anaplastic thyroid cancer, CRLM - colorectal liver 
metastasis, Panc (1) – pancreatic cancer patient 1, Panc (2) – pancreatic cancer 
patient 2, HCC – hepatocellular carcinoma, MBD – metastatic bone disease 
(breast cancer recurrence), CC – cecal cancer [23–27].  

Peak 
position / 
cm− 1 

Tentative 
assignment 
(Band) 

Tentative component 
assignment 

Cancer difference 
seen (n patients 
with p < 0.05)  

621 C-C twisting Phenylalanine; Tyrosine 6 (SCLC, SFC, 
PMP, ATC, Panc 
(2), MBD)  

643  Tyrosine; Proline 5 (SCLC, SFC, 
CRLM, HCC, 
MBD)  

699  Cholesterol 9 (SCLC, SFC, 
PMP, ATC, CRLM, 
Panc (1), Panc 
(2), HCC, MBD)  

718  Tyrosine; Valine 9 (SCLC, SFC, 
PMP, ATC, CRLM, 
Panc (2), HCC, 
MBD, CC)  

743  Tryptophan; 
Phosphoenolpyruvate; 
Threonine; Tyrosine; 
Riboflavin 

8 (SCLC, SFC, 
PMP, ATC, Panc 
(1), Panc (2), 
HCC, CC)  

757  Tryptophan; Valine 4 (SFC, PMP, 
ATC, Panc (1))  

830 C-H ring 
stretching 

Tyrosine, Phenylalanine, 
Mannose, Acetoacetate 

9 (SCLC, SFC, 
PMP, ATC, CRLM, 
Panc (1), HCC, 
MBD, CC)  

851 C–C aliphatic 
stretch 

Lysine; Valine; Tyrosine; 
Alanine; Isoleucine; 
Phenylalanine; Leucine; 
Histidine; Lactate 

9 (SCLC, SFC, 
PMP, ATC, CRLM, 
Panc (1), Panc 
(2), MBD, CC)  

878  Glutamate; Unsaturated Fatty 
Acids; Coenzyme A, 
Carbohydrates; Arginine 

10 (SCLC, SFC, 
PMP, ATC, CRLM, 
Panc (1), Panc 
(2), HCC, MBD, 
CC)  

941 ν(CC), 
ν(CCN)sym 

Glutamate; Citric Acid, 
Aspartic Acid 

8 (SCLC, SFC, 
PMP, ATC, CRLM, 
Panc (2), HCC, 
CC)  

1031  Phenylalanine; Proline 8 (SCLC, SFC, 
PMP, ATC, CRLM, 
Panc (1), HCC, 
CC)  

1059  Histidine; Saturated Fatty 
Acids; Carbohydrates 

7 (SCLC, SFC, 
PMP, CRLM, Panc 
(1), HCC, CC)  

1082 C-O Vibration Lactate, Triglyceride, 
Unsaturated Fatty Acids 

8 (SCLC, SFC, 
PMP, CRLM, Panc 
(1), HCC, MBD, 
CC)  

1127  Lactate; Valine; Saturated 
Fatty Acids; Carbohydrates 

9 (SCLC, SFC, 
PMP, ATC, CRLM, 
Panc (1), Panc 
(2), MBD, CC)  

1157 (C-H)n, ν(CN) Tyrosine; Glycine; Carotenoids 8 (SCLC, SFC, 
ATC, Panc (1), 
Panc (2), HCC, 
MBD, CC)  

1174  Proline; Histidine; Methionine; 
Saturated Fatty Acids 

9 (SFC, PMP, 
ATC, CRLM, Panc 
(1), Panc (2), 
HCC, MBD, CC)  

1270  Histidine; Saturated Fatty 
Acids; Carotenoids 

9 (SCLC, SFC, 
PMP, ATC, CRLM, 
Panc (1), HCC, 
MBD, CC)  

1319 δCH Arginine; Glutamate; 
Histidine; Proline; 

(continued on next page) 
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appearing. A larger sample set will also enable studies relating to clin
ically relevant but non-cancerous conditions. The current balance of 
confounding factors in the cancer/control patients in the study is reas
suring for cardivascular, and only a small difference in hepatic issues. 
The future balance of extended trials is a factor that requires assessment 
and considerations to ensure that confounding factors do not skew or 
unintentionally define models. 

RS from human blood sera from the RDC patient group has identified 
spectra differences between cancers and controls overall, notably in 4 
peaks; 830 cm− 1, 878 cm− 1, 1031 cm− 1, and 1174 cm− 1, tentatively 
attributed to amino acids tyrosine, phenylalanine, glutamate, histidine, 
glycine, isoleucine, valine, lysine, and proline. In addition, these peaks 
can be attributed to unsaturated fatty acids and carbohydrates. These 
four regions see common collective increase or decrease on average for 
the cancer sera. Branched chain amino acids; valine, leucine, and 

isoleucine, can provide opportunistic energy sources for cells, which can 
feed into the altered metabolism of cancer cells [28]. Glutamate is 
mostly derived from glutamine, although can be synthesized from 
branched chain amino acids, which is an important link that is utilized 
by some tumors [29]. These markers may potentially be able to provide 
an immediate flag for further investigation for some cancer types via a 
threshold test. Confirmatory work will be undertaken to provide assur
ances of peak assignment using mass spectrometry. 

Individual differences between cancer and control via statistical 
analysis identifies 3 peaks with significant for all 10 of the cancer pa
tients. The peaks are at 878 cm− 1, 1449 cm− 1 and 1519 cm− 1, tenta
tively attributed to proteins, amino acids, lipids, fatty acids, 
glycoproteins, carbohydrates, and carotenoids. These markers could 
potentially be used for preliminary testing of patients for changes which 
could be indicative of cancer presence, in this case a lower and upper 
threshold depending on the specific cancer type. This could be in the 
form of a percentage increase or decrease in peak intensity from controls 
with thresholds determined from a larger data cohort. 

The hallmarks of cancer provide a logical framework for the bio
logical processes and changes that tissues undergo for the development 
of tumorigenesis and ultimately, malignancy [30]. One of the hallmarks, 
reprogramming of energy metabolism, is a necessity for the fueling of 
uncontrolled cell proliferation and growth [30–32]. The biosynthetic, 
redox and bioenergetic demands of malignant cells must be satisfied via 
reprogramming the metabolic pathways and nutrient acquisition [28, 
32]. The most notable pathways constituting on the energetical adap
tations are: glutaminolysis, aerobic glycolysis, and pathological mito
chondrial alterations [32]. Warburg observed one of the first 
distinguishing characteristics of cancer cell metabolism.[28] Irre
spective of oxygen availability, cancer cells can sustain high rates of 
aerobic glycolysis for ATP generation [30,33,34]. The field of cancer 
metabolism expanded over years, revealing further metabolic alter
ations related to one carbon metabolism, including pentose phosphate 
pathway and tricarboxylic acid cycle (TCA cycle) with amino acids as 
alternative fuels [28,32]. 

In relation to the Warburg effect, 9 out of 10 of the cancers see sta
tistical significance in the region 851 cm− 1, and for 8 out of 10 the re
gion 1082 cm− 1 both tentatively attributed to lactate. This could 
indicate the ability for Raman to detect changes in lactate uptake 
relating to cancer activity. We look to explore this effect further with 
increased sample numbers. In addition, several peaks in the spectrum 
with differences for multiple cancers can be attributed to components in 
the Krebs cycle such as glutamine, citric acid, coenzyme A, which can be 
affected in cancer development [35]. Differences are also seen with 
peaks tentatively attributed to arginine, of which arginine-derivatives 
(polyamines) are linked to cancer cell proliferation and aggressiveness 

Table 3 (continued ) 

Peak 
position / 
cm− 1 

Tentative 
assignment 
(Band) 

Tentative component 
assignment 

Cancer difference 
seen (n patients 
with p < 0.05) 

Phosphoenolpyruvate; 
Histidine; Ascorbic Acid 

7 (SCLC, PMP, 
CRLM, Panc (1), 
HCC, MBD, CC)  

1340  Cystine; LysineThreonine; 
Glutamate 

7 (SCLC, PMP, 
CRLM, Panc (1), 
HCC, MBD, CC)  

1398  Isoleucine; Glycine; Valine; 
Lysine; Acetoacetate; 
Carbohydrates 

7 (SCLC, SFC, 
ATC, CRLM, Panc 
(1), HCC, CC)  

1449 δCH2, δCH3 Proteins; Phospholipids; 
Saturated Fatty Acids 

10 (SCLC, SFC, 
PMP, ATC, CRLM, 
Panc (1), Panc 
(2), HCC, MBD, 
CC)  

1519  Glutamate; Carotenoids 10 (SCLC, SFC, 
PMP, ATC, CRLM, 
Panc (1), Panc 
(2), HCC, MBD, 
CC)  

1587  Phenylalanine; Leucine; Serine 8 (SCLC, PMP, 
ATC, CRLM, Panc 
(1), HCC, MBD, 
CC)  

1618  Tyrosine; Tryptophan 8 (SCLC, PMP, 
ATC, CRLM, Panc 
(1), HCC, MBD, 
CC)  

1656  Amide I; Saturated Fatty Acids 9 (SCLC, PMP, 
ATC, CRLM, Panc 
(1), Panc (2), 
HCC, MBD, CC)  

Fig. 3. Spectral plot displaying the regions with cancer peak intensities are statistically significant from control (red dashed line). Test performed using Wilcoxon 
signed rank between individual cancers and control set. The number fixed above the vertical peaks indicate the number of cancer patients in which statistical 
significance is observed. Tentative assignments can be found in Table 3. 
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[36,37]. 
Future work will verify the changes seen across cancers with mass 

spectrometry approaches to accurately assign metabolic species 
contributing to the tentative peak assignments. Additionally, develop
ment of artificial intelligence-assisted detection models for different 
cancer types through greater cohort size to include a diversity of cancer 
diagnoses is in progress the impact of this in an RDC could direct cli
nicians to targeted investigations saving money and time to diagnosis. 
With more data, confounding factors can be controlled for and included 
in diagnostic models which has not been possible with the small 
observational cohort in this study. Once test performance characteristics 
(sensitivity/ specificity/ area under curve) are known then formal 
clinical evaluation studies will be conducted with the potential for 
refining referral criteria for RDCs. 

Data and Code availability 

All original code has been deposited on GitHub and will be available 
at github.com/ferwoods/RDC following publication. Any additional 
information required to reanalyze the data reported in this paper is 
available from the corresponding author upon request. 
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[10] J.C. Martínez-Espinosa, J.L. González-Solís, M.L. Miranda-Beltrán, C. Soria- 
Fregoso, J. Medina-Valtierra, C. Frausto-Reyes, Detection of leukemia with blood 
samples using raman spectroscopy and multivariate analysis, In: Proceedings of the 
AIP Conference, 2009: pp. 99–103. https://doi.org/10.1063/1.3175637. 
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